• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Magnetic Properties of Mononuclear Cobalt(Ⅱ)Spin Crossover Complexes from Complementary Terpyridine Ligand Pairing

    2022-08-09 03:49:40YANGRuiZHANGShuYaWANGRunGuoMENGYinShanLIUTaoZHUYuanYuan
    無機化學學報 2022年8期

    YANG RuiZHANG Shu-YaWANG Run-GuoMENG Yin-ShanLIU Tao*,ZHU Yuan-Yuan*,,

    (1State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)(2Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering,School of Chemistry and Chemical Engineering,Hefei University of Technology,Hefei 230009,China)

    Abstract:The cobalt(Ⅱ) complexes containing terpyridine(terpy)and its derivatives compose a large family of Co(Ⅱ)SCO-active(SCO=spin-crossover)compounds and the reported cases are mainly built from homoleptic type terpy ligands.Herein we report the SCO properties in three mononuclear cobalt(Ⅱ)complexes constructed from complementary terpy ligand pairing.Their SCO behaviors are largely affected by the substituents of terpy at the 4-position.The archetypical complex 1 and its CF3-substituted one 3 showed a gradual and incomplete spin transition from the low spin state of S=1/2 to the high spin state of S=3/2.The fluorine-substituted complex 2 exhibited a solventdependent spin transition phenomenon.The solvated form which contains three lattice water molecules showed a similar gradually incomplete spin transition.Whereas the entire removal of water molecules resulted in a repeatable thermal hysteresis loop with a width of ca.50 K.Impressively,the adsorption and desorption of water molecules are reversible in structure and magnetism.In addition,absorption spectroscopy and cyclic voltammetry show that the substituent on the ligands can regulate the electronic structures of the central cobalt ion.CCDC:2162742,1(150 K);2162743,2(120 K);2162744,2(299 K);2162745,3(120 K).

    Keywords:spin-crossover;cobalt(Ⅱ)complexes;terpyridine;self-assembly

    Spin-crossover(SCO)complexes belong to a class of interesting compounds whose spin states can be switched through external perturbations including thermal,light,pressure,solvent,magnetic field,etc[1-2].The transition metal complexes with configurations ofd4-7electrons may be located in either the high-spin(HS)or low-spin(LS)state which is dependent on the ligand field strength.The interconversion of two spin states is essentially the consequence of the electron configuration rearrangement in thedorbital which is triggered by the relative energy magnitude of ligand field splitting between thet2gandegmolecular orbitals(Δ)and pairing energy of electrons(P)[3-4].WhenΔis larger thanP,the pairing of electrons is favored,resulting in an LS state.WhenΔis smaller thanP,electrons are inclined to occupy maximumdorbitals and thus prefer the HS state[5-6].Impressively,the transformations in electron configurations result in changes in several physical properties such as magnetic moment,color,dielectric constant,and electrical resistance[3,7].Since the first SCO compound,tris(dithiocarbamato)iron(Ⅲ),was discovered by Cambi et al.in 1931[8],numerous mononuclear,polynuclear,and polymeric complexes have been found to show a variety of SCO properties[9-10].Among them,the vast majority of SCO-active cases are composed of Fe(Ⅱ) and Fe(Ⅲ) complexes[11-13].In contrast,the reported examples of Co(Ⅱ)complexes with SCO behavior are relatively limited[14-15].From the view of electron configuration,the transition in sixcoordinate Co(Ⅱ) complexes from LS to HS state involves a change fromwithS=1/2 to a4T1withS=3/2[16].Due to the larger ligand field splitting energy(Δ)of Co(Ⅱ) ion compared with that of Fe(Ⅱ) ion,organic ligands with relatively stronger ligand field are required to build Co(Ⅱ)SCO-active compounds[6].So that the cobalt(Ⅱ)complexes containing terpyridine(terpy)and its derivatives constitute SCO-active family compounds due to the moderate ligand field strength of these tri-imine type ligands[16-18].Through the suitable substitutions in archetypical terpy and variations of counter anions and lattice solvent[19],the occurrences of SCO behaviour have been revealed in a variety of cobalt(Ⅱ)compounds built from terpy and its derivatives[20-23].However,the majority of compounds are constructed from cobalt(Ⅱ)ion with two equivalent homoleptic terpy ligands so that the formed complexes have anS4improper axis[24].Due to the reversible characteristic of coordination reaction,it is difficult to control the complex that is constituted from two different terpy ligands[25].The exploration of heteroleptic terpy cobalt(Ⅱ)complexes has great significance in research on SCO.These novel structures not only possess the advantage to subtly tuning the ligand field through the introduction of substitution at different positions but also provide a feasible approach to directionally assembling complicated metallo-supramolecular architectures bearing multinuclear paramagnetic centres.In 2016,Chan and co-workers developed a smart strategy for the directional synthesis of transition metal complexes from heteroleptic terpy ligands[26-28].They designed and synthesized a complementary pair of terpy-based ligands,one is the normal terpy ligand and another one has 2,6-dimethoxyphenyl groups at 6,6″-positions of 4'-phenyl-terpy,to afford the directional heteroleptic complexation.By employing this structure as the connection unit,complicated metallo-supramolecular structures including macrocycles,cages,and multi-layered architectures have been accurately selfassembled from multi-components.To the best of our knowledge,there is no study on the magnetic properties of the cobalt(Ⅱ)complexes constructed from complementary terpy ligand pairing.The exploration of SCO behaviour on these novel terpy-based cobalt(Ⅱ)complexes will enrich the cobalt(Ⅱ)SCO-active compound family and find some unexpected properties.In addition,the substituents can influence the SCO behaviour via electronic effect and/or intermolecular weak interactions[29-31].In this contribution,we report the synthesis,characterization and magnetic properties of three mononuclear cobalt(Ⅱ)complexes built from complementary terpy ligand pairing(Scheme 1).

    1 Experimental

    1.1 Instruments and measurements

    1.1.1 Structural characterization measurements

    Scheme 1 Directional assembly of three mononuclear cobalt(Ⅱ)complexes based on complementary terpy ligand pairing

    NMR spectra were recorded on a Bruker 400,500,or 600 MHz spectrometer.Elemental analysis of carbon,nitrogen,and hydrogen was performed using an Elementary Vario EL analyzer.Fourier transform infrared spectroscopy(FT-IR)data were collected on KBr pellet samples in a range of 4 000-400 cm-1using an IS-50 FT-IR spectrometer.

    1.1.2 Magnetic properties measurements

    Magnetic susceptibility data were collected using a Quantum Design MPMS XL-5 or PPMS-9T(EC-II)SQUID(superconducting quantum interference device)magnetometer.Measurements for all the samples were performed on microcrystalline powder restrained by a parafilm and loaded in a capsule.The magnetic susceptibility data were corrected for the diamagnetism of the samples using Pascal constants and the sample holder and parafilm by corrected measurement.

    1.1.3 X-ray data collection and structure determinations

    Crystals suitable for single-crystal X-ray diffraction were covered in a thin layer of hydrocarbon oil,mounted on a glass fiber attached to a copper pin,and placed under an N2cold stream.The data for three compounds were collected on a Bruker D8 Venture CMOS-based diffractometer(MoKαradiation,λ=0.071 073 nm)using the SMART and SAINT programs.Final unit cell parameters were based on all observed reflections from the integration of all frame data.The structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization that was implanted in Olex2.For all compounds,all non-hydrogen atoms were refined anisotropically and the hydrogen atoms of organic ligands were located geometrically and fixed under isotropic thermal parameters.For 1,the solvent molecule acetonitrile and substituted phenyl were disordered,and the refined sites occupancy factor(SOF)values for the major and minor components of this rotational disorder were 0.589 and 0.411 for N15,C9-C14,C67-C72,and C121.For 2,guest water molecules were disordered by symmetric elements with occupancy of 0.5 at 120 and 299 K,respectively.For 3,solvent molecule methanol and perchlorate were disordered,the refined values of this rotational disorder were 0.571 and 0.429 for O10-O12,and O14 and C60 were disordered by symmetric elements with occupancy of 0.5.

    CCDC:2162742,1(150 K);2162743,2(120 K);2162744,2(299 K);2162745,3(120 K).

    1.1.4 Powder X-ray diffraction(XRD),calorimetric analysis,and UV-Vis absorption measurements

    XRD patterns were obtained on a D8 ADVANCE X-ray powder diffractometer with CuKαradiation(λ=0.154 18 nm)in a 2θrange of 5°-50°at room temperature.Testing voltage and current were 240 kV and 50 mA,respectively.Thermogravimetry analysis(TGA)was carried out with a TGA/DSC 1(Mettler Toledo)instrument from ambient temperature to 800℃at a warming rate of 5 K·min-1.Differential scanning calorimetry(DSC)was carried out with a DSC 823e(Mettler Toledo)at a cooling/warming rate of 3 K·min-1.The solution UV-Vis absorption spectra were recorded using a TU-1900 spectrophotometer with a sample concentration of 50 μmol·L-1in acetonitrile at ambient temperature.

    1.1.5 Cyclic voltammetry(CV)measurements

    The CV curves of the complexes and their corre-sponding ligands were measured in acetonitrile solution containing 1 mmol·L-1substrates and 0.1 mol·L-1tetrabutylammonium hexafluorophosphate electrolyte.The systems were run in a three-electrode cell(10 mL working volume),using a glassy carbon as a working electrode,Ag/AgCl in 3.5 mol·L-1KCl aqueous solution as a reference electrode,and a platinum plate as a counter electrode.The glassy carbon surface was polished by 0.05 mm alumina,then washed with deionized water before use every time.The solution was degassed by bubbling nitrogen for 15 min before measurements and maintaining inert nitrogen over the solution during the measurements.

    1.2 Preparation of three Co(Ⅱ)complexes

    General procedure.Four terpy-type ligands were prepared according to the literature method and the detailed synthetic procedure and structural characterization were depicted in the Supporting information.The mixed solution(H2O/MeOH,1∶1,V/V,10 mL)of Co(ClO4)2·6H2O(0.01 mmol·L-1)was mixed with a 20 mL acetonitrile solution of L1/L2/L3(0.1 mmol respectively)and L4(31 mg,0.1 mmol),and stirred for 5 h and then filtered.Dark red single crystals were obtained after slow evaporation of the solution at ambient temperature for several days.

    [Co(L1)(L4)]2(ClO4)4·2H2O·3MeCN(1).Yield:75%.IR(KBr pellet,cm-1):3 425(br),3 068(w),2 940(w),2 838(w),1 616(m),1 604(m),1 568(m),1 548(w),1 474(m),1 439(m),1 421(w),1 380(w),1 303(w),1 283(w),1 252(m),1 107(s),1 096(s),1 022(m),999(w),882(w),820(w),785(m),770(m),754(w),734(w),695(w),649(w),624(m),602(w),502(w),440(w).Anal.Calcd.for C122H105Cl4Co2N15O26(%):C,59.59;H,4.27;N,8.55.Found(%):C,60.05;H,4.43;N,9.01.

    [Co(L2)(L4)](ClO4)2·2.5H2O(2).Yield:70%.IR(KBr pellet,cm-1):3 425(br),3 070(w),2 839(w),1 616(w),1 602(m),1 568(m),1 549(m),1 516(w),1 474(m),1 438(m),1 400(w),1 380(w),1 283(w),1 252(w),1 162(m),1 144(s),1 108(s),1 022(m),1 000(w),896(w),850(w),836(m),821(m),785(w),773(w),754(w),735(w),693(m),650(w),625(w),602(w),518(w),483(w).Anal.Calcd.for C58H50Cl2CoFN6O14.5(%):C,57.48;H,4.16;N,6.93.Found(%):C,56.96;H,4.39.N,6.58.

    [Co(L3)(L4)](ClO4)2·H2O·0.5MeOH(3).Yield:71%.IR(KBr pellet,cm-1):3 073(br),2 942(w),2 839(w),1 617(w),1 603(m),1 569(m),1 549(m),1 474(w),1 438(m),1 402(m),1 379(w),1 328(w),1 283(w),1 252(w),1 169(m),1 108(s),1 022(s),880(m),851(w),838(w),820(w),786(m),772(m),754(w),735(w),696(w),669(w),650(m),624(w),602(w),507(w),440(w).Anal.Calcd.for C59.5H49Cl2CoF3N6O13.5(%):C,57.13;H,3.95;N,6.72.Found(%):C,56.68;H,4.29;N,6.34.

    CAUTION!Perchlorates are potentially explosive.Such compounds should be synthesized and used in small quantities,and treated with the utmost care at all times.

    2 Results and discussion

    2.1 Synthesis and structural characterization

    In this work,four terpy-type ligands were synthesized according to the literature method,and the detailed synthetic procedure and NMR characterization are depicted in the Supporting information(Fig.S1-S7)[26,32-33].The preparation of complexes was performed in a mild and facile reaction condition.To acetonitrile solution of L1/L2/L3and L4was added Co(ClO4)2·6H2O mixed solution of methanol and water(the molar ratio of L1/L2/L3,L4,and Co2+was 1∶1∶1),and the selfassembly of heteroleptic complexes took place immediately at ambient temperature.Subsequently,dark red single crystals of complexes 1-3 were obtained by slow evaporation of the resulting solutions.Their structures were determined by single-crystal X-ray diffraction measurement and their crystal data and structure refinement is listed in Table 1.All the complexes crystallized in the triclinic space groupPat the test temperatures and their molecular structures and packing diagrams are illustrated in Fig.1 and 2.Different from that 1 contains two Co(Ⅱ)units,there is only one unique asymmetric unit in 2 and 3(Fig.1).In one unit cell,there are four,two,and two Co(Ⅱ)units in 1,2,and 3,respectively(Fig.2).The structure refinement revealed that there are lattice solvents including water and methanol in 1,water in 2,and water and acetonitrile in 3,respectively.The contents of the solvent were further confirmed by TGA(Fig.S8-S11)and elemental analysis.In addition,the imine-type ligand structure of complexes 1-3 was supported by FT-IR spectra(Fig.S12-S14).The purity of a large number of samples was confirmed by XRD(Fig.S15-S17).

    For all complex cations in this series,the Co(Ⅱ)ion is coordinated by six N atoms from two different types of terpy ligands in a bis-meridional fashion,forming an axially compressed CoN6octahedron.Two 2,6-dimethoxyphenyl in L4and one pyridine in L1/L2/L3provide ancillary ion-dipole interactions during the coordination process.The formed heteroleptic complexes are stabilized byπ-πstacking between parallelly arranged 2,6-dimethoxyphenyl and pyridine by which considerable geometric distortion is generated due to this extra weak interaction(Fig.S18).The distances between 2,6-dimethoxyphenyl and pyridine planes are within 0.339-0.350 nm(Table S1),suggesting that one terpy ligand is tightly embraced by another substituted one throughπ-πstacking interactions.To quantitively analyze the structural distortions,some parameters including Co—N bond lengths,the continuous shape measure(CShM)values that reflect the deviation from idealOhsymmetry,the distortion parameters∑(the sum of the deviation from 90°of the 12cisN—Co—N angles),and the dihedral angles of two ligand planes are summarized in Table 2.The values of these parameters indicate that there exists considerably large geometrical distortion in the coordination sphere of this type of complex.In addition,the overlay of the crystal structures of 2 at 120 and 299 K shows a minor change in deformation,implying the spin state change in this temperature range is insignificant(Fig.S19).

    Table 1 Crystal data and structure refinement for 1,2,and 3

    Fig.1 Crystal structures of(a)1,(b)2,and(c)3

    Fig.2 Projection of the unit cell of 1,2,and 3,where the hydrogen bondings are illustrated

    The average Co—N bond lengths are in a range of 0.204 4-0.205 6 nm,suggesting that the cobalt(Ⅱ)ions in complexes 1-3 approach the LS state at the test temperature.The detailed bond length data of the CoN6coordination sphere in the structures are summarized in Table 3.For comparison of the structural discrimination between these asymmetric Co-terpy complexes and their symmetric analogues,the selective bond length data of four representative mononuclear cobalt(Ⅱ)complexes built from homoleptic ligands are listed in Table S2 as well.It shows that the existence ofπ-πstacking between two ligands causes the enhanced geometrical distortion in the part of cobalt(Ⅱ)ion with 2,6-dimethoxyphenyl substituted ligand L4,reflecting the substantially lengthening Co—N bond lengths.In general,the distances between cobalt(Ⅱ)ions and N atoms from bilateral pyridines in L4are more than 0.225 nm,0.02-0.03 nm longer than that in unsubstituted terpy.Additionally,the two bilateral pyridine rings in L4considerably deviate from the coplanarity than that of L1/L2/L3(Table S3).

    Table 2 Summary of the structural parameters and spin state in the crystal structures of cobalt(Ⅱ)complexes in this work*

    Table 3 Selected bond lengths(nm)for Co—N bonds of complexes 1-3 in the single-crystal structures

    2.2 Magnetic properties

    Variable-temperature magnetic susceptibilities of complexes 1-3 were measured in the solid-state using a SQUID magnetometer.The measurement was performed in sweep mode with a scan rate of 3 K·min-1at a field strength of 5 000 Oe.The solvated samples were sealed with parafilm to prevent solvent loss in the first cycle.At the end of the first heating semi-cycle,all samples were kept at 400 K for 2 h to ensure the complete removal of lattice solvents.Magnetic susceptibilities are displayed in the form ofχMTvsT,whereTis the absolute temperature andχMis the molar magnetic susceptibility.TheχMTvsTplots of complexes 1-3 under successive cooling/heating cycles are illustrated in Fig.3.Although they all displayed spin transition,their SCO behaviors had significant discriminations.For 1 and 3,both were observed to show gradual incomplete SCO behavior.At 2 K,theχMTvalues were 0.41 cm3·mol-1·K for 1 and 0.40 cm3·mol-1·K for 3,respectively.Upon heating to 400 K,it gradually increased to 1.00 cm3·mol-1·K for 1 and 1.19 cm3·mol-1·K for 3,indicating that they don't reach the complete HS state at the test upper limit temperature.After preservation at 400 K,the lattice solvent molecules were fully removed,and the subsequent cycles showed the spin transition behavior of desolvated samples.Their roughly coincident curves reveal that the influence of lattice solvent molecules in two compounds on SCO behavior is minor.

    Fig.3 Plots of the temperature dependence of χMT under 5 kOe dc field for(a)1,(b)2,and(c)3 for successive cycles

    Complex 2 showed an interesting solventdependent SCO behavior.At the beginning of the measurement,theχMTvalue at 300 K was 0.68 cm3·mol-1·K which was far from the saturated value of 2.5 cm3·mol-1·K for the spin-onlyd7cobalt(Ⅱ) ion withS=3/2.Upon cooling,it gradually decreased to 0.45 cm3·mol-1·K at 4 K,reaching a complete LS state withS=1/2.In the following heating semi-cycle,the curve entirely coincided with the cooling one below 300 K.Subsequently accompanied by the temperature rise,theχMTvalue increased quickly and an inflection point was observed at about 350 K.According to the TGA data of 2(Fig.S9),the dehydration occurred at the temperature range of 320-350 K.In combination of variable-temperature susceptibility and TGA data,theχMTvsTcurve above 300 K can be divided into two steps.The dehydration takes place at the first step(300-350 K)and the structural phase transition caused by dehydration possesses considerable contribution to the spin transition.When the temperature was above 350 K,the following measurements revealed the SCO behavior of the desolvated sample.It is found that the dehydration of 2 results in significantly distinct SCO behavior.Upon cooling in the second cycle,theχMTvalue gradually dropped from 1.59 cm3·mol-1·K at 400 K to 0.45 cm3·mol-1·K at 4 K,reflecting the typical SCO of cobalt(Ⅱ)ion from the incomplete HS state to the complete LS state.Unexpectedly,the second cooling and heating semi-cycles didn't overlap in the temperature range of 260-340 K and produced a large apparent thermal hysteresis loop of 50 K.This hysteresis loop was stable and repeatable which was reproduced in the following third cycle.Due to the diffraction data considerably getting worse during the heating process to remove the lattice water molecules,the attempt to get the accurate structure of dehydration crystals was unsuccessful.It is supposed that the removal of lattice solvents makes the stacking of molecules more tightly,leading to enhanced interaction between adjacent complexes which may be the main source of the occurrence of the thermal hysteresis loop.It was found that the adsorption and desorption of water in 2 were reversible[37-38].When the desolvated sample was exposed to air for a period of time,it could readsorb water to the originally solvated state,which was confirmed by the TGA trace of the re-adsorbed sample(Fig.S10).The re-adsorbed sample showed almost identical behaviour of variable-temperature magnetic susceptibilities to that of the pristine one(Fig.S20).DSC measurements of compound 2 were carried out at the temperature area of the thermal hysteresis loops.No noticeable thermal change was observed,suggesting that no apparent structural phase transition occurred in the SCO process(Fig.S21).

    Fig.4 (a)UV-Vis spectra of complexes 1-3 in the 50 μmol·L-1acetonitrile solution at ambient temperature;(b)CV curves of complexes 1-3(1 mmol·L-1)in 0.1 mol·L-1Bu4NPF6/acetonitrile solution on a glassy carbon disk working electrode with a Pt counter electrode and Ag/AgCl reference with the potential sweep rate being 100 mV·s-1

    2.3 Absorption spectra and electronic chemistry

    The influence of substituents on the electronic structures of complexes was further investigated by using absorption spectroscopy and CV.According to the UV-Vis spectra recorded in acetonitrile at ambient temperature,complexes 1-3 showed a broad absorption peak at around 520 nm(Fig.4a).This wide absorption is ascribed to the metal to ligand charge transfer(MLCT)band.Their peak positions were at 515 nm for 1,and 511 nm for 2 and 3.Due to the strong electronwithdrawing effect,the MLCT band experienced a con-siderable blue shift.The strong electron-withdrawing groups of F and CF3benefit the back bonding of cobalt(Ⅱ)ion to ligands,resulting in the enhancement of ligand field strength.The electrochemical properties of complexes 1-3 and the ligands were investigated using CV in acetonitrile.The CV curve of each complex showed the reversible CoⅠ-CoⅡand CoⅡ-CoⅢcouples that centered at about-0.8 and 0.7 V,respectively(Fig.4b and S21)[39].It was found that their anode potential(Epa),cathode potential(Epc),and half-wave potential(E1/2)were all sensitive to the electronic effect of substituents(Table S4).In general,the presence of an electron drawing group pulls more electron density from the metal center,making its redox reaction easier.

    3 Conclusions

    In summary,three mononuclear SCO-active cobalt(Ⅱ)complexes have been prepared using the directional synthesis of complementary terpyridine ligand pairing.Complexes 1-3 were all located at complete LS state at low temperature and showed a gradually incomplete spin transition to HS state upon heating to 400 K.Impressively,the fluorine substituted complex 2 exhibited solvent-dependent SCO behavior.When three lattice water molecules were removed,a large thermal hysteresis loop with the width ofca.50 K emerged at the temperature range of 260-340 K.In addition,the influence of substituents was also confirmed using absorption spectroscopy and cyclic voltammetry.This work demonstrates that this strategy is effective in the construction of asymmetric SCO-active cobalt(Ⅱ)complexes with interesting magnetic properties.It also provides the possibility to introduce more functional groups into one SCO compound.The research on Co-terpy SCO compounds bearing multifunctions is in progress.

    Acknowledgments:This work was financially supported by the National Natural Science Foundation of China(Grants No.21771049,21871039,91961114,22025101,22173015).ZHU Yuan-Yuan thanks the financial support from the Fundamental Research Funds for the Central Universities of China(Grants No.PA2021GDSK0063,PA2020GDJQ0028).

    Supporting information is available at http://www.wjhxxb.cn

    99re6热这里在线精品视频| 男女床上黄色一级片免费看| 99精国产麻豆久久婷婷| 国产精品秋霞免费鲁丝片| 制服人妻中文乱码| 精品一区二区三区视频在线观看免费 | 视频区欧美日本亚洲| 亚洲人成电影观看| 国产亚洲欧美精品永久| 热99国产精品久久久久久7| 97在线人人人人妻| 日韩欧美免费精品| 日韩一卡2卡3卡4卡2021年| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三区在线| 女人久久www免费人成看片| 欧美精品一区二区免费开放| 黄片播放在线免费| 不卡一级毛片| 宅男免费午夜| 麻豆av在线久日| 桃花免费在线播放| av不卡在线播放| videos熟女内射| videosex国产| 日韩一卡2卡3卡4卡2021年| 精品高清国产在线一区| 男女午夜视频在线观看| 免费高清在线观看日韩| 桃花免费在线播放| 国产老妇伦熟女老妇高清| 欧美av亚洲av综合av国产av| 久久久久久久精品吃奶| 色尼玛亚洲综合影院| 亚洲午夜精品一区,二区,三区| 女人高潮潮喷娇喘18禁视频| 国产精品自产拍在线观看55亚洲 | 啦啦啦视频在线资源免费观看| 国产精品久久久久久精品古装| a级片在线免费高清观看视频| 1024视频免费在线观看| 在线播放国产精品三级| 国产精品亚洲一级av第二区| 深夜精品福利| 操出白浆在线播放| 一区二区三区国产精品乱码| 999久久久国产精品视频| 在线天堂中文资源库| 一区在线观看完整版| 久久人人爽av亚洲精品天堂| 国产成人欧美| 性高湖久久久久久久久免费观看| 性少妇av在线| 高清欧美精品videossex| 精品亚洲成国产av| 最近最新中文字幕大全免费视频| 成人18禁在线播放| 成人特级黄色片久久久久久久 | 狂野欧美激情性xxxx| 久久精品亚洲精品国产色婷小说| av在线播放免费不卡| 在线看a的网站| 亚洲综合色网址| 成年人午夜在线观看视频| 巨乳人妻的诱惑在线观看| 亚洲欧美一区二区三区黑人| 亚洲精品国产一区二区精华液| 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| bbb黄色大片| 丝袜美足系列| 欧美在线黄色| 欧美日韩成人在线一区二区| 亚洲色图综合在线观看| 纯流量卡能插随身wifi吗| 欧美激情极品国产一区二区三区| 性少妇av在线| 久久精品亚洲精品国产色婷小说| 国产高清激情床上av| 久久久久久久久久久久大奶| 色尼玛亚洲综合影院| 女同久久另类99精品国产91| 日韩三级视频一区二区三区| 女人精品久久久久毛片| 欧美日韩精品网址| 天堂动漫精品| 成人国语在线视频| 国产精品国产高清国产av | 精品福利永久在线观看| 多毛熟女@视频| 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 国产熟女午夜一区二区三区| 窝窝影院91人妻| av线在线观看网站| 国产成人精品无人区| 美女扒开内裤让男人捅视频| 老汉色∧v一级毛片| 啦啦啦 在线观看视频| 黄色片一级片一级黄色片| 大片免费播放器 马上看| 国产日韩欧美亚洲二区| 久久人妻熟女aⅴ| av网站在线播放免费| 一区二区三区激情视频| 欧美日韩中文字幕国产精品一区二区三区 | 色视频在线一区二区三区| 成人av一区二区三区在线看| 国产有黄有色有爽视频| 国产人伦9x9x在线观看| 亚洲专区中文字幕在线| 男女下面插进去视频免费观看| 国产男女内射视频| 丝袜在线中文字幕| 亚洲人成77777在线视频| 国产区一区二久久| 亚洲精品成人av观看孕妇| 人人妻人人爽人人添夜夜欢视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲专区字幕在线| 黄片小视频在线播放| 制服诱惑二区| 高清欧美精品videossex| 亚洲精品久久成人aⅴ小说| 最新的欧美精品一区二区| 天堂8中文在线网| 好男人电影高清在线观看| 大陆偷拍与自拍| 91麻豆av在线| 亚洲国产欧美日韩在线播放| 久久精品国产亚洲av高清一级| 一级毛片电影观看| 91字幕亚洲| 久久中文字幕人妻熟女| 久久影院123| 久久久久久久大尺度免费视频| 国产一区二区三区在线臀色熟女 | 欧美日韩福利视频一区二区| 成人永久免费在线观看视频 | 99精品在免费线老司机午夜| 国产又色又爽无遮挡免费看| 国产精品偷伦视频观看了| 天堂8中文在线网| 757午夜福利合集在线观看| 日韩精品免费视频一区二区三区| 国产有黄有色有爽视频| 亚洲成a人片在线一区二区| 欧美精品啪啪一区二区三区| 精品人妻熟女毛片av久久网站| 日本wwww免费看| 啦啦啦中文免费视频观看日本| 在线观看免费视频日本深夜| 超碰成人久久| 国产高清videossex| 亚洲专区字幕在线| 亚洲精品在线观看二区| 另类亚洲欧美激情| 久久亚洲真实| svipshipincom国产片| 老熟妇乱子伦视频在线观看| 久久久国产欧美日韩av| 亚洲国产精品一区二区三区在线| 成人国语在线视频| 五月天丁香电影| 在线观看一区二区三区激情| 成人亚洲精品一区在线观看| 欧美精品一区二区免费开放| 欧美日韩亚洲国产一区二区在线观看 | 99re6热这里在线精品视频| 视频在线观看一区二区三区| 亚洲精品国产一区二区精华液| 夜夜骑夜夜射夜夜干| 自线自在国产av| 99在线人妻在线中文字幕 | 久久久精品国产亚洲av高清涩受| 亚洲精品久久午夜乱码| 中文亚洲av片在线观看爽 | 国产在线免费精品| 99香蕉大伊视频| 一级毛片女人18水好多| 麻豆乱淫一区二区| 国产伦人伦偷精品视频| 国产精品电影一区二区三区 | 国产福利在线免费观看视频| 一级毛片精品| 国产主播在线观看一区二区| 极品人妻少妇av视频| 午夜激情av网站| 啦啦啦 在线观看视频| 欧美一级毛片孕妇| 亚洲精品在线美女| 欧美精品人与动牲交sv欧美| 欧美日韩国产mv在线观看视频| 午夜福利乱码中文字幕| aaaaa片日本免费| 久久国产精品影院| 日韩欧美免费精品| 50天的宝宝边吃奶边哭怎么回事| 男女无遮挡免费网站观看| 免费观看a级毛片全部| 欧美 亚洲 国产 日韩一| 亚洲,欧美精品.| 国产精品秋霞免费鲁丝片| 九色亚洲精品在线播放| 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 午夜福利欧美成人| 久久这里只有精品19| 一二三四在线观看免费中文在| 亚洲av日韩精品久久久久久密| 熟女少妇亚洲综合色aaa.| 在线亚洲精品国产二区图片欧美| 最新的欧美精品一区二区| 欧美日韩国产mv在线观看视频| 国产欧美日韩一区二区三| 极品人妻少妇av视频| 在线观看免费视频日本深夜| 中文字幕另类日韩欧美亚洲嫩草| 天堂8中文在线网| 国产一区有黄有色的免费视频| 免费看十八禁软件| 色婷婷久久久亚洲欧美| 免费高清在线观看日韩| 啦啦啦中文免费视频观看日本| 午夜福利欧美成人| 成人国语在线视频| 丝袜在线中文字幕| 精品福利永久在线观看| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 国产麻豆69| 侵犯人妻中文字幕一二三四区| 亚洲av电影在线进入| 搡老乐熟女国产| 极品少妇高潮喷水抽搐| 日本av免费视频播放| 亚洲一区中文字幕在线| 欧美激情高清一区二区三区| 啦啦啦在线免费观看视频4| 99re在线观看精品视频| 免费不卡黄色视频| 91av网站免费观看| 久久人妻av系列| 无遮挡黄片免费观看| 亚洲一区二区三区欧美精品| www日本在线高清视频| 五月开心婷婷网| 久久久精品94久久精品| 精品亚洲成a人片在线观看| 久久性视频一级片| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产在线精品亚洲第一网站| 少妇被粗大的猛进出69影院| 国产国语露脸激情在线看| 变态另类成人亚洲欧美熟女 | 亚洲专区国产一区二区| 日韩欧美免费精品| 在线观看舔阴道视频| 亚洲av美国av| 国产片内射在线| 免费黄频网站在线观看国产| 黄色片一级片一级黄色片| 亚洲成人免费电影在线观看| 午夜福利在线观看吧| 一本大道久久a久久精品| www.999成人在线观看| 国产精品久久电影中文字幕 | 少妇被粗大的猛进出69影院| 亚洲第一欧美日韩一区二区三区 | a在线观看视频网站| 国产精品久久久久成人av| 亚洲精品粉嫩美女一区| 人人妻人人添人人爽欧美一区卜| 一区二区日韩欧美中文字幕| 大码成人一级视频| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 久久久久久久大尺度免费视频| 一边摸一边抽搐一进一小说 | 男女无遮挡免费网站观看| 亚洲伊人久久精品综合| www.自偷自拍.com| 一进一出抽搐动态| 久久久久久人人人人人| 亚洲天堂av无毛| av免费在线观看网站| 久久人妻熟女aⅴ| 亚洲成人手机| 捣出白浆h1v1| 国产高清videossex| 啦啦啦免费观看视频1| 久久这里只有精品19| 免费在线观看影片大全网站| 亚洲五月婷婷丁香| 侵犯人妻中文字幕一二三四区| 一夜夜www| 99国产精品99久久久久| 国产在线免费精品| 天堂8中文在线网| 在线永久观看黄色视频| 欧美另类亚洲清纯唯美| 久久精品熟女亚洲av麻豆精品| 色婷婷av一区二区三区视频| 午夜免费成人在线视频| 久久久精品国产亚洲av高清涩受| 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 少妇粗大呻吟视频| 久久久国产成人免费| 建设人人有责人人尽责人人享有的| 亚洲av欧美aⅴ国产| 午夜91福利影院| 亚洲精品粉嫩美女一区| 看免费av毛片| 欧美日本中文国产一区发布| 日本av手机在线免费观看| 18禁国产床啪视频网站| 搡老乐熟女国产| 日韩欧美一区视频在线观看| 免费久久久久久久精品成人欧美视频| 日韩视频在线欧美| 久久精品国产99精品国产亚洲性色 | 精品人妻熟女毛片av久久网站| 搡老乐熟女国产| 日韩欧美一区视频在线观看| 色尼玛亚洲综合影院| 国产又色又爽无遮挡免费看| 美女扒开内裤让男人捅视频| 久久亚洲精品不卡| 免费久久久久久久精品成人欧美视频| 国产主播在线观看一区二区| 男女高潮啪啪啪动态图| 蜜桃在线观看..| 亚洲国产中文字幕在线视频| 国产av一区二区精品久久| 亚洲综合色网址| 丁香欧美五月| 欧美成人免费av一区二区三区 | 91麻豆精品激情在线观看国产 | 欧美黄色淫秽网站| 亚洲国产毛片av蜜桃av| 精品欧美一区二区三区在线| 免费少妇av软件| 亚洲成a人片在线一区二区| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 日韩成人在线观看一区二区三区| 中文字幕色久视频| 久久精品熟女亚洲av麻豆精品| 欧美成人免费av一区二区三区 | 人妻一区二区av| 久久ye,这里只有精品| 午夜福利乱码中文字幕| 在线播放国产精品三级| 国产精品免费一区二区三区在线 | 日日爽夜夜爽网站| 色94色欧美一区二区| 精品一区二区三区av网在线观看 | 国产精品 欧美亚洲| 国产精品香港三级国产av潘金莲| 熟女少妇亚洲综合色aaa.| av在线播放免费不卡| 国产亚洲欧美精品永久| 99re在线观看精品视频| 黑人猛操日本美女一级片| 精品视频人人做人人爽| 国产片内射在线| 一进一出好大好爽视频| 黄片播放在线免费| 岛国毛片在线播放| 黄色毛片三级朝国网站| 人人妻人人澡人人爽人人夜夜| 中文字幕高清在线视频| 久久中文字幕一级| 色婷婷久久久亚洲欧美| 日韩人妻精品一区2区三区| 国产精品98久久久久久宅男小说| 高清毛片免费观看视频网站 | 亚洲欧美日韩高清在线视频 | 欧美人与性动交α欧美软件| 亚洲七黄色美女视频| 色老头精品视频在线观看| 国产免费福利视频在线观看| 精品福利观看| 桃红色精品国产亚洲av| 每晚都被弄得嗷嗷叫到高潮| 久久这里只有精品19| 亚洲少妇的诱惑av| 欧美成人免费av一区二区三区 | 精品人妻熟女毛片av久久网站| 脱女人内裤的视频| 老司机影院毛片| 美国免费a级毛片| 男女之事视频高清在线观看| 九色亚洲精品在线播放| 久久精品亚洲av国产电影网| 三上悠亚av全集在线观看| 国产成人一区二区三区免费视频网站| 精品亚洲乱码少妇综合久久| 自拍欧美九色日韩亚洲蝌蚪91| 久久狼人影院| 国产人伦9x9x在线观看| 日本黄色日本黄色录像| 99九九在线精品视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图av天堂| a级毛片在线看网站| 精品少妇一区二区三区视频日本电影| 日本av免费视频播放| 少妇粗大呻吟视频| 一级片'在线观看视频| 人妻 亚洲 视频| av天堂久久9| 天堂动漫精品| 亚洲av成人一区二区三| 黄频高清免费视频| 超碰成人久久| 视频在线观看一区二区三区| 黄色 视频免费看| 欧美日韩福利视频一区二区| 国产亚洲精品第一综合不卡| 国产亚洲欧美精品永久| 黄片小视频在线播放| 脱女人内裤的视频| 国产一区二区三区在线臀色熟女 | 国产成人av激情在线播放| 一二三四社区在线视频社区8| 国产1区2区3区精品| 黑丝袜美女国产一区| 不卡av一区二区三区| 亚洲av欧美aⅴ国产| 午夜两性在线视频| 国产精品美女特级片免费视频播放器 | 又紧又爽又黄一区二区| av网站免费在线观看视频| 又紧又爽又黄一区二区| 99香蕉大伊视频| 日本五十路高清| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻在线不人妻| 久久人人爽av亚洲精品天堂| 色94色欧美一区二区| 免费在线观看视频国产中文字幕亚洲| 色精品久久人妻99蜜桃| 黄网站色视频无遮挡免费观看| 99精品久久久久人妻精品| 国产男靠女视频免费网站| 大片电影免费在线观看免费| a级片在线免费高清观看视频| 国产99久久九九免费精品| 亚洲性夜色夜夜综合| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 超碰97精品在线观看| 国产国语露脸激情在线看| 少妇精品久久久久久久| 久久久久精品国产欧美久久久| 亚洲精品美女久久久久99蜜臀| 美女福利国产在线| 狠狠狠狠99中文字幕| 国产日韩欧美视频二区| 国产成人av教育| 在线观看一区二区三区激情| 91大片在线观看| 国产一区二区激情短视频| 一本大道久久a久久精品| a级毛片在线看网站| 老汉色∧v一级毛片| av片东京热男人的天堂| 少妇被粗大的猛进出69影院| 黄色毛片三级朝国网站| 久久99一区二区三区| 女同久久另类99精品国产91| 黄色片一级片一级黄色片| 天天影视国产精品| 久久午夜综合久久蜜桃| 女性生殖器流出的白浆| 一区二区三区乱码不卡18| 人成视频在线观看免费观看| 999精品在线视频| 夜夜夜夜夜久久久久| 亚洲国产看品久久| 日本av手机在线免费观看| 丝袜美腿诱惑在线| 黑人巨大精品欧美一区二区mp4| 亚洲人成电影免费在线| 99re在线观看精品视频| 亚洲欧美日韩高清在线视频 | 亚洲精品成人av观看孕妇| 国产欧美日韩综合在线一区二区| 美女午夜性视频免费| 国产aⅴ精品一区二区三区波| 日韩熟女老妇一区二区性免费视频| 欧美国产精品va在线观看不卡| 黄片大片在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 午夜久久久在线观看| 国产一区二区三区综合在线观看| 不卡av一区二区三区| 国产精品偷伦视频观看了| av天堂在线播放| 国产成人啪精品午夜网站| 捣出白浆h1v1| 在线十欧美十亚洲十日本专区| 91国产中文字幕| 久久精品国产a三级三级三级| 国产成人啪精品午夜网站| 亚洲精品美女久久av网站| 国产精品久久久久成人av| 一区二区三区精品91| 国产男靠女视频免费网站| av一本久久久久| 色94色欧美一区二区| 欧美精品亚洲一区二区| 无人区码免费观看不卡 | 啦啦啦中文免费视频观看日本| 狠狠婷婷综合久久久久久88av| 久久国产精品影院| aaaaa片日本免费| 在线永久观看黄色视频| 99久久99久久久精品蜜桃| 一级,二级,三级黄色视频| 久久久久久久大尺度免费视频| 欧美成人免费av一区二区三区 | 欧美激情高清一区二区三区| a级毛片黄视频| 母亲3免费完整高清在线观看| 黄色成人免费大全| 中国美女看黄片| 性少妇av在线| 91字幕亚洲| 国产精品亚洲av一区麻豆| 美女午夜性视频免费| 久久久久精品国产欧美久久久| 亚洲,欧美精品.| 一级毛片精品| 国产有黄有色有爽视频| 欧美日韩精品网址| 又大又爽又粗| 热re99久久精品国产66热6| 波多野结衣一区麻豆| 丝瓜视频免费看黄片| 国产区一区二久久| 久久精品国产亚洲av香蕉五月 | 高潮久久久久久久久久久不卡| 精品少妇黑人巨大在线播放| 成人精品一区二区免费| 18禁美女被吸乳视频| 黄色成人免费大全| 久久久国产成人免费| 免费黄频网站在线观看国产| www.熟女人妻精品国产| 国产一区二区三区综合在线观看| 精品国产国语对白av| 亚洲黑人精品在线| 热re99久久精品国产66热6| 国产成人一区二区三区免费视频网站| 在线观看一区二区三区激情| 国产精品一区二区在线不卡| 国产免费现黄频在线看| 欧美性长视频在线观看| 免费看十八禁软件| 久久久久久久大尺度免费视频| 操美女的视频在线观看| 久久国产精品男人的天堂亚洲| 美女扒开内裤让男人捅视频| 两个人免费观看高清视频| 91大片在线观看| 老汉色av国产亚洲站长工具| 热re99久久国产66热| 极品教师在线免费播放| 手机成人av网站| 久9热在线精品视频| 亚洲成人免费av在线播放| 老司机午夜福利在线观看视频 | 最近最新中文字幕大全免费视频| 国产精品久久久久久精品电影小说| 久久精品91无色码中文字幕| 天堂俺去俺来也www色官网| 国产av又大| 嫩草影视91久久| 亚洲伊人久久精品综合| 精品人妻1区二区| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 欧美久久黑人一区二区| 黄色视频不卡| 亚洲欧美一区二区三区久久| 99国产精品一区二区蜜桃av | 日韩免费av在线播放| 久久精品国产99精品国产亚洲性色 | 女同久久另类99精品国产91| 亚洲成国产人片在线观看| 啦啦啦 在线观看视频| 一级a爱视频在线免费观看| 成人国产av品久久久| 亚洲情色 制服丝袜| 国产成人精品久久二区二区91| 丝瓜视频免费看黄片| 欧美久久黑人一区二区| cao死你这个sao货| 老熟女久久久| 色视频在线一区二区三区| 电影成人av| videos熟女内射| 窝窝影院91人妻| a在线观看视频网站| 精品国产一区二区三区四区第35| 免费一级毛片在线播放高清视频 | tube8黄色片| 黄色毛片三级朝国网站| 久久亚洲真实| 女人高潮潮喷娇喘18禁视频| 人人澡人人妻人|