• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ypsilandrosides U-Y,five new steroidal saponins from Ypsilandra thibetica

    2022-07-26 07:35:32WenTaoGaoLingLingYuJingXieLongGaoXiaoShiJuanZhangWenYiMaHuanYanandHaiYangLiu
    Natural Products and Bioprospecting 2022年3期

    Wen?Tao Gao,Ling?Ling Yu,Jing Xie,Long?Gao Xiao,Shi?Juan Zhang,Wen?Yi Ma,Huan Yan and Hai?Yang Liu*

    ?Wen?Tao Gao and Ling?Ling Yu contributed equally to this work

    2 State Key Laboratory of Phytochemistry and Plant Resources in West China,and Yunnan Key Laboratory of Natural Medicinal Chemistry,Kunming Institute of Botany,Chinese Academy of Sciences,Kunming 650201,China

    Abstract Phytochemical reinvestigation on the whole plants of Ypsilandra thibetica obtained four new spirostanol glycosides,named ypsilandrosides U?X (1—4),and one new cholestanol glycoside,named ypsilandroside Y (5).Their structures have been established by extensive spectroscopic data and chemical methods.Among them,compound 4 is a rare spirostanol glycoside which possesses a novel 5(6→7) abeo?steroidal aglycone,while compound 1 is a first spiro?stanol bisdesmoside attached to C?3 and C?12,respectively,isolated from the genus Ypsilandra.The induced platelet aggregation activity of the isolates was tested.

    Keywords: Ypsilandra thibetica,Melanthiaceae,Ypsilandrosides U?Y,Spirostanol saponins,Cholestanol saponins

    1 Introduction

    Ypsilandra(Melanthiaceae) is distributed in southwestern China and Myanmar,which contains 5 species according to the updated classification of the Angiosperm Phylogeny Group IV [1].Among them,Ypsilandra thibeticahas been used in folk medicine for treatment of scrofula,dysuria,edema,uterine bleeding,and traumatic hemorrhage in China by the local people [2,3].Our previous investigations discovered twenty eight new steroidal glycosides including nineteen spirostanol saponins,two furostanol saponins,three cholestanol saponins,two pregnane glycosides,and two C22-steroidal lactone glycosides from this species [4–10],some of which showed cytotoxicity [4,5],antifungal [4,6],antibacterial [6],anti-HIV-1 activities [7],and so on.For further investigation on the chemical constituents of this herb,four new spirostanol saponins (1?4) and one new cholestanol saponin(5) (Fig.1) were obtained and structurally characterized.The current paper reports the isolation,structural elucidation,and the induced platelet aggregation activity of these isolates.

    Fig.1 Chemical structures of saponins 1?5

    2 Results and discussion

    Compound 1 was isolated as an amorphous powder.Its molecular formula was determined as C44H70O17by the positive-ion HRESI-MS atm/z893.4500 [M + Na]+(calcd.for C44H70O17Na,893.4505) and13C NMR data(Table 2).The1H NMR spectrum of 1 (Table 1) showed four methyl proton signals atδH0.89 (s,CH3-18),0.91(s,CH3-19),1.38 (d,J=7.0 Hz,CH3-21),and 0.67 (d,J=5.4 Hz,CH3-27),one olefinic proton signal atδH5.18(o,H-6),while three anomeric protons atδH5.64 (d,J=3.2 Hz,H-1’),5.30 (br s,H-1’’),and 4.86 (d,J=7.8 Hz,H-1’’),which suggested that 1 was a glycoside with three monosaccharide moieties.The13C NMR spectra displayed 44 carbon signals,of which 17 were assigned to those of one pentose and two hexose units,whereas other 27 ones were assigned to the aglycone moiety,including four methyl groups,nine methylene groups (one oxygenated),ten methine groups (one olefinic and three oxygenated),and four quaternary carbons (one olefinic and one ketal).The above NMR data suggested that compound 1 is a typical C-27 steroidal saponin and its aglycone is heloniogen [11].This deduction can be confirmed by 2D-NMR spectra.The1H?1H COSY correlations revealed that the aglycone for 1 had four structural fragments as shown in (Fig.2).Furthermore,the key HMBC correlations (Fig.2) from CH3-18 (δH0.89) to C-12 (δC82.4)/C-13 (δC44.9)/C-14 (δC44.4)/C-17 (δC53.1),from CH3-19 (δH0.91) to C-1 (δC37.1)/C-5 (δC141.1)/C-9 (δC49.0)/C-10 (δC36.9),from CH3-21 (δH1.38)/H-20 (δH2.00)/H-23a (δH1.77)/H-26a (δH3.53) to C-22 (δC109.3)were observed.In addition,the ROESY correlations of H-12 (δH3.88) with H-18 (δH0.89) and H-20 (δH2.00)indicated that the OH-12 wasα-oriented (Fig.3).

    Fig.2 1H?1H COSY and Key HMBC correlations of 1?5

    Fig.3 Key ROESY correlations for the aglycone moieties of 1 and 3

    Table 1 1H NMR spectroscopic data of compounds 1—5 (δ in ppm,J in Hz,C5D5N)

    Table 1(continued)

    For the sugar part,the pentose was inferred asβ-D-apiofuranoside by the13C NMR signals atδc 108.1(d,C-1’),78.4 (d,C-2’),79.0 (s,C-3’),74.8 (t,C-4’),and 72.9 (t,C-5’) with those of corresponding carbons ofα-andβ-D-apiofuranoside andα-andβ-L-apiofuranoside[12,13].And the two hexose units were assigned to be a L-rhamnopyranosyl and a D-glucopyranosyl by their NMR data,the acid hydrolysis of 1,and the HPLC analysis (retention time) of their L-cysteine methyl esters followed by conversion intoO-tolyl isothiocyanate derivatives and the authentic samples’ derivatives.And theβ-configuration of glucopyranosyl was revealed by the coupling constant (3J1,2>7.0 Hz) [14],while the anomeric configuration of rhamnopyranosyl was identified asα-orientated on the basis of the chemical shift values of C-3’’(δC72.9) and C-5’(δC70.6) with those of corresponding carbons of methylα-andβ-rhamnopyranoside[15].The sequence of the sugar chain at C-3 of the aglycone was established from the following HMBC corrletions: H-1’(δH5.64) of Api with C-3 (δC77.5) of the aglycone,H-1’’(δH5.30) of the Rha with C-5’(δC72.9) of Api,and H-1’’(δH4.86) of the Glc with C-12 (δC82.4)of the aglycone (Fig.2).Thus,the structure of 1 was

    elucidated as 12-O-β-D-glucopyranosy-(25R)-spirost-5-en-3β,12β-diol-3-O-α-L-rhamnopyranosyl-(1→5)-β-Dapiofuranoside,and named ypsilandroside U.

    Compound 2 was isolated as an amorphous powder with a molecular formula of C38H60O13determined by the positive-ion HRESI-MS atm/z747.3921 [M + Na]+,(calcd.for C38H60O13Na,747.3926) and13C NMR data(Table 2).Its NMR spectra suggested that 2 is a spirostane saponin with a disaccharide chain.Comparison of the1H and13C NMR data of 2 (Tables 1 and 2) with those of ypsiparoside C obtained from the same genus[16] revealed that they shared the same aglycone.The two monosaccharides and their absolute configurations were determined asβ-D-apiose andα-L-rhamnose by the same methods with compound 1.The HMBC correlations from H-1’(δH5.72) to C-3 (δC77.7),and from H-1’(δH5.85) of the rhamnopyransyl to C-2’(δC82.4) established the sequence for 3-O-sugar chain asO-α-L-rhamnopyranosyl-(1→2)-β-D-apiofuranoside(Fig.2).Therefore,the structure of 2 was determined as (25R)-spirost-5-en-3β,17α,27-triol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-apiofuranoside,and named ypsilandroside V.

    Compound 3 was isolated as an amorphous powder and had a molecular formula of C45H72O20as determined by the positive-ion HRESI-MS data (m/z955.4505 [M + Na]+,calcd.for C45H72O20Na,955.4509)and13C NMR data (Table 2).Inspection of the NMR spectra (Tables 1 and 2) of 3 revealed that it possessed a spirotanol skeleton with a trisaccharide chain consisting of one rhamnopyranosyl and two glucopyranosyls.Comparing its1H and13C NMR data (Tables 1 and 2)with those of trillitschonide S6 [17] indicated that they shared the same aglycone.Theα-orientations of OH-23 and CH2OH-25 were supported by the ROESY correlations between H-23 (δH4.00) and H-20 (δH3.39)/H-25 (δH2.29) (Fig.3).The absolute configurations and the anomeric configurations of monosaccharides were determined by the same methods with the above compounds.The sequence of the sugar chain at C-3 of the aglycone was established by the HMBC correlations from H-1’(δH4.92) to C-3 (δC76.8),from H-1’(δH6.31) to C-2’(δC77.5),and from H-1’(δH5.04) to C-6’(δC69.9) (Fig.2).Consequently,the structure of 3 was established as (23S,25S)-spirost-5-en-3β,17α,23,27-tetraol-3-O-β-D-glucopyranosyl-(1→6)-[α-Lrhamnopyranosyl-(1→2)]-β-D-glucopyranoside,and named ypsilandroside W.

    Compound 4 possessed a molecular formula C51H80O21determined by the HRESI-MS atm/z1051.5077[M + Na]+,(calcd.for C51H80O21Na,1051.5084) and13C NMR data (Table 2).The UV spectrum of 4 showed absorption maxima at 254.5 nm,suggesting the presence of a conjugated enal system.When comparing its1H and13C NMR data (Tables 1 and 2) with those of ypsilandroside H [10],it was suggested that they shared the same sugar sequence and the similar aglycone,except for the compound 4 has no hydroxyl substituent at the C-17.The above deduction could be verified by the HMBC correlations from H-21 (δH1.13) and H-18(δH0.88) to C-17 (δC62.4) and1H?1H COSY correlations between H-16 (δH4.59) and H-17 (δH1.80) (Fig.2).The HMBC correlations from H-1’(δH5.02) to C-3(δC77.7),from H-1’(δH6.44) to C-2’(δC77.9),from H-1’(δH5.82) to C-4’(δC77.7),and from H-1’’(δH6.28) to C-4’(δC80.4) confirmed that compound 3 had the same sequence of 3-O-sugar chain as that of ypsilandroside H (Fig.2).Thus,the structure of 4 was elucidated as (25R)-B-nor(7)-6-carboxaldehyde-spirost-5(7)-en-3β-ol-3-O-α-L-rhamnopyranosyl-(1→4)-α-Lrhamnopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside,and named ypsilandroside X.

    The molecular formula of compound 5 was determined as C53H82O19by the HRESI-MS atm/z1045.5352[M + Na]+(calcd.for C53H82O19Na,1045.5343) and13C NMR data (Table 2).Its NMR spectra indicated that compound 5 was a cholestane tetraglycosides containing an aromatic ring.Analysis of the1H and13C NMR data (Tables 1 and 2) of 5 suggested that it was similar to that of parispseudoside A [18],and the major difference was the absence of a glucopyranosyl group at OH-26 site.With the assistance of HSQC experiment,1H and13C NMR data (Tables 1 and 2) showed four anomeric protons atδH4.96 (o,H-1’),6.41 (br s,H-1’’),5.84 (br s,H-1’’’),and 6.29 (s,H-1’’’’) and their corresponding anomeric carbons atδC100.2 (C-1’),102.1 (C-1’’),102.1 (C-1’’’),and 103.2 (C-1’’’’).The sequence of sugar units was consistent with that of compound 4 by HMBC experiment (Fig.2).As a result,the structure of 5 was assigned as homo-aro-cholest-5-en-3β,26-diol-3-O-α-L-rhamnopyranosyl-(1→4)-α-Lrhamnopyranosyl-(1→4 )-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside,and named ypsilandroside Y.

    Table 2 13C NMR spectroscopic data of compounds 1—5 (δ in ppm,C5D5N)

    Table 2(continued)

    Because the whole plants ofY.thibeticahas been used in folk medicine for treatment of uterine bleeding and traumatic hemorrhage in China,the isolated compounds (1–5) were evaluated for their induced platelet aggregation activity and ADP (adenosine diphosphate)was used as a positive control.Unfortunately,the results showed all isolated saponins did not exhibit the inducing platelet aggregation activity at the tested concentration of 100 μM.

    3 Experimental section

    3.1 General experimental procedures

    Optical rotations were measured by a JASCO P-1020 polarimeter (Jasco Corp.,Japan).UV spectra were recorded on a Shimadzu UV2401 PC spectrophotometer (Shimadzu Corp.,Japan).HRESI-MS was recorded on an Agilent 1290 UPLC/6540 Q-TOF mass spectrometer (Agilent Corp.,USA).The NMR experiments were performed on Bruker AVANCE III 500,Avance III-600,and AV 800 spectrometers (Bruker Corp.,Switzerland).Silica gel (200–300 mesh,Qingdao Marine Chemical Co.,Ltd.,People’s Republic of China),RP-18 (50 μm,Merck,Germany),and Sephadex LH-20 (Pharmacia,Stockholm,Sweden) were used for column chromatography (CC).An Agilent 1260 system (Agilent Corp.,America) with a Zorbax SB-C18 column (5 μm,9.4 × 250 mm) was used for HPLC separation.TLC was carried out on silica gel HSGF254plates (Qingdao Marine Chemical Co.,China)or RP-18 F254(Merck,Darmstadt,Germany).

    3.2 Plant material

    The whole plant materials ofY.thibeticawere collected in August 2010 from Zhaotong City,Yunnan Provence,China,and identified by Prof.Xin-Qi Chen,Institute of Botany,Chinese Academy of Sciences,Beijing.A voucher specimen was deposited at the State Key Laboratory of Phytochemistry and Plant Resources in West China,Kunming Institute of Botany,Chinese Academy of Sciences.

    3.3 Extraction and isolation

    The dried whole plants ofY.thibetica(110 kg) were crushed and extracted three times with 70% EtOH under reflux for a 3 h,2 h and 2 h.Then,the combined extract was concentrated under reduced pressure.The crude extract (30 kg) was passed through YWD-3F macroporous resin and eluted successively with H2O,40% EtOH,75% EtOH,and 95% EtOH,respectively.Evaporated 75%EtOH fraction (crude saponin-rich mixture,10 kg) was subjected to a silica gel column chromatography (CHCl3–MeOH,20:1→8:2,v/v) to give eleven fractions (Fr.A–Fr.K).Fr.C (560 g) was subjected to a silica gel column chromatography (CHCl3–MeOH,20:1→1:1,v/v) to give 14 fractions (Fr.C-1–Fr.C-14).Fr.C-11 (80 mg) was submitted to Sephadex LH-20 (MeOH) and chromatographically separated on an RP-18 column eluted with MeOH–H2O(40:60→70:30,v/v) and purified by preparative HPLC(MeCN–H2O,40:60→50:50,v/v) to afford saponin 2 (tR=12.8 min,10 mg).Fr.C-13 (45 g) was submitted to Sephadex LH-20 (MeOH) to give three subfractions(C-13–1–C-13–3).Subsequently,Fr.C-13–1 (150 mg)was further purified by preparative HPLC (MeCN–H2O,25:75→35:65,v/v) to afford saponins 5 (tR=10.8 min,7 mg) and 4 (tR=11.9 min,12 mg),whereas saponins 3(tR=11.1 min,10 mg) and 1 (tR=14.8 min,9 mg) were obtained from Fr.C-13–3 (208 mg) by preparative HPLC(MeCN–H2O,30:70→45:55,v/v).

    3.4 Physical and spectroscopic data of new glycosides

    3.4.1 Ypsilandroside U (1)

    Amorphous solid;[α]1D8.6?55.80 (c0.20,MeOH);1H(500 MHz,pyridined5) and13C (125 MHz,pyridined5)NMR data,see Tables 1 and 2;HRESIMSm/z893.4500[M + Na]+(calcd.for C44H70O17Na,893.4505) (Additional file 1).

    3.4.2 Ypsilandroside V (2)

    Amorphous solid;[α]1D8.6?190.00 (c0.12,MeOH);1H(500 MHz,pyridine-d5) and13C (125 MHz,pyridine-d5)NMR data,see Tables 1 and 2;HRESIMSm/z747.3921([M + Na]+,calcd.for C38H60O13Na,747.3926) (Additional file 1).

    3.4.3 Ypsilandroside W (3)

    Amorphous solid;[α]2D0.5?125.67 (c0.12,MeOH);1H(500 MHz,pyridine-d5) and13C (125 MHz,pyridine-d5)NMR data,see Tables 1 and 2;HRESIMSm/z955.4505[M + Na]+(calcd.for C45H72O20Na,955.4509) (Additional file 1).

    3.4.4 Ypsilandroside X (4)

    Amorphous solid;[α]18.6D?106.40 (c0.15,MeOH);UV(MeOH) λmax(logε) 202.5 (3.9),254.5 (3.9) nm;1H(500 MHz,pyridine-d5) and13C (125 MHz,pyridine-d5)NMR data,see Tables 1 and 2;HRESIMSm/z1051.5077[M + Na]+(calcd.for C51H80O21Na,1051.5084) (Additional file 1).

    3.4.5 Ypsilandroside Y (5)

    Amorphous solid;[α]18.6D?48.18 (c0.11,MeOH);UV(MeOH) λmax(logε) 203 (4.5) nm;1H (600 MHz,pyridine-d5) and13C (150 MHz,pyridine-d5) NMR data,see Tables 1 and 2;HRESIMSm/z1045.5352 [M + Na]+(calcd.for C53H82O19Na,1045.5343) (Additional file 1).

    3.5 Acid hydrolysis of compounds 1–5 and determination of the absolute configuration of the sugars by HPLC

    Compounds 1?5 (1.0 mg each) in 6 M CF3COOH(1,4-dioxane-H2O 1:1,1.0 mL) were heated at 99 ℃for 2 h,respectively.The reaction mixture was diluted with H2O (1.0 mL) and then extracted with EtOAc(3 × 2.0 mL).Next,each aqueous layer was evaporated to dryness using rotary evaporation.Each dried residue was dissolved in pyridine (1.0 mL) mixed with L-cysteine methyl ester hydrochloride (1.0 mg) (Aldrich,Japan)and heated at 60 °C for 1 h.Then,O-tolyl isothiocyanate(5.0 μL) (Tokyo Chemical Industry Co.,Ltd.,Japan) was added to the mixture,this being heated at 60 °C for 1 h.Each reaction mixture was directly analyzed by reversed phase HPLC following the above procedure.Each reaction mixture was directly analyzed by analytical HPLC on a Poroshell 120 SB-C18 column (100 × 4.6 mm,2.7 μm,Agilent) using an elution of CH3CN?H2O (20:75→40:60,v/v) at a flow rate of 0.6 mL/min.As a result,the sugars in the test compounds were identified as D-glucose and L-rhamnose,respectively,by comparing their molecular weight and retention time with the standards (tR13.90 min for D-glucose;tR17.72 min for L-rhamnose).

    3.6 Platelet aggregation assays

    Turbidometric measurements of platelet aggregation of the samples were performed in a Chronolog Model 700 Aggregometer (Chronolog Corporation,Havertown,PA,USA) according to Born’s method [19,20].Rabbit platelet aggregation study was completed within 3.0 h of preparation of platelet-rich plasma (PRP).Immediately after preparation of PRP,250 μL was incubated in each test tube at 37 °C for 5.0 min and then 2.5 μL of compounds (100 μM) were individually added.The changes in absorbance as a result of platelet aggregation were recorded.The extent of aggregation was estimated by the percentage of maximum increase in light transmittance,with the buffer representing 100% transmittance.ADP(adenosine diphosphate) was used as a positive control with a 59.5 ± 6.1% maximal platelet aggregation rate at a concentration of 10 μM.1% DMSO was used as a blank control with a 2.7 ± 0.6% maximal platelet aggregation.Data counting and analysis was done on SPSS 16.0,with experimental results expressed as mean ± standard error.

    4 Conclusion

    Phytochemical reinvestigation on the whole plants ofY.thibeticaobtained four new spirostanol glycosides,named ypsilandrosides U-X (1–4),and one new cholestanol glycoside,named ypsilandroside Y (5).Their structures have been illustrated by extensive spectroscopic data and chemical methods.Among them,compound 4 is a rare spirostanol glycoside which possesses a novel 5(6→7) abeo-steroidal aglycone,while compound 1 is a first spirostanol bisdesmoside attached to C-3 and C-12,respectively,obtained from theYpsilandraspecies.This investigation enriched the cognition of the chemical constituents inY.thibetica.Unfortunately,the bioassay results showed the five new saponins have no the activity of inducing platelet aggregation.

    Supplementary Information

    The online version contains supplementary material available at https:// doi.org/ 10.1007/ s13659?022?00337?0.

    Additional file 1: Fig.S1.1H NMR spectrum (500 MHz) of compound1in pyridine?d5.Fig.S2.13C NMR spectrum (125 MHz) of compound1in pyridine?d5.Fig.S3.1H—1H COSY spectrum of compound1in pyridine?d5.Fig.S4.HSQC spectrum of compound1in pyridine?d5.Fig.S5.HMBC spectrum of compound1in pyridine?d5.Fig.S6.ROESY spectrum of compound1in pyridine?d5.Fig.S7.HRESI (+) MS spectrum of compound1.Fig.S8.1H NMR spectrum (500 MHz) of compound2in pyridine?d5.Fig.S9.13C NMR spectrum (125 MHz) of compound2in pyridine?d5.Fig.S10.1H—1H COSY spectrum of compound2in pyridine?d5.Fig.S11.HSQC spectrum of compound2in pyridine?d5.Fig.S12.HMBC spectrum of compound2in pyridine?d5.Fig.S13.ROESY spectrum of compound2in pyridine?d5.Fig.S14.HRESI (+) MS spectrum of compound2.Fig.S15.1H NMR spectrum (500 MHz) of compound3in pyridine?d5.Fig.S16.13C NMR spectrum (125 MHz) of compound3in pyridine?d5.Fig.S17.1H—1H COSY spectrum of compound3in pyridine?d5.Fig.S18.HSQC spectrum of compound3in pyridine?d5.Fig.S19.HMBC spectrum of compound3in pyridine?d5.Fig.S20.ROESY spectrum of compound3in pyridine?d5.Fig.S21.HRESI (+) MS spectrum of compound3.Fig.S221H NMR spectrum (500 MHz) of compound4in pyridine?d5.Fig.S23.13C NMR spectrum (125 MHz) of compound4in pyridine?d5.Fig.S24.1H—1H COSY spectrum of compound4in pyridine?d5.Fig.S25.HSQC spectrum of compound4in pyridine?d5.Fig.S26.HMBC spectrum of compound4in pyridine?d5.Fig.S27.ROESY spectrum of compound4in pyridine?d5.Fig.S28.HRESI (+) MS spectrum of compound4.Fig.S29.UV spectrum of compound4.Fig.S30.1H NMR spectrum (600 MHz) of compound5in pyridine?d5.Fig.S31.13C NMR spectrum (150 MHz) of compound5in pyridine?d5.Fig.S32.1H—1H COSY spectrum of compound5in pyridine?d5.Fig.S33.HSQC spectrum of compound5in pyridine?d5.Fig.S34.HMBC spectrum of compound5in pyridine?d5.Fig.S35.ROESY spectrum of compound5in pyridine?d5.Fig.S36.HRESI (+) MS spectrum of com?pound5.Fig.S37.UV spectrum of compound5.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China (U1802287 and 32000280),the Ten Thousand Talents Plan of Yunnan Province for Industrial Technology Leading Talents,and the State Key Laboratory of Phytochemistry and Plant Resources in West China(P2019?ZZ02).

    Author contributions

    All authors read and approved the final manuscript.

    Declarations

    Competing interests

    The authors declare that there are no conflicts of interest associated with this work.

    Author details

    1College of Traditional Chinese Medicine,Yunnan University of Chinese Medicine,Kunming 650500,China.2State Key Laboratory of Phytochemistry and Plant Resources in West China,and Yunnan Key Laboratory of Natural Medicinal Chemistry,Kunming Institute of Botany,Chinese Academy of Sci?ences,Kunming 650201,China.3University of Chinese Academy of Sciences,Beijing 100049,China.

    狂野欧美激情性bbbbbb| 大香蕉97超碰在线| 狂野欧美激情性bbbbbb| 午夜免费男女啪啪视频观看| 日本黄大片高清| 看非洲黑人一级黄片| 成人漫画全彩无遮挡| 大香蕉97超碰在线| h视频一区二区三区| 你懂的网址亚洲精品在线观看| 日韩伦理黄色片| 观看美女的网站| 亚洲精品第二区| 男女无遮挡免费网站观看| 九九在线视频观看精品| 久久久成人免费电影| 久久ye,这里只有精品| 一区二区三区四区激情视频| 七月丁香在线播放| 亚洲精品乱久久久久久| 亚洲国产欧美在线一区| 最黄视频免费看| 九九久久精品国产亚洲av麻豆| 免费不卡的大黄色大毛片视频在线观看| 有码 亚洲区| 在线观看国产h片| 欧美zozozo另类| 国语对白做爰xxxⅹ性视频网站| 亚洲精品日本国产第一区| 99热全是精品| 亚洲美女搞黄在线观看| 99热这里只有是精品50| h视频一区二区三区| 免费看光身美女| 成人免费观看视频高清| 日本-黄色视频高清免费观看| 91午夜精品亚洲一区二区三区| 汤姆久久久久久久影院中文字幕| 欧美日韩精品成人综合77777| 日本午夜av视频| 日韩制服骚丝袜av| 国产精品三级大全| 国产av国产精品国产| 日本一二三区视频观看| 久久久久国产精品人妻一区二区| 如何舔出高潮| 国产色爽女视频免费观看| 亚洲av中文字字幕乱码综合| 久久精品国产亚洲av涩爱| 色网站视频免费| 中文字幕av成人在线电影| 一区在线观看完整版| 久久久久视频综合| 亚洲国产精品一区三区| 毛片一级片免费看久久久久| 我要看黄色一级片免费的| 少妇熟女欧美另类| 老熟女久久久| a级一级毛片免费在线观看| 国产在线视频一区二区| 欧美xxⅹ黑人| 免费人妻精品一区二区三区视频| 免费播放大片免费观看视频在线观看| 亚洲综合色惰| 搡老乐熟女国产| 国产免费视频播放在线视频| 卡戴珊不雅视频在线播放| 能在线免费看毛片的网站| 亚洲欧美一区二区三区国产| 亚洲精品中文字幕在线视频 | 精品久久久久久久久亚洲| 亚洲av.av天堂| 久久ye,这里只有精品| 国模一区二区三区四区视频| 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片| 男人添女人高潮全过程视频| h日本视频在线播放| 成年美女黄网站色视频大全免费 | 成年av动漫网址| 一级毛片aaaaaa免费看小| 看免费成人av毛片| 久久国产精品大桥未久av | 免费人妻精品一区二区三区视频| 日日撸夜夜添| 偷拍熟女少妇极品色| 大片免费播放器 马上看| 亚洲欧美日韩另类电影网站 | 国产美女午夜福利| 91精品国产九色| 男人添女人高潮全过程视频| 人妻制服诱惑在线中文字幕| 老司机影院毛片| 精品人妻偷拍中文字幕| 亚洲精品日韩在线中文字幕| 亚洲国产高清在线一区二区三| 日本与韩国留学比较| 亚洲一级一片aⅴ在线观看| 99九九线精品视频在线观看视频| 亚洲va在线va天堂va国产| 天堂俺去俺来也www色官网| 一个人免费看片子| 亚洲欧美日韩东京热| 国产精品一区二区性色av| 看非洲黑人一级黄片| a级毛片免费高清观看在线播放| 在线观看免费高清a一片| 国产精品一二三区在线看| 亚洲精品乱码久久久v下载方式| 一级毛片aaaaaa免费看小| 久久精品国产亚洲av涩爱| av在线蜜桃| 欧美日韩精品成人综合77777| 国产男女内射视频| 97热精品久久久久久| 成年免费大片在线观看| 国产成人精品一,二区| 亚洲中文av在线| freevideosex欧美| 亚洲自偷自拍三级| 一二三四中文在线观看免费高清| 最近的中文字幕免费完整| 又爽又黄a免费视频| 亚洲,欧美,日韩| 国产乱人视频| 日韩制服骚丝袜av| 免费观看性生交大片5| 久久久久国产精品人妻一区二区| 亚洲三级黄色毛片| 大香蕉久久网| 婷婷色麻豆天堂久久| 亚洲自偷自拍三级| 六月丁香七月| 嘟嘟电影网在线观看| 日韩一区二区视频免费看| 夫妻性生交免费视频一级片| 汤姆久久久久久久影院中文字幕| 国产成人精品婷婷| 亚洲婷婷狠狠爱综合网| 欧美丝袜亚洲另类| 一级爰片在线观看| 亚洲色图av天堂| 国产极品天堂在线| 自拍欧美九色日韩亚洲蝌蚪91 | 99久久精品国产国产毛片| 成人二区视频| 亚洲精品一二三| 永久免费av网站大全| 日日撸夜夜添| 国产av国产精品国产| 妹子高潮喷水视频| 久久久欧美国产精品| 91久久精品电影网| 日韩中文字幕视频在线看片 | 日韩国内少妇激情av| 亚洲精品亚洲一区二区| 亚洲国产欧美在线一区| 18禁裸乳无遮挡免费网站照片| 中文字幕免费在线视频6| 欧美日本视频| 边亲边吃奶的免费视频| 亚洲精品乱久久久久久| 国产免费一区二区三区四区乱码| 成人二区视频| 欧美老熟妇乱子伦牲交| 日韩人妻高清精品专区| 国产亚洲91精品色在线| 国语对白做爰xxxⅹ性视频网站| 欧美高清性xxxxhd video| 亚洲在久久综合| 纵有疾风起免费观看全集完整版| 五月伊人婷婷丁香| a级毛片免费高清观看在线播放| 男人爽女人下面视频在线观看| 国产高清三级在线| 国产高清不卡午夜福利| 婷婷色综合大香蕉| 免费大片18禁| 亚洲欧美日韩另类电影网站 | 精品酒店卫生间| 亚洲真实伦在线观看| 日韩强制内射视频| 国产人妻一区二区三区在| 在线观看一区二区三区激情| 国产av精品麻豆| 国产精品秋霞免费鲁丝片| 久久韩国三级中文字幕| 亚洲国产成人一精品久久久| 亚洲在久久综合| 国产真实伦视频高清在线观看| 黑人猛操日本美女一级片| 久久久久精品性色| 亚洲人成网站高清观看| 人体艺术视频欧美日本| 亚洲国产精品专区欧美| 黄色怎么调成土黄色| 久久精品国产亚洲网站| 国产精品国产av在线观看| 欧美精品一区二区大全| 亚洲精品色激情综合| 欧美成人一区二区免费高清观看| 亚洲国产成人一精品久久久| 久久久久国产网址| 国产 一区精品| 小蜜桃在线观看免费完整版高清| av在线蜜桃| 日韩中文字幕视频在线看片 | 永久网站在线| 亚洲av福利一区| 久久久色成人| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| av在线app专区| 精品国产露脸久久av麻豆| 亚洲国产精品专区欧美| 午夜老司机福利剧场| 亚洲人成网站在线播| 色综合色国产| 久久精品久久久久久噜噜老黄| 高清不卡的av网站| 亚洲人成网站在线播| 国产黄片美女视频| 免费播放大片免费观看视频在线观看| av国产精品久久久久影院| 特大巨黑吊av在线直播| 黄色一级大片看看| 最新中文字幕久久久久| 国产免费视频播放在线视频| 亚洲精品乱码久久久v下载方式| 欧美区成人在线视频| 中国三级夫妇交换| 最近手机中文字幕大全| 久久久a久久爽久久v久久| 成年美女黄网站色视频大全免费 | 久久女婷五月综合色啪小说| 美女国产视频在线观看| 日本一二三区视频观看| 日韩视频在线欧美| 在线看a的网站| 亚洲内射少妇av| 51国产日韩欧美| 97超碰精品成人国产| 一区二区三区精品91| 亚洲av电影在线观看一区二区三区| 少妇熟女欧美另类| 高清视频免费观看一区二区| 日本午夜av视频| 精品久久久久久久末码| 国产 一区 欧美 日韩| 国产免费一级a男人的天堂| 有码 亚洲区| 麻豆乱淫一区二区| 色5月婷婷丁香| 黄片wwwwww| 午夜老司机福利剧场| 亚洲av成人精品一区久久| 亚洲欧美精品自产自拍| 国产精品免费大片| 久久99热6这里只有精品| 黄色配什么色好看| 国产精品av视频在线免费观看| 王馨瑶露胸无遮挡在线观看| 乱码一卡2卡4卡精品| 永久网站在线| 欧美少妇被猛烈插入视频| 99热这里只有是精品在线观看| 伊人久久精品亚洲午夜| 成人黄色视频免费在线看| 午夜福利视频精品| 老师上课跳d突然被开到最大视频| av.在线天堂| 夫妻午夜视频| 少妇人妻精品综合一区二区| 人人妻人人爽人人添夜夜欢视频 | 交换朋友夫妻互换小说| 精品一区在线观看国产| 婷婷色av中文字幕| 亚洲最大成人中文| 九九久久精品国产亚洲av麻豆| 毛片女人毛片| a级一级毛片免费在线观看| 国产精品成人在线| 午夜免费鲁丝| 欧美极品一区二区三区四区| 人体艺术视频欧美日本| 九色成人免费人妻av| 日韩一区二区三区影片| 一个人看视频在线观看www免费| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 精品一区二区三卡| 国产精品福利在线免费观看| 午夜福利视频精品| 成人美女网站在线观看视频| 国产乱人视频| 亚洲色图综合在线观看| 久久久a久久爽久久v久久| 久久久亚洲精品成人影院| 青青草视频在线视频观看| 国产久久久一区二区三区| 1000部很黄的大片| 18禁在线播放成人免费| 蜜桃久久精品国产亚洲av| 全区人妻精品视频| 国产亚洲午夜精品一区二区久久| a级毛色黄片| 久久女婷五月综合色啪小说| xxx大片免费视频| 亚洲欧美日韩另类电影网站 | 22中文网久久字幕| 在线观看国产h片| 国产久久久一区二区三区| 午夜福利网站1000一区二区三区| 亚洲av电影在线观看一区二区三区| 国产91av在线免费观看| 在线天堂最新版资源| 亚洲精品国产色婷婷电影| 免费看av在线观看网站| 最近中文字幕2019免费版| 大码成人一级视频| 久久久久性生活片| 国产白丝娇喘喷水9色精品| 国产精品人妻久久久影院| 建设人人有责人人尽责人人享有的 | 爱豆传媒免费全集在线观看| 青春草国产在线视频| 免费av不卡在线播放| 色吧在线观看| 久久人人爽人人片av| 国产精品.久久久| 亚洲av成人精品一二三区| 免费观看的影片在线观看| 97超碰精品成人国产| 少妇被粗大猛烈的视频| 成年人午夜在线观看视频| 国产精品人妻久久久久久| 男女下面进入的视频免费午夜| 91狼人影院| 免费播放大片免费观看视频在线观看| 国产精品久久久久成人av| 国产精品人妻久久久久久| 亚洲欧洲国产日韩| 久久久久精品性色| 九草在线视频观看| 精品一区二区免费观看| 一本久久精品| 久久亚洲国产成人精品v| 美女国产视频在线观看| 亚洲欧美日韩另类电影网站 | 少妇人妻久久综合中文| 亚洲人与动物交配视频| 大香蕉久久网| 亚洲国产欧美人成| 中文字幕免费在线视频6| 22中文网久久字幕| 欧美成人a在线观看| 蜜桃在线观看..| 亚洲伊人久久精品综合| 日韩 亚洲 欧美在线| 五月开心婷婷网| 国国产精品蜜臀av免费| 99热这里只有精品一区| 精品人妻偷拍中文字幕| 男男h啪啪无遮挡| 秋霞伦理黄片| 久久99热这里只有精品18| 亚洲精品成人av观看孕妇| 人人妻人人澡人人爽人人夜夜| 亚洲精品国产色婷婷电影| videos熟女内射| 一区二区三区精品91| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 22中文网久久字幕| 啦啦啦视频在线资源免费观看| 国产高清三级在线| 欧美日韩精品成人综合77777| 人妻少妇偷人精品九色| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 在线观看人妻少妇| 日韩人妻高清精品专区| 大片免费播放器 马上看| 亚洲精品一二三| 爱豆传媒免费全集在线观看| 91精品国产九色| 22中文网久久字幕| 成人无遮挡网站| 国产精品不卡视频一区二区| 亚州av有码| 国产无遮挡羞羞视频在线观看| 欧美三级亚洲精品| 国产高清有码在线观看视频| 成年女人在线观看亚洲视频| 又大又黄又爽视频免费| 日韩 亚洲 欧美在线| 色网站视频免费| 久久人人爽av亚洲精品天堂 | 精品一区二区免费观看| 精品人妻熟女av久视频| 久久久久久久久久人人人人人人| 一级毛片久久久久久久久女| 99热这里只有是精品50| 又大又黄又爽视频免费| 久久久久性生活片| 三级国产精品欧美在线观看| 男男h啪啪无遮挡| 国产伦理片在线播放av一区| 亚洲综合色惰| 成人二区视频| 亚洲一区二区三区欧美精品| 免费观看的影片在线观看| www.av在线官网国产| 亚洲欧洲日产国产| 亚洲不卡免费看| 免费高清在线观看视频在线观看| 大香蕉97超碰在线| 成人免费观看视频高清| 一级二级三级毛片免费看| 大又大粗又爽又黄少妇毛片口| 亚洲欧美成人综合另类久久久| 久久99热6这里只有精品| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| 亚洲,欧美,日韩| 又粗又硬又长又爽又黄的视频| 成年av动漫网址| 亚洲精品乱码久久久久久按摩| 一区二区三区乱码不卡18| 免费看光身美女| 日韩强制内射视频| 久久精品熟女亚洲av麻豆精品| 国产成人91sexporn| 香蕉精品网在线| 国产亚洲5aaaaa淫片| 五月天丁香电影| 老司机影院毛片| 一二三四中文在线观看免费高清| 人人妻人人爽人人添夜夜欢视频 | 最新中文字幕久久久久| 国产69精品久久久久777片| 国产女主播在线喷水免费视频网站| 能在线免费看毛片的网站| 欧美激情极品国产一区二区三区 | 老司机影院成人| av天堂中文字幕网| 亚洲欧美日韩卡通动漫| 熟女av电影| 国产精品免费大片| 亚洲av成人精品一区久久| 人人妻人人看人人澡| 亚洲精品日韩av片在线观看| 99久久精品国产国产毛片| 性高湖久久久久久久久免费观看| 激情五月婷婷亚洲| 久久久a久久爽久久v久久| 亚洲真实伦在线观看| 毛片女人毛片| 国产精品一区二区在线观看99| 2018国产大陆天天弄谢| 久久久久久人妻| 欧美亚洲 丝袜 人妻 在线| 插阴视频在线观看视频| 亚洲久久久国产精品| 国产男女内射视频| 伊人久久国产一区二区| 自拍偷自拍亚洲精品老妇| 成人无遮挡网站| 欧美人与善性xxx| 黑人高潮一二区| 久久久久久久国产电影| 免费人妻精品一区二区三区视频| 一本一本综合久久| 日本黄色日本黄色录像| 伦理电影免费视频| 成人综合一区亚洲| 日韩精品有码人妻一区| 亚洲欧美一区二区三区国产| 老司机影院毛片| 在线观看美女被高潮喷水网站| 99热这里只有是精品50| 亚洲欧洲国产日韩| 一级黄片播放器| 国产成人精品久久久久久| 麻豆国产97在线/欧美| 日韩欧美一区视频在线观看 | 久久综合国产亚洲精品| 亚洲久久久国产精品| 大片免费播放器 马上看| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久成人av| 两个人的视频大全免费| 国产 精品1| 久久99精品国语久久久| 欧美成人精品欧美一级黄| 草草在线视频免费看| 亚洲av在线观看美女高潮| 色婷婷av一区二区三区视频| 国产 一区 欧美 日韩| 亚洲伊人久久精品综合| 免费黄频网站在线观看国产| 欧美精品国产亚洲| 人人妻人人看人人澡| 天美传媒精品一区二区| 一个人看的www免费观看视频| 高清欧美精品videossex| 日本免费在线观看一区| a 毛片基地| 中文天堂在线官网| 午夜老司机福利剧场| 黄色日韩在线| 欧美人与善性xxx| av国产免费在线观看| av不卡在线播放| 日韩成人伦理影院| 国产成人精品婷婷| 亚洲国产毛片av蜜桃av| 亚洲欧洲国产日韩| 免费在线观看成人毛片| 在线看a的网站| 大香蕉97超碰在线| 国产黄片美女视频| 卡戴珊不雅视频在线播放| 伦精品一区二区三区| 亚洲精品国产成人久久av| 国产大屁股一区二区在线视频| 最黄视频免费看| 蜜桃亚洲精品一区二区三区| 亚洲av中文av极速乱| 丝袜脚勾引网站| 美女脱内裤让男人舔精品视频| 亚洲,一卡二卡三卡| 97超碰精品成人国产| 精品久久国产蜜桃| 国产成人a区在线观看| 亚洲欧洲国产日韩| 性色av一级| 成人毛片a级毛片在线播放| 99久国产av精品国产电影| 九草在线视频观看| 成人特级av手机在线观看| 又黄又爽又刺激的免费视频.| 国产一区二区在线观看日韩| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 寂寞人妻少妇视频99o| 色婷婷久久久亚洲欧美| 99视频精品全部免费 在线| 舔av片在线| 赤兔流量卡办理| www.色视频.com| 久久精品国产鲁丝片午夜精品| 又大又黄又爽视频免费| 亚洲人与动物交配视频| 久久久亚洲精品成人影院| 18禁裸乳无遮挡免费网站照片| 99re6热这里在线精品视频| 免费av中文字幕在线| 少妇的逼水好多| 自拍欧美九色日韩亚洲蝌蚪91 | 成人18禁高潮啪啪吃奶动态图 | 老司机影院成人| 日本免费在线观看一区| 日本欧美国产在线视频| 日韩av不卡免费在线播放| 色视频www国产| 五月伊人婷婷丁香| 国产日韩欧美亚洲二区| 久久久国产一区二区| 中国美白少妇内射xxxbb| 一二三四中文在线观看免费高清| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 这个男人来自地球电影免费观看 | 久久99蜜桃精品久久| 内地一区二区视频在线| 黑人高潮一二区| 联通29元200g的流量卡| 国国产精品蜜臀av免费| 少妇的逼水好多| 91在线精品国自产拍蜜月| 成人免费观看视频高清| 欧美日韩国产mv在线观看视频 | 国产精品熟女久久久久浪| 久久久久久九九精品二区国产| 国产中年淑女户外野战色| 久久精品国产自在天天线| 97在线人人人人妻| 精品久久国产蜜桃| 亚洲无线观看免费| 综合色丁香网| 大陆偷拍与自拍| 在现免费观看毛片| 亚洲av国产av综合av卡| 欧美 日韩 精品 国产| 亚洲国产精品专区欧美| 男人添女人高潮全过程视频| 国产高清国产精品国产三级 | 亚洲国产最新在线播放| 精品人妻视频免费看| 日韩一区二区视频免费看| 精品久久久精品久久久| 成人黄色视频免费在线看| 80岁老熟妇乱子伦牲交| 99久久精品国产国产毛片| 视频区图区小说| 亚洲国产精品999| 精品一区二区三区视频在线| 精品国产三级普通话版| 蜜桃在线观看..| 国产淫片久久久久久久久| 亚洲av男天堂|