• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Synthesis of Acceptor-Donor-Acceptor Type Non-Fullerene Acceptors Using Oxindole-Based Bridge for Polymer Solar Cells Applications

    2022-08-08 06:10:46GUOYuqing郭雨晴HUANGJunLIZhengWUHongbo吳宏波WANGJingTANGZhengMAZaifei馬在飛WANGMingZHUZhijia朱智甲

    GUO Yuqing(郭雨晴), HUANG Jun(黃 峻), LI Zheng(李 正), WU Hongbo(吳宏波), WANG Jing(王 靜), TANG Zheng(唐 正), MA Zaifei(馬在飛), WANG Ming(王 明)*, ZHU Zhijia(朱智甲)*

    1 Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China 2 Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

    Abstract: Two acceptor-donor-acceptor(A-D-A)type non-fullerene acceptors(namely WH1 and WH7)containing the oxindole-based bridge are designed and synthesized for polymer solar cells(PSCs)applications. The bridge unit is introduced through a precursor(6-bromo-1-octylindoline-2,3-dione)that contains both bromine and carbonyl and provides the feasibility of the Pd-catalyzed cross-coupling reaction and the Knoevenagel condensation, respectively. This facile synthetic approach exhibits the potential to gain high performance non-fullerene acceptors through extending π-conjugated backbone with strong light-absorbing building blocks. The synthesis and properties of WH1 and WH7 are demonstrated with different endcap units, then PSCs are fabricated using PBDB-T:WH1 and PBDB-T:WH7 as the active layers, and attain an average power conversion efficiency(PCE)of 2.58% and 6.24%, respectively. Further device physics studies afford the deep insight of structure variation influence on the device performance. This work provides a facile non-fullerene acceptor design strategy and shows how structure variations impact the PSC performance.

    Key words: non-fullerene acceptor; polymer solar cell(PSC); conjugated molecules; donor-acceptor(D-A); narrow bandgap

    Introduction

    Polymer solar cells(PSCs)are under intensive studies due to their advantages of low-cost, light-weight, flexibility, and solution-processed production[1-2].High performance PSCs usually employ a bulk-heterojunction device structure, in which the active layer is a blend ofp-type andn-type semiconductors[3].Forp-type semiconductors, conjugated polymers with donor-acceptor(D-A)alternating fashion have been well-developed and played a key role in the PSC applications[4-5].Forn-type semiconductors, fullerene and its derivatives[6-7]have governed the field until the naissance of fused-ring electron acceptors, such as 3,9-bis(2-methylene-(3-(1,1dicyanomethylene)-indanone))-5,5,11,11tetrakis(4-hexylphenyl)-dithieno[2, 3-d∶2′, 3′d′]-s-indaceno[1, 2-b∶5, 6-b′]dithiophene(ITIC)[8]and(2, 2′-((2Z, 2′Z)-((12, 13-bis(2-ethylhexyl)-3, 9-diundecyl-12,13-dihydro-[1,2, 5]thiadiazolo[3, 4-e]thieno[2,"3″∶4′, 5′]thieno[2′,3′∶4,5]pyrrolo[3, 2-g]thieno[2′,3′∶4, 5]thieno[3, 2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile)(Y6)[9], driving the PCEs increasing to above 10%[10-11].Due to the development of non-fullerene acceptors[12-14], the performance of PSCs has climbed up to a new stage with the PCEs going up to about 8%[15-17].These non-fullerene acceptors display strong absorption coefficients in the visible and near-infrared(IR)light region.Moreover, their devices exhibit small energy losses(Eloss)[18-20], which enable PSCs to gain large short-circuit current(Jsc)and open-circuit voltage(Voc)simultaneously.In addition, non-fullerene acceptors also show the low synthesis cost, flexible molecular design and structure modifications, as well as good thermal and photochemical stabilityin comparison with fullerene derivatives[21].

    1 Experiment

    1.1 Synthesis

    Figure 1 shows the molecular design strategy of A-D-A type non-fullerene acceptors using oxindole-based bridge.

    Figure 2 shows the detailed synthetic routes of WH1 and WH7.The center donor core precursor M1 was firstly prepared.4, 4, 9, 9-Tetrakis(4-hexylphenyl)-4, 9-dihydro-s-indaceno[1, 2-b∶5, 6-b′]dithiophene was deprotonated byn-butyllithium and then the stannylation was carried out by adding trimethyltin chloride, to give the center core intermediate.The bifunctional intermediate of bridge precursor 6-bromo-1-octylindoline-2, 3-dione was prepared from 6-bromoisatin and 1-bromooctylane under the potassium carbonate in DMF solution.Then the Stille coupling reaction was carried out using 6-bromo-1-octylindoline-2, 3-dione and M1 under the catalytic Pd(PPh3)4in toluene solution to give compound M2.Finally, two target acceptor molecules WH1 and WH7 were obtained from M2 and 3-ethylrhodanine and 2-(3-ethyl-4-oxothiazolidin-2-ylidene)malononitrile, respectively, under a common Knoevenagel condensation condition of triethyl amine as the catalyst and chloroform as the solvent.

    The crude product of WH1 was purified by column chromatography, affording the pure compound WH1 as a green solid with a yield of 81%(437 mg, 0.25 mol).The melting point(m.p.)>280 ℃.1H NMR(400 MHz, CDCl3, 298 K): 8.98(d,J=8.4 Hz, 2H), 7.46(s, 2H), 7.38(s, 2H), 7.33(dd,J1=8.4 Hz,J2=1.6 Hz, 2H), 7.26(d,J=8.3 Hz, 8H), 7.21(d,J=8.1 Hz, 8H), 7.01(s, 2H), 4.24(dd,J1=14.1 Hz,J2=6.9 Hz, 4H), 3.80(t,J=7.2 Hz, 4H), 2.58(t,J=7.8 Hz, 8H), 1.73-1.69(m, 4H), 1.65-1.56(m, 8H), 1.42-1.19(m, 50H), and 0.94-0.80(m, 18H).

    Fig.1 Molecular design strategy of A-D-A type non-fullerene acceptors using oxindole-based bridge

    The crude product of WH7 was purified by column chromatography, affording the pure compound WH7 as a green solid with a yield of 86%(482 mg, 0.27 mol), and the m.p.is more than 280 ℃.1H NMR(400 MHz, CDCl3, 298 K): 8.84(d,J=8.4 Hz, 2H), 7.48(s, 2H), 7.41(s, 2H), 7.35(dd,J1=8.4 Hz,J2=1.6 Hz, 2H), 7.23(d,J=8.1 Hz, 8H), 7.13(d,J=8.2 Hz, 8H), 7.03(s, 2H), 4.31(dd,J1= 14.2 Hz,J2=7.0 Hz, 4H), 3.81(t,J=7.2 Hz, 4H), 2.58(t,J=7.8 Hz, 8H), 1.74-1.70(m, 4H), 1.60(m, 8H), 1.45-1.19(m, 50H), 0.94-0.83(m, 18H).The process of synthesis is shown in Fig.2.

    Fig.2 Synthetic routes of WH1 and WH7

    1.2 Preparation of PSC devices

    Solar cells were fabricated using a conventional device structure comprising which is indium tin oxid(ITO)/PEDOT:PSS/active layer/PFN-Br/Ag, where PEDOT:PSS is poly(3,4-ethylenedioxythiophene)doped with polystyrene sulfonate.Specifically, approximately 40 nm of PEDOT:PSS was deposited as a thin film atop indium tin oxide(ITO)coated glass substrates.The activelayers(PBDB-T:WH1 or PBDB-T:WH7)were spin-coated, followed by spin-casting of PFN-Br(5 nm)and evaporating of silver(40 nm), where PBDB-T is poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1, 2-b∶4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c∶4′,5′-c′]dithiophene-4,8-dione))])and PFN-Br is poly(9,9-bis(3′-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)dibromide)[26].A preliminary screening of active compositions and deposition conditions were carried out.Both PBDB-T:WH1 and PBDB-T:WH7 weight ratios were tested by 1.0∶0.8, 1.0∶1.0, 1.0∶1.5, and 1.0∶2.0, and the 1.0∶1.0 combination performed best among these conditions.The total concentration of blend solutions was 22 mg/mL(chlorobenzene as the solvent), and the spin-cast speed was set to 3 000 r/min, films were annealed under the chlorobenzene vapor for 10 min and then annealed at 150oC for 10 min, which provided the best performance.The active layer thickness was approximately 110 nm.The average performance was calculated from about 40 devices.

    Additionally, to investigate the charge transport properties in the PSC device, we measured the hole mobility and electron mobility of PBDB-T:WH1 and PBDB-T:WH7 devices using space-charge limited current(SCLC)model based on their optimal film processing condition[27].The hole-only device structure is ITO/PEDOT:PSS/active layer/MoO3/Ag and the electron-only device structure is glass/ITO/ZnO/active layer/PFN-Br/Ag, respectively.The hole and electron mobilities are calculated by

    (1)

    whereε0is the absolute dielectric constant,εris the relative dielectric constant,μis the mobility,Vis the applied voltage,Vbiis the build-in voltage, andLis the active layer thickness.SCLC devices were prepared in two different thicknesses to better estimate the mobility.

    2 Results and Discussion

    2.1 Density functional theory(DFT)calculation

    To have a general insight of the molecular design, we investigated the molecular geometries and orbitals through quantum chemical simulations.The calculations were performed by Gaussian09 using DFT method at the CAM-B3LYP/6-31G(d,p)level of theory[28].All alkyl chains were replaced by methyl groups to simplify the simulations.As shown in Fig.3, for both WH1 and WH7 molecules, the oxindole bridge and the endcap units(RD and CNRD)show nearly zero torsional angles.However, there are obvious twists between the center IDT cores and the oxindole bridges with the torsional angles of about 26.1° and 25.5° for WH1 and WH7, respectively.It is clear that the highest occupied molecular orbital(HOMO)orbitals mainly locate on the center IDT core and the benzene ring of the oxindole bridge, while the lowest unoccupied molecular orbital(LUMO)orbitals mainly locate on the endcap units(RD and CNRD)and the oxindole bridge.These results suggest that the electron transport in the solid film should rely on the stacking status of two side planar species combining the bridge and endcap units.It is also noted that WH7 has a larger planar area of endcap than WH1 which could facilitate the electron hopping between the adjacent molecules.

    Fig.3 Molecular geometries of(a)WH1 and(b)WH7

    2.2 Optical absorption spectroscopy and energy levels

    The ultraviolet(UV)-vis absorption was used to determine the optical features of two molecules.Solution absorption spectra were measured from their chlorobenzene solutions with a concentration of 0.2 mg/mL.Thin films for absorption measurements were prepared via spin-casting from their chlorobenzene solutions with a concentration of 5 mg/mL.As shown in Fig.4(a), WH1 displays an absorption peak at 417 nm which is assigned to π-π*transition[29], and an absorption peak at 627 nm which is attributed to the intramolecular charge transfer(ICT)[30]from the center IDT donor unit to the two endcap acceptor units.For WH7, the π-π*transition peak locates at 425 nm while the ICT peak locates at 650 nm.Their solution absorption onsets were 703 nm for WH1 and 734 nm for WH7, respectively.The significantly red-shifted ICT peak and absorption onset of WH7 relative to WH1 was attributed to the enhanced electron push-pull effect in WH7 structure as four additional cyano groups have strong electron-withdrawing abilities.In thin film, WH1 shows a π-π*transition peak at 444 nm and ICT peak at 626 nm.In addition, there is a weak absorption shoulder(around 680 nm)that results in a significantly red-shifted absorption(onset: 758 nm)in comparison with the solution case.For WH7, the π-π*transition peak locates at 427 nm and ICT peak at 672 nm together with a weak absorption shoulder(around 700 nm)which significantly broaden the absorption profile and reduce the bandgap of the molecule.The film absorption onset is 808 nm.Both absorption shoulders in thin films indicate the well-ordered aggregated formation of WH1 and WH7 in the solid state[31].Their optical bandgaps were calculated from the crossover point of the normalized absorption and photoluminescence(PL)spectra[32].WH1 shows anEgoptof 1.65 eV and WH7 shows anEgoptof 1.57 eV.Generally, the short-wavelength absorption of D-A molecules is decided by the absorption of D unit, while the long-wavelength absorption is caused by ICT between D and A.The molecular structures of WH1 and WH7 are very similar, and the only difference is that the A unit of WH7 is cyano rhodanine, which has a stronger ability of electron-withdrawing.For WH1, the weak ICT has little difference between the solution and film, so ICT was hardly changed.In the film, the short wave makes the D unit stacking better, so the red-shift absorption happened.For WH7, the stronger ICT caused more difference in the film.Therefore, the ICT band has a red shift.

    Fig.4 UV-vis spectra of WH1 and WH7 in(a)chlorobenzene solution(0.2 mg/mL);(b)thin film

    Cyclic voltammetry was used to determine the ionization potential(IP)and electron affinity(EA)to give approximate values of orbital energy levels[33]by the equations ofEHOMO=-(4.8 +EIP);ELUMO=-(4.8 +EEA).As shown in Fig.5, for WH1, the IP is 0.60 eV and EA is-1.13 eV, and then the approximate HOMO and LUMO levels were estimated to be-5.40 eV and-3.67 eV.For WH7, the IP is 0.59 eV and EA is-1.02 eV, which give the estimation of HOMO and LUMO values about-5.39 eV and-3.78 eV, respectively.Absorption characteristics and energy levels are shown in Table 1.Similar to the case of ICT peak red-shifting in the absorption studies, the strong electron-withdrawing ability of CNRD in comparison to that of RD again dominates the low-lying LUMO level of WH7 relative to that of WH1 and further reduced the optical bandgap.

    Fig.5 Cyclic-voltammetry measurements of WH1 and WH7 films

    Table 1 Absorption characteristics and energy levels

    2.3 Solar cells fabrication and performance

    As shown in Table 2 and Fig.6(a), under the AM1.5 G condition, the optimal PBDB-T:WH1 devices give an averageJscof(5.04±0.40)mA/cm2, an averageVocof(0.95±0.01)V and an average of fill factor(FF)(53.4±2.4)%.Finally, PBDB-T:WH1 shows an average PCE of(2.58±0.29)% and the best PCE of 2.95%.For PBDB-T:WH7 devices, theVocdrops to(0.80±0.01)V, but bothJscand FF increase significantly, which are(11.70±0.17)mA/cm2and(66.5±1.3)%, respectively.Then the PCE of PBDB-T:WH7 increases to an average value of(6.24±0.20)% and the best value of 6.59%.For theJscdifference, one could clearly see the broad and great external quantum efficiency(EQE)response of WH7 device relative to WH1 device, as shown in Fig.6(b).The broad EQE of WH7 device could be attributed to the narrow bandgap of WH7, as WH7 could absorb more photons in the near IR region than WH1.For both PBDB-T:WH1 and PBDB-T:WH7 devices, the difference betweenJscfrom theJ-Vcharacterization and theJsccalculated from EQE was within 5%.To further understand theJscand FF differences, the mobility, recombination mechanism and morphology studies are discussed next.Besides, it is shown that theVocdifference(0.15 V)is greater than the LUMO level differences of WH1 and WH7(0.11 V)that measured by CV, which indicates the greater energy loss of WH7 device relative to that of WH1 device.The energy loss details would be also discussed in the later part.

    Table 2 Solar cells performances of PBDB-T:WH1 and PBDB-T:WH7 devices under the optimal conditions

    Fig.6 PBDB-T:WH1 and PBDB-T:WH7 devices:(a)J-V curves;(b)EQE curves

    2.4 SCLC measurements

    As shown in Fig.7(a), for PBDB-T:WH1, we obtain the hole mobilities of 2.6×10-4cm2/(V·s)(162 nm)and 3.8×10-4cm2/(V·s)(138 nm).For PBDB-T:WH7, the measured hole mobilities are 2.9×10-4cm2/(V·s)(195 nm)and 3.7×10-4cm2/(V·s)(141 nm).It is reasonable that both PBDB-T:WH1 and PBDB-T:WH7 active layers have a similar hole mobility level at the order of 10-4cm2/(V·s), as they have the same hole transport material of PBDB-T.And these hole mobility values are also consistent with the mobility reported in Ref.[34].For the electron mobility, as shown in Fig.7(b), the active layer of PBDB-T:WH1 gain the mobilities of 7.4×10-7cm2/(V·s)(164 nm)and 5.4×10-7cm2/(V·s)(107 nm).For PBDB-T:WH7, the measured mobilities are 3.9×10-5cm2/(V·s)(150 nm)and 6.3×10-5cm2/(V·s)(97 nm).The electron mobility of PBDB-T:WH7 is two orders of magnitude greater than that of PBDB-T:WH1.Nevertheless, the hole/electron transport is not balanced in both devices.PBDB-T:WH7 has a relatively close hole/electron transport characteristic and the FF is substantially greater than that of PBDB-T:WH1[35].

    Fig.7 SCLC mobility measurements of PBDB-T:WH1 and PBDB-T:WH7:(a)hole-only device curves;(b)electron-only device curves

    2.5 Light intensity dependence studies

    To investigate the insight of charge recombination dynamics of two devices, we measured the variations ofJscas a function of light intensity[36].It is reported that the light intensity(P)ofJscin PSCs could be described as the following power relation ofJsc∝Pα.The deviation fromα=1 is typically attributed to the bimolecular recombination, space charge effects, and variations in mobility between the two carriers.As shown in Fig.8(a), both devices show clearly good linear dependence ofJscon light intensity.PBDB-T:WH1 device gains a relatively smallαof 0.87.Since the hole/electron transport is highly unbalanced in PBDB-T:WH1 device, space charge effect and variations in mobility between the two carriers should be considered as well as the bimolecular recombination.For PBDB-T:WH7 device, theαgoes up to 0.90, suggesting a significant bimolecular recombination effect between the two carriers.In summary, both devices are undesirable since theirαare not close to 1 enough.The unbalanced hole/electron transport and relatively low electron mobility in the active layer led to a significant bimolecular recombination effect, especially for PBDB-T:WH1 device[35].

    Fig.8 Light intensity dependence measurements of PBDB-T:WH1 and PBDB-T:WH7 devices:(a)Jsc-light intensity dependence;(b)Voc-light intensity dependence

    For theVocand light intensity correlations[36], it is demonstrated that the light intensity dependence of theVoccan provide insight into the role of trap-assisted recombinationversusbimolecular recombination at open circuit, and follow the equation ofVoc∝nkT/qlnP, wherenis a constant,kis the Boltzmann′s constant,Tis the temperature,qis the elementary charge, andPis the incident light intensity.The slope of theVocvs.lnPgivesnkT/qfor bimolecular recombination and trap-assisted recombination competitions.The slope which is close tokT/qimplies that the bimolecular recombination dominated the device under the open circuit condition, while the slope close to 2kT/qsuggest that trap-assisted recombination plays a major role in the device.As shown in Fig.8(b), PBDB-T:WH1 and PBDB-T:WH7 devices show slope of 1.31kT/qand 1.76kT/q, respectively.It suggests that both bimolecular and trap-assisted recombination happen in both devices at open circuit, however, the bimolecular recombination is the major in PBDB-T:WH1 while trap-assisted recombination is the major in PBDB-T:WH7.

    2.6 Morphology studies

    Blend morphologies were probed by bright-field transmission electron microscopy(BF-TEM), and the results are provided in Fig.9.The bright regions in the BF-TEM images are assigned to the polymer donor phase while the dark regions are assigned to the acceptor phase according to their absorbing electron abilities’ difference.For both PBDB-T:WH1 and PBDB-T:WH7 shown in Figs.9(a)and(b), they are nearly indistinguishable from each other and that contain a continuous interpenetrating network of polymer phases with a domain size of 40-50 nm, which is at a decent scale for the charge separation[37].There are dark spots corresponding to WH1 shown in Fig.9(a)and WH7 shown in Fig.9(b), respectively.But their domain sizes are difficult to estimate due to lacking of contrast.Overall, the TEM studies shows that both PBDB-T:WH1 and PBDB-T:WH7 blend films have similar phase-separation and their different FF value could not be attributed to the phase-separation difference.

    Fig.9 TEM images of active layers:(a)PBDB-T:WH1;(b)PBDB-T:WH7

    2.7 Energy loss studies

    To understand the insight of theVocdifference between PBDB-T:WH1 and PBDB-T:WH7 devices,ECTand energy loss analysis of the two devices were conducted on the basis of the sensitive EQE(sEQE)and electroluminescence(EL)spectra according to the reported method[38].As shown in Fig.10, theECTof PBDB-T:WH1 and PBDB-T:WH7 devices are estimated to be 1.51 eV and 1.45 eV, respectively, by fitting the low-energy band in the sEQE and EL spectra.The ΔECTis defined by the equation of ΔECT=Egopt-ECT,Egoptis the optical bandgap of WH1 or WH7 that represents the blend film since theirEgoptvalues are smaller than that of PBDB-T.Then ΔECTwas calculated to be 0.14 eV for PBDB-T:WH1 device and 0.12 eV for PBDB-T:WH7 device, respectively.The non-radiative energy loss(qΔVnr)is calculated by the EQE of EL(EQEEL)via the equation[39]qΔVnr=-kTln(EQEEL), whereqis the elementary charge,kis the Boltzmann’s constant, andTis the temperature, and theqΔVnrof 0.24 eV for PBDB-T:WH1 and 0.34 eV for PBDB-T:WH7 are provided, respectively, as shown in Figs.10(c)and(d).The total energy loss(Eloss)values of PBDB-T:WH1 and PBDB-T:WH7 devices were determined to be 0.70 eV and 0.77 eV, respectively, which are provided by the equation ofEloss=Egopt-qVoc(Vocis acquired from the average value in Table 2)[40].Since the totalElossconsists of three different parts[20,40],i.e.,Eloss=ΔECT+(qΔVr)+(qΔVnr),qΔVrcould be calculated to be 0.32 eV for PBDB-T:WH1 and 0.31 eV for PBDB-T:WH7, respectively.These values are summarized in Table 3, and the main factor of high energy loss in PBDB-T:WH7 device is due to the relatively greaterqΔVnr(0.34 eV)in comparison to that of PBDB-T:WH1(0.24 eV).

    Table 3 Energy loss analysis of PBDB-T:WH1 and PBDB-T:WH7 devices

    Fig.10 ECT measurements of PSC devices:(a)PBDB-T:WH1;(b)PBDB-T:WH7;(c)EQEEL measurements of PBDB-T:WH1 and PBDB-T:WH7;(d)ΔVnr measurements of PBDB-T:WH1 and PBDB-T:WH7

    3 Conclusions

    In summary, two A-D-A type acceptor molecules are designed by using the oxindole-based bridge unit to link the endcap A and the center D units.Two new acceptor molecules WH1 and WH7 have different end-groups showing different optical and energy properties.WH7 with the stronger electron-withdrawing end-group displayed a smaller bandgap and a lower-lying LUMO level relative to WH1.For PSC applications, PBDB-T:WH7 device gave largerJscand FF, but a smallerVocand finally exhibited the greater PCE in comparison to PBDB-T:WH1 device.Device mechanism studies showed that the narrow bandgap and greater electron mobility of WH7 relative to WH1 were the main reasons for achieving better performance.However, PBDB-T:WH7 device had a relatively large radiative energy loss(qΔVr)which limited its performance.This work shows that designing small molecular acceptors with the oxindole-based bridge is a facile strategy to couple the electron-deficient building blocks via the Knoevenagel condensation, which could tune the light absorption, energy levels, electron mobility and finally improve the device performance.

    99国产精品一区二区三区| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 91成年电影在线观看| 日韩一区二区三区影片| 国产精品 欧美亚洲| 久久久久久亚洲精品国产蜜桃av| 日韩制服骚丝袜av| 免费观看a级毛片全部| 免费看十八禁软件| 亚洲精华国产精华精| 国产精品久久久久久人妻精品电影 | 亚洲精品自拍成人| 免费观看人在逋| 亚洲中文av在线| 少妇被粗大的猛进出69影院| 国产精品麻豆人妻色哟哟久久| 婷婷色av中文字幕| 搡老熟女国产l中国老女人| 欧美另类一区| 在线av久久热| 久9热在线精品视频| 男女下面插进去视频免费观看| 五月开心婷婷网| 美女大奶头黄色视频| 欧美日韩亚洲综合一区二区三区_| 国产一区二区激情短视频 | 精品欧美一区二区三区在线| 99精品久久久久人妻精品| 国产成人影院久久av| 亚洲一区二区三区欧美精品| 国产精品.久久久| 深夜精品福利| 国产欧美日韩一区二区三 | 天天添夜夜摸| 亚洲精品美女久久av网站| 美女午夜性视频免费| 精品亚洲成国产av| 激情视频va一区二区三区| a 毛片基地| 国产精品免费视频内射| 一本综合久久免费| 啦啦啦在线免费观看视频4| 免费av中文字幕在线| 成人国语在线视频| 操美女的视频在线观看| bbb黄色大片| 欧美精品一区二区免费开放| 99精品久久久久人妻精品| 亚洲av电影在线进入| a级片在线免费高清观看视频| 国产精品久久久人人做人人爽| 久久久欧美国产精品| 18禁国产床啪视频网站| 国产一区二区三区综合在线观看| 久久国产精品大桥未久av| 黄频高清免费视频| 中文欧美无线码| 在线观看免费日韩欧美大片| 欧美人与性动交α欧美精品济南到| 国产av又大| 日韩有码中文字幕| 亚洲欧美成人综合另类久久久| 日韩一卡2卡3卡4卡2021年| 久久久久久亚洲精品国产蜜桃av| 各种免费的搞黄视频| 极品人妻少妇av视频| 久久久久久亚洲精品国产蜜桃av| 日本猛色少妇xxxxx猛交久久| 国产日韩一区二区三区精品不卡| 国产精品一区二区免费欧美 | 欧美日韩亚洲高清精品| 嫩草影视91久久| 在线观看人妻少妇| 亚洲欧美色中文字幕在线| 欧美97在线视频| 国产精品久久久人人做人人爽| 免费在线观看完整版高清| 欧美日本中文国产一区发布| 成年人免费黄色播放视频| 国产三级黄色录像| 成在线人永久免费视频| 永久免费av网站大全| av超薄肉色丝袜交足视频| 国产黄频视频在线观看| 69精品国产乱码久久久| 三级毛片av免费| 性少妇av在线| 婷婷丁香在线五月| 一级毛片电影观看| 欧美少妇被猛烈插入视频| 黑人欧美特级aaaaaa片| xxxhd国产人妻xxx| 91精品国产国语对白视频| 国产精品熟女久久久久浪| 黄网站色视频无遮挡免费观看| 999久久久精品免费观看国产| 18禁观看日本| 91成人精品电影| 久久精品国产亚洲av香蕉五月 | 正在播放国产对白刺激| 午夜免费鲁丝| 在线观看免费高清a一片| 无限看片的www在线观看| 97精品久久久久久久久久精品| 18禁观看日本| 国产深夜福利视频在线观看| 精品人妻一区二区三区麻豆| 亚洲第一av免费看| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av香蕉五月 | 精品第一国产精品| av在线播放精品| 美国免费a级毛片| av不卡在线播放| a 毛片基地| av免费在线观看网站| 国产精品一二三区在线看| 亚洲全国av大片| 精品亚洲成国产av| 欧美午夜高清在线| 啦啦啦 在线观看视频| 永久免费av网站大全| 男人操女人黄网站| 各种免费的搞黄视频| 久久国产精品人妻蜜桃| 国产99久久九九免费精品| 精品国产国语对白av| 狂野欧美激情性bbbbbb| 性色av一级| 国产亚洲精品第一综合不卡| 他把我摸到了高潮在线观看 | 久热这里只有精品99| 午夜福利一区二区在线看| 国产在线视频一区二区| 少妇裸体淫交视频免费看高清 | 亚洲欧美精品综合一区二区三区| 亚洲第一青青草原| 国产xxxxx性猛交| 国产91精品成人一区二区三区 | 欧美午夜高清在线| 一二三四社区在线视频社区8| 十八禁网站免费在线| 一个人免费在线观看的高清视频 | 女警被强在线播放| 大码成人一级视频| 欧美另类一区| 9191精品国产免费久久| 老熟妇仑乱视频hdxx| 啦啦啦免费观看视频1| 岛国毛片在线播放| 欧美成狂野欧美在线观看| 中文字幕人妻熟女乱码| 久久久精品国产亚洲av高清涩受| 狂野欧美激情性xxxx| 久久综合国产亚洲精品| 精品国内亚洲2022精品成人 | 黄色 视频免费看| 十八禁高潮呻吟视频| 十八禁高潮呻吟视频| 久久亚洲精品不卡| 99re6热这里在线精品视频| 精品国产一区二区三区久久久樱花| 黄频高清免费视频| 电影成人av| 国产欧美日韩综合在线一区二区| 欧美一级毛片孕妇| 国产精品一区二区在线不卡| 王馨瑶露胸无遮挡在线观看| 欧美精品啪啪一区二区三区 | 成年动漫av网址| 十八禁网站免费在线| 国产精品av久久久久免费| 成人手机av| 午夜久久久在线观看| www日本在线高清视频| 国产无遮挡羞羞视频在线观看| 91成人精品电影| 人人妻人人爽人人添夜夜欢视频| 99精国产麻豆久久婷婷| 欧美精品人与动牲交sv欧美| 国产黄频视频在线观看| 精品久久久久久电影网| 高清av免费在线| 日日夜夜操网爽| 在线 av 中文字幕| 国产精品影院久久| 国产伦理片在线播放av一区| 精品人妻熟女毛片av久久网站| 国产伦人伦偷精品视频| 久久精品成人免费网站| 一进一出抽搐动态| 国产成人啪精品午夜网站| av在线播放精品| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美日韩在线播放| 久久狼人影院| 啦啦啦 在线观看视频| 伊人亚洲综合成人网| 大香蕉久久成人网| 久久久国产成人免费| 大片电影免费在线观看免费| 亚洲欧美日韩高清在线视频 | 中文字幕av电影在线播放| 老司机影院成人| 中文字幕制服av| 亚洲精品一二三| 亚洲九九香蕉| 国产欧美日韩一区二区精品| 欧美中文综合在线视频| 啦啦啦视频在线资源免费观看| 亚洲欧美精品综合一区二区三区| 国产深夜福利视频在线观看| av视频免费观看在线观看| 久久女婷五月综合色啪小说| 亚洲精品久久久久久婷婷小说| 女人精品久久久久毛片| svipshipincom国产片| 午夜福利视频精品| 婷婷色av中文字幕| av欧美777| 亚洲av电影在线进入| 成人黄色视频免费在线看| 午夜久久久在线观看| 99九九在线精品视频| 老司机在亚洲福利影院| 午夜精品国产一区二区电影| 青春草视频在线免费观看| 一个人免费在线观看的高清视频 | 中文字幕色久视频| 免费一级毛片在线播放高清视频 | 免费观看人在逋| 国产色视频综合| 亚洲精品国产一区二区精华液| 桃花免费在线播放| 成人18禁高潮啪啪吃奶动态图| 手机成人av网站| 久久久久久久大尺度免费视频| 飞空精品影院首页| 日韩精品免费视频一区二区三区| 国产又爽黄色视频| 亚洲性夜色夜夜综合| 亚洲天堂av无毛| 亚洲欧洲精品一区二区精品久久久| 一本综合久久免费| 久久久久久久国产电影| a级片在线免费高清观看视频| 永久免费av网站大全| av片东京热男人的天堂| 精品少妇久久久久久888优播| 水蜜桃什么品种好| 国产在线观看jvid| 性高湖久久久久久久久免费观看| 欧美精品一区二区免费开放| 国产日韩一区二区三区精品不卡| 欧美激情久久久久久爽电影 | 久久久精品94久久精品| 高清欧美精品videossex| 黑人巨大精品欧美一区二区蜜桃| 精品人妻熟女毛片av久久网站| 亚洲一区二区三区欧美精品| 国产成人免费观看mmmm| 人人妻人人添人人爽欧美一区卜| 久热爱精品视频在线9| 国产真人三级小视频在线观看| 久久久国产精品麻豆| 99精品久久久久人妻精品| www.熟女人妻精品国产| 老司机亚洲免费影院| 国产野战对白在线观看| 欧美激情极品国产一区二区三区| 国产av又大| 丰满迷人的少妇在线观看| 亚洲精品成人av观看孕妇| 国产精品久久久人人做人人爽| 久久久久久久久久久久大奶| 美女扒开内裤让男人捅视频| 热99国产精品久久久久久7| av在线app专区| 天天添夜夜摸| 国产成人av教育| 美女福利国产在线| 老熟妇仑乱视频hdxx| 国产三级黄色录像| 久9热在线精品视频| 人人妻人人添人人爽欧美一区卜| 麻豆乱淫一区二区| 一区福利在线观看| 在线看a的网站| av片东京热男人的天堂| 国产免费视频播放在线视频| 久久久久久久大尺度免费视频| 一二三四社区在线视频社区8| 成人手机av| av天堂久久9| 亚洲熟女毛片儿| 久久久欧美国产精品| 嫁个100分男人电影在线观看| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| 人妻一区二区av| 免费观看人在逋| 女人精品久久久久毛片| 一本综合久久免费| 自线自在国产av| 国产精品自产拍在线观看55亚洲 | 每晚都被弄得嗷嗷叫到高潮| 精品人妻熟女毛片av久久网站| 久久香蕉激情| 91精品伊人久久大香线蕉| 999久久久国产精品视频| 黄色视频不卡| 老司机午夜十八禁免费视频| 精品卡一卡二卡四卡免费| 亚洲精品国产av蜜桃| 亚洲av日韩精品久久久久久密| 精品熟女少妇八av免费久了| 一级毛片女人18水好多| 伊人久久大香线蕉亚洲五| 亚洲人成77777在线视频| 性少妇av在线| 我要看黄色一级片免费的| 国产成人系列免费观看| 日韩欧美免费精品| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷久久久亚洲欧美| 亚洲精品久久成人aⅴ小说| 免费看十八禁软件| 国产片内射在线| 动漫黄色视频在线观看| 亚洲久久久国产精品| 欧美日韩视频精品一区| 免费一级毛片在线播放高清视频 | 成人国语在线视频| 免费日韩欧美在线观看| 欧美在线黄色| 亚洲精华国产精华精| 欧美久久黑人一区二区| 婷婷色av中文字幕| 99re6热这里在线精品视频| 99香蕉大伊视频| 精品久久久精品久久久| 日韩一区二区三区影片| 午夜福利,免费看| 在线观看免费日韩欧美大片| 国产精品一区二区免费欧美 | 飞空精品影院首页| 精品人妻熟女毛片av久久网站| bbb黄色大片| 国产免费视频播放在线视频| 精品人妻1区二区| 国产有黄有色有爽视频| av片东京热男人的天堂| av不卡在线播放| 一区福利在线观看| 18在线观看网站| 亚洲精品国产色婷婷电影| 日韩一区二区三区影片| 亚洲精品美女久久久久99蜜臀| 美女主播在线视频| 亚洲av片天天在线观看| 无遮挡黄片免费观看| 精品免费久久久久久久清纯 | 18禁观看日本| 久久久国产精品麻豆| 国产成人免费观看mmmm| 欧美激情久久久久久爽电影 | 国产精品亚洲av一区麻豆| 岛国在线观看网站| 80岁老熟妇乱子伦牲交| 日韩大码丰满熟妇| xxxhd国产人妻xxx| av线在线观看网站| 精品免费久久久久久久清纯 | 嫩草影视91久久| 国产伦人伦偷精品视频| svipshipincom国产片| 妹子高潮喷水视频| 国产三级黄色录像| 99久久精品国产亚洲精品| 亚洲专区字幕在线| 欧美黑人精品巨大| 大香蕉久久成人网| 一区二区三区四区激情视频| 午夜视频精品福利| 最近中文字幕2019免费版| 777米奇影视久久| 狂野欧美激情性bbbbbb| 久久久久精品人妻al黑| 亚洲国产av影院在线观看| 欧美精品啪啪一区二区三区 | 中文字幕人妻丝袜制服| 色综合欧美亚洲国产小说| 日韩中文字幕欧美一区二区| 岛国毛片在线播放| 18禁裸乳无遮挡动漫免费视频| 久久久久国产精品人妻一区二区| 日本黄色日本黄色录像| 少妇的丰满在线观看| 欧美日韩av久久| 久久久久精品人妻al黑| 亚洲伊人久久精品综合| 亚洲午夜精品一区,二区,三区| h视频一区二区三区| 国产熟女午夜一区二区三区| 大片免费播放器 马上看| 精品人妻在线不人妻| 成年人黄色毛片网站| 亚洲精品国产av成人精品| 国产又色又爽无遮挡免| 精品国产一区二区久久| 午夜激情av网站| 亚洲久久久国产精品| 亚洲成国产人片在线观看| 日韩一区二区三区影片| 国产男女超爽视频在线观看| 亚洲欧洲日产国产| 女人被躁到高潮嗷嗷叫费观| 男女下面插进去视频免费观看| 精品第一国产精品| 涩涩av久久男人的天堂| 18在线观看网站| 男男h啪啪无遮挡| 欧美97在线视频| 免费在线观看黄色视频的| 久久精品亚洲熟妇少妇任你| 一二三四社区在线视频社区8| 亚洲av男天堂| 欧美日韩黄片免| 黄频高清免费视频| 50天的宝宝边吃奶边哭怎么回事| 91成人精品电影| 最新的欧美精品一区二区| 99久久99久久久精品蜜桃| av欧美777| 欧美日韩福利视频一区二区| 老司机在亚洲福利影院| 五月开心婷婷网| 婷婷丁香在线五月| 成人av一区二区三区在线看 | 青青草视频在线视频观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久性视频一级片| 亚洲欧美一区二区三区久久| 久久天堂一区二区三区四区| 精品国产一区二区久久| 精品少妇一区二区三区视频日本电影| 成在线人永久免费视频| 高清av免费在线| 亚洲精品国产av蜜桃| 色精品久久人妻99蜜桃| 丝袜美足系列| 午夜免费观看性视频| 一区二区av电影网| 国产视频一区二区在线看| 俄罗斯特黄特色一大片| 亚洲情色 制服丝袜| 日本欧美视频一区| 国产欧美日韩一区二区精品| 美女中出高潮动态图| 亚洲av日韩精品久久久久久密| 精品久久久久久电影网| 欧美日韩精品网址| 大陆偷拍与自拍| 丰满迷人的少妇在线观看| 无遮挡黄片免费观看| 免费观看a级毛片全部| 曰老女人黄片| 19禁男女啪啪无遮挡网站| 欧美日韩av久久| 久久女婷五月综合色啪小说| 成人影院久久| 巨乳人妻的诱惑在线观看| 69精品国产乱码久久久| 国产精品久久久久久精品电影小说| 女人久久www免费人成看片| 国产高清国产精品国产三级| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区免费开放| www日本在线高清视频| 成人免费观看视频高清| 国产高清国产精品国产三级| 天天躁狠狠躁夜夜躁狠狠躁| 久久九九热精品免费| 精品福利观看| 91av网站免费观看| 中国国产av一级| 免费少妇av软件| 69精品国产乱码久久久| 九色亚洲精品在线播放| 大陆偷拍与自拍| 国产精品免费大片| 乱人伦中国视频| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 成人免费观看视频高清| 成人18禁高潮啪啪吃奶动态图| 亚洲第一av免费看| 最黄视频免费看| 九色亚洲精品在线播放| 久久中文字幕一级| 50天的宝宝边吃奶边哭怎么回事| 男人添女人高潮全过程视频| 亚洲av男天堂| 美女视频免费永久观看网站| 麻豆av在线久日| 国产老妇伦熟女老妇高清| 亚洲中文av在线| 91老司机精品| 久久天堂一区二区三区四区| 亚洲精品国产一区二区精华液| 国产日韩欧美亚洲二区| 亚洲av片天天在线观看| 一本久久精品| 视频区欧美日本亚洲| 9色porny在线观看| 美女中出高潮动态图| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 超色免费av| 精品福利观看| 亚洲国产日韩一区二区| 爱豆传媒免费全集在线观看| 国产日韩欧美视频二区| 十八禁网站免费在线| 免费在线观看黄色视频的| 91精品国产国语对白视频| 精品亚洲乱码少妇综合久久| 亚洲欧美一区二区三区黑人| 人妻久久中文字幕网| 超碰成人久久| 他把我摸到了高潮在线观看 | 国产精品自产拍在线观看55亚洲 | 国产不卡av网站在线观看| 一本色道久久久久久精品综合| 亚洲精品国产av蜜桃| 69精品国产乱码久久久| 一边摸一边做爽爽视频免费| 亚洲精品自拍成人| 老司机亚洲免费影院| 国产av精品麻豆| 日本av手机在线免费观看| 国产伦理片在线播放av一区| 高清av免费在线| 青春草视频在线免费观看| 日韩中文字幕视频在线看片| 丝袜喷水一区| 免费不卡黄色视频| 亚洲全国av大片| 精品熟女少妇八av免费久了| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 亚洲熟女毛片儿| 免费看十八禁软件| 欧美精品亚洲一区二区| 国产免费福利视频在线观看| 男男h啪啪无遮挡| 色94色欧美一区二区| 精品卡一卡二卡四卡免费| 十八禁网站网址无遮挡| svipshipincom国产片| 91字幕亚洲| 精品熟女少妇八av免费久了| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 黄网站色视频无遮挡免费观看| 免费人妻精品一区二区三区视频| 精品少妇一区二区三区视频日本电影| 老鸭窝网址在线观看| 精品福利观看| 啪啪无遮挡十八禁网站| 一边摸一边抽搐一进一出视频| 男女免费视频国产| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久水蜜桃国产精品网| 黄色a级毛片大全视频| 十八禁网站网址无遮挡| 一区二区三区四区激情视频| 在线天堂中文资源库| 中文字幕av电影在线播放| 老汉色av国产亚洲站长工具| 精品国内亚洲2022精品成人 | 欧美日韩视频精品一区| 999精品在线视频| 亚洲熟女精品中文字幕| 成人av一区二区三区在线看 | 侵犯人妻中文字幕一二三四区| 亚洲精品自拍成人| 又紧又爽又黄一区二区| 亚洲精品久久久久久婷婷小说| 亚洲精品在线美女| 欧美日韩视频精品一区| 久久久精品区二区三区| 欧美日韩视频精品一区| 国产高清视频在线播放一区 | 建设人人有责人人尽责人人享有的| 国产黄色免费在线视频| 亚洲熟女毛片儿| 国产一区二区三区av在线| 欧美 日韩 精品 国产| 99香蕉大伊视频| 国产深夜福利视频在线观看| 成人国语在线视频| 美女午夜性视频免费| 精品欧美一区二区三区在线| 国产真人三级小视频在线观看| svipshipincom国产片| 久久精品aⅴ一区二区三区四区| √禁漫天堂资源中文www| 日韩欧美一区二区三区在线观看 | 亚洲精品第二区| 两性夫妻黄色片| 欧美+亚洲+日韩+国产| 国产区一区二久久| 男女无遮挡免费网站观看|