• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Artemyrianosins A–J,cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha

    2022-07-26 07:35:30XinZhangYunBaoMaXiaoFengHeTianZeLiChangAnGengLiHuaSuShuangTangZhenGaoandJiJunChen
    Natural Products and Bioprospecting 2022年3期

    Xin Zhang,Yun?Bao Ma,Xiao?Feng He,Tian?Ze Li,Chang?An Geng,Li?Hua Su,Shuang Tang,Zhen Gao and Ji?Jun Chen*

    1 State Key Laboratory of Phytochemistry and Plant Resources in West China,Yunnan Key Laboratory of Natural Medicinal Chemistry,Kunming Institute of Botany,Chinese Academy of Sciences,132# Lanhei Road,Kunming 650201,Yunnan,People’s Republic of China

    Abstract Ten new germacrane?type sesquiterpenoids,artemyrianosins A—J (1—10),were isolated from the aerial parts of Artemisia myriantha.Their structures were elucidated by spectral analyses including UV,IR,HRESIMS,1D and 2D NMR,ECD and the absolute configurations of compounds 1 and 7—9 were characterized using X?ray crystallography.All isolates were tested their cytotoxicity against three human hepatoma cell lines (HepG2,Huh7,and SK?Hep?1),and com?pounds 1—3,7,and 10 showed cytotoxicity with IC50 values ranging from 43.7 to 89.3 μM.Among them,the most active compound 3 exhibited activity against three human hepatoma cell lines with IC50 values of 43.7 μM (HepG2),47.9 μM (Huh7),and 44.9 μM (SK?Hep?1).

    Keywords: Artemisia myriantha,Artemyrianosins A—J,Germacrane?type sesquiterpenoids,Cytotoxicity

    1 Introduction

    Hepatocellular carcinoma (HCC) as one of the most serious and common type of liver cancer is mainly caused by HBV or HCV infection,and heavy alcohol intake [1,2].HCC has resulted in nearly 0.83 million deaths worldwide in the year 2020 [3,4],and suffered more than 1 million people will be affected by 2025 [5].Clinically,four synthetic ones (sorafenib,regorafenib,lenvatinib and cabozantinib) and three monoclonal antibody ones(nivolumab,pembrolizumab and ramucirumab) are used to treat HCC [6,7].Although these drugs have obtained significant achievements,there are still some inevitable drawbacks,such as the low objective response rate,high incidence of adverse reactions,and drug resistance [8].Therefore,new drugs with different targets for treating HCC are urgently needed (Fig.1).

    Fig.1 Chemical structures of compounds 1—10

    Artemisia,one of the dominant genus within Asteraceae family,contains nearly 380 species globally with 186 species being dispersed in China [9].ManyArtemisiaplants,such asA.annua,A.argyi,A.capillaris,andA.scoparia,have been recorded for the treatment of malaria,inflammation,hepatitis,cancer in the traditional Chinese medicine system [9–12].Phytochemical investigation revealed thatArtemisiagenus are rich in sesquiterpenoids with antimalarial,antiinflammatory,antitumor,cytotoxic,antibacterial,and antihelminthic activities[13].For example,artemisinin,a sesquiterpenoid lactone with an unusual peroxide bridge,which was obtained fromA.annuaby the Chinese scientist You-You Tu in 1972,showed antimalarial,anticancer and antiinflammatory activities [14].Dihydroartemisinin,artemether,and artesunate which were chemically modified from artemisinin also exhibited antimalarial,antiviral,antifungal,anticancer,and antiinflammatory properties [15].Arglabin,a guaiane-type sesquiterpenolide fromA.glabella,inhibited of farnesyltransferase and its dimethylamino hydrochloride has been successfully developed into an anticancer drug in Kazakhstan for the treatment of colon,breast,ovarian,lung and liver cancers [16].Arteminolides A–D fromA.argyiwere potential inhibitors of farnesyl protein transferase (FPTase) with IC50values less than 1.0 μM in vitro,of which arteminolide C could prevent the development of lung tumor and human colon xenograft without causing weight loss in nude mice[17].

    Our ongoing efforts to investigate bioactive sesquiterpenoids from theArtemisiaplants,bioassay-guided isolation ofA.atrovirenslet to 26 guaiane dimers ([4 + 2]Diels–Alder cyclization) [18,19],six rotundane-guaiane dimers ([4 + 2] Diels–Alder cyclization or containing a methylene-bridge) [19,20],two guaiane-rotundane-guaiane trimers (containing a methylene-bridge) [20],two novel cagelike sesquiterpenoids (formed by intramolecular Diels–Alder cycloaddition) [21],and 16 undescribed guaiane sesquiterpenoids [9].Among them,four guaianeguaiane dimers (lavandiolide H and artematrolides A,J,and K) possessed significant cytotoxicity against HepG2,SMMC-7721,and Huh7 cell lines with IC50values ranging from 3.8 to 9.6 μM,and lavandiolide H could induce G2/M cell cycle arrest and apoptosis in HepG2 cells via upregulating cleaved-PARP-1 and downregulating BCL-2 and PARP-1 [18].Furthermore,artematrolide A was shown to activate the ROS/ERK/mTOR signaling pathway and promote metabolic shift in cervical cancer cells [22].And the biomimetic synthesis via Diels–Alder reaction of the guaianolide dimers (artematrolide F and lavandiolides H,I,and K) and a battery of analogues were also achieved [23].

    A.myrianthaWall.ex Bess.is commonly used for treating menorrhagia and inflammatory diseases in traditional Chinese medicine [24].Phytochemical investigation on this species revealed the presence of sesquiterpenoids,flavonoids,and essential oils [25].Among them,some sesquiterpenoids showed cytotoxicity against human colon cancer HCT-8,human gastric cancer BGC-823,and human liver cancer Bel-7402 cells [26,27].Our previous investigation reported 23 undescribed sesquiterpenolides with cytotoxicity against HepG2,SMMC-7721,and Huh7 fromA.myriantha,classifying as germacranolide,guaianolide,and eudesmanolide,and revealed that artemyrianolide H displayed promising cytotoxicity against HepG2,SMMC-7721,and Huh7 with IC50values of 4.9,3.1,and 4.3 μM,respectively [25].During our continuous search for antihepatic sesquiterpenoids fromA.myriantha,10 undescribed germacranolides (1?10) were discovered (Fig.1).Hence their isolation,structural identification,and cytotoxicity were discussed in this study.

    2 Results and discussion

    Artemyrianosin A (1) showed a molecular formula of C15H20O4based on the analysis of the (+)-HRESIMS ion atm/z287.1254 [M + Na]+(calcd for C15H20O4Na,287.1254) with six degrees of unsaturation.Its IR spectrum exhibited the presence of hydroxy (3414 cm?1),carbonyl (1757 cm?1),and double-bond (1643 and 1570 cm?1) groups.The1H and13C NMR data (Tables 1 and 2) resembled those of artemyrianolide M [25],except for the only difference being that a ketone group at C-3 in artemyrianolide M was replaced by one oxygenated methine [δH4.11 (1H,dd,J=12.7,5.1 Hz,H-3),δC73.3(C-3)].This deduction was confirmed by the HMBC correlations from H-3 to C-15 (δC117.2) and C-4 (δC144.2)as well as the correlations of H-1/H2-2/H-3 in the1H-1H COSY spectrum (Fig.2).To determine its relative configuration,a ROESY experiment was carried out.The cross-peaks of H-3/H-7 and H-7/H-9 in the ROESY spectrum (Fig.3) indicated that these protons were cofacial andβ-oriented.However,the correlations of H-6/H-9 or H-6/H-3 were not observed in the ROESY spectrum,suggesting that H-6 wasα-oriented.The absolute configuration of 1 was unambiguously verified to be(3R,6S,7R,9R) by Cu KαX-ray crystallographic analysis(Fig.4).Therefore,the structure of compound 1 was defined as (3R,6S,7R,9R)-3,9-dihydroxygermacra-4(15),10(14),11(13)-trien-12,6-olide.

    Fig.2 Key 1H?1H COSY and HMBC correlations of compounds 1—10

    Fig.3 Key ROESY correlations of compounds 1—10

    Fig.4 The X?ray ORTEP drawings of compounds 1 and 7—9

    Table 1 1H NMR data for compounds 1—5 (600 MHz,CD3OD,δ in ppm,J in Hz)

    Table 2 13C NMR data for compounds 1—10 (150 MHz,CD3OD,δ in ppm)

    Artemyrianosin B (2) was deduced with the same molecular formula of C15H20O4as 1 by the HRESIMS atm/z265.1427 [M + H]+(calcd for C15H21O4,265.1434).The1H and13C NMR data (Tables 1 and 2) of compound 2 were closely related to those of 1,and further analyses of 2D NMR spectra implied that they possessed the same planar structure.Their only difference was the chemical shift changes of H-9 (δH4.23vs4.28)and C-9 (δC72.3vs77.6) and those surrounding the C-9 position (Tables 1 and 2),which might be caused by the different configurations at C-9.In the ROESY spectrum (Fig.3),the correlations of H-3/H-7 and H-6/H-9 revealedβ-orientations of H-3 and H-7,whereasα-orientations of H-6 and H-9.Its absolute configuration was assigned to be 3R,6S,7R,9Sby comparison of its experimental ECD spectrum with the calculated one (Fig.5).Therefore,the structure of compound 2 was established as (3R,6S,7R,9S)-3,9-dihydroxygermacra-4 (15),10 (14),11 (13)-trien-12,6-olide (Fig.5).

    Artemyrianosin C (3) was assigned to have the same molecular formula C15H20O4with compounds 1 and 2 from the HRESIMS atm/z265.1431 [M + H]+(calcd for C15H21O4,265.1434).Compound 3 had the identical 2D structure as 1 and 2 based on their 1D and 2D NMR data (Tables 1 and 2,Fig.2).The ROESY correlations of H-3/H-6,H-3/H-7,and H-7/H-9 revealed that these protons wereβ-oriented.Its absolute configuration was concluded to be 3R,6R,7R,9Rby comparison of its experimental ECD spectrum with the calculated one (Fig.5).Thus,the structure of compound 3 was established to be (3R,6R,7R,9R)-3,9-dihydroxygermacra-4(15),10(14),11(13)-trien-12,6-olide.

    Fig.5 The experimental and calculated ECD spectra of compounds 2–6,and 10

    Artemyrianosin D (4) had a molecular formula C15H22O4according to the HRESIMS data atm/z267.1579 [M + H]+(calcd for C15H23O4,267.1591),suggesting five degrees of unsaturation.The similarity of1H and13C NMR data (Tables 1 and 2) between compounds 4 and 1 indicated that they were structural analogs,and the main difference was that the exocyclic double bond between C-11 and C-13 in compound 1 was disappeared,and a doublet methyl [δH1.19 (3H,d,J=6.4 Hz,H-13),δC13.5 (C-13)] and a methine [δH2.36 (1H,m,H-11),δC46.3 (C-11)] signals were appeared in compound 4.This deduction was confirmed by the1H-1H COSY interactions of H-7/H-11/H3-13 and the HMBC correlations from H3-13 to C-7,C-11,and C-12.Its absolute stereochemistry was defined to be (3R,6S,7R,9R,11R) by the ROESY correlations of H-3/H-7,H-7/H-9,H-7/H-13,and H-6/H-11 and the similarity between the experimental and calculated ECD spectra.Consequently,the structure of compound 4 was assigned as (3R,6S,7R,9R,11R)-3,9-dihydroxygermacra-4 (15),10(14)-dien-12,6-olide.

    Artemyrianosin E (5) was determined to possess a molecular formula of C18H26O6with six indices of hydrogen deficiency by its HRESIMS ion atm/z339.1792[M + H]+(calcd for C18H27O6,339.1802).The IR spectrum of 5 showed the characteristic absorptions for hydroxy (3428 cm?1),carbonyl (1718 cm?1),and olefinic(1631 cm?1) functionalities.The1H NMR spectrum(Table 1) of 5 displayed a methyl atδH1.98 (3H,s),a methoxyδH3.75 (3H,s),three oxygenated methine protons atδH5.35 (1H,td,J=8.0,2.4 Hz,H-6),4.36 (1H,dd,J=6.3,2.6 Hz,H-9),and 4.23 (1H,dd,J=10.2,4.0 Hz,H-3),and three pairs of olefinic methylene protons [δH6.30 (1H,s,H-13a),5.73 (1H,s,H-13b);5.13 (1H,s,H-14a),5.04 (1H,s,14b);5.22 (1H,s,H-15a),5.19 (1H,s,15b)].The13C NMR spectrum (Table 2) showed the existence of 18 carbons,including two methyl groups,seven methylenes (three terminal double bonds,and four aliphatic methylenes),four methines (three oxygenated and an aliphatic methine),and five quaternary carbons (two ester carbonyl and three olefinic carbons).The above characteristic signals indicated that compound 5 was a germacranolide-type sesquiterpenoid with acetoxy and methoxy groups.The above inference was supported by two proton spin systems of H2-1/H2-2/H-3 and H2-5/H-6/H-7/H2-8/H-9 in the1H-1H COSY spectrum,as well as the HMBC correlations from H2-14 to C-1,C-9 and C-10 and from H2-15 to C-3,C-4 and C-5.In addition,the correlation from H-6 to C-1′ in the HMBC spectrum implied that the acetoxy group (δH1.98;δC172.2 and 21.0) was linked at C-6;the HMBC correlation of OMe to C-12 suggested that the methoxy group was pointed at C-12.In the ROESY spectrum (Fig.3),the cross peaks of H-3/H-6,H-3/H-7,and H-7/H-9 determined its relative configuration.The absolute configuration of 5 was defined as (3R,6R,7R,9R) by the similarity between the experimental and calculated ECD curves.Therefore,the structure of compound 5 was established as (3R,6R,7R,9R)-6-acetoxy-3,9-dihydroxygermacra-4(15),10 (14),11(13)-trien-12-oic acid methyl ester.

    Artemyrianosin F (6) was assigned to have the same molecular formula C18H26O6with compound 5 from the HRESIMS data atm/z339.1785 [M + H]+(calcd for C18H27O6,339.1802).The1H and13C NMR data (Tables 2 and 3) of compound 6 were very similar to those of 5,indicating that both were architecturally semblable.Further analyses of their 2D NMR spectra indicated that the planar structure of compound 6 was identical with that of compound 5.In the ROESY spectrum,the correlations of H-3/H-9 and H-7/H-9 indicated the homolateral orientation of H-3,H-7,and H-9.However,no correlation of H-6 with the former three protons was observed,but the correlation of H-6/H2-8 was obviously appeared in the ROESY spectrum,suggesting that H-6 was on the opposite side.Hence,the absolute stereochemistry of compound 6 was elucidated and named as (3R,6S,7R,9R)-6-acetoxy-3,9-dihydroxygermacra-4(15),10(14),11(13)-trien-12-oic acid methyl ester by comparing the calculated and experimental ECD curves.

    Artemyrianosin G (7) was determined to have a molecular formula of C15H20O4based on the HRESIMS data atm/z265.1423 [M + H]+(calcd for C15H21O4,265.1434).The1H and13C NMR data (Tables 2 and 3)of compound 7 resembled to those of 1,the main difference was that the exocyclic double bond between C-4 and C-15 in 1 was absent and replaced by a trisubstituent double bond [δH4.98 (1H,d,J=10.6 Hz,H-5);δC143.8 (C-4) and 123.8 (C-5)] and a singlet methyl [δH1.75 (3H,d,J=1.3 Hz,H-15);δC16.7 (C-15)] in 7.This deduction was supported by the proton spin systems of H-5/H-6/H-7/H2-8/H-9 in the1H-1H COSY spectrum and the HMBC correlations from H3-15 to C-3/C-4/C-5.Its relative configuration was proposed by the ROESY correlations of H-3/H-6 and H-7/H-9.In addition,the ROESY correlation of H-5 with H3-15 manifested thatΔ4,5-double bond wasZ-configuration.The absoluteconfiguration of 7 was defined as 3R,6R,7R,9Rby a single crystal X-ray crystallographic diffraction experiment with Cu Kαradiation (Fig.4).Therefore,the structure of 7 was identified as (3R,6R,7R,9R,4Z)-3,9-dihydroxygermacra-4,10(14),11(13)-trien-12,6-olide.

    Table 3 1H NMR data for compounds 6—10 (600 MHz,CD3OD,δ in ppm,J in Hz)

    Artemyrianosin H (8) was deduced to have a molecular formula of C15H22O4with five indices of hydrogen deficiency by its HRESIMS atm/z267.1585 [M + H]+(calcd for C15H23O4,267.1591).The similarity of1H and13C NMR data (Tables 2 and 3) of 8 and 4 implied structurally closely related,but the major differences were that the oxygenated methine at C-3 and terminal double bond between C-4 and C-15 in compound 4 were absent,meanwhile,a trisubstituent double bond [δH5.27 (1H,d,J=9.7 Hz,H-3);δC132.5 (C-3) and 133.5 (C-4)],a singlet methyl [δH1.74 (3H,s,H-15);δC20.8 (C-15)],and an oxygenated methine [δH4.54 (1H,td,J=10.3,6.0 Hz,H-2);δC70.8 (C-2)] were appeared in 8.The spin coupling of H2-1/H-2/H-3 in the1H-1H COSY spectrum,together with the HMBC correlations from H3-15 to C-3/C-4/C-5 and from H2-5 to C-3/C-4/C-6/C-7/C-15 verified the above inference.In the ROESY spectrum (Fig.3),the cross-peak of H-2/H-7 indicated that H-2 and H-7 wereβ-oriented,while the cross-peaks of H-6/H3-13 and H-6/H-9 supported theirα-orientation.In addition,the correlation of H-2/H3-15 was clearly observed in the ROESY spectrum,indicatingΔ3-double bond wasE-configuration.Ultimately,the structure of compound 8 was elucidated as (2R,6S,7R,9S,11S,3E)-2,9-dihydroxygermacra-3,10(14)-dien-12,6-olide by a single-crystal X-ray diffraction experiment with Cu Kαradiation (Fig.4).

    Artemyrianosin I (9) shared the same molecular formula C15H22O4with 8 according to the HRESIMS atm/z267.1576 [M + H]+(calcd for C15H23O4,267.1591).Its1H and13C NMR data (Tables 2 and 3) were similar to those of 8,and detailed interpretation of the1H-1H COSY and HMBC spectra revealed the same planar structures.The relative configuration was established through the ROESY cross-peaks of H-2/H-7,H-7/H-13,and H-6/H-9.Likely,the ROESY correlation of H-2/H3-15 impliedΔ3-double bond wasE-configuration.Subsequently,the structure of compound 9 was assigned as (2R,6S,7R,9S,11R,3E)-2,9-dihydroxygermacra-3,10 (14)-dien-12,6-olide by Cu Kαradiation X-ray crystallographic analysis (Fig.4).

    Artemyrianosin J (10) had a molecular formula of C15H20O4as defined by the HRESIMS atm/z265.1423[M + H]+,which indicated two hydrogen atoms less than compound 9.The1H and13C NMR data of compound 10 were closely similar to those of 9,and the main differences were that a doublet methyl at C-13 and a methine at C-11 in compound 9 were replaced by an pair of exocyclic double bond between C-11 and C-13 [δC141.8(C-11),124.7 (C-13);δH6.24 (1H,d,J=2.8 Hz,H-13a),5.98 (1H,d,J=2.8 Hz,H-13b)] in compound 10.This deduction was verified by the spin coupling of H-7/H-11/H2-13 in1H-1H COSY spectrum and the correlations from H2-13 to C-7/C-11/C-12 in the HMBC spectrum.In the ROESY spectrum,the correlation of H-9 with H-2/H-6/H-7 allowed theseβ-orientation.The additional ROESY correlation of H-2/H3-15 impliedΔ3-double bond wasE-configuration.Therefore,the structure of compound 10 was assigned as (2R,6R,7R,9R,3E)-2,9-dihydroxygermacra-3,10(14),11(13)-trien-12,6-olide based on the similar experimental and calculated ECD curves (Fig.5).

    The cytotoxicity of all isolates against three human hepatoma cell lines (HepG2,Huh7,and SK-Hep-1)was evaluated at the concentration of 100 μM with sorafenib as the positive control.As shown in Fig.6,compounds 1?3,7,and 10 containing anα-exomethyleneγ-butyrolactone group showed activity on HepG2,Huh7,and SK-Hep-1 with inhibitory ratios higher than 50%.The dose–response curves of the active compounds were further investigated to yield their respective IC50values.As shown in Table 4,compounds 1?3 exhibited cytotoxicity against HepG2 cells with IC50values of 43.7?46.5 μM,while compounds 7 and 10 showed weaker cytotoxicity (IC50: 55.1 and 66.1 μM).Meanwhile,compounds 1?3 and 7 also displayed cytotoxicity against Huh7 cells with IC50values ranging from 44.3 to 48.9 μM,but compound 10 showed weaker cytotoxicity with an IC50value of 71.0 μM.For SK-Hep-1 cells,only compound 3 manifested cytotoxicity with an IC50value of 44.9 μM,while other compounds (1,2,7 and 10) showed weaker cytotoxicity with IC50values of 71.7?89.3 μM.Significantly,compound 3 was the most active one with IC50values of 43.7 (HepG2),47.9 (Huh7),and 44.9 (SK-Hep-1) μM,respectively.

    Fig.6 Inhibitory ratios of compounds 1—10 at 100 μM

    Table 4 Cytotoxicity of compounds 1—3,7,and 10

    3 Conclusion

    In this study,10 new germacrane-type sesquiterpenoids(1–10) were isolated and identified fromA.myriantha.Their structures were elucidated by extensive analyses of spectral data,X-ray analyses,and ECD spectra.Compounds 1?3 showed cytotoxicity against HepG2 cells with IC50values of 43.7?46.5 μM;compounds 1?3 and 7 had cytotoxicity against Huh7 cell lines with IC50values ranging from 44.3 to 48.9 μM;only compound 3 exhibited cytotoxicity against SK-Hep-1 cells with IC50value of 44.9 μM.Interestingly,compound 3 displayed cytotoxicity against three human hepatoma cell lines with IC50values of 43.7 (HepG2),47.9 (Huh7),and 44.9 (SK-Hep-1) μM,respectively.This investigation provided valuable information for the understanding of antihepatoma parts ofA.myrianthaand germacrane-type sesquiterpenoids as the active constituents.

    4 Materials and methods

    General experimental procedures,the ECD calculation,and cytotoxicity assays were provided in Additional file 1.

    4.1 Plant materials

    Artemisia myrianthawas collected from Lijiang,Yunnan province,China in September 2018,and identified by Dr.Zhuo Zhou (Kunming Institute of Botany,Chinese Academy of Sciences).A voucher specimen (No.201809AM)was deposited in the laboratory of Antivirus and Natural Medicinal Chemistry,Kunming Institute of Botany,Chinese Academy of Sciences,Kunming,China.

    4.2 Extraction and isolation

    In connection with our previous paper [25],Fr.E(165 g) was chromatographed on a silica gel column(1.6 kg,10 × 90 cm,MeOH–CHCl3,2:98–10:90,v/v)to obtain fractions E1–E4 (25,30,46 and 55 g).Fraction E2 was subjected to MCI gel CHP 20P column(490 g,5.0 × 50 cm) and eluted with a H2O–MeOH gradient (70:30,50:50,30:70,0:100) to yield four subfractions E2.1–E2.4.Fraction E2.2 (18 g) was applied to Si CC (200 g,5.0 cm × 25 cm) and eluted with an EtOAc-CHCl3gradient (10:90,20:80 and 30:70) to produce four subfractions E2.2.1–E2.2.4.The obtained fraction E.2.2.2 (2.2 g) was separated by preparative HPLC(H2O–MeCN,76:24,10.0 mL/min) to afford three fractions (E2.2.2.1–E2.2.2.3).Fraction E2.2.2.1 (218 mg)was purified by semipreparative HPLC (H2O–MeOH,72:28,3.0 mL/min) to yield compounds 1 (22 mg,tR=28.3 min),2 (13 mg,tR=26.5 min),and 3 (25 mg,tR=30.6 min).Fraction E2.2.3 (1.9 g) was isolated by repeated silica gel CC (50 g,2.5 × 20 cm,EtOAC–CHCl3,10:90–30:70) and semipreparative HPLC (H2O–MeCN,75:25) to get compounds 4 (14 mg,tR=27.8 min) and 8 (8 mg,tR=29.3 min).Fraction E3 (46 g) was fractioned by MPLC on an MCI gel CHP 20P column (490 g,5 cm × 50 cm) with a gradient solvent system of H2O–MeOH (80:20,60:40,40:60,0:100) to provide four subfractions E3.1–E3.4 (16,6.5,8.9,and 18 g).Fraction E3.2(6.5 g) was fractionated with Si CC (80 g,3.5 × 35 cm)using EtOAc–CHCl3(10:90–30:70) to afford three subfractions E3.2.1 ? E3.2.3 (2.5,1.6 and 1.8 g).The obtained fraction E3.2.2 (1.6 g) was further isolated by Sephadex LH-20 CC (120 g,2.5 × 150 cm,MeOH) and semipreparative HPLC (H2O ? MeCN,82:18,3.0 mL/min) to provide compounds 7 (18 mg,tR=24.3 min),9 (6 mg,tR=21.2 min),and 10 (5 mg,tR=22.8 min).Fraction E3.3 (8.9 g) was chromatographed over a silica gel column (110 g,4.5 × 20 cm) eluted with an EtOAc ? CHCl3gradient (10:90,20:80 and 30:70) to give fractions E3.3.1–E3.3.4.Fraction E3.3.2 (2.4 g) was conducted on preparative HPLC (H2O–MeCN,82:18,10 mL/min) and semipreparative HPLC (H2O ? MeOH,72:28,3.0 mL/min) to yield compounds 5 (28 mg,tR=35.3 min) and 6(15 mg,tR=32.8 min).

    4.3 Spectroscopic data of compounds 1–10

    4.3.1 Artemyrianosin A (1)

    Colorless monoclinic crystals (MeOH-CHCl3,95:5);mp 153.8–155.2 ℃;[α]25 D + 12.5 (c0.11,MeOH);ECD(MeOH)λmax (Δε) 199 (? 4.0),218 (+ 3.4),250 (+ 1.3)nm;IR vmax3414,1757,1643,1570,1457,1414,1384,1276,1155,1016,994 cm?1;1H and13C NMR data see Tables 1 and 2;(+)-HRESIMS m/z287.1254 [M + Na]+(calcd for C15H20O4Na,287.1254).

    4.3.2 Artemyrianosin B (2)

    White amorphous powder;[α]D26+ 37.9 (c0.11,MeOH);ECD (MeOH)λmax (Δε) 196 (? 0.8),220 (+ 4.6) nm;IRvmax3430,1742,1644,1449,1384,1276,1160,1001,908 cm?1;1H and13C NMR data see Tables 1 and 2;(+)-HRESIMSm/z265.1427 [M + H]+(calcd for C15H21O4,265.1434).

    4.3.3 Artemyrianosin C (3)

    White amorphous powder;[α]D25+ 31.2 (c0.11,MeOH);ECD (MeOH)λmax (Δε) 197 (+ 1.4),212 (+ 3.4) nm;IRvmax3424,3388,1767,1648,1632,1426,1384,1323,1286,1116,989 cm?1;1H and13C NMR data see Tables 1 and 2;(+)-HRESIMSm/z265.1431 [M + H]+(calcd for C15H21O4,265.1434).

    4.3.4 Artemyrianosin D (4)

    White amorphous powder;[α]D24+ 48.4 (c0.11,MeOH);ECD (MeOH)λmax (Δε) 201 (? 3.6),244 (+ 0.2) nm;IRvmax3427,1759,1634,1459,1384,1346,1186,1039,991,908 cm?1;1H and13C NMR data see Tables 1 and 2;(+)-HRESIMSm/z267.1579 [M + H]+(calcd for C15H23O4,267.1591).

    4.3.5 Artemyrianosin E (5)

    Colorless oil;[α]D25? 3.9 (c0.10,MeOH);ECD (MeOH)λmax (Δε) 197 (? 5.7),224 (+ 1.0) nm;IRvmax3428,1718,1631,1439,1384,1245,1150,1020,909 cm?1;1H and13C NMR data see Tables 1 and 2;(+)-HRESIMSm/z339.1792 [M + H]+(calcd for C18H27O6,339.1802).

    4.3.6 Artemyrianosin F (6)

    Colorless oil;[α]D25? 17.6 (c0.12,MeOH);ECD (MeOH)λmax (Δε) 202 (? 10.3),224 (+ 1.7) nm;IRvmax3423,1719,1629,1439,1382,1246,1152,1027,908 cm?1;1H and13C NMR data see Tables 2 and 3;(+)-HRESIMSm/z339.1785 [M + H]+(calcd for C18H27O6,339.1802).

    4.3.7 Artemyrianosin G (7)

    Colorless monoclinic crystals (MeOH-CHCl3,95:5);mp 154.2–156.1 ℃;[α]D25+ 66.8 (c0.14,MeOH);ECD(MeOH)λmax (Δε) 203 (+ 8.5),220 (+ 3.2) nm;IRvmax3467,3435,1749,1664,1643,1632,1445,1410,1381,1314,1263,1129,1027 cm?1;1H and13C NMR data see Tables 2 and 3;(+)-HRESIMSm/z265.1423 [M + H]+(calcd for C15H21O4,265.1434).

    4.3.8 Artemyrianosin H (8)

    Colorless monoclinic crystals (MeOH-CHCl3,95:5);mp 151.2–153.1 ℃;[α]D24–83.8 (c0.13,MeOH);ECD(MeOH)λmax (Δε) 202 (–27.1),227 (+ 0.5) nm;IRvmax3500,3367,1751,1667,1650,1452,1384,1195,1184,1021,1010 cm?1;1H and13C NMR data see Tables 2 and 3;(+)-HRESIMSm/z267.1585 [M + H]+(calcd for C15H23O4,267.1591).

    4.3.9 Artemyrianosin I (9)

    Colorless tetragonal crystals (MeOH-CHCl3,95:5);mp 150.8–152.3 ℃;[α]D26–2.6 (c0.12,MeOH);ECD (MeOH)λmax (Δε) 202 (–3.9),229 (+ 0.2) nm;IRvmax3391,3308,1751,1632,1564,1384,1064 cm?1;1H and13C NMR data see Tables 2 and 3;(+)-HRESIMSm/z267.1576 [M + H]+(calcd for C15H23O4,267.1591).

    4.3.10 Artemyrianosin J (10)

    White amorphous powder;[α]D26–11.4 (c0.13,MeOH);ECD (MeOH)λmax (Δε) 201 (+ 4.0),222 (+ 0.8) nm;IRvmax3391,1754,1631,1594,1567,1384,1073 cm?1;1H and13C NMR data see Tables 2 and 3;(+)-HRESIMSm/z265.1423 [M + H]+(calcd for C15H21O4,265.1434).

    4.4 X?ray crystallographic analysis of compounds 1 and 7?9

    Compounds 1 and 7?9 were afforded by recrystallization in a mixture of MeOH–CHCl3(95:5).X-ray diffraction analyses were performed on a Bruker D8 QUEST instrument using Cu Kαradiation and the intensity data were collected at 100 (2) K.The crystal structures were solved by using SHELXS-97 and difference Fourier techniques,and refinements were performed through the program and refined by full-matrix least-squares calculations on F2.All non-hydrogen atoms were anisotropically refined,and the positions of hydrogens bonded to carbons were initially determined through geometry and refined using a riding model.The crystallographic data for compounds 1 and 7?9 in standard CIF format were deposited in the Cambridge Crystallographic Data Centre.The data can be accessed free of charge at http:// www.ccdc.cam.ac.uk/.

    Crystal data for compound 1: C15H20O4,M=264.31,a=8.1236 (3) ?,b=10.9775 (5) ?,c=15.0127 (6)?,α=90°,β=95.6520 (10)°,γ=90°,V=1332.28 (9)?3,T=100.(2) K,space groupP1211,Z=4,μ(Cu Kα)=0.774 mm?1,33,394 measured reflections,5199 independent reflections (Rint=0.0763).The finalR1values were 0.0397 [I>2σ(I)].The finalwR(F2) values were 0.1190 [I>2σ(I)].The finalR1values were 0.0447 (all data).The finalwR(F2) values were 0.1207 (all data).The goodness of fit onF2was 1.115.Flack parameter=0.11(6).CCDC 2,142,473.

    Crystal data for compound 7: C15H20O4,M=264.31,a=5.6882 (2) ?,b=15.5718 (4) ?,c=7.6450 (2)?,α=90°,β=93.2180 (10)°,γ=90°,V=676.09 (3)?3,T=100.(2) K,space groupP1211,Z=2,μ(Cu Kα)=0.762 mm?1,14,454 measured reflections,2570 independent reflections (Rint=0.0451).The finalR1values were 0.0379 [I>2σ(I)].The finalwR(F2) values were 0.0984 [I>2σ(I)].The finalR1values were 0.0379 (all data).The finalwR(F2) values were 0.0985 (all data).The goodness of fit onF2was 1.070.Flack parameter=0.04(8).CCDC 2,142,472.

    Crystal data for compound 8: C15H22O4·2 (H2O),M=302.36,a=10.1051 (5) ?,b=5.9207 (3) ?,c=13.4788 (6) ?,α=90°,β=96.4640 (10)°,γ=90°,V=801.30 (7) ?3,T=100.(2) K,space groupP1211,Z=2,μ(Cu Kα)=0.796 mm?1,13,564 measured reflections,3137 independent reflections (Rint=0.0336).The finalR1values were 0.0292 [I>2σ(I)].The finalwR(F2)values were 0.0752 [I>2σ(I)].The finalR1values were 0.0294 (all data).The finalwR(F2) values were 0.0755 (all data).The goodness of fit onF2was 1.081.Flack parameter=0.06 (4).CCDC 2,142,471.

    Crystal data for compound 9: C15H22O4,M=266.32,a=8.2909 (4) ?,b=8.2909 (4) ?,c=40.8360 (19) ?,α=90°,β=90°,γ=90°,V=2807.0 (3) ?3,T=100.(2)K,space groupP41212,Z=8,μ(Cu Kα)=0.735 mm?1,44,745 measured reflections,2766 independent reflections (Rint=0.0520).The finalR1values were 0.0273 [I>2σ(I)].The finalwR(F2) values were 0.0705 [I>2σ(I)].The finalR1values were 0.0273 (all data).The finalwR(F2) values were 0.0706 (all data).The goodness of fit onF2was 1.091.Flack parameter=0.05 (2).CCDC 2,142,474.

    Supplementary Information

    The online version contains supplementary material available at https:// doi.org/ 10.1007/ s13659?022?00340?5.

    Additional file 1.Supporting Information.

    Acknowledgements

    This work was supported by the Key Program of the National Natural Science Foundation of China (22137008) and the Yunnan Wanren Project(YNWR?KJLJ?2019?002).

    Author contributions

    All authors read and approved the final manuscript.

    Declarations

    Competing interests

    The authors declare that there is no conflict of interest.

    Author details

    1State Key Laboratory of Phytochemistry and Plant Resources in West China,Yunnan Key Laboratory of Natural Medicinal Chemistry,Kunming Institute of Botany,Chinese Academy of Sciences,132# Lanhei Road,Kunming 650201,Yunnan,People’s Republic of China.2University of Chinese Academy of Sci?ences,Beijing 100049,People’s Republic of China.

    久9热在线精品视频| 十八禁人妻一区二区| 亚洲 国产 在线| 在线播放无遮挡| 日韩 亚洲 欧美在线| 亚洲熟妇中文字幕五十中出| 在线观看免费视频日本深夜| 午夜日韩欧美国产| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩精品亚洲av| 好看av亚洲va欧美ⅴa在| 国产精华一区二区三区| 91在线观看av| 看十八女毛片水多多多| 精品人妻熟女av久视频| 88av欧美| 女同久久另类99精品国产91| 欧美极品一区二区三区四区| 成年女人永久免费观看视频| 久久久久久久久中文| 嫩草影院新地址| 午夜免费激情av| 亚洲av成人不卡在线观看播放网| 精品久久久久久久人妻蜜臀av| 91在线精品国自产拍蜜月| 午夜a级毛片| 亚洲成人久久性| 看片在线看免费视频| www.www免费av| 少妇熟女aⅴ在线视频| 99久久无色码亚洲精品果冻| 国产高潮美女av| 天堂av国产一区二区熟女人妻| 欧美性感艳星| 最好的美女福利视频网| 久久久久免费精品人妻一区二区| 欧美日韩福利视频一区二区| 欧美一区二区国产精品久久精品| 97碰自拍视频| 久久精品综合一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 九色成人免费人妻av| 久久天躁狠狠躁夜夜2o2o| 欧美中文日本在线观看视频| 欧美乱色亚洲激情| 日韩欧美精品v在线| 国产精品日韩av在线免费观看| 午夜老司机福利剧场| 特大巨黑吊av在线直播| 亚洲国产精品合色在线| 欧美bdsm另类| 久久亚洲真实| 别揉我奶头 嗯啊视频| 国产免费男女视频| 一级a爱片免费观看的视频| 久久久久久大精品| 免费在线观看亚洲国产| 91九色精品人成在线观看| 欧美一区二区精品小视频在线| 精品乱码久久久久久99久播| 国产亚洲av嫩草精品影院| 一卡2卡三卡四卡精品乱码亚洲| 午夜日韩欧美国产| 国产三级中文精品| 乱人视频在线观看| aaaaa片日本免费| 国产欧美日韩精品一区二区| 日韩免费av在线播放| 亚州av有码| 国产精品久久视频播放| 国产大屁股一区二区在线视频| 亚洲成av人片在线播放无| ponron亚洲| 女同久久另类99精品国产91| 久久婷婷人人爽人人干人人爱| 一夜夜www| 国产真实乱freesex| 男女那种视频在线观看| 国产视频一区二区在线看| 久久99热这里只有精品18| 岛国在线免费视频观看| 99热这里只有是精品在线观看 | 国产毛片a区久久久久| 国产av在哪里看| 久久精品综合一区二区三区| 国产69精品久久久久777片| 亚洲成av人片在线播放无| 97碰自拍视频| 搡老妇女老女人老熟妇| 精品99又大又爽又粗少妇毛片 | 美女大奶头视频| 一个人免费在线观看的高清视频| 高清毛片免费观看视频网站| 亚洲av一区综合| 国产精华一区二区三区| av专区在线播放| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产97在线/欧美| 久久九九热精品免费| 九色国产91popny在线| 日本成人三级电影网站| 精品午夜福利在线看| 男人的好看免费观看在线视频| 特大巨黑吊av在线直播| 99视频精品全部免费 在线| 宅男免费午夜| 亚洲成人久久爱视频| 午夜视频国产福利| 午夜影院日韩av| 黄色视频,在线免费观看| 久久久久性生活片| 天天一区二区日本电影三级| 婷婷六月久久综合丁香| 1024手机看黄色片| 久久久久久久久中文| 久久久久亚洲av毛片大全| 90打野战视频偷拍视频| 精品午夜福利视频在线观看一区| av天堂中文字幕网| www.999成人在线观看| 国产淫片久久久久久久久 | 天堂√8在线中文| 午夜福利视频1000在线观看| 免费人成在线观看视频色| 日韩欧美 国产精品| 亚洲熟妇熟女久久| 色视频www国产| 国产成+人综合+亚洲专区| 亚洲成人精品中文字幕电影| 欧美激情在线99| 亚洲不卡免费看| 熟女电影av网| 麻豆国产97在线/欧美| 少妇人妻精品综合一区二区 | 国产黄a三级三级三级人| 午夜精品久久久久久毛片777| 国产激情偷乱视频一区二区| 国产真实伦视频高清在线观看 | 欧美极品一区二区三区四区| 999久久久精品免费观看国产| 精品午夜福利在线看| 精品熟女少妇八av免费久了| 欧美乱色亚洲激情| 我的女老师完整版在线观看| 国产成人aa在线观看| 成人精品一区二区免费| 欧美一级a爱片免费观看看| 国产老妇女一区| 97超视频在线观看视频| 中文字幕精品亚洲无线码一区| 99久久99久久久精品蜜桃| 日本五十路高清| 国产高清有码在线观看视频| 桃红色精品国产亚洲av| 久久人妻av系列| 国产一级毛片七仙女欲春2| 亚洲av成人av| 欧美丝袜亚洲另类 | 久久国产乱子伦精品免费另类| 成人午夜高清在线视频| 天天躁日日操中文字幕| 午夜免费激情av| 性色avwww在线观看| 久久久久久大精品| 国产欧美日韩精品亚洲av| 精品人妻熟女av久视频| 国内精品一区二区在线观看| 精品久久久久久久久av| 非洲黑人性xxxx精品又粗又长| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 久久久国产成人精品二区| 成年版毛片免费区| 色综合站精品国产| www.熟女人妻精品国产| 婷婷精品国产亚洲av在线| 成人午夜高清在线视频| 久久久久久久久中文| 少妇丰满av| 高清毛片免费观看视频网站| 亚洲,欧美,日韩| 婷婷六月久久综合丁香| 成年免费大片在线观看| 亚洲中文字幕一区二区三区有码在线看| 久久久久久久午夜电影| 99久久成人亚洲精品观看| 国产精品综合久久久久久久免费| 亚洲黑人精品在线| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区| 久99久视频精品免费| 老司机深夜福利视频在线观看| 一进一出好大好爽视频| 国产成人欧美在线观看| 伊人久久精品亚洲午夜| 久久国产乱子免费精品| 亚洲av一区综合| 人妻久久中文字幕网| 三级国产精品欧美在线观看| 黄色视频,在线免费观看| xxxwww97欧美| 国产69精品久久久久777片| 日韩av在线大香蕉| 亚洲第一电影网av| 熟女电影av网| 久久人人爽人人爽人人片va | 丰满人妻熟妇乱又伦精品不卡| 看黄色毛片网站| ponron亚洲| 国产蜜桃级精品一区二区三区| 国产精品三级大全| 午夜亚洲福利在线播放| 日韩av在线大香蕉| 禁无遮挡网站| 亚洲第一欧美日韩一区二区三区| 成人永久免费在线观看视频| 国产三级在线视频| 中文字幕熟女人妻在线| 日韩高清综合在线| 精品无人区乱码1区二区| 一卡2卡三卡四卡精品乱码亚洲| 9191精品国产免费久久| 精品不卡国产一区二区三区| 美女免费视频网站| 久久久久久久精品吃奶| 91麻豆av在线| 日韩国内少妇激情av| 最好的美女福利视频网| 亚洲av日韩精品久久久久久密| 国产麻豆成人av免费视频| 日本一本二区三区精品| 国产精品亚洲一级av第二区| 少妇丰满av| 免费看美女性在线毛片视频| 99精品久久久久人妻精品| 真实男女啪啪啪动态图| 波野结衣二区三区在线| 精品国产三级普通话版| 99久久无色码亚洲精品果冻| 精品午夜福利视频在线观看一区| 亚洲欧美日韩东京热| 亚洲乱码一区二区免费版| 搡老妇女老女人老熟妇| 亚洲人成网站在线播| 国产精品99久久久久久久久| 此物有八面人人有两片| 久久久精品欧美日韩精品| 亚洲精品粉嫩美女一区| 毛片女人毛片| 国语自产精品视频在线第100页| 哪里可以看免费的av片| 天堂影院成人在线观看| 亚洲国产精品999在线| 亚洲欧美日韩高清专用| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| 少妇人妻精品综合一区二区 | 国产高清有码在线观看视频| 亚洲无线观看免费| 午夜福利免费观看在线| av专区在线播放| 久久久久久久久大av| 久久草成人影院| 国产一区二区三区视频了| 床上黄色一级片| 桃色一区二区三区在线观看| 99久久99久久久精品蜜桃| 99热只有精品国产| 日韩欧美国产在线观看| 国产蜜桃级精品一区二区三区| 国产69精品久久久久777片| 99久久久亚洲精品蜜臀av| 亚洲av第一区精品v没综合| 午夜久久久久精精品| 村上凉子中文字幕在线| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 一区二区三区四区激情视频 | 99国产精品一区二区蜜桃av| 国产精品人妻久久久久久| 黄片小视频在线播放| 如何舔出高潮| 99久久久亚洲精品蜜臀av| 搡老妇女老女人老熟妇| 国产伦一二天堂av在线观看| 丰满乱子伦码专区| 免费一级毛片在线播放高清视频| 天堂动漫精品| 又黄又爽又刺激的免费视频.| 3wmmmm亚洲av在线观看| 99热6这里只有精品| 精品一区二区三区视频在线观看免费| 亚洲av一区综合| 亚洲第一电影网av| 欧美在线黄色| 首页视频小说图片口味搜索| 大型黄色视频在线免费观看| 久久久国产成人免费| av天堂中文字幕网| 中亚洲国语对白在线视频| 伊人久久精品亚洲午夜| 国产伦人伦偷精品视频| 91狼人影院| 亚洲熟妇中文字幕五十中出| 国产成人a区在线观看| 一区福利在线观看| 亚洲av不卡在线观看| 国产精品久久久久久亚洲av鲁大| 简卡轻食公司| 久久热精品热| 热99re8久久精品国产| 永久网站在线| 欧美色视频一区免费| 免费av不卡在线播放| 亚洲av熟女| 直男gayav资源| 中文字幕av成人在线电影| 观看美女的网站| 成人精品一区二区免费| 欧美精品国产亚洲| 久久久精品大字幕| 免费看a级黄色片| 一区二区三区免费毛片| 国产黄片美女视频| 亚洲欧美日韩卡通动漫| 老司机深夜福利视频在线观看| 国产亚洲欧美在线一区二区| 国产精品野战在线观看| 国产av不卡久久| 又黄又爽又刺激的免费视频.| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 18禁黄网站禁片免费观看直播| 欧美丝袜亚洲另类 | 露出奶头的视频| 中文字幕久久专区| 亚洲av成人av| 可以在线观看毛片的网站| 久久久久久久久久黄片| 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 亚洲不卡免费看| 男人舔女人下体高潮全视频| 欧美另类亚洲清纯唯美| 国产伦精品一区二区三区视频9| 久久草成人影院| 亚洲av成人不卡在线观看播放网| 51午夜福利影视在线观看| 欧美国产日韩亚洲一区| 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| www.色视频.com| 丰满人妻熟妇乱又伦精品不卡| 搡女人真爽免费视频火全软件 | 精品久久久久久久末码| av天堂中文字幕网| 男人的好看免费观看在线视频| 九九在线视频观看精品| 十八禁人妻一区二区| 国产精品亚洲一级av第二区| 国产精华一区二区三区| 悠悠久久av| 一级作爱视频免费观看| ponron亚洲| 一进一出抽搐动态| 欧美又色又爽又黄视频| 久久久国产成人精品二区| 深夜a级毛片| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 久久精品国产99精品国产亚洲性色| 自拍偷自拍亚洲精品老妇| 精品无人区乱码1区二区| 国产精品影院久久| 国产成人欧美在线观看| 午夜a级毛片| 久久伊人香网站| 他把我摸到了高潮在线观看| 99热这里只有是精品50| 久久久久久国产a免费观看| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 欧美日韩瑟瑟在线播放| 亚洲精品影视一区二区三区av| 日本熟妇午夜| 欧美成人a在线观看| 欧美最新免费一区二区三区 | 欧美最黄视频在线播放免费| 色噜噜av男人的天堂激情| 日本黄色片子视频| 国产免费一级a男人的天堂| 国内毛片毛片毛片毛片毛片| 久久天躁狠狠躁夜夜2o2o| 超碰av人人做人人爽久久| 97超级碰碰碰精品色视频在线观看| 精品福利观看| 亚洲性夜色夜夜综合| 真实男女啪啪啪动态图| 日韩欧美精品v在线| 一本久久中文字幕| 国产精品一区二区三区四区免费观看 | 国产成年人精品一区二区| 美女高潮的动态| 国产精品影院久久| 亚洲精华国产精华精| 淫妇啪啪啪对白视频| 成人av一区二区三区在线看| 51午夜福利影视在线观看| 精品日产1卡2卡| 成人av一区二区三区在线看| 最近最新中文字幕大全电影3| 成人国产一区最新在线观看| 午夜免费激情av| 国产乱人伦免费视频| 亚洲av日韩精品久久久久久密| 国产大屁股一区二区在线视频| 日韩成人在线观看一区二区三区| 在现免费观看毛片| 国产成+人综合+亚洲专区| 亚洲成人精品中文字幕电影| 国产精品日韩av在线免费观看| 97超级碰碰碰精品色视频在线观看| .国产精品久久| 午夜亚洲福利在线播放| 欧美激情国产日韩精品一区| 一进一出好大好爽视频| 久久精品国产亚洲av天美| 午夜福利18| 精品一区二区三区视频在线| 国产精品1区2区在线观看.| 在线观看美女被高潮喷水网站 | 久久久久久九九精品二区国产| 欧美成狂野欧美在线观看| 黄色日韩在线| 狠狠狠狠99中文字幕| 欧美日本视频| 亚洲无线在线观看| 国产在线精品亚洲第一网站| 高清日韩中文字幕在线| 久久草成人影院| 国产乱人视频| 亚洲最大成人手机在线| 亚洲国产高清在线一区二区三| 欧美zozozo另类| 国产成+人综合+亚洲专区| 听说在线观看完整版免费高清| bbb黄色大片| 成年版毛片免费区| 美女xxoo啪啪120秒动态图 | 少妇被粗大猛烈的视频| 国产亚洲欧美98| 我的老师免费观看完整版| 久久久久国内视频| 三级男女做爰猛烈吃奶摸视频| 亚洲狠狠婷婷综合久久图片| 国产av麻豆久久久久久久| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 神马国产精品三级电影在线观看| 51国产日韩欧美| 色哟哟哟哟哟哟| 91久久精品国产一区二区成人| 99久久99久久久精品蜜桃| 国产一区二区在线观看日韩| 热99re8久久精品国产| 国产白丝娇喘喷水9色精品| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久精免费| 黄片小视频在线播放| 精品人妻一区二区三区麻豆 | 国产精品伦人一区二区| 91午夜精品亚洲一区二区三区 | 亚洲成a人片在线一区二区| 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 嫩草影院入口| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 成人永久免费在线观看视频| 偷拍熟女少妇极品色| 国产午夜精品论理片| 90打野战视频偷拍视频| 国产午夜精品论理片| 超碰av人人做人人爽久久| 伊人久久精品亚洲午夜| 日本一二三区视频观看| 免费看a级黄色片| 国产精品永久免费网站| 国产黄a三级三级三级人| 久久精品国产亚洲av涩爱 | av天堂在线播放| 午夜福利成人在线免费观看| 国产欧美日韩精品亚洲av| 国产伦一二天堂av在线观看| 国产成人影院久久av| 波多野结衣高清无吗| 色综合欧美亚洲国产小说| 国产精品免费一区二区三区在线| 小蜜桃在线观看免费完整版高清| 欧美成人a在线观看| ponron亚洲| 人妻久久中文字幕网| 亚洲18禁久久av| 亚洲中文日韩欧美视频| 天天躁日日操中文字幕| 91午夜精品亚洲一区二区三区 | av天堂中文字幕网| 国产麻豆成人av免费视频| 亚洲精品成人久久久久久| 久久国产精品人妻蜜桃| 久久久精品欧美日韩精品| 变态另类成人亚洲欧美熟女| 国产中年淑女户外野战色| 日本 av在线| 99久久精品一区二区三区| 亚洲七黄色美女视频| 欧美日韩黄片免| 成年免费大片在线观看| 精品乱码久久久久久99久播| 91在线观看av| 俺也久久电影网| 波多野结衣高清无吗| 国内久久婷婷六月综合欲色啪| 久久久久久国产a免费观看| 亚洲av五月六月丁香网| 国产真实乱freesex| 少妇丰满av| 丁香六月欧美| 69av精品久久久久久| 国产精品综合久久久久久久免费| 午夜福利成人在线免费观看| 精品久久国产蜜桃| 国产毛片a区久久久久| 别揉我奶头~嗯~啊~动态视频| 3wmmmm亚洲av在线观看| 丁香六月欧美| 色精品久久人妻99蜜桃| 人人妻,人人澡人人爽秒播| 天堂影院成人在线观看| 免费看美女性在线毛片视频| 亚洲精品在线美女| 国产成人欧美在线观看| 长腿黑丝高跟| 白带黄色成豆腐渣| 精品人妻熟女av久视频| 黄色女人牲交| 国产精品人妻久久久久久| 成人无遮挡网站| 最好的美女福利视频网| 国产成人a区在线观看| 最近中文字幕高清免费大全6 | 美女大奶头视频| 怎么达到女性高潮| 免费人成视频x8x8入口观看| 亚洲精品亚洲一区二区| 色尼玛亚洲综合影院| 听说在线观看完整版免费高清| 亚洲成人免费电影在线观看| 免费看日本二区| 床上黄色一级片| 国产精品98久久久久久宅男小说| 无人区码免费观看不卡| 国产私拍福利视频在线观看| 国产免费男女视频| 别揉我奶头~嗯~啊~动态视频| 久久亚洲精品不卡| 赤兔流量卡办理| a在线观看视频网站| 少妇人妻一区二区三区视频| 高潮久久久久久久久久久不卡| 日本a在线网址| 三级国产精品欧美在线观看| 亚洲欧美激情综合另类| av国产免费在线观看| 亚洲三级黄色毛片| 性插视频无遮挡在线免费观看| 97碰自拍视频| 国产高清三级在线| 亚洲欧美日韩卡通动漫| 久久欧美精品欧美久久欧美| 乱码一卡2卡4卡精品| 日韩欧美免费精品| 一区二区三区高清视频在线| 国产av一区在线观看免费| 在线观看美女被高潮喷水网站 | 男插女下体视频免费在线播放| 97人妻精品一区二区三区麻豆| 免费一级毛片在线播放高清视频| 一边摸一边抽搐一进一小说| 精品人妻视频免费看| 成人欧美大片| 日韩高清综合在线| av国产免费在线观看| 中文字幕高清在线视频| 在线观看午夜福利视频| 国产精品久久久久久久久免 | 黄色丝袜av网址大全| 亚洲av一区综合| 久久久久久九九精品二区国产| 天堂影院成人在线观看| 91在线精品国自产拍蜜月| 欧美+亚洲+日韩+国产| 日本一本二区三区精品| 色播亚洲综合网| 欧美又色又爽又黄视频| 成人美女网站在线观看视频| 久久亚洲真实| 国产野战对白在线观看| 国产欧美日韩精品一区二区| 久久久久九九精品影院| 男人舔女人下体高潮全视频| 中文资源天堂在线|