• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Control of Heterogeneous-Susceptible-Exposed-Infectious-Recovered-Susceptible Malware Propagation Model in Heterogeneous Degree-Based Wireless Sensor Networks

    2022-08-08 05:47:38ZHANGHongSHENShigen沈士根WUGuowen吳國文CAOQiying曹奇英XUHongyun許洪云
    關(guān)鍵詞:吳國

    ZHANG Hong(張 紅), SHEN Shigen(沈士根), WU Guowen(吳國文),CAO Qiying(曹奇英), XU Hongyun(許洪云)

    1 School of Computer Science and Technology, Donghua University, Shanghai 201620, China 2 Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China 3 Faculty of Business Information, Shanghai Business School, Shanghai 201400, China

    Abstract: Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation, because of their low configuration and weak defense mechanism. Therefore, an optimality system for HWSNs is developed to suppress malware propagation in this paper. Firstly, a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs. Secondly, the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved, and then an optimal control strategy for the problem is derived by the optimal control theory. Thirdly, the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle, and the corresponding optimality system is derived. Finally, the effectiveness of the optimality system is validated by the experimental simulations, and the results show that the infectious HSNs will fall to an extremely low level at a low cost.

    Key words: heterogeneous wireless sensor network(HWSN); malware propagation; optimal control; Pontryagin’s minimum principle

    Introduction

    Heterogeneous wireless sensor networks(HWSNs)are a kind of wireless sensor networks(WSNs),composed of a great many of resource constrained and heterogeneous sensor nodes(HSNs)to detect physical environmental conditions.These HSNs have different computing resources, energy, and communication, and that HWSNs have the advantages of strong pertinence, high flexibility, and low cost[1].With these characteristics, HWSNs thus have been deployed in many practical applications, such as smart life, biological medicine, environmental monitoring, and military[2].

    In HWSNs, there exists the failure of HSNs caused by malware, which is an application with malicious intent, ruining the normal work of HWSNs by injecting malicious data, blocking communication channels, or occupying computing units.Besides, the HSNs systems have no strong hardware and software with limited resources, which make the defense mechanism weak, so that the malware in HWSNs is prone to propagation[3-4].To solve this problem, many researchers have studied the methods and processes of malware propagation in HWSNs.For example, Illiano and Lupu[5]presented many methods of malicious data injection in WSNs.Ho[6]presented on demand software-attestation based scheme to defend against worm propagation in WSNs.

    The propagation process of malware in HWSNs is similar to that of diseases in human populations[7], and thus epidemiology is commonly applied to study malware propagation.The classic epidemic models include susceptible-infectious(SI), susceptible-infectious-susceptible(SIS), and susceptible-infectious-recovered(SIR)[8-10].In this paper, we propose a heterogeneous susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model, containing statesS,E,I,Rto describe all the states of HSNs infected by malware.We add the statesEandSto the classical epidemic model SIR.Because some malware may have an incubation period in reality.That is to say, when HSNs are infected by malware, they may propagate malware to other HSNs with delay.Besides, when the recovered HSNs encounter unknown malware, they usually lack of immunity, and thus the state will change fromRtoS.

    There are generally two ways to solve the problem with malware propagation in HWSNs.One is based on the qualitative analysis[11-13], such as proving the existence of equilibrium points and attaining the basic reproduction number governing the stability of the equilibrium points; the other is based on the optimal control theory[14-17], which is defined by an optimal strategy to achieve a low level of infectious HSNs at a low cost.The second way is more suitable for solving the problem of active defense malware propagation in HWSNs.In this paper, we thus apply it to suppress malware propagation in HWSNs by defining a dynamic optimal control strategy.Using the communication channels of HWSNs, the patches corresponding to malware can be sent to some infectious HSNs to defend their systems, which are effective in enhancing the overall defense capability of HWSNs.

    Our contributions are summarized as follows.

    (1)An HSEIRS model is proposed, which is the major work to describe the state dynamics of HSNs in HWSNs.

    (2)The existence of an optimal control problem based on the HSEIRS model is proved, and then an optimal control strategy for the problem is derived using the optimal control theory.

    (3)Using the Pontryagin’s minimum principle, the optimal control strategy based on the HSEIRS model is transformed into the corresponding Hamiltonian, and an optimality system based on the HSEIRS model is derived.

    The difficulty of this paper lies in proving the existence of an optimal control problem based on the HSEIRS model, and deriving the optimality system based on the HSEIRS model.

    The rest of the paper is presented as follows.In section 1, the related works are reviewed.In section 2, an HSEIRS model is proposed.In section 3, an optimality system based on the HSEIRS model is derived, and the theoretical analysis of the optimization problem is presented.In section 4, a calculation algorithm is presented to validate the optimality system and the results of data analyses are also shown using the relevant parameters.Finally, the conclusions of the paper are given.

    1 Related Works

    Many researchers have illustrated various extended epidemic models for WSNs.For example, a susceptible-exposed-infectious-susceptible-recovered-vaccination(SEIRSV)model containing the statesS,E(exposed),I,R, andV(vaccination)[18]; a susceptible-infected-immunized(SII)model[19]; a worm propagation model considering the spatial-temporal perspective[20]; a susceptible-active-dormant-immune(SADI)model considering the hierarchical topology structure[21]; and a susceptible-infected-susceptible-vaccinated(SISV)model[22].

    Furthermore, various methods have been presented to solve the problems with malware propagation in WSNs.Liuetal.[23]used the stochastic game to propose a method for WSNs to predict the probability of malware adopting the spread behavior.Shenetal.[24]developed traditional epidemic theory and constructed a malware propagation model by differential equations to represent the dynamics between states.They considered HWSNs and set up a dependability assessment mechanism for HWSNs with malware propagation[25].They also considered a clustered WSNs under epidemic-malware propagation conditions[26].Jiangetal.[27]established a new attack-defense game based on Stackelberg game.Acaralietal.[28]thought of the epidemic modeling to the Internet of things(IOT)networks consisting of WSNs.Wangetal.[29]proposed a method using the pulse differential equation and the epidemic theory for WSNs preventing from malware propagation.Shenetal.[30]proposed a malware detection infrastructure realized by an intrusion detection system(IDS)with cloud and fog computing to preserve the privacy of smart objects in the IOT networks and suppress malware propagation.

    In addition, some researchers have applied the optimal control theory to study the infected networks.Zhangetal.[31]proposed a time-varying control mechanism of an SIQRS epidemic model of the network in terms of vaccination, quarantine and treatment by the optimal control theory.Xuetal.[32]proposed a novel SIVRS mathematical model for epidemic spreading based on complex networks, where an optimal control problem was formulated to maximize the recovered agents with the limited resource.Dongetal.[33]presented a general formulation for the optimal control problem to a class of fuzzy probability differential systems relating to SIR and SEIR epidemic models.Darajatetal.[34]discussed an optimal control on the spread of SLBS computer virus model.Zhang and Huang[35]solved an optimal control problem for the combined impact of reinstalling system and network topology on the spread of computer viruses based on scale-free networks.Ganetal.[36]proposed a novel dynamical model with an external compartment to control the level of infected computers based on the optimal control theory.Bietal.[37]addressed the development of a cost effective dynamic control strategy of disruptive viruses.Yangetal.[38]presented the optimal control problem for capturing the optimal dynamical immunization based on a controlled heterogeneous node-based SIRS model.

    The dynamical optimal control strategy based on HWSNs has not been worked out yet.The first issue is how to characterize the feature of HSNs in infected HWSNs; the second issue is how to formulate the optimal control problem with installing effective antivirus programs for infectious HSNs.Here, we focus on the first issue by proposing an HSEIRS model based on epidemiology.After that, we handle the second issue by deriving the optimality system based on the Pontryagin’s minimum principle, which is proved to be effective by experimental simulations and data analysis.

    2 Description of HSEIRS Model

    From the perspective of network topology, HSNs are divided into two categories.One is data nodes randomly distributed in the detection area, which are responsible for collecting and transmitting data; the other is gateway nodes, which are responsible for aggregating data and transmitting control information.Obviously, the gateway nodes are better than the data nodes in terms of the processing capacity, storage capacity and calculation capacity.In this paper, we characterize HSNs on the basis of the heterogeneity of the degrees.According to the degree number of an HSN, they are divided intoMgroups, whereMmeans the number of HSN groups, the HSNs have the same degree in each group.For simplicity, we identify the degree of HSN groupi∈{1, 2, …,M} withi∈{1, 2, …,M}, and letSi(t),Ei(t),Ii(t), andRi(t)be the probabilities of the HSN groupi∈{1, 2, …,M} in statesS,E,I, andRat timet, respectively.As shown in Fig.1, according to the degree of an HSN group, all HSNs can be divided into group 1, group 3 and group 4.

    Fig.1 HWSNs topology

    In terms of the other malware propagation models, we assume that the initial probability of HSN groupi∈{1, 2, …,M} in stateIisp,i.e.,

    Ii(0)=p, 0

    (1)

    We also assume that

    Ei(0)=Ri(0)=0.

    (2)

    In this manner, we obtain

    Si(0)=1-p.

    (3)

    (4)

    whereBi(t)denotes the probability of a susceptible HSN in groupiencountering infectious HSNs, denotes the average degree of the HWSNs,δidenotes the probability of an HSN with degreei, andγidenotes the infectious ability of an HSN with degreei.Naturally, these parameters satisfy

    (5)

    and

    (6)

    According to the characteristics of HSNs, we construct a state diagram about the behaviors of HSNs in HWSNs.In the state diagram, there is one state from five possible states at a certain time for an HSN.Specifically, if an HSN is in stateSat timet, it means that it is prone to being infected by malware but has not been infected yet; if it is in stateEat timet, it means that it has been infected by malware, but cannot propagate malware to its adjacent nodes by transmitting data or control information; if it is in stateIat timet, it denotes that it has been infected by malware and can propagate the malware to its adjacent nodes by transmitting data or control information; if it is in stateRat timet, it denotes that it is immune to malware.In addition, if it is in stateDat timet, it denotes that it loses all functions, as it has either entirely consumed its energy or been damaged by malware.

    Fig.2 State diagram for an HSN

    Motivated by the above, we propose the following HSEIRS model with delay timeτ, wherepdenotes the initial fraction of HSN groupiin stateI.

    (7)

    (8)

    (9)

    (10)

    subject to

    (11)

    3 Optimal Control Strategy Based on HSEIRS Model

    In this section, the sufficient and necessary conditions of the optimal control strategy are presented.

    With regard to installing effective antivirus programs for infectious HSNs belonging to groupi, we adopt the central patch allocation strategy.An HSN in stateIbelonging to groupiis installed effective antivirus programs and becomes recovered with probabilityθi(t)per unit time.In order to describeθi(t)clearly, let us make some assumptions on theθi(t).

    (a)Fori∈{1, 2,…,M},θi(t)∈L2[0,tf].

    (b)θi(t)is measurable.

    (d)Letθi(·)=(θ1(·),θ2(·),…,θM(·)).

    From these facts, we now consider an optimal control problem to minimize the objective function:

    (12)

    satisfying

    (13)

    subject to

    Si(σ)>0,Ei(σ)>0,Ii(σ)>0,Ri(σ)>0.

    (14)

    whereσ∈[-τ, 0]denotes the admissible time in the incubation period.

    In order to find an optimality system, we firstly find the Lagrange and Hamiltonian for the optimal control problem.In fact, the Lagrange of the optimal control problem is given by

    (15)

    whereξdenotes the cost of installing effective antivirus programs for infectious HSNs, and it is a small positive constant.To find the optimal control function for the optimal control problem, we define the corresponding Hamiltonian as

    (16)

    where

    (17)

    which are the adjoint functions of the optimal control problem.

    3.1 Existence of an optimal control problem based on HSEIRS model

    In order to prove the existence of an optimal control problem based on the HSEIRS model, six lemmas are established here.

    Lemma1 With regard to the optimal control problem(12), system(13)can be rewritten as

    (18)

    withx(t)∈Ω, wheref(t,x,θ)denotes the states function of the HSEIRS model, andΩis the positively invariant for system(13).The problem has an optimal control if the following five conditions are satisfied at the same time.

    (a)f(t,x,θ)is bounded by a linear function inx, the first partial derivatives are consecutive, and there is a constantZsuch that

    |f(t,x,θ)|≤Z,

    (19)

    |fθ(t,x,θ)|≤Z,

    (20)

    and

    |fx(t,x,θ)|≤Z(1+|θ|),

    (21)

    wherefθ(t,x,θ)is the first partial derivatives of the functionf(t,x,θ)toθ,fx(t,x,θ)is the first partial derivatives of the functionf(t,x,θ)tox.

    (b)There isθ(·)∈θadsuch that system(18)is solvable.

    (c)θadis convex and closed.

    One night, the girl caught ill. In moment of fluster9() , instead of calling her parents, she dialed the new boy s cell phone. The boy was already asleep but his cell phone was still on.

    (d)L(x,θ)is convex onθad.

    Next, we show the correctness of those five conditions by introducing and proving Lemmas 2-5.

    Lemma2f(t,x,θ)is bounded by a linear function inx, the first partial derivatives are consecutive, and there is a constantZsuch that systems(19)-(21)are satisfied.

    ProofFor simple description, the system(13)is rewritten as

    (22)

    We can obtain

    |f(t, 0, 0)|=|(μ0 0 0)T|,

    (23)

    (24)

    (25)

    Lemma3The system(18)is solvable.

    (26)

    Thus, the proof is complete.

    Lemma4θadis convex and closed.

    ProofLet

    (27)

    (28)

    and let 0<ε<1.SetL2[0,tf]denotes the control functionθi(t)which is integrable and bounded during the time period[0,tf].As(L2[0,tf])2Mis a real vector space, we get

    (1-ε)θ(1)(·)+εθ(2)(·)∈(L2[0,tf])2M.

    (29)

    So, the convexity ofθadfollows by the observation that, for 1≤i≤M, we have

    (30)

    Let

    θ(·)=(θ1(·),θ2(·),…,θM(·))T,

    (31)

    be a limit point ofθad, and let

    (32)

    be a sequence of points inθadsuch that

    (33)

    It comes from the completeness of(L2[0,T])2Nthat

    (34)

    So the closeness ofθadcomes from the observation that, for 1≤i≤M, we have

    (35)

    Thus, the proof is complete.

    Lemma5L(x,θ)is convex onθad.

    (36)

    Here,

    (37)

    (38)

    We can obtain

    (39)

    Thus, the proof is complete.

    ProofWe can chooseο1=ξ/2,ι=2.ο2is the lower bound onI, which is similar to that in Ref.[39].We can obtain

    (40)

    Further,

    (41)

    Thus, the proof is complete.

    ProofLemmas 2-6 show that the five conditions in Lemma 1 are all satisfied.Thus, the existence of the optimal control follows from Lemma 1.

    3.2 Optimality system based on HSEIRS model

    In this subsection, we present a necessary condition for the optimal control problems(12)and(13).

    (42)

    with transversality conditions

    (43)

    (44)

    ProofTo determine the adjoint equations and the transversality conditions, we differentiate the Hamiltonian, and obtain the adjoint system as

    (45)

    Thus, the adjoint system can be rewritten as system(42).By the optimal conditions, we have

    (46)

    From Theorem 2, we derive the following optimality system(47)and(48)for the optimal control problems(12)and(13).

    (47)

    and

    (48)

    4 Validating Optimal Control Strategy of HSEIRS Model

    Here, we validate the optimality system based on the HSEIRS model using Python.In our experiments, the HWSNs are composed of 1 000 HSNs,i.e.,M=1 000.The intervaltfis 10 time steps.We construct the HWSNs topology and set the experimental parameters referring to Ref.[40], the minimum degree of HSNs is 2, the maximum degree of HSNs is 20, and the mean degree 〈d〉 is 4.

    Using the forward and backward difference approximation, the calculation algorithm is described in Fig.3, where the step sizeh>0,τ=mh, andtf-t0=nh.

    Fig.3 Calculation algorithm to the optimality system based on the HSEIRS model

    Figure 4 shows the changeable probability trends of susceptible HSNs belonging to group 3 under different values of control variableθ.We observe different trends.Forθ=0.1,θ=θ*, andθ=0.8, the probabilities of susceptible HSNs gradually increase to 0.88, 0.88 and 0.95 in the first 22 time steps, respectively, these probabilities then slowly increase to 0.915, 0.925 and 0.975 after 8 time steps.Obviously, forθ=θ*, it has taken an effective control of the probability of susceptible HSNs.

    Fig.4 Changeable probability trends of susceptible HSNs under different values of control variable θ

    Figure 5 shows the changeable probability trends of infectious HSNs belonging to group 3 under different values of control variableθ.We observe different trends.Forθ=0.1,θ=θ*, andθ=0.8, the probabilities of infectious HSNs gradually decrease to 0.06, 0.06, and 0 in the first 13 time steps, respectively.These probabilities then slowly decrease to 0.025, 0, and 0 in the 20 time steps.Obviously, forθ=θ*, it has taken an effective control of the probability of infectious HSNs.

    Fig.5 Changeable probability trends of infectious HSNs under different values of control variable θ

    Figure 6 shows the changeable probability trends of recovered HSNs belonging to group 3 under different values of control variableθ.We observe some different trends.Forθ3=0.1, the probability of recovered HSNs gradually increases to 0.1 in the first 10 time steps, then slowly decreases to 0.075 in the 30 time steps.Forθ=θ*, the probability of recovered HSNs gradually increases to 0.15 in the first 15 time steps, then slowly decreases to 0.08 in the next 30 time steps.Forθ=0.8, the probability of recovered HSNs fast increases to 0.175 in the first 2 time steps, then slowly decreases to 0.04 in then 30 time steps.Obviously, forθ=θ*, it has taken an effective control of the probability of recovered HSNs.

    Fig.6 Changeable probability trends of recovered HSNs under different values of control variable θ

    Figure 7 shows the changeable probability trends of control variableθunder different values of delayτ.We observe some different trends.Forτ1=1,τ2=2, andτ3=3, the probabilities of control variableθgradually increase to 0.50, 0.43, and 0.38, respectively in the first 15 time steps, then slowly increase to a stable value.It can tell us that the optimal control variableθdeceases whenτincreases from 1 to 3.

    Fig.7 Changeable probability trends of control variable θ under different values of delay τ

    Figure 8 shows the changeable probability trends of control variableθunder different values.We observe different trends.Forθ=θ*, the probability of control variableθgradually increases from 0 to 0.5 in 30 time steps.

    Fig.8 Changeable probability trends of control variable θ under different values

    Figure 9 shows the changeable probability trends of control variableθunder different values of degreei.We observe different trends.Fori1=3,i2=10, andi3=20, the probabilities of control variableθgradually increase to 0.35, 0.50, and 0.80 in the first 15 time steps, respectively, then slowly increase to a stable value.It can tell us that the optimal control variableθincreases when the degreeiincreases from 3 to 20.

    Fig.9 Changeable probability trends of control variable θ under different values of degree i

    5 Conclusions

    In this paper, we have studied an optimal control to malware propagation by installing effective antivirus programs for infectious HSNs in controlled HWSNs.We firstly proposed an HSEIRS model to describe the HSNs state dynamics of malware propagation in HWSNs, involving the exposed state and degree heterogeneity of HSNs.After that, we derived an optimality system to achieve a low level of infectious HSNs at a low cost based on the HSEIRS model through a series of theoretical analysis.Finally, using the forward and backward difference approximation, we validated the effectiveness of the optimality system by the calculation algorithm and data analyses.

    猜你喜歡
    吳國
    Deep Multi-Module Based Language Priors Mitigation Model for Visual Question Answering
    車身間隙面差在線測量技術(shù)及應(yīng)用
    GLOBAL STRONG SOLUTION AND EXPONENTIAL DECAY OF 3D NONHOMOGENEOUS ASYMMETRIC FLUID EQUATIONS WITH VACUUM?
    吳國良花鳥畫選
    三十六計(jì)第十九計(jì):釜底抽薪
    小讀者之友(2021年6期)2021-07-29 08:54:00
    吳國平
    書香兩岸(2020年3期)2020-06-29 12:33:45
    書法古詩
    一所學(xué)校 一名老師 一輩子堅(jiān)守
    糧食也是武器
    糧食也是武器
    乱码一卡2卡4卡精品| 成人av在线播放网站| 国产精品一二三区在线看| 亚洲欧美日韩无卡精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情在线99| 长腿黑丝高跟| 中文字幕av在线有码专区| 97热精品久久久久久| 亚洲真实伦在线观看| 国产高清三级在线| 老司机影院成人| 日本五十路高清| 日本三级黄在线观看| 可以在线观看的亚洲视频| 最后的刺客免费高清国语| 国产成人福利小说| 高清日韩中文字幕在线| 精品久久久久久久久亚洲| 亚洲激情五月婷婷啪啪| h日本视频在线播放| 日韩,欧美,国产一区二区三区 | 在线观看午夜福利视频| 午夜老司机福利剧场| 国产单亲对白刺激| 成熟少妇高潮喷水视频| 亚洲av中文字字幕乱码综合| 看黄色毛片网站| 国产精品99久久久久久久久| 午夜视频国产福利| 成人一区二区视频在线观看| 亚洲成av人片在线播放无| 天堂网av新在线| 99久久人妻综合| 欧美高清性xxxxhd video| 观看免费一级毛片| 午夜激情福利司机影院| 亚洲四区av| 3wmmmm亚洲av在线观看| 国产亚洲5aaaaa淫片| 熟妇人妻久久中文字幕3abv| 久久久欧美国产精品| 在线播放国产精品三级| 18禁裸乳无遮挡免费网站照片| 舔av片在线| 五月玫瑰六月丁香| 国产亚洲5aaaaa淫片| 又粗又爽又猛毛片免费看| 草草在线视频免费看| 色吧在线观看| 精品人妻视频免费看| 国产精品一区二区三区四区久久| 69人妻影院| 天美传媒精品一区二区| 精品日产1卡2卡| 男人和女人高潮做爰伦理| 久久精品综合一区二区三区| 国产精品福利在线免费观看| 在线观看免费视频日本深夜| 99久久精品一区二区三区| 最近最新中文字幕大全电影3| 秋霞在线观看毛片| 好男人视频免费观看在线| а√天堂www在线а√下载| 亚洲成人久久爱视频| 国产精品嫩草影院av在线观看| 成熟少妇高潮喷水视频| 亚洲成av人片在线播放无| 午夜福利在线观看免费完整高清在 | 日产精品乱码卡一卡2卡三| 99久久成人亚洲精品观看| kizo精华| 91午夜精品亚洲一区二区三区| 国产精品一及| 一级毛片久久久久久久久女| 麻豆乱淫一区二区| 日本一本二区三区精品| 人人妻人人澡人人爽人人夜夜 | 久久久久久国产a免费观看| 午夜福利在线观看吧| 美女 人体艺术 gogo| 日本三级黄在线观看| 精品久久久久久久人妻蜜臀av| 日本成人三级电影网站| 亚洲人成网站在线播放欧美日韩| 亚洲av男天堂| 一个人观看的视频www高清免费观看| 午夜激情福利司机影院| 一级毛片aaaaaa免费看小| 久久久精品大字幕| 精品人妻一区二区三区麻豆| 国产亚洲av片在线观看秒播厂 | 免费观看在线日韩| 看黄色毛片网站| 亚洲精品乱码久久久v下载方式| 欧美xxxx性猛交bbbb| 给我免费播放毛片高清在线观看| av在线播放精品| 哪里可以看免费的av片| 久久中文看片网| 人人妻人人澡人人爽人人夜夜 | 男插女下体视频免费在线播放| 久久久色成人| 最新中文字幕久久久久| 日本五十路高清| 亚洲国产精品sss在线观看| 12—13女人毛片做爰片一| 99久久久亚洲精品蜜臀av| 看免费成人av毛片| 99精品在免费线老司机午夜| 国产成人a区在线观看| 99热这里只有是精品50| 欧美xxxx性猛交bbbb| 日韩欧美国产在线观看| 黄色日韩在线| 欧美日本亚洲视频在线播放| 欧美日韩乱码在线| 麻豆精品久久久久久蜜桃| 美女被艹到高潮喷水动态| 欧美一级a爱片免费观看看| 白带黄色成豆腐渣| 精品国产三级普通话版| 欧美日韩乱码在线| 91精品国产九色| 国产成人一区二区在线| 91av网一区二区| 嫩草影院精品99| 可以在线观看的亚洲视频| 天堂网av新在线| 国产精品久久久久久久电影| 精品午夜福利在线看| 18禁裸乳无遮挡免费网站照片| 蜜桃久久精品国产亚洲av| 中国美白少妇内射xxxbb| 91久久精品电影网| 国产三级中文精品| 青春草亚洲视频在线观看| 美女 人体艺术 gogo| 国产av麻豆久久久久久久| 成年女人看的毛片在线观看| 亚洲精品色激情综合| 午夜福利在线观看吧| 一本一本综合久久| 最近最新中文字幕大全电影3| 国产精品一区二区在线观看99 | 亚洲自偷自拍三级| 青春草亚洲视频在线观看| 国产成人aa在线观看| 亚洲丝袜综合中文字幕| 1000部很黄的大片| www日本黄色视频网| 又粗又爽又猛毛片免费看| 亚洲中文字幕一区二区三区有码在线看| 亚洲无线观看免费| 天堂av国产一区二区熟女人妻| 尾随美女入室| 中文字幕人妻熟人妻熟丝袜美| 欧美在线一区亚洲| 嫩草影院精品99| 精品日产1卡2卡| 久久精品91蜜桃| 精品久久国产蜜桃| 国产精品久久久久久久久免| 色哟哟哟哟哟哟| 欧美一区二区亚洲| av黄色大香蕉| 国产极品天堂在线| 国产精品久久视频播放| 日韩视频在线欧美| 一区福利在线观看| 在线免费十八禁| av在线亚洲专区| 午夜a级毛片| 精品一区二区三区视频在线| 久久久久国产网址| 又粗又硬又长又爽又黄的视频 | 日韩大尺度精品在线看网址| 国产一区二区在线观看日韩| 成人av在线播放网站| 不卡视频在线观看欧美| 少妇的逼好多水| 日本免费a在线| 性插视频无遮挡在线免费观看| 国产高清三级在线| 国产 一区精品| 亚洲精品久久国产高清桃花| 久久人妻av系列| 国产精品国产高清国产av| 欧美一区二区精品小视频在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品国产精品| 成人高潮视频无遮挡免费网站| av在线观看视频网站免费| 青青草视频在线视频观看| 日韩 亚洲 欧美在线| 国产色爽女视频免费观看| 人人妻人人澡人人爽人人夜夜 | 人人妻人人看人人澡| 日韩成人伦理影院| 麻豆成人av视频| 亚洲第一区二区三区不卡| 哪里可以看免费的av片| 亚洲人成网站在线观看播放| 国产人妻一区二区三区在| 久久精品影院6| 中文在线观看免费www的网站| 偷拍熟女少妇极品色| 看片在线看免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 三级国产精品欧美在线观看| 国产成人影院久久av| 不卡一级毛片| 久久久久久大精品| 成年av动漫网址| 久久精品国产亚洲av香蕉五月| 成年女人看的毛片在线观看| 91精品一卡2卡3卡4卡| 欧洲精品卡2卡3卡4卡5卡区| 好男人在线观看高清免费视频| 久久久精品欧美日韩精品| 久久99热这里只有精品18| 精品一区二区三区人妻视频| 国产伦一二天堂av在线观看| 国产在视频线在精品| 久久人人爽人人片av| 在线观看午夜福利视频| 99在线人妻在线中文字幕| 少妇被粗大猛烈的视频| 边亲边吃奶的免费视频| 亚洲色图av天堂| 国产午夜精品一二区理论片| 高清毛片免费看| 国产精品伦人一区二区| 国产片特级美女逼逼视频| 亚洲av一区综合| 九九久久精品国产亚洲av麻豆| 欧美一区二区精品小视频在线| 成年版毛片免费区| 久久亚洲精品不卡| 欧美+亚洲+日韩+国产| 人体艺术视频欧美日本| 色5月婷婷丁香| 黄色欧美视频在线观看| 晚上一个人看的免费电影| 国产中年淑女户外野战色| 99热这里只有是精品在线观看| 一级黄片播放器| 国产精品久久视频播放| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 麻豆国产av国片精品| 深夜a级毛片| a级一级毛片免费在线观看| 69人妻影院| 国内精品美女久久久久久| 特大巨黑吊av在线直播| 国产男人的电影天堂91| 人妻制服诱惑在线中文字幕| 久久九九热精品免费| 亚洲欧美日韩无卡精品| 国产成人午夜福利电影在线观看| 18禁在线无遮挡免费观看视频| 一进一出抽搐gif免费好疼| 老司机福利观看| 六月丁香七月| 美女xxoo啪啪120秒动态图| 久久久精品94久久精品| 中文精品一卡2卡3卡4更新| www.色视频.com| 97人妻精品一区二区三区麻豆| 免费看a级黄色片| 日本五十路高清| 久久国产乱子免费精品| 国产三级在线视频| 欧美又色又爽又黄视频| 最好的美女福利视频网| 日韩精品青青久久久久久| 亚洲中文字幕日韩| 一级黄色大片毛片| 看十八女毛片水多多多| 精品少妇黑人巨大在线播放 | 国产在线精品亚洲第一网站| 日韩大尺度精品在线看网址| 国产在线精品亚洲第一网站| 国产综合懂色| 国产色爽女视频免费观看| 中文在线观看免费www的网站| 黄色欧美视频在线观看| 99精品在免费线老司机午夜| 99热这里只有是精品50| 亚洲丝袜综合中文字幕| 国产精品野战在线观看| 免费一级毛片在线播放高清视频| 国产色婷婷99| 可以在线观看毛片的网站| 久久这里有精品视频免费| 成人欧美大片| 亚洲精华国产精华液的使用体验 | 草草在线视频免费看| 我的女老师完整版在线观看| 国产私拍福利视频在线观看| 久久精品国产清高在天天线| 变态另类丝袜制服| 亚洲无线在线观看| 亚洲最大成人av| or卡值多少钱| 国产精品爽爽va在线观看网站| 美女xxoo啪啪120秒动态图| 欧美日韩乱码在线| 国产精品精品国产色婷婷| 一级毛片久久久久久久久女| 亚洲欧美日韩卡通动漫| 国产精品久久视频播放| 久久国内精品自在自线图片| 少妇人妻精品综合一区二区 | 观看免费一级毛片| 99热精品在线国产| 18+在线观看网站| 亚洲三级黄色毛片| 中出人妻视频一区二区| 国模一区二区三区四区视频| 国产精品一及| 日韩人妻高清精品专区| 免费看光身美女| 国产成人a区在线观看| 国产视频内射| 国产老妇伦熟女老妇高清| 我要搜黄色片| 久久中文看片网| 男的添女的下面高潮视频| 麻豆成人av视频| 国产午夜精品一二区理论片| 午夜免费男女啪啪视频观看| 99久久九九国产精品国产免费| 精品99又大又爽又粗少妇毛片| 中文字幕免费在线视频6| 亚洲欧美日韩高清在线视频| 免费av观看视频| 欧美最新免费一区二区三区| 国产三级中文精品| 国产精品久久久久久精品电影| 国产成人福利小说| 男女视频在线观看网站免费| 热99re8久久精品国产| 成熟少妇高潮喷水视频| 欧美最黄视频在线播放免费| 搞女人的毛片| 麻豆久久精品国产亚洲av| 蜜臀久久99精品久久宅男| 国产伦精品一区二区三区视频9| 黄色视频,在线免费观看| 日韩av在线大香蕉| 嘟嘟电影网在线观看| 国产在视频线在精品| 精品少妇黑人巨大在线播放 | 内射极品少妇av片p| 日日啪夜夜撸| 国产精品一及| 少妇猛男粗大的猛烈进出视频 | 一本久久中文字幕| 观看免费一级毛片| 村上凉子中文字幕在线| 国产亚洲5aaaaa淫片| 男女下面进入的视频免费午夜| 国产一区二区激情短视频| 一级二级三级毛片免费看| 国产片特级美女逼逼视频| 高清毛片免费看| 伦精品一区二区三区| 成人毛片60女人毛片免费| www日本黄色视频网| 亚洲七黄色美女视频| 麻豆国产av国片精品| 观看免费一级毛片| 欧美激情久久久久久爽电影| 久久人人精品亚洲av| 日韩三级伦理在线观看| 少妇猛男粗大的猛烈进出视频 | 国产黄片视频在线免费观看| 久久久久网色| 亚洲国产精品国产精品| 国产午夜精品论理片| 国产一级毛片七仙女欲春2| 国内揄拍国产精品人妻在线| 日韩强制内射视频| 国产黄色视频一区二区在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 高清午夜精品一区二区三区 | 日韩视频在线欧美| 国产 一区精品| 精品人妻熟女av久视频| 国产毛片a区久久久久| 国产成人精品婷婷| 久久久国产成人精品二区| 国产黄片美女视频| 国产精品一区二区三区四区久久| 麻豆av噜噜一区二区三区| 黄色日韩在线| av又黄又爽大尺度在线免费看 | 欧美日本亚洲视频在线播放| 午夜亚洲福利在线播放| 十八禁国产超污无遮挡网站| 人人妻人人澡欧美一区二区| 色综合站精品国产| 人妻系列 视频| 国产熟女欧美一区二区| 欧美激情在线99| a级一级毛片免费在线观看| 永久网站在线| 国国产精品蜜臀av免费| 国产69精品久久久久777片| 黄色一级大片看看| 菩萨蛮人人尽说江南好唐韦庄 | 神马国产精品三级电影在线观看| 好男人视频免费观看在线| 大又大粗又爽又黄少妇毛片口| 精品人妻偷拍中文字幕| 天美传媒精品一区二区| 成熟少妇高潮喷水视频| 国产精品.久久久| 国产成人福利小说| 天堂影院成人在线观看| 最新中文字幕久久久久| 久99久视频精品免费| 少妇熟女aⅴ在线视频| 国产成年人精品一区二区| 国内久久婷婷六月综合欲色啪| 自拍偷自拍亚洲精品老妇| av在线播放精品| 亚洲人成网站在线观看播放| 国产精品一区二区三区四区久久| 国产久久久一区二区三区| 26uuu在线亚洲综合色| 国产中年淑女户外野战色| 中文亚洲av片在线观看爽| 亚洲国产欧美人成| 午夜爱爱视频在线播放| 99热这里只有精品一区| 观看免费一级毛片| 久久鲁丝午夜福利片| 蜜臀久久99精品久久宅男| 九草在线视频观看| 99久久成人亚洲精品观看| 日本免费一区二区三区高清不卡| 1024手机看黄色片| 成人亚洲欧美一区二区av| 变态另类丝袜制服| 亚洲一区高清亚洲精品| 边亲边吃奶的免费视频| 91久久精品国产一区二区成人| 欧美一级a爱片免费观看看| 午夜a级毛片| 99热全是精品| 午夜福利在线观看免费完整高清在 | 欧美色视频一区免费| 在线a可以看的网站| 69av精品久久久久久| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9| 亚洲成a人片在线一区二区| 日韩欧美 国产精品| 亚洲四区av| 成人高潮视频无遮挡免费网站| 乱人视频在线观看| 啦啦啦韩国在线观看视频| 97超视频在线观看视频| 中文字幕免费在线视频6| 精品人妻视频免费看| 麻豆成人午夜福利视频| 欧美日韩一区二区视频在线观看视频在线 | 91午夜精品亚洲一区二区三区| 国内精品宾馆在线| 国产黄片美女视频| 欧美性猛交黑人性爽| 天堂av国产一区二区熟女人妻| av又黄又爽大尺度在线免费看 | 国产高清激情床上av| 菩萨蛮人人尽说江南好唐韦庄 | 狠狠狠狠99中文字幕| 欧美激情国产日韩精品一区| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3| 国产精品一及| 精品日产1卡2卡| 成人三级黄色视频| 性欧美人与动物交配| 哪个播放器可以免费观看大片| 一卡2卡三卡四卡精品乱码亚洲| 最新中文字幕久久久久| 天堂影院成人在线观看| 99热只有精品国产| 乱码一卡2卡4卡精品| 国产午夜精品久久久久久一区二区三区| 国产美女午夜福利| 国内精品美女久久久久久| 日本欧美国产在线视频| 精品一区二区三区人妻视频| 最近2019中文字幕mv第一页| 欧美日本亚洲视频在线播放| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 国产精品蜜桃在线观看 | 哪里可以看免费的av片| 欧美一级a爱片免费观看看| 草草在线视频免费看| 九九爱精品视频在线观看| 婷婷六月久久综合丁香| 一卡2卡三卡四卡精品乱码亚洲| 最好的美女福利视频网| 久久人人爽人人片av| 免费观看在线日韩| 亚洲欧美日韩高清专用| h日本视频在线播放| 九九久久精品国产亚洲av麻豆| 久久久久网色| av.在线天堂| 中国美女看黄片| 免费av不卡在线播放| 毛片一级片免费看久久久久| 国产黄片美女视频| 在线观看午夜福利视频| 你懂的网址亚洲精品在线观看 | 给我免费播放毛片高清在线观看| 欧美日韩综合久久久久久| 亚洲高清免费不卡视频| 女同久久另类99精品国产91| 久久午夜福利片| 在线观看66精品国产| 最近手机中文字幕大全| 黄色配什么色好看| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 亚洲电影在线观看av| 午夜福利视频1000在线观看| 中文亚洲av片在线观看爽| 18禁裸乳无遮挡免费网站照片| 欧美区成人在线视频| 日本欧美国产在线视频| 12—13女人毛片做爰片一| videossex国产| 国产成人精品久久久久久| 成人性生交大片免费视频hd| 深夜a级毛片| 成人综合一区亚洲| 亚洲av第一区精品v没综合| 免费观看在线日韩| 如何舔出高潮| 亚洲欧洲日产国产| av天堂中文字幕网| 久久人人爽人人片av| 高清日韩中文字幕在线| 日韩成人伦理影院| 久久久久九九精品影院| 只有这里有精品99| 国产成人精品一,二区 | 国内精品美女久久久久久| 亚洲欧美精品综合久久99| 国产男人的电影天堂91| 少妇高潮的动态图| 午夜激情福利司机影院| 免费电影在线观看免费观看| 亚洲,欧美,日韩| 1024手机看黄色片| 久久亚洲精品不卡| 国产亚洲精品av在线| 国产精华一区二区三区| 欧美日韩精品成人综合77777| 日韩视频在线欧美| 男女视频在线观看网站免费| 蜜臀久久99精品久久宅男| 日本一本二区三区精品| 一区二区三区四区激情视频 | 国产69精品久久久久777片| 亚洲18禁久久av| 国产精品乱码一区二三区的特点| 国产老妇伦熟女老妇高清| 日韩精品有码人妻一区| 日韩在线高清观看一区二区三区| 日本一二三区视频观看| 黄片wwwwww| 看黄色毛片网站| 亚洲欧美清纯卡通| 看非洲黑人一级黄片| 国产精品野战在线观看| 一级毛片我不卡| 国产午夜精品久久久久久一区二区三区| 国产色婷婷99| 美女内射精品一级片tv| 日韩人妻高清精品专区| 国产综合懂色| 在线观看美女被高潮喷水网站| 亚洲成人久久性| 久久精品国产鲁丝片午夜精品| 超碰av人人做人人爽久久| 在线天堂最新版资源| 久久99热6这里只有精品| 又粗又硬又长又爽又黄的视频 | 97超视频在线观看视频| 国内精品一区二区在线观看| 午夜激情福利司机影院| 亚洲精品色激情综合| 黄色配什么色好看| 少妇熟女欧美另类| 中文精品一卡2卡3卡4更新| 婷婷精品国产亚洲av| 亚洲欧美中文字幕日韩二区| 免费观看a级毛片全部| 日韩一区二区视频免费看| 国产精品精品国产色婷婷| h日本视频在线播放| 99在线视频只有这里精品首页| 欧美激情国产日韩精品一区| 日本在线视频免费播放| 丰满的人妻完整版|