• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sliding Mode Control for Robust 3D Trajectory Tracking of Quadcopter Unmanned Autonomous Vehicles

    2022-07-23 03:39:04CaiWenqiKordabadArashBahari

    Cai Wen-qi, Kordabad Arash Bahari

    (Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU),Trondheim 7491, Norway)

    Abstract: Recently, unmanned autonomous vehicles (UAVs) have attracted a lot of attention in both military and civilian fields, where the trajectory tracking mission has been a popular research topic. In this paper, a robust Sliding Mode Control (SMC) is proposed for controlling a quadrotor UAV for 3D trajectory tracking in the presence of perturbations and parameter uncertainties. The nonlinear dynamics of a quadrotor with 6-DOF is first established. Then, a sliding mode controller with mass, inertia, and stiffness uncertainties is designed. The 3D tracking effectiveness of the controller is verified by modeling simulations in Matlab Simulink and Universal Mechanism software systems. Finally, further physical verification is done using a Pelican quadrotor platform with perturbations applied to the horizontal and vertical axes to verify its robustness. Both the simulation results and the practical implementation results show that the tracking effect and the robustness of the quadrotor UAV for a given trajectory are satisfactory, confirming the correctness and effectiveness of the proposed SMC control algorithm.

    Key words: quadcopter unmanned autonomous vehicles (UAVs); sliding mode control (SMC); 3D trajectory tracking; robust control

    Currently, Unmanned Aerial Vehicles (UAVs) are used for many tasks: search, rescue, environmental monitoring, surveillance, and inspection. With the help of UAVs, it is possible to easily enter environments that are difficult for people or manned vehicles to enter. This is especially true for extreme situations: firefighting,reconnaissance etc[1]. UAVs are becoming more popular in the form of multi-rotor devices, more commonly a quadcopter, which is a platform with four rotors.Compared with helicopter-type UAVs with main and tail rotors, quadcopters offer many advantages—reliability and simplicity of design, greater stability, compactness and maneuverability, light take-off weight, and greater payload quality. A quadcopter has four engines with propellers that generate thrust. The axis of the propeller and the angle of the blades are fixed, and only the rotational speed is adjusted, which significantly simplifies the design. Vertical movement is carried out by a synchronized change in the rotational speed of all propellers; for horizontal movement, it is necessary to tilt the quadcopter, which is achieved by a corresponding change in the rotational speed of the different propellers,which produces the moment required for tilting. The opposite direction of rotation of the screw pair ensures the compensation of the drag torque. Currently, such devices are quite widespread and versatile, but this use is primarily limited to the “manual” remote control mode from the operator console.

    Researchers have been working on the problem of trajectory tracking control in UAVs along known trajectories. Various methods are discussed and proposed. Kumar et al[2]use a linear quadratic controller to successfully solve the problem of stability during hover, but not suitable for significant nonlinearity and cross-coupling. In literature [3], an algorithm for tracking the trajectory of a quadcopter based on a PD controller and backstepping with a correction filter is proposed. In literature [4], a neural network-based nonlinear controller is proposed, and in literature [5], a“real-time” algorithm for trajectory planning and collision avoidance is proposed. In literature [6], an adaptive position tracking algorithm for vertical take-off and landing under limited external disturbance is considered. The authors in literature [7] propose a control system that realizes the movement of the quadcopter along a straight line connecting the start points and end points of the trajectory at a given speed and a given altitude above the Earth's surface. In literature [8], an algorithm for moving a quadcopter along any trajectory in space is considered, where the quadcopter is able to follow a moving object with known coordinates and velocities.

    In addition to the above methods, a commonly used method for quadrotor UAV trajectory tracking is the sliding mode control. Sliding Mode Control (SMC) is a powerful nonlinear strategy that ensures robustness despite parameter uncertainty in the model[9-10]. A number of papers have been published applying SMC methods to the position and attitude tracking problems of quadcopters and ensuring the robustness to external disturbances. The author in literature [11] applies this method to the quadrocopter with the motivation to theoretically exploit the robustness of the method with regard to model uncertainties and disturbances. The problem of chattering, which occurs with SMC by switching along with the sliding mode, is prevented by a smooth approximation of the signum function in literature [12]. In literature [13], the authors compare the SMC with the backstepping control of a miniature quadrotor, and the simulation results show a robust and practical behavior of SMC. In literature [14], an integral sliding mode is induced by a Newton-Euler under-driven dynamic model of a quadrotor aircraft, which in turn leads to a robust SMC-based controller. A robust terminal sliding mode control algorithm for the fullmotion subsystem of the controller is presented in literature [15]. SMC is also combined with other control algorithms[16-17]. For example, in literature [18], the authors use adaptive fuzzy hierarchical sliding mode control to solve the trajectory tracking problem of a quadrotor UAV. In addition, the sliding mode technique is also designed as an estimator of external disturbances.A control method for implementing the entire observerestimator using SMC is presented in literature [19]. For some other related works, see literatures [20-23].

    However, in most of these aforementioned SMCbased algorithms, the authors do not consider the first and second-order derivatives of rotor dynamics, 3D trajectories, UAV positions, and angles, which makes these algorithms ineffective in solving the 3D trajectory tracking problem of quadrotor UAVs in noisy environments (note that the noisy environment refers to any external disturbances. In the later experiment part of the paper, it means the perturbations applied to the horizontal and vertical axes of the UAV). The novelty of this work is that we propose a robust sliding mode controller for the quadrotor UAV in the presence of perturbations and parameter uncertainties (specifically,with mass, inertia, and stiffness uncertainties), and verify our algorithm in both simulation (MATLAB Simulink and Universal Mechanism) and real experiment (Pelican quadrotor platform). The manuscript is structured as follows. In Section 2, the considered UAV is described and the flight dynamics model is derived. The design of the sliding mode controller is presented in Section 3. The results of the numerical simulations are shown in Section 4. And the real experimental validation of the proposed controller is presented in Section 5. The review and discussion in Section 6 conclude the paper.

    1 System Dynamics

    When modeling the flight of a quadrocopter, the earth's motion can be ignored due to the very limited range and duration of flight, that is, the earth's coordinate system can be regarded as inertia. At the initial stages of development, one can also consider the non-loadbearing part of the apparatus as a solid body, and consider the wind only as an external disturbance.

    Then, the 6-DOF nonlinear dynamic model of UAV is given by (see Fig. 1):

    Fig.1 Free-body diagram of the quadcopter[24]

    2 SMC Design for the Quadcopter UAV

    3 Simulation Results

    In this section, we provide simulation results for trajectory tracking of the UAV. The software environments Matlab Simulink and Universal Mechanism are used for mathematical modeling. In Matlab Simulink, it is convenient to model the dynamics by integrating the equations of motion Universal Mechanism allows. The joint use of these packages not only simplifies the implementation of the model but also allows one to obtain parallel results, the comparison of which can confirm the correctness of the proposed algorithm.

    The model in Matlab Simulink (see Fig. 2) consists of four blocks: input voltages, voltage limiters, the model of motors with propellers, the model of the quadrocopter. The input signals of the model are the control voltages to the motors corresponding to control inputs (F,τ1,τ2,τ3), the output signals are flight coordinates (x,y,z) and angles ( θ,φ,ψ). The control voltages for the motors are supplied via the signal distributor and voltage limiters. For the selected motor(mode: X 2212KV980) with a linear dependence of the speed on the control voltage in the operating speed range, the input voltages are limited to values from0 V to 1 1.1 V. In the Universal Mechanism package, the quadcopter is presented as a rigid cruciform body with four motors and four propellers with 6 DOF. And the inertial characteristics are the same as those specified in the Matlab package.

    Fig.2 Mathematical model of a quadrocopter in Matlab Simulink

    The structure of the control system is shown in Fig. 3, where the numbers indicate: 1—given trajectory;2—corrective devices (CU) of the trajectory control subsystem; 3—coordinate converter; 4—regulator of the orientation and stabilization subsystem; 5—signal distributor; 6—voltage limiter; 7—model of the propeller group; 8—quadrocopter model.

    Fig.3 Quadcopter control system diagram

    For the reference trajectory, we use the following desired path:

    Table 1 Nominal parameters of the UAV and SMC controller

    Fig. 4 shows the desired trajectories and UAV trajectories. As it can be seen, the UAV trajectories track the desired trajectories. Fig. 5 illustrates the desired path and UAV path and Fig. 6 shows the control inputs.Fig. 7 shows sliding surfacessx,sy,szandsψ. As it can be seen, all surfaces are stable and they converge to zero.Finally, Fig. 8 illustrates the tracking errors.

    Fig.4 Desired trajectories and UAV trajectories

    Fig.5 Desired path and UAV path

    Fig.6 Control inputs F,τ1,τ2,τ3

    Fig.7 Sliding surfaces sx,sy,sz,sψ

    Fig.8 Tracking errors for x, y, z and ψ

    4 Real Implementation

    To further validate the reliability of the proposed algorithm, we use an actual quadrotor UAV for indoor flight experiments.

    The detailed system configuration is described in Fig. 9. In this flight test, four VICON cameras with a capture range of 3 m×3 m×1.5 m are used. A quadrotor-type Pelican platform from AscTec(Ascending Technology) is used as a multi-rotor flying robot platform. Pelican consists of HLP (High-Level Processor) and LLP (Low-Level Processor). In the HLP,guidance and SMC control algorithms are executed based on position data such as GPS, user design code can be compiled using the SDK, and motor control signals are transferred from the compiled implementation code to the LLP. The LLP transfers IMU data and motor control signal data from the HLP to the motor drivers. The Pelican flight platform is equipped with sensors such as a gyroscope,accelerometer, geomagnetometer, GPS, and barometer.In this study, the gyroscope and accelerometer inertial data (IMU Data) are used to calculate the velocity and angular velocity information using the proposed SMC algorithm, and the multi-rotor position and altitude control information is obtained by processing VICON data. The information obtained from VICON is transmitted from the GCS (Ground Control System) to the quadrotor UAV via ZigBee wireless communication and used as input values for flight control. Each IMU,GPS, PC, UART, and motor data are communicated in real-time via GCS and ZigBee. The IMU data includes measured angular velocity and acceleration data, and the GPS includes latitude, longitude, altitude, and speed data. The PC receives signals from the remote control,and UART receives command values from the GCS input. Position and yaw information from VICON are transferred from MATLAB to the Simulink-based GCS,which classifies the data and transmits them to the vehicle. The parameter values for the real-time test flight are: total weight is 1 .63 kg, center distance from the rotor is 0.225 m , thrust efficiency is 3 .6×10?2, and drag efficiency equals to 1 .8×10?2.

    Fig.9 Experimental implementation for data workflow between GSC and quadrocopter with motion capture system

    For the real experimental testing, we apply the proposed SMC algorithm to simulate a complete flight mission, including the takeoff and landing of the UAV.Fig. 10 shows the results of the results when tracking the trajectory consisting of sections: AB—takeoff;BC—uniform rectilinear motion; CD—uniform accelerated rectilinear motion; DE—uniform movement around the point ( 5,10,15) in a horizontal circle with a radius of 5 m; EF—uniform rectilinear motion;FG—uniform movement around the point ( ?5,10,10) in a horizontal circle with a radius of 10 m; GH—landing.As can be seen, the results are generally satisfactory as well.

    Fig.10 Full trajectory tracking mission involves takeoff and landing

    As previously described, in the case of multi-rotor UAVs, which are susceptible to external environmental uncertainties, stable flight performance is required even if there are unforeseen external disturbances. Therefore,we also need to validate the robustness of the designed SMC controller. An experiment is conducted using a digital dynamometer to generate disturbances on the quadcopter from the outside. Perturbations are added in the form of impulse shocks through the dynamometer to produce the effect of sudden gusts of wind, and the disturbance forces are measured as digital data values.The perturbation experiments are performed in theXandZdirections (horizontal and vertical directions) of the vehicle, respectively.

    The perturbation to theX-direction is input about 15 safter the flight, and the maximum peak of the force is set to 4.7 N. The applied perturbation results in a position error of up to 0 .45 m in theX-direction but is confirmed to return to the reference command value of 0 m within 1 s by the SMC controller. The results are shown in Fig. 11. The perturbation to theZ-direction is input at around 4 1 s. The maximum peak of the force is set to 7 .6 N . The perturbation to theZ-direction results in a height error of up to 0 .3 m, but is confirmed to return to the existing standard command value of0.7 m within 1 s. The results are shown in Fig. 12. In the case of the horizontal disturbance, an instantaneous error of 0.45 m occurs when a disturbance force of 4 .7 N is applied, and in the case of the vertical direction, an error of about 0.3 m is confirmed to have occurred at a disturbance force of 7.6 N. As shown in the experiment,the SMC controller can stabilize the quadrotor UAV again within 1 second in the presence of perturbations,showing the excellent robustness in theXandZdirections.

    Fig.11 Test of the robustness of the proposed SMC to disturbance in X-direction

    Fig.12 Test of the robustness of the proposed SMC to disturbance in Z-direction

    5 Conclusion

    In this work, we develop a simple sliding mode control algorithm for robust 3D trajectory tracking of a quadcopter UAV, where the controller is able to track desired paths in the presence of uncertainties. Simulation experiments with Matlab Simulink and real flight experiments are conducted to verify the performance of the proposed SMC algorithm. In particular, to verify the robustness against disturbances such as gusts of wind in an uncertain environment of quadcopter operation,disturbances are applied to the horizontal and vertical axes of the UAV and the performance is verified in terms of attitude stability. The designed SMC controller shows immediate re-stabilization of the UAV with excellent resilience in both the horizontal and vertical directions. Both simulation and real testing results show the efficiency of the SMC algorithm and the possibility of its implementation.

    欧美av亚洲av综合av国产av| 国产亚洲精品久久久久久毛片| 日韩欧美国产一区二区入口| 亚洲av日韩精品久久久久久密| 十八禁人妻一区二区| 婷婷丁香在线五月| 欧美日韩瑟瑟在线播放| 国产精品久久久av美女十八| 丝袜美腿诱惑在线| 国产亚洲欧美98| 啦啦啦观看免费观看视频高清 | 十八禁网站免费在线| 91麻豆精品激情在线观看国产| 国产精品精品国产色婷婷| 久9热在线精品视频| www.熟女人妻精品国产| 欧美精品亚洲一区二区| 1024香蕉在线观看| 精品欧美国产一区二区三| 亚洲精品国产色婷婷电影| 曰老女人黄片| 久热这里只有精品99| 亚洲欧美一区二区三区黑人| 美女扒开内裤让男人捅视频| 麻豆成人av在线观看| av在线播放免费不卡| 黑丝袜美女国产一区| 日韩有码中文字幕| 免费在线观看日本一区| 精品国产超薄肉色丝袜足j| 男人舔女人下体高潮全视频| 午夜福利在线观看吧| 成人三级做爰电影| 一边摸一边抽搐一进一出视频| 亚洲国产精品999在线| 天天添夜夜摸| 久久精品国产99精品国产亚洲性色 | 国产日韩一区二区三区精品不卡| 成人特级黄色片久久久久久久| 少妇被粗大的猛进出69影院| 91国产中文字幕| 午夜成年电影在线免费观看| 日韩中文字幕欧美一区二区| 深夜精品福利| 99精品久久久久人妻精品| 欧美一级a爱片免费观看看 | 日本黄色视频三级网站网址| 亚洲av成人av| 别揉我奶头~嗯~啊~动态视频| 精品国产乱子伦一区二区三区| 日本黄色视频三级网站网址| 国产精品日韩av在线免费观看 | 国产又爽黄色视频| 午夜福利在线观看吧| www.熟女人妻精品国产| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲| 女人精品久久久久毛片| 欧美 亚洲 国产 日韩一| 久久人人精品亚洲av| 日韩视频一区二区在线观看| 夜夜夜夜夜久久久久| 国产成+人综合+亚洲专区| 无遮挡黄片免费观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩精品网址| 一二三四社区在线视频社区8| 夜夜看夜夜爽夜夜摸| 欧美精品啪啪一区二区三区| 岛国在线观看网站| 欧美成人午夜精品| 大型黄色视频在线免费观看| 国产又色又爽无遮挡免费看| 国产精品一区二区三区四区久久 | 在线观看免费视频网站a站| 国产成年人精品一区二区| 99国产综合亚洲精品| 一夜夜www| 嫁个100分男人电影在线观看| bbb黄色大片| 精品午夜福利视频在线观看一区| 久久人妻av系列| 精品不卡国产一区二区三区| 啦啦啦 在线观看视频| 如日韩欧美国产精品一区二区三区| 亚洲情色 制服丝袜| 久久香蕉精品热| 岛国视频午夜一区免费看| 男人的好看免费观看在线视频 | 国产激情久久老熟女| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费观看网址| 欧美色视频一区免费| 亚洲精品av麻豆狂野| 亚洲专区中文字幕在线| 99国产综合亚洲精品| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 日韩三级视频一区二区三区| 成人国语在线视频| 国产精品1区2区在线观看.| 1024香蕉在线观看| 久久香蕉精品热| 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 黄色丝袜av网址大全| 亚洲熟女毛片儿| 亚洲熟妇中文字幕五十中出| 免费不卡黄色视频| 麻豆成人av在线观看| 亚洲男人天堂网一区| 久9热在线精品视频| 中文字幕高清在线视频| 国产不卡一卡二| 18美女黄网站色大片免费观看| 欧美久久黑人一区二区| 久久久久亚洲av毛片大全| 免费看美女性在线毛片视频| 国产高清videossex| 一边摸一边做爽爽视频免费| 久久精品人人爽人人爽视色| 亚洲男人的天堂狠狠| 午夜两性在线视频| 亚洲精品国产精品久久久不卡| av片东京热男人的天堂| 午夜激情av网站| 88av欧美| 亚洲一区高清亚洲精品| 又紧又爽又黄一区二区| 琪琪午夜伦伦电影理论片6080| 两人在一起打扑克的视频| 欧美激情久久久久久爽电影 | 丁香六月欧美| 日韩精品免费视频一区二区三区| 久久久国产成人免费| 色播在线永久视频| 午夜福利一区二区在线看| 亚洲成av人片免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成+人综合+亚洲专区| 久热这里只有精品99| 制服诱惑二区| 老司机深夜福利视频在线观看| 国产高清激情床上av| 青草久久国产| 咕卡用的链子| 欧美老熟妇乱子伦牲交| 性欧美人与动物交配| 757午夜福利合集在线观看| 免费av毛片视频| 两性夫妻黄色片| 成人精品一区二区免费| 国产在线观看jvid| 99香蕉大伊视频| 国产精品亚洲美女久久久| 久久精品国产亚洲av香蕉五月| 给我免费播放毛片高清在线观看| 国产亚洲精品av在线| 一区福利在线观看| 99久久国产精品久久久| 一级黄色大片毛片| av在线天堂中文字幕| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 国产一区二区三区在线臀色熟女| av天堂久久9| 日本免费一区二区三区高清不卡 | 老熟妇乱子伦视频在线观看| 啦啦啦 在线观看视频| 欧美黄色淫秽网站| 国语自产精品视频在线第100页| 亚洲第一青青草原| 亚洲免费av在线视频| 欧美国产精品va在线观看不卡| 精品乱码久久久久久99久播| 久久草成人影院| 亚洲人成网站在线播放欧美日韩| 亚洲九九香蕉| 在线播放国产精品三级| 婷婷精品国产亚洲av在线| 亚洲精华国产精华精| 日日摸夜夜添夜夜添小说| 国产成人系列免费观看| 午夜精品在线福利| 色老头精品视频在线观看| 天堂动漫精品| 久久久国产成人精品二区| 精品少妇一区二区三区视频日本电影| 亚洲精品美女久久av网站| 中出人妻视频一区二区| 97碰自拍视频| 香蕉国产在线看| 亚洲专区字幕在线| 亚洲熟妇熟女久久| 国产精品永久免费网站| 村上凉子中文字幕在线| 久久午夜亚洲精品久久| 老熟妇乱子伦视频在线观看| 亚洲av成人av| 级片在线观看| 亚洲无线在线观看| 老鸭窝网址在线观看| 久久久久久亚洲精品国产蜜桃av| 丰满人妻熟妇乱又伦精品不卡| 国产片内射在线| 无人区码免费观看不卡| 一卡2卡三卡四卡精品乱码亚洲| 色播在线永久视频| 在线免费观看的www视频| 国产97色在线日韩免费| 午夜视频精品福利| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 欧美黄色片欧美黄色片| 欧美黄色淫秽网站| 99久久久亚洲精品蜜臀av| 日日干狠狠操夜夜爽| 精品国产乱子伦一区二区三区| 日本欧美视频一区| 久久香蕉激情| 夜夜看夜夜爽夜夜摸| 制服丝袜大香蕉在线| 夜夜躁狠狠躁天天躁| 成人三级黄色视频| 69精品国产乱码久久久| 变态另类成人亚洲欧美熟女 | 搞女人的毛片| 露出奶头的视频| 亚洲天堂国产精品一区在线| 国产三级在线视频| 操出白浆在线播放| 黄网站色视频无遮挡免费观看| 日韩欧美免费精品| 久久久久久久久中文| 精品人妻在线不人妻| 国产麻豆69| 中文亚洲av片在线观看爽| 日韩欧美免费精品| 亚洲国产欧美网| 国产私拍福利视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 大型黄色视频在线免费观看| tocl精华| 麻豆成人av在线观看| 丝袜美腿诱惑在线| 亚洲中文日韩欧美视频| 天堂动漫精品| 欧美中文综合在线视频| 一级a爱片免费观看的视频| 后天国语完整版免费观看| 亚洲色图av天堂| 亚洲av电影在线进入| 最近最新中文字幕大全电影3 | 在线免费观看的www视频| 精品久久蜜臀av无| 久久人人精品亚洲av| 99在线视频只有这里精品首页| 欧美日韩精品网址| 亚洲狠狠婷婷综合久久图片| 国产1区2区3区精品| 日韩欧美一区二区三区在线观看| 亚洲一区高清亚洲精品| 午夜福利高清视频| 视频在线观看一区二区三区| 国产免费男女视频| 俄罗斯特黄特色一大片| 久久久久久久久中文| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 成人三级黄色视频| 成人国语在线视频| 亚洲专区中文字幕在线| 一级作爱视频免费观看| 亚洲精品中文字幕在线视频| 国产精华一区二区三区| 亚洲欧美激情在线| 一级,二级,三级黄色视频| 好看av亚洲va欧美ⅴa在| 欧美日本中文国产一区发布| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看完整版高清| 人妻久久中文字幕网| 午夜免费成人在线视频| x7x7x7水蜜桃| 亚洲专区中文字幕在线| 免费在线观看黄色视频的| 日韩中文字幕欧美一区二区| 久久精品成人免费网站| 黄色成人免费大全| 国产精品 国内视频| 欧美绝顶高潮抽搐喷水| 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 高清在线国产一区| 男女做爰动态图高潮gif福利片 | 男女午夜视频在线观看| 极品人妻少妇av视频| 12—13女人毛片做爰片一| 久久久久国内视频| 女同久久另类99精品国产91| 中国美女看黄片| 色婷婷久久久亚洲欧美| 久久人妻熟女aⅴ| 色播在线永久视频| 90打野战视频偷拍视频| 久久久久久久久中文| 十八禁网站免费在线| 日韩欧美国产在线观看| 国产欧美日韩一区二区三| 欧美日韩亚洲国产一区二区在线观看| 美女大奶头视频| 一进一出抽搐动态| 好男人电影高清在线观看| 亚洲成av人片免费观看| 黑人巨大精品欧美一区二区mp4| 99国产综合亚洲精品| 真人做人爱边吃奶动态| 久久久久久大精品| 精品卡一卡二卡四卡免费| av有码第一页| 高潮久久久久久久久久久不卡| 男女做爰动态图高潮gif福利片 | 在线视频色国产色| 最新在线观看一区二区三区| 91成人精品电影| 一进一出抽搐动态| 欧美日韩黄片免| 麻豆av在线久日| 欧美 亚洲 国产 日韩一| 成人亚洲精品一区在线观看| 国产亚洲精品综合一区在线观看 | 亚洲成人精品中文字幕电影| 国产亚洲欧美98| 久久人人97超碰香蕉20202| 精品欧美国产一区二区三| 日韩中文字幕欧美一区二区| 麻豆av在线久日| 成人国产综合亚洲| 色播亚洲综合网| 亚洲va日本ⅴa欧美va伊人久久| 国产精品精品国产色婷婷| 精品久久久久久久人妻蜜臀av | 黄色丝袜av网址大全| 精品国产一区二区三区四区第35| 老司机午夜福利在线观看视频| 亚洲伊人色综图| 女警被强在线播放| 久久欧美精品欧美久久欧美| 久久久精品国产亚洲av高清涩受| av中文乱码字幕在线| 一进一出抽搐动态| 午夜免费成人在线视频| e午夜精品久久久久久久| 97碰自拍视频| 日本vs欧美在线观看视频| 久久人人97超碰香蕉20202| 日本一区二区免费在线视频| 好男人电影高清在线观看| 国产国语露脸激情在线看| 亚洲国产欧美日韩在线播放| 可以在线观看的亚洲视频| 99久久久亚洲精品蜜臀av| 午夜精品在线福利| 纯流量卡能插随身wifi吗| 男人的好看免费观看在线视频 | 国产精品98久久久久久宅男小说| 一级,二级,三级黄色视频| 激情在线观看视频在线高清| 亚洲五月天丁香| 精品电影一区二区在线| 欧美日韩乱码在线| 欧美一级毛片孕妇| 国产亚洲av高清不卡| 国产一区二区三区综合在线观看| 97超级碰碰碰精品色视频在线观看| 一级a爱视频在线免费观看| 黄色视频不卡| 很黄的视频免费| 天天一区二区日本电影三级 | 法律面前人人平等表现在哪些方面| 精品一区二区三区视频在线观看免费| av在线天堂中文字幕| 欧美中文综合在线视频| 日本黄色视频三级网站网址| 亚洲中文av在线| 精品午夜福利视频在线观看一区| 精品国产超薄肉色丝袜足j| 大陆偷拍与自拍| 精品日产1卡2卡| 99久久久亚洲精品蜜臀av| 久久人妻熟女aⅴ| 国产精品一区二区免费欧美| 国产又爽黄色视频| 亚洲精品国产一区二区精华液| 久久狼人影院| 成人18禁在线播放| 亚洲男人天堂网一区| 国产精品一区二区免费欧美| av有码第一页| 欧美日本视频| 亚洲七黄色美女视频| 日韩精品中文字幕看吧| 一个人观看的视频www高清免费观看 | 欧美午夜高清在线| 91老司机精品| 国产一区二区激情短视频| 日日摸夜夜添夜夜添小说| 90打野战视频偷拍视频| 亚洲专区字幕在线| 老鸭窝网址在线观看| 一二三四在线观看免费中文在| 中亚洲国语对白在线视频| 国产亚洲精品久久久久久毛片| 在线观看免费日韩欧美大片| 免费在线观看影片大全网站| x7x7x7水蜜桃| 搡老岳熟女国产| 午夜福利成人在线免费观看| 免费av毛片视频| 久久影院123| 国产一区二区三区综合在线观看| 在线国产一区二区在线| 免费观看人在逋| 熟妇人妻久久中文字幕3abv| 夜夜爽天天搞| 久久精品91蜜桃| 欧美人与性动交α欧美精品济南到| 国产欧美日韩一区二区三区在线| aaaaa片日本免费| 国产男靠女视频免费网站| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品sss在线观看| 色av中文字幕| 免费av毛片视频| 怎么达到女性高潮| 国产三级黄色录像| 亚洲一区二区三区不卡视频| av网站免费在线观看视频| 精品少妇一区二区三区视频日本电影| 午夜精品久久久久久毛片777| ponron亚洲| 极品人妻少妇av视频| 日本欧美视频一区| 亚洲欧洲精品一区二区精品久久久| 国产一级毛片七仙女欲春2 | 真人一进一出gif抽搐免费| 99久久久亚洲精品蜜臀av| 日本vs欧美在线观看视频| 久久人人精品亚洲av| 国产激情久久老熟女| 欧美午夜高清在线| 啦啦啦韩国在线观看视频| 一个人免费在线观看的高清视频| 一本大道久久a久久精品| 欧美在线一区亚洲| 在线观看www视频免费| 男人操女人黄网站| 99久久久亚洲精品蜜臀av| 99久久精品国产亚洲精品| 91成人精品电影| 熟女少妇亚洲综合色aaa.| 久久婷婷人人爽人人干人人爱 | 久久久久久大精品| 亚洲专区字幕在线| 色播亚洲综合网| 国产午夜福利久久久久久| 久9热在线精品视频| 乱人伦中国视频| 91麻豆av在线| 精品国产美女av久久久久小说| 中文字幕久久专区| 国产成人精品在线电影| 亚洲av五月六月丁香网| 高清毛片免费观看视频网站| 天天躁夜夜躁狠狠躁躁| 人妻久久中文字幕网| 国产一卡二卡三卡精品| 国产成人免费无遮挡视频| 天天添夜夜摸| 在线观看66精品国产| 桃红色精品国产亚洲av| av天堂在线播放| 中出人妻视频一区二区| 人人妻人人爽人人添夜夜欢视频| 国产精品野战在线观看| 亚洲七黄色美女视频| 国产精品98久久久久久宅男小说| 一区在线观看完整版| 日韩精品青青久久久久久| 国产97色在线日韩免费| 在线永久观看黄色视频| 啦啦啦韩国在线观看视频| 国产精品av久久久久免费| 精品福利观看| 波多野结衣一区麻豆| 亚洲自拍偷在线| 成人18禁在线播放| 色综合站精品国产| 不卡av一区二区三区| 亚洲精品久久国产高清桃花| 神马国产精品三级电影在线观看 | 操出白浆在线播放| 久久国产精品男人的天堂亚洲| 九色国产91popny在线| 90打野战视频偷拍视频| 老熟妇乱子伦视频在线观看| 99精品久久久久人妻精品| 人人妻人人澡欧美一区二区 | 国产精品日韩av在线免费观看 | 给我免费播放毛片高清在线观看| av天堂在线播放| 高清在线国产一区| 19禁男女啪啪无遮挡网站| 在线十欧美十亚洲十日本专区| 一级片免费观看大全| 国产一区二区三区视频了| 欧美丝袜亚洲另类 | 熟女少妇亚洲综合色aaa.| 国产私拍福利视频在线观看| 精品卡一卡二卡四卡免费| 中亚洲国语对白在线视频| 丝袜在线中文字幕| 成人三级做爰电影| 宅男免费午夜| 中文字幕av电影在线播放| 免费观看人在逋| 变态另类成人亚洲欧美熟女 | 久久狼人影院| 欧美最黄视频在线播放免费| 国产成人精品无人区| 国产一区二区三区视频了| 最新在线观看一区二区三区| 日韩欧美一区二区三区在线观看| 色综合婷婷激情| 国产精品 国内视频| ponron亚洲| 成人亚洲精品av一区二区| 亚洲熟妇中文字幕五十中出| 欧美日韩瑟瑟在线播放| 国产亚洲av嫩草精品影院| 欧美av亚洲av综合av国产av| 制服人妻中文乱码| 国产av精品麻豆| 亚洲国产高清在线一区二区三 | 视频区欧美日本亚洲| 9热在线视频观看99| 亚洲五月婷婷丁香| 婷婷精品国产亚洲av在线| 欧洲精品卡2卡3卡4卡5卡区| 女生性感内裤真人,穿戴方法视频| 欧美 亚洲 国产 日韩一| 久久九九热精品免费| 亚洲成人精品中文字幕电影| 久久午夜综合久久蜜桃| 日韩欧美免费精品| 午夜两性在线视频| 国产单亲对白刺激| 欧美老熟妇乱子伦牲交| 欧美乱码精品一区二区三区| 在线观看免费日韩欧美大片| 欧美av亚洲av综合av国产av| 日日夜夜操网爽| 免费搜索国产男女视频| 国产精品影院久久| 亚洲av电影不卡..在线观看| 国产亚洲欧美在线一区二区| 女性被躁到高潮视频| 好男人在线观看高清免费视频 | 欧美成人一区二区免费高清观看 | 成人三级做爰电影| 欧美激情极品国产一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 非洲黑人性xxxx精品又粗又长| 18禁国产床啪视频网站| 搡老熟女国产l中国老女人| 午夜免费激情av| 日本五十路高清| 黑人欧美特级aaaaaa片| 男女之事视频高清在线观看| 国产午夜福利久久久久久| 老司机午夜福利在线观看视频| 久久精品国产清高在天天线| av电影中文网址| 大香蕉久久成人网| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久精免费| 免费搜索国产男女视频| 日韩欧美国产一区二区入口| 久久久久精品国产欧美久久久| 中文字幕另类日韩欧美亚洲嫩草| 身体一侧抽搐| 成人三级做爰电影| 欧美日韩中文字幕国产精品一区二区三区 | 国产真人三级小视频在线观看| 高潮久久久久久久久久久不卡| 国产成人精品久久二区二区91| 波多野结衣高清无吗| 日韩欧美国产在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久精品91蜜桃| 国产激情久久老熟女| 成人免费观看视频高清| 亚洲成人免费电影在线观看| 久久久久久亚洲精品国产蜜桃av| 变态另类丝袜制服| 成年版毛片免费区| 免费不卡黄色视频| 欧美激情 高清一区二区三区| 日韩精品中文字幕看吧| 美女 人体艺术 gogo| 亚洲第一青青草原| 色老头精品视频在线观看| 非洲黑人性xxxx精品又粗又长|