• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data

    2022-07-20 01:35:58YANGShunSONGHaibinZHANGKun
    Advances in Polar Science 2022年1期
    關(guān)鍵詞:山丘區(qū)沭河東平湖

    YANG Shun, SONG Haibin* & ZHANG Kun

    Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data

    YANG Shun1,2, SONG Haibin1,2*& ZHANG Kun1,2

    1School of Ocean and Earth Science, Tongji University, Shanghai 200092, China;2State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

    The submesoscale processes, including submesoscale eddies and fronts, have a strong vertical velocity, can thus make important supplements to the nutrients in the upper ocean. Using legacy multichannel seismic data AP25 of cruise EW9101 acquired northeast of the South Shetland Islands (Antarctic Peninsula) in February 1991, we identified an oceanic submesoscale eddy with the horizontal scale of ~4 km and a steep shelf break front that has variable dip angles from 5oto 10o. The submesoscale eddy is an anticyclonic eddy, which carries warm core water, can accelerate ice shelves melting. The upwelling induced by shelf break front may play an important role in transporting nutrients to the sea surface. The seismic images with very high lateral resolution may provide a new insight to understand the submesoscale and even small-scale oceanic phenomena in the interior.

    submesoscale eddy, shelf break front,seismic oceanography,South Shetland Islands

    1 Introduction

    Heat and material transports in oceans play a dominant role in regulating global climate and in controlling the oceanic absorption of greenhouse gases that are responsible for global warming (Zhang et al., 2014). Oceanic eddies have been recognized as key contributors in transporting heat, dissolved carbon, and other biogeochemical tracers (McGillicuddy et al., 2007; Dong et al., 2014). Surface- intensified mesoscale eddies have been studied extensively using altimetric observations (Chelton et al., 2007). However, we know much less about the contribution of subsurface eddies, particularly submesoscale ones, due to their small spatial and temporal scales (McWilliams, 2016). Same as submesoscale eddies, oceanic fronts are also submesoscale processes (Capet et al., 2008; McWilliams, 2016). The submesoscale processes, including submesoscale eddies and fronts, have a strong vertical velocity that can even reach 100 m·d?1. These submesoscale processes can sustain vertical secondary circulation with time scales comparable with the nutrient uptake by phytoplankton, thus make important supplements to the nutrients in the upper ocean (McGillicuddy et al., 2007; Zhang et al., 2019).

    Oceanic eddies can be divided into cyclonic and anticyclonic eddies based on their different rotation modes. The cyclonic and anticyclonic eddies rotate counterclockwise (clockwise) and clockwise (counterclockwise) in the northern (southern) hemisphere, respectively (Pingree and Le Cann, 1992). There are downwellings in anticyclonic eddies for the Coriolis force induced by the earth’s rotation, thus can form concave isopycnal/isothermal surfaces (Zhang et al., 2014).

    Different from oceanic eddies and fronts in the low and middle latitudes, those in polar regions are more important in regulating global climate for a large number of ice shelves in polar regions. A study by NASA found that ocean waters melting the undersides of Antarctic ice shelves are responsible for most of the continent’s ice shelf mass loss (Rignot et al., 2013). The eddies can carry warm-core water mass for a long distance, while almost maintaining the properties of core water. Thus, the core water mass that is warmer than surface waters will melt the undersides of Antarctic ice shelves (Gunn et al., 2018). Up to now, however, there are few researches on imaging water columns using seismic data in polar regions except Gunn et al. (2018).

    Here, we found a submesoscale eddy and a shelf break front in north of the South Shetland Islands (SSI) using a new method named seismic oceanography (SO). SO uses multichannel seismic (MCS) reflection data to produce detailed images of the water column (Holbrook et al., 2003; Holbrook and Fer, 2005; Ruddick et al., 2009). Seismic imaging (i.e., acoustic reflection) can be approximately thought to be the smoothed vertical gradient of seawater temperature (Ruddick et al., 2009). Compared with the traditional physical oceanography methods, SO has the advantages of high acquisition efficiency, very high lateral resolution (~10 m) and full depth imaging of seawater column (Dong et al., 2010; Song et al., 2021). Many researchers have used seismic data to image oceanic eddies in different regions, including the west exit of the Mediterranean Sea (Biescas et al., 2008; Pinheiro et al., 2010; Song et al., 2011), South China Sea (Huang et al., 2013), Gulf of Alaska (Tang et al., 2014, 2020), southeast of New Zealand (Gorman et al., 2018), Bellingshausen Sea (Gunn et al., 2018), Middle Atlantic Bight (Gula et al., 2019), Southwest Atlantic Ocean (Gunn et al., 2020), Northwest Pacific Ocean (Zhang et al., 2021) and the Pacific coast of Central America (Yang et al., 2021). Compared with eddies, the researches on oceanic fronts are less and mainly consist of Newfoundland Basin of Northwest Atlantic Ocean (Holbrook et al., 2003), east of Japan (Nakamura et al., 2006), and Southwest Atlantic Ocean (Gunn et al., 2020). They used seismic data, combined withstation observations such as Conductivity-Temperature-Depth (CTD) and eXpendable Bathy-Thermograph (XBT), remote sensing observations of sea surface temperature (SST), sea surface height (SSH), chl-concentration, and sometimes numerical simulations of fluid dynamics, to study the oceanic eddies and fronts.

    Figure 1 Bathymetry of the study region. The red line is seismic line AP25, and the 5 red dots are CTD stations in February. The isolines are isobaths of 100, 200, 500, 1000, 2000, 3000, 4000, and 5000 m, respectively. SSI = South Shetland Islands and EI = Elephant Island.

    2 Oceanographic setting

    SSI is located in southern Drake Strait and the northern tip of the Antarctic Peninsula (AP). Due to the complex topography, the water masses and circulations around the SSI are complex and variable (Zhou et al., 2006). The dominant circulations north of the SSI are the northeastward Antarctic Circumpolar Current (ACC) and Antarctic Slope Current (ASC) that flow southwestward along the outer shelf. As the only eastward circulation connecting the major oceans, ACC consists of a series of oceanic fronts. From north to south, these fronts are Subantarctic Front (SF), Polar Front (PF), Southern ACC Front (SACCF), and Southern Boundary (SB) (Orsi et al., 1995; Zhou and Zhu, 2020).

    The waters associated with the ACC are the warm Antarctic Surface Water (ASW), the cold Winter Water (WW) below the ASW, and the warm Circumpolar Deep Water (CDW). The CDW can be further separated into the Upper CDW (UCDW) and the Lower CDW (LCDW) based on their origins from the Indian-Pacific oceans and the Atlantic Ocean, respectively (Zhou et al., 2010). WW is caused by the salt precipitation of sea ice, the sensible heat dissipation to the atmosphere, and the vertical mixing of seawater driven by wind (Zhou and Zhu, 2020). Figure 2 shows the properties of these water masses surrounding SSI.

    Figure 2 The legacy CTD data. a,Temperature; b,Salinity; c,Sound speed profiles; d,diagram. ASW = Antarctic Surface Water, WW = Winter Water, and CDW = Circumpolar Deep Water. The color of the dots indicates the depth of the samples. The contours are corresponding density anomalies calculated by the equation of the state of seawater.

    3 Seismic data and hydrographic data

    3.1 Seismic acquisition and processing

    Multi-channel seismic data was acquired during R/V Maurice Ewing Expedition EW9101 conducted in February 1991. The original purpose of the seismic data acquisition is the geophysical study of the Pacific margin of Antarctica, including the Antarctic Peninsula and areas south to the intersection of the Heezen Fracture Zone with the margin. The acoustic source is an airgun array with a capacity of 136.9 L (8353 cu in). The shot interval was 20 s for ~50 m, and the nominal distance between the shot and the nearest channel is 263 m. There are 144 channels originally recorded, and group spacing is 25 m. The sample interval is 4 ms, and the record length is 12 s. Here we only use seismic line AP25 that acquired on 22 February 1991, to analyze the water masses. Note that there are only 120 channels available because the nearest 24 channels are empty and no data is recorded, hence the actual distance between the shot and the nearest effective channel is 863 m.

    The data quality of distant channels is poor because of far offset and seawater reflections are much weaker than strata reflections, so we used the nearest channel (120th channel) of each shot to produce the common offset gathers (COGs). Then COGs are processed with normal moveout correction with a constant velocity of 1460 m·s?1. The velocity is referenced from the legacy sound speed of this region shown in Figure 2c. In addition, 1D and 2D filterings are needed to suppress the noise. To avoid strata interference during filterings, it is necessary to mute the reflections below the seafloor before filterings.

    3.2 Hydrographic data

    The seismic data was acquired in 1991, which is too early to find coincident hydrographic data. We used legacy CTD data to distinguish water masses and calculate sound speed using the equation of state of seawater. The temperature- salinity relationship of these CTD casts is shown in Figure 2d. Water masses surrounding SSI can be divided into ASW, coldest WW below ASW, and warm CDW below WW. The CTD data is collected from February 1994 to 1996, and from the National Center of Environmental Information (NCEI) of National Oceanic and Atmospheric Administration (NOAA) (https://www.ncei.noaa.gov/ access/global-temperature-salinity-profile-programme/gwi.html). We also used monthly mean chl-concentration data in February 2001 by MODIS-terra sensor from NASA’s Ocean Color Web (https://oceancolor.gsfc.nasa.gov/). The resolution of Chl-data is 4 km. We used daily sea ice area fraction on February 22, 2003 by multi-sensor satellites from Natural Environment Research Council (NERC) Earth Observation Data Acquisition and Analysis Service (NEODAAS, https://www.neodaas.ac.uk/Home). The horizontal resolution of sea ice data is 1 km.

    4 Results

    4.1 Submesoscale eddy

    Seismic line AP25 with a length of ~156 km is almost perpendicular to the coastline of SSI and passes through the shelf, slope and trench from southeast to northwest (Figure 1). From Figure 3a, we can identify these submarine topography. Figure 3b shows the water column reflections in the box in Figure 3a after special processing for the seawater column (described in subsection 3.1). There are two obvious features, which are concave reflections and oblique reflections in the left and right, respectively. We enlarge these reflections in Figures 3c and 3d, respectively.

    Based on previous researches on oceanic eddies using seismic data (Biescas et al., 2008; Pinheiro et al., 2010; Song et al., 2011; Gorman et al., 2018), we suggested that the concave reflections (Figure 3c) are the lower boundary of an eddy. This eddy should be anticyclonic. Unfortunately, the upper boundary of the eddy is muted during the processing of water direct wave suppression.

    Figure 3 The seismic image of line AP25. a, Sub-seafloor reflections after stack and migration. The shot spacing is ~50 m. The position of shelf break is marked. b, Water column reflections in the box in (a). The image shows oceanic eddy and front. The reflections below the seafloor are muted. c, Seismic image of submesoscale eddy in the box in (b). d, Seismic image of shelf break front in the box in (b). The reference slope angles of 2°, 5°, and 10° are shown. The reflections below the seafloor are muted. The reflections in the upper 100 m are also muted for the processing of direct wave suppression.

    The eddy has a maximum depth near 500 m, and the upper boundary is shallower than 100 m. Therefore, the vertical scale of the anticyclonic eddy is more than 400 m. The reflections of the left boundary are narrow and steep, while there are a series of sub-horizontal reflections on the right of the right boundary. The eddy has a horizontal scale of 4 km (equals to ~80 shots). The reflections of the core and the boundaries are weak and intense respectively, which demonstrates that the interior water is homogeneous and different from that around it.

    Submesoscale eddies have the radii smaller than the first baroclinic Rossby radii of deformationR,1and larger than turbulent boundary layer thickness (Mcwilliams, 1985, 2016).R,1is a function of the Brunt–V?is?l? frequency (density stratification), the scale height, andgeographic latitude (Chelton et al., 1998; Nurser and Bacon, 2014). TheR,1is about 9 km in the shelf of SSI (Chelton et al., 1998). Here, the eddy has a horizontal scale of ~4 km, which is smaller than the local first baroclinic Rossby radius, thus is a submesoscale eddy.

    4.2 Shelf break front

    As shown in Figure 3d, there are a series of oblique reflections near the shelf break. The dipping direction of the reflections is opposite to that of the continental slope. The foot of the reflections locates the upper slope and near the shelf break. We interpreted that the oblique structure is shelf break front. The front is located near the southern ACC boundary (SB) (Orsi et al., 1995). It is noted that the front is steep and has variable dip angles of ~5o in the upper part and ~10o in the lower part (Figure 5). The foot of the front reaching the slope is ~550 m deep. The front may reach the sea surface if the reflections in the upper 100 m were not muted.

    Figure 4 a, Density profiles calculated from the legacy temperature and salinity data shown in Figure 2; b, Vertical density gradient calculated from the density in (a); The black solid lines are measured data, and the green solid line is the smoothed data; c, Brunt-V?is?l? frequency calculated from the density in (a). The black solid lines are measured data, and the green solid line is the smoothed data.

    Figure 5 Monthly mean sea surface temperature (a) and velocity (b) in February 1993. The solid black line is seismic line AP25. The black arrow indicates the reference velocity. The temperature and velocity data is from CMEMS.

    Figure 6 a, Distribution of shelf break front picked from the seismic profile; b, The slope angle of the shelf break front.

    Shelf-break front is frontal formations where cross-shelf waters encounter slope waters from the deeper oceans, often associated with upwelling (Condie, 1993; Gawarkiewicz and Plueddemann, 2020). The seasonally transitional features are sites of high temperature, salinity, and density gradients and often of high productivity where deep upwelled water contributes high nutrients.

    5 Discussion

    5.1 The influence on climate and ecosystem

    According to the traditional view, ablation from Antarctic ice shelves occurs mostly by iceberg calving, with basal melting only contributing 10%–28% of the total mass loss (Jacobs et al., 1992). New research indicated that ocean waters melting the undersides of Antarctic ice shelves are responsible for most of the continent’s ice shelf mass loss (Rignot et al., 2013). In the Southern Ocean, the lower CDW, which are warmer than upper ASW and WW, can transport warm water across the shelf and intrude the ice shelves. The cross-shelf transportation of warm water may increase the melting of the foundation, thereby promoting splitting glacier and ice loss (Rignot et al., 2008). The anticyclonic eddy can carry warm core water for a long distance, while almost maintaining the properties of core water (Mcwilliams, 1985). Thus, apart from the lower warm CDW, the core water mass that is warmer than surface water and surrounding water will melt the undersides of Antarctic ice shelves (Gunn et al., 2018). In this work, this submesoscale eddy may trap warm core water. This may promote the melting of sea ice.

    Submesoscale processes including submesoscale eddies and fronts are particularly relevant to phytoplankton productivity because the time scales on which they act are similar to those of phytoplankton growth (Zhang et al., 2019). The vertical secondary circulations in the fronts and the lateral boundaries of the eddies tend to destroy the lateral buoyancy gradient and restore the oceanic density stratification, which can induce upwelling (Capet et al., 2008; McWilliams et al., 2009; McWilliams, 2016) (Figure 7). The upwelling can transport nutrients from the bottom to the surface. Especially in the shelf-break front zone, there is almost the highest primary productivity (Gawarkiewicz and Plueddemann, 2020). A study in the Cosmonaut Sea found that half of the cumulative krill density across that survey was found within 80 km of the 1000 m isobath (the shelf break), and 40% within 40 km (Jarvis et al., 2010). Many researchers found that the zooplankton and related biological quantity are quite high near the shelf break of the SSI (Corzo et al., 2005; Reiss et al., 2008; Joiris and Dochy, 2013). As shown in Figure 8a, chl-concentration observed from MODIS-Terra near shelf-break is obviously higher than that north of shelf.

    Figure 7 Sketch of vertical secondary circulations of the anticyclonic eddy (left) and the shelf break front (right).

    5.2 Limitations of seismic data

    In this study, seismic data has some limitations. As shown in Figure 8b, there may be some thin ice covering the sea surface, which will increase the difficulty of seismic acquisition, and reduce the quality of seismic data. In addition, the minimum distance between the shot and geophone is 863 m, which is too far to acquire high signal-noise ratio data.

    The difference of water columns at middle and low latitudes is mainly caused by the temperature difference, while in polar regions, it is mainly caused by salinity difference. The seismic reflection coefficients are more affected by temperature than salinity (Ruddick et al., 2009). Therefore, seismic oceanographic imaging in polar regions will be more difficult. Sea ice cover will also have a certain impact on seismic acquisition and data signal-to-noise ratio. We may use a larger capacity airgun to collect seismic data in the ice-free period as far as possible to improve the signal-to-noise ratio.

    6 Conclusion

    Using legacy multichannel seismic data AP25 of cruise EW9101 acquired on the northeast of SSI in February 1991, we identified the oceanic submesoscale eddy with the horizontal scale ~4 km and a steep shelf break front that has variable dip angles from 5oto 10o. The submesoscale eddy is an anticyclonic eddy, which carries warm core water, can accelerate ice shelf melting. The upwelling induced by shelf break front may play an important role in transporting nutrients to the sea surface. The seismic images with very high lateral resolution may provide a new insight to understand the submesoscale and even small-scale oceanic phenomena in the interior.

    Figure 8 a, The monthly mean Chl-concentration around SSI in February 2001 from MODIS-Terra. The black line is seismic line AP25. Note that the color scale is displayed in logarithm. b, Thedaily area fraction of sea ice around SSI on February 22, 2003 from NEODAAS.

    Acknowledgements We thank the cruise members of R/V Maurice Ewing cruise EW9101 for acquiring the seismic data. The seismic data is provided by MGDS (https://www.marine-geo.org/tools/search/Files. php?data_set_uid=6923). The legacy CTD data is provided by NCEI (https://www.ncei.noaa.gov/access/global-temperature-salinity-profile- programme/gwi.html). The Chl-data is provided by NASA’s Ocean Color Web (https://oceancolor.gsfc.nasa.gov/). The sea ice data is provided by NEODAAS (https://www.neodaas.ac.uk/Home). This work was financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant nos. IRASCC 01-03-01, 01-03-02), and is funded by the National Natural Science Foundation of China (Grant no. 41976048), and the National Key R&D Program of China (Grant no. 2018YFC0310000). We would like to thank four anonymous reviewers, and Guest Editor Prof. Jiuxin Shi, for their valuable suggestions and comments thatimproved this article.

    Biescas B, Sallarès V, Pelegrí J L, et al. 2008. Imaging meddy finestructure using multichannel seismic reflection data. Geophys Res Lett, 35(11): L11609, doi:10.1029/2008gl033971.

    Capet X, McWilliams J C, Molemaker M J, et al. 2008. Mesoscale to submesoscale transition in the California Current system. part II: frontal processes. J Phys Oceanogr, 38(1): 44-64, doi:10.1175/ 2007jpo3672.1.

    Chelton D B, deSzoeke R A, Schlax M G, et al. 1998. Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr, 28(3): 433-460, doi:10.1175/1520-0485(1998)028<0433: gvotfb>2.0.co;2.

    Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophys Res Lett, 34(15): L15606, doi:10.1029/2007gl030812.

    Condie S A. 1993. Formation and stability of shelf break fronts. J Geophys Res, 98(C7): 12405, doi:10.1029/93jc00624.

    Corzo A, Rodríguez-Gálvez S, Lubian L, et al. 2005. Spatial distribution of transparent exopolymer particles in the Bransfield Strait, Antarctica. J Plankton Res, 27(7): 635-646, doi:10.1093/plankt/fbi038.

    Dong C M, McWilliams J C, Liu Y, et al. 2014. Global heat and salt transports by eddy movement. Nat Commun, 5: 3294, doi:10.1038/ ncomms4294.

    Dong C Z, Song H B, Bai Y, et al. 2010. The latest development of Seismic Oceanography. Prog Geophys, 25(1): 109-123 (in Chinese with English abstract).

    Gawarkiewicz G, Plueddemann A J. 2020. Scientific rationale and conceptual design of a process-oriented shelfbreak observatory: the OOI Pioneer Array. J Oper Oceanogr, 13(1): 19-36, doi:10.1080/1755876X.2019.1679609.

    Gorman A R, Smillie M W, Cooper J K, et al. 2018. Seismic characterization of oceanic water masses, water mass boundaries, and mesoscale eddies SE of New Zealand. J Geophys Res Oceans, 123(2): 1519-1532, doi:10.1002/2017jc013459.

    Gula J, Blacic T M, Todd R E. 2019. Submesoscale coherent vortices in the Gulf Stream. Geophys Res Lett, 46(5): 2704-2714, doi:10.1029/ 2019gl081919.

    Gunn K L, White N, Caulfield C C P. 2020. Time-lapse seismic imaging of oceanic fronts and transient lenses within south Atlantic Ocean. J Geophys Res Oceans, 125(7): e2020JC016293, doi:10.1029/2020jc 016293.

    Gunn K L, White N J, Larter R D, et al. 2018. Calibrated seismic imaging of eddy-dominated warm-water transport across the Bellingshausen Sea, Southern Ocean. J Geophys Res Oceans, 123(4): 3072-3099, doi:10.1029/2018jc013833.

    Holbrook W S, Fer I. 2005. Ocean internal wave spectra inferred from seismic reflection transects. Geophys Res Lett, 32(15): L15604, doi:10.1029/2005gl023733.

    Holbrook W S, Pa?ramo P, Pearse S, et al. 2003. Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301(5634): 821-824, doi:10.1126/science.1085116.

    Huang X H, Song H B, Bai Y, et al. 2013. Estimation of geostrophic velocity from seismic images of mesoscale eddy in the South China Sea. Chin J Geophys, 56(1): 181-187 (in Chinese with English abstract).

    Jacobs S S, Helmer H H, Doake C S M, et al. 1992. Melting of ice shelves and the mass balance of Antarctica. J Glaciol, 38(130): 375-387, doi:10.3189/s0022143000002252.

    Jarvis T, Kelly N, Kawaguchi S, et al. 2010. Acoustic characterisation of the broad-scale distribution and abundance of Antarctic krill () off East Antarctica (30-80°E) in January-March 2006. Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 916-933, doi:10.1016/j.dsr2.2008.06.013.

    Joiris C R, Dochy O. 2013. A major autumn feeding ground for fin whales, southern fulmars and grey-headed albatrosses around the South Shetland Islands, Antarctica. Polar Biol, 36(11): 1649-1658, doi:10.1007/s00300-013-1383-8.

    McWilliams J C. 1985. Submesoscale, coherent vortices in the ocean. Rev Geophys, 23(2): 165, doi:10.1029/rg023i002p00165.

    McWilliams J C. 2016. Submesoscale currents in the ocean. Proc R Soc A, 472(2189): 20160117, doi:10.1098/rspa.2016.0117.

    McWilliams J C, Colas F, Molemaker M J. 2009. Cold filamentary intensification and oceanic surface convergence lines. Geophys Res Lett, 36(18): L18602, doi:10.1029/2009gl039402.

    Nakamura Y, Noguchi T, Tsuji T, et al. 2006. Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio extension front. Geophys Res Lett, 33(23): L23605, doi:10.1029/2006gl027437.

    Nurser A J G, Bacon S. 2014. The Rossby radius in the Arctic Ocean. Ocean Sci, 10(6): 967-975, doi:10.5194/os-10-967-2014.

    Orsi A H, Whitworth T, Nowlin W D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap, 42(5): 641-673, doi:10.1016/0967-0637(95) 00021-W.

    Pingree R D, Le Cann B. 1992. Three anticyclonic slope water oceanic eDDIES (SWODDIES) in the Southern Bay of Biscay in 1990. Deep Sea Res A Oceanogr Res Pap, 39(7-8): 1147-1175, doi:10.1016/0198- 0149(92)90062-X.

    Pinheiro L M, Song H B, Ruddick B, et al. 2010. Detailed 2-D imaging of the Mediterranean outflow and meddies off W Iberia from multichannel seismic data. J Mar Syst, 79(1-2): 89-100, doi:10.1016/j.jmarsys.2009.07.004.

    一是加快雨洪資源利用,著力提升現(xiàn)代水網(wǎng)保障能力。加快南水北調(diào)配套工程建設(shè),開工建設(shè)引黃濟(jì)青改擴(kuò)建工程。積極推進(jìn)雨洪資源利用,先期規(guī)劃實(shí)施一期工程18座大中型水庫增容,新建8座山丘區(qū)水庫、6座地下水庫和32座平原水庫,以及沂沭河洪水調(diào)配東線工程和東平湖增容工程,努力提高水資源供給能力。

    Reiss C S, Cossio A M, Loeb V, et al. 2008. Variations in the biomass of Antarctic krill () around the South Shetland Islands, 1996–2006. ICES J Mar Sci, 65(4): 497-508, doi:10.1093/icesjms/ fsn033.

    Rignot E, Bamber J L, van den Broeke M R, et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci, 1(2): 106-110, doi:10.1038/ngeo102.

    Rignot E, Jacobs S, Mouginot J, et al. 2013. Ice-shelf melting around Antarctica. Science, 341(6143): 266-270, doi:10.1126/science.1235798.

    Ruddick B, Song H B, Dong C Z, et al. 2009. Water column seismic images as maps of temperature gradient. Oceanography, 22(1): 192-205, doi:10.5670/oceanog.2009.19.

    Sallarès V, Biescas B, Buffett G, et al. 2009. Relative contribution of temperature and salinity to ocean acoustic reflectivity. Geophys Res Lett, 36: L00D06, doi:10.1029/2009gl040187.

    Sheen K L, White N, Caulfield C P, et al. 2011. Estimating geostrophic shear from seismic images of oceanic structure. J Atmos Ocean Technol, 28(9): 1149-1154, doi:10.1175/jtech-d-10-05012.1.

    Song H B, Chen J X, Pinheiro L M, et al. 2021. Progress and prospects of seismic oceanography. Deep Sea Res Part I Oceanogr Res Pap, 177: 103631, doi:10.1016/j.dsr.2021.103631.

    Song H B, Pinheiro L M, Ruddick B, et al. 2011. Meddy, spiral arms, and mixing mechanisms viewed by seismic imaging in the Tagus Abyssal Plain (SW Iberia). J Mar Res, 69(4): 827-842, doi:10.1357/0022240 11799849309.

    Tang Q S, Gulick S P S, Sun J, et al. 2020. Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the Gulf of Alaska investigated by marine seismic survey data. J Geophys Res Oceans, 125(1): e2019JC015393, doi:10.1029/2019jc015393.

    Tang Q S, Gulick S P S, Sun L T. 2014. Seismic observations from a Yakutat eddy in the northern Gulf of Alaska. J Geophys Res Oceans, 119(6): 3535-3547, doi:10.1002/2014jc009938.

    Yang S, Song H B, Fan W H, et al. 2021. Submesoscale features of a cyclonic eddy in the Gulf of Papagayo, Central America. Chin J Geophys, 64(4): 1328-1340, doi:10.6038/cjg2021O0204 (in Chinese with English abstract).

    Zhang J C, Luo Y M, Xing J H. 2021. Seismic images of shallow waters over the Shatsky Rise in the Northwest Pacific Ocean. J Ocean Univ China, 20(5): 1079-1088, doi:10.1007/s11802-021-4581-y.

    Zhang Z G, Qiu B, Klein P, et al. 2019. The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nat Commun, 10: 2838, doi:10.1038/s41467-019-10883-w.

    Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322-324, doi:10.1126/science.1252418.

    Zhou M, Niiler P P, Zhu Y W, et al. 2006. The western boundary current in the Bransfield Strait, Antarctica. Deep Sea Res Part I Oceanogr Res Pap, 53(7): 1244-1252, doi:10.1016/j.dsr.2006.04.003.

    Zhou M, Zhu Y W, Dorland R D, et al. 2010. Dynamics of the current system in the southern Drake Passage. Deep Sea Res Part I Oceanogr Res Pap, 57(9): 1039-1048, doi:10.1016/j.dsr.2010.05.012.

    Zhou M X, Zhu G P. 2020. Water mass structure in the euphotic zone around south Shetland Islands, Antarctic during summer 2013. Chin J Polar Res, 32(1): 90-101 (in Chinese with English abstract).

    31 March 2021;

    17 February 2022;

    30 March 2022

    10.13679/j.advps.2021.0004

    , ORCID: 0000-0001-8031-9983, E-mail: hbsong@#edu.cn

    : Yang S, Song H B, Zhang K.Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data. Adv Polar Sci, 2022, 33(1): 110-118,doi:10.13679/j.advps.2021.0004

    猜你喜歡
    山丘區(qū)沭河東平湖
    美麗的沭河公園
    修復(fù)漁業(yè)資源,改善水域環(huán)境
    ——東平湖增殖放流活動實(shí)施
    我家門前沭水流
    1990—2016年東平湖水位變化及其對水質(zhì)的影響
    山丘區(qū)高效節(jié)水灌溉模式與投資控制分析
    蘆 葦
    再去看看東平湖(外二首)
    核桃源(2019年3期)2019-11-14 05:38:55
    城市山丘區(qū)防汛安置點(diǎn)規(guī)劃模型探析
    基于Landsat數(shù)據(jù)的近30年東平湖濕地植被覆蓋演變研究
    山丘區(qū)排澇流量計(jì)算與分析
    国产爱豆传媒在线观看 | 嫁个100分男人电影在线观看| 长腿黑丝高跟| 久热这里只有精品99| 午夜影院日韩av| 少妇粗大呻吟视频| 又紧又爽又黄一区二区| 成人永久免费在线观看视频| 热re99久久国产66热| 国产v大片淫在线免费观看| 久久精品国产99精品国产亚洲性色| 亚洲av电影在线进入| 成人av一区二区三区在线看| 亚洲人成网站在线播放欧美日韩| www日本在线高清视频| 麻豆一二三区av精品| 亚洲在线自拍视频| 亚洲avbb在线观看| 亚洲成a人片在线一区二区| 桃红色精品国产亚洲av| 成人午夜高清在线视频 | 97超级碰碰碰精品色视频在线观看| 男人操女人黄网站| 香蕉国产在线看| 亚洲五月婷婷丁香| 亚洲五月婷婷丁香| 18美女黄网站色大片免费观看| 男女之事视频高清在线观看| 18禁国产床啪视频网站| 久久精品人妻少妇| 久久精品国产99精品国产亚洲性色| 亚洲成人久久爱视频| 真人一进一出gif抽搐免费| 人成视频在线观看免费观看| 亚洲精品国产精品久久久不卡| 男女床上黄色一级片免费看| 日韩欧美一区二区三区在线观看| 两个人免费观看高清视频| 18禁国产床啪视频网站| 欧美激情 高清一区二区三区| 一进一出好大好爽视频| 亚洲国产看品久久| 亚洲欧美日韩无卡精品| 2021天堂中文幕一二区在线观 | 最近最新免费中文字幕在线| 在线免费观看的www视频| 亚洲成人国产一区在线观看| 美女大奶头视频| 黄色 视频免费看| 亚洲国产欧美日韩在线播放| 免费在线观看影片大全网站| 国产精品免费视频内射| 脱女人内裤的视频| 黄片播放在线免费| 久久久久精品国产欧美久久久| 国产视频内射| 97超级碰碰碰精品色视频在线观看| 美女 人体艺术 gogo| 黄色片一级片一级黄色片| 非洲黑人性xxxx精品又粗又长| 国产精品美女特级片免费视频播放器 | 在线天堂中文资源库| 亚洲精品美女久久av网站| av有码第一页| 欧美激情高清一区二区三区| 国内毛片毛片毛片毛片毛片| 久久人妻福利社区极品人妻图片| 亚洲精品美女久久av网站| 亚洲无线在线观看| 黄色视频不卡| 久久久国产精品麻豆| 在线免费观看的www视频| 嫩草影院精品99| 欧美激情高清一区二区三区| 国产精品 国内视频| 18禁裸乳无遮挡免费网站照片 | 国产精品久久电影中文字幕| 午夜久久久在线观看| 午夜免费鲁丝| 日日摸夜夜添夜夜添小说| 可以在线观看毛片的网站| netflix在线观看网站| 婷婷亚洲欧美| 精品国产亚洲在线| www.自偷自拍.com| 成人三级黄色视频| 一进一出好大好爽视频| АⅤ资源中文在线天堂| 视频区欧美日本亚洲| 久久久国产精品麻豆| 久久人妻福利社区极品人妻图片| 中亚洲国语对白在线视频| 香蕉国产在线看| aaaaa片日本免费| √禁漫天堂资源中文www| 91老司机精品| 精品久久久久久久人妻蜜臀av| 午夜日韩欧美国产| 免费无遮挡裸体视频| 夜夜看夜夜爽夜夜摸| 久久欧美精品欧美久久欧美| 精华霜和精华液先用哪个| 日韩欧美三级三区| www.999成人在线观看| 精品乱码久久久久久99久播| 少妇裸体淫交视频免费看高清 | 国产激情偷乱视频一区二区| 黄片播放在线免费| 黑人操中国人逼视频| 日韩国内少妇激情av| 成人特级黄色片久久久久久久| 亚洲欧美日韩高清在线视频| 亚洲成人久久爱视频| 91在线观看av| 99精品久久久久人妻精品| 国产精品精品国产色婷婷| 嫩草影院精品99| 一个人免费在线观看的高清视频| 久久久久久国产a免费观看| 老汉色av国产亚洲站长工具| 一进一出好大好爽视频| 波多野结衣高清作品| 露出奶头的视频| 老鸭窝网址在线观看| 国产亚洲av嫩草精品影院| 欧美日韩福利视频一区二区| 欧美中文日本在线观看视频| 成人18禁高潮啪啪吃奶动态图| 午夜日韩欧美国产| 一二三四在线观看免费中文在| 韩国精品一区二区三区| 搡老岳熟女国产| 天堂动漫精品| 亚洲人成77777在线视频| 两个人视频免费观看高清| 亚洲欧美一区二区三区黑人| 亚洲精品久久国产高清桃花| 人人妻人人澡人人看| 日韩欧美国产在线观看| 亚洲国产日韩欧美精品在线观看 | 动漫黄色视频在线观看| 欧美一区二区精品小视频在线| 久久国产乱子伦精品免费另类| 日韩欧美三级三区| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费日韩欧美大片| 国产视频内射| 丰满人妻熟妇乱又伦精品不卡| 看片在线看免费视频| 亚洲午夜精品一区,二区,三区| ponron亚洲| 久久精品aⅴ一区二区三区四区| 美女高潮到喷水免费观看| 视频在线观看一区二区三区| 操出白浆在线播放| 91大片在线观看| 久久精品亚洲精品国产色婷小说| 黄网站色视频无遮挡免费观看| 啦啦啦免费观看视频1| 琪琪午夜伦伦电影理论片6080| 大型av网站在线播放| 中文字幕精品亚洲无线码一区 | 色婷婷久久久亚洲欧美| 亚洲中文字幕一区二区三区有码在线看 | а√天堂www在线а√下载| 两性夫妻黄色片| 国产激情久久老熟女| 在线国产一区二区在线| 婷婷精品国产亚洲av| 不卡一级毛片| 搡老岳熟女国产| 亚洲成av片中文字幕在线观看| 日日干狠狠操夜夜爽| 国产亚洲av嫩草精品影院| 成熟少妇高潮喷水视频| 亚洲在线自拍视频| 曰老女人黄片| 欧美日韩黄片免| 在线视频色国产色| 午夜免费观看网址| 黄色视频,在线免费观看| 禁无遮挡网站| 国产国语露脸激情在线看| 美女扒开内裤让男人捅视频| 久久 成人 亚洲| 动漫黄色视频在线观看| 99re在线观看精品视频| 岛国视频午夜一区免费看| а√天堂www在线а√下载| 精品无人区乱码1区二区| 成人三级做爰电影| 免费在线观看日本一区| 国产精品98久久久久久宅男小说| www.自偷自拍.com| 亚洲av美国av| 男女之事视频高清在线观看| tocl精华| 国产97色在线日韩免费| 欧美一级a爱片免费观看看 | 午夜免费鲁丝| 欧美乱色亚洲激情| 亚洲人成网站在线播放欧美日韩| 巨乳人妻的诱惑在线观看| 国产三级在线视频| 天堂√8在线中文| 麻豆av在线久日| 少妇的丰满在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产成人精品久久二区二区免费| 亚洲国产高清在线一区二区三 | 精品免费久久久久久久清纯| 这个男人来自地球电影免费观看| x7x7x7水蜜桃| 两个人看的免费小视频| 亚洲专区国产一区二区| 最好的美女福利视频网| 91成年电影在线观看| 午夜精品在线福利| 国产97色在线日韩免费| 中文字幕高清在线视频| 夜夜看夜夜爽夜夜摸| 黄色女人牲交| 黄色视频,在线免费观看| 亚洲色图 男人天堂 中文字幕| 色av中文字幕| 欧美 亚洲 国产 日韩一| av天堂在线播放| 男人操女人黄网站| 午夜久久久在线观看| 欧美激情久久久久久爽电影| 亚洲国产毛片av蜜桃av| 色综合站精品国产| 亚洲五月婷婷丁香| 高清在线国产一区| 国产精品98久久久久久宅男小说| 亚洲第一av免费看| 日韩视频一区二区在线观看| 操出白浆在线播放| 脱女人内裤的视频| 中文亚洲av片在线观看爽| 97人妻精品一区二区三区麻豆 | 国产国语露脸激情在线看| 黄色a级毛片大全视频| 国产精品国产高清国产av| 2021天堂中文幕一二区在线观 | 成人欧美大片| 亚洲国产欧美日韩在线播放| www.999成人在线观看| 又大又爽又粗| 久久久久国产一级毛片高清牌| 亚洲专区字幕在线| 欧美又色又爽又黄视频| 久久久精品欧美日韩精品| 国产真实乱freesex| 男女那种视频在线观看| 午夜两性在线视频| 亚洲成人国产一区在线观看| 色精品久久人妻99蜜桃| 亚洲av电影不卡..在线观看| 成人国产综合亚洲| 亚洲片人在线观看| 亚洲av熟女| 亚洲成国产人片在线观看| 不卡av一区二区三区| 亚洲自拍偷在线| 99国产综合亚洲精品| 性欧美人与动物交配| 欧美激情久久久久久爽电影| av天堂在线播放| 亚洲av电影在线进入| 精品一区二区三区四区五区乱码| 日日爽夜夜爽网站| 日本免费一区二区三区高清不卡| 88av欧美| 久久久久九九精品影院| 亚洲欧洲精品一区二区精品久久久| 日韩精品中文字幕看吧| 一a级毛片在线观看| 成人午夜高清在线视频 | 欧美日韩黄片免| 老汉色av国产亚洲站长工具| 欧美色视频一区免费| 成人精品一区二区免费| 韩国精品一区二区三区| 久久久精品欧美日韩精品| 国产成人一区二区三区免费视频网站| 午夜日韩欧美国产| 欧美av亚洲av综合av国产av| 听说在线观看完整版免费高清| 桃色一区二区三区在线观看| 女人爽到高潮嗷嗷叫在线视频| 在线视频色国产色| 日韩av在线大香蕉| 欧洲精品卡2卡3卡4卡5卡区| 女同久久另类99精品国产91| 亚洲自拍偷在线| 精品免费久久久久久久清纯| 亚洲av电影不卡..在线观看| 日本成人三级电影网站| 精品乱码久久久久久99久播| 国产熟女午夜一区二区三区| 淫妇啪啪啪对白视频| 亚洲电影在线观看av| 香蕉av资源在线| 真人一进一出gif抽搐免费| 真人做人爱边吃奶动态| 波多野结衣高清无吗| 欧美性猛交╳xxx乱大交人| 国产亚洲欧美98| 美国免费a级毛片| 国内揄拍国产精品人妻在线 | 久久精品国产99精品国产亚洲性色| 久久久久免费精品人妻一区二区 | 搡老妇女老女人老熟妇| 精品欧美一区二区三区在线| 欧美 亚洲 国产 日韩一| 国产高清激情床上av| 日韩av在线大香蕉| 日本三级黄在线观看| 国产亚洲av高清不卡| 亚洲久久久国产精品| 中文字幕精品亚洲无线码一区 | 日韩欧美国产一区二区入口| 视频区欧美日本亚洲| 亚洲av电影不卡..在线观看| 久久精品91蜜桃| 亚洲无线在线观看| 亚洲国产中文字幕在线视频| 中文字幕高清在线视频| 精品电影一区二区在线| 90打野战视频偷拍视频| 亚洲第一欧美日韩一区二区三区| 久久国产精品影院| 老汉色av国产亚洲站长工具| 97超级碰碰碰精品色视频在线观看| 搞女人的毛片| 国产91精品成人一区二区三区| av福利片在线| 91九色精品人成在线观看| 精华霜和精华液先用哪个| 国产亚洲av嫩草精品影院| 看黄色毛片网站| 国产高清激情床上av| 日韩有码中文字幕| 欧美乱色亚洲激情| 久久精品国产亚洲av香蕉五月| 国产亚洲av嫩草精品影院| 91在线观看av| 草草在线视频免费看| 男人操女人黄网站| 亚洲自偷自拍图片 自拍| 岛国视频午夜一区免费看| 97超级碰碰碰精品色视频在线观看| 精品福利观看| 中文字幕人妻丝袜一区二区| 欧美色欧美亚洲另类二区| 在线观看免费视频日本深夜| 久久久水蜜桃国产精品网| 麻豆av在线久日| 国产久久久一区二区三区| 身体一侧抽搐| 亚洲人成77777在线视频| 国内久久婷婷六月综合欲色啪| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av| 看免费av毛片| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看| 亚洲av中文字字幕乱码综合 | 可以免费在线观看a视频的电影网站| 亚洲午夜精品一区,二区,三区| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 麻豆成人av在线观看| 黑丝袜美女国产一区| 国产精品永久免费网站| 亚洲中文字幕一区二区三区有码在线看 | 99久久无色码亚洲精品果冻| 久久久精品国产亚洲av高清涩受| 婷婷亚洲欧美| 巨乳人妻的诱惑在线观看| 国产色视频综合| 成人18禁高潮啪啪吃奶动态图| 一区二区三区激情视频| 国产精品av久久久久免费| 在线av久久热| 免费在线观看视频国产中文字幕亚洲| 国产欧美日韩一区二区三| 啪啪无遮挡十八禁网站| √禁漫天堂资源中文www| 自线自在国产av| 老汉色av国产亚洲站长工具| 日韩视频一区二区在线观看| 在线观看免费午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人的私密视频| 亚洲av美国av| 欧美中文日本在线观看视频| 欧美激情久久久久久爽电影| 88av欧美| 午夜精品在线福利| 日本熟妇午夜| 男女下面进入的视频免费午夜 | 麻豆av在线久日| 国产精品亚洲av一区麻豆| 看黄色毛片网站| 中文字幕人成人乱码亚洲影| 一夜夜www| 国内精品久久久久精免费| 日韩中文字幕欧美一区二区| 久热这里只有精品99| 黄色片一级片一级黄色片| 亚洲中文日韩欧美视频| 搡老岳熟女国产| 国产精品久久久久久人妻精品电影| 成人一区二区视频在线观看| 国内少妇人妻偷人精品xxx网站 | 人妻久久中文字幕网| 757午夜福利合集在线观看| 国产精品九九99| 国内精品久久久久久久电影| 久久青草综合色| 欧美av亚洲av综合av国产av| 免费看十八禁软件| 国产亚洲精品综合一区在线观看 | 一二三四在线观看免费中文在| 国产精品日韩av在线免费观看| 这个男人来自地球电影免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产又爽黄色视频| 色精品久久人妻99蜜桃| 女人爽到高潮嗷嗷叫在线视频| 国产不卡一卡二| 女警被强在线播放| 欧美日本视频| 免费看a级黄色片| 久久久久国内视频| 亚洲精品色激情综合| а√天堂www在线а√下载| 99久久综合精品五月天人人| 757午夜福利合集在线观看| 亚洲精品国产精品久久久不卡| 夜夜夜夜夜久久久久| 国产精品综合久久久久久久免费| 久久久久久久午夜电影| 欧美色欧美亚洲另类二区| 亚洲电影在线观看av| a级毛片a级免费在线| 中文字幕最新亚洲高清| 国产免费男女视频| 精品人妻1区二区| 高清毛片免费观看视频网站| 久久 成人 亚洲| 18禁国产床啪视频网站| 久久香蕉激情| 午夜两性在线视频| 19禁男女啪啪无遮挡网站| 国产av一区在线观看免费| 久久香蕉精品热| www.999成人在线观看| 午夜久久久在线观看| 中文亚洲av片在线观看爽| 亚洲九九香蕉| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品国产区一区二| 一个人免费在线观看的高清视频| 看免费av毛片| 2021天堂中文幕一二区在线观 | 亚洲人成网站高清观看| 久久久久久免费高清国产稀缺| 69av精品久久久久久| 人妻久久中文字幕网| 日本五十路高清| 欧美激情高清一区二区三区| 日日爽夜夜爽网站| av中文乱码字幕在线| 俺也久久电影网| 成人精品一区二区免费| 亚洲自拍偷在线| bbb黄色大片| 国产精品永久免费网站| 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 黑人操中国人逼视频| 国产av不卡久久| 一进一出抽搐动态| 女同久久另类99精品国产91| 国产精品一区二区三区四区久久 | 精品久久久久久久久久久久久 | 丝袜在线中文字幕| 99riav亚洲国产免费| 成人18禁高潮啪啪吃奶动态图| av欧美777| 1024手机看黄色片| 妹子高潮喷水视频| 一级片免费观看大全| 久久 成人 亚洲| 国产成年人精品一区二区| 很黄的视频免费| 韩国av一区二区三区四区| 久热这里只有精品99| 中亚洲国语对白在线视频| 国内精品久久久久精免费| 国产亚洲精品第一综合不卡| 热99re8久久精品国产| 精品卡一卡二卡四卡免费| 美女高潮喷水抽搐中文字幕| 欧美色欧美亚洲另类二区| 日韩免费av在线播放| 欧美zozozo另类| 色婷婷久久久亚洲欧美| 亚洲激情在线av| 一进一出抽搐动态| 欧美精品亚洲一区二区| 精品久久久久久久毛片微露脸| 国产精品亚洲av一区麻豆| 亚洲精品一卡2卡三卡4卡5卡| 亚洲九九香蕉| 伦理电影免费视频| 久久亚洲精品不卡| 欧美乱妇无乱码| 成人特级黄色片久久久久久久| 国内毛片毛片毛片毛片毛片| 亚洲国产日韩欧美精品在线观看 | 少妇熟女aⅴ在线视频| 他把我摸到了高潮在线观看| 精品久久久久久成人av| 亚洲国产高清在线一区二区三 | 亚洲国产精品999在线| 国产视频内射| 777久久人妻少妇嫩草av网站| 男女床上黄色一级片免费看| xxx96com| 日韩成人在线观看一区二区三区| 精品无人区乱码1区二区| 女同久久另类99精品国产91| 一级片免费观看大全| 精品一区二区三区av网在线观看| 精品乱码久久久久久99久播| 好男人在线观看高清免费视频 | 美女高潮到喷水免费观看| 窝窝影院91人妻| 久久国产精品男人的天堂亚洲| 国产v大片淫在线免费观看| 成人三级黄色视频| 高清毛片免费观看视频网站| 欧美乱色亚洲激情| 18禁美女被吸乳视频| 最新美女视频免费是黄的| 国产一卡二卡三卡精品| 国产日本99.免费观看| 最好的美女福利视频网| 麻豆国产av国片精品| 欧美日韩黄片免| 最近最新免费中文字幕在线| 天天一区二区日本电影三级| 亚洲av日韩精品久久久久久密| 免费一级毛片在线播放高清视频| 久久国产精品男人的天堂亚洲| 精品免费久久久久久久清纯| 黄色毛片三级朝国网站| 亚洲第一青青草原| 女人被狂操c到高潮| 在线观看66精品国产| 一个人观看的视频www高清免费观看 | 亚洲国产欧洲综合997久久, | 不卡一级毛片| 1024手机看黄色片| 国产精品国产高清国产av| 久久亚洲真实| 国产亚洲精品一区二区www| 黑丝袜美女国产一区| 精品国产乱子伦一区二区三区| 国产一区二区在线av高清观看| 日日夜夜操网爽| 国产精品二区激情视频| 国产精品电影一区二区三区| 精品国产美女av久久久久小说| 久久久久精品国产欧美久久久| 亚洲自拍偷在线| 成人三级做爰电影| 成人国产一区最新在线观看| 老鸭窝网址在线观看| 热re99久久国产66热| 宅男免费午夜| 亚洲欧美激情综合另类| 色哟哟哟哟哟哟| 午夜激情福利司机影院| 精品国产亚洲在线| 欧美日韩一级在线毛片| 精品福利观看| 哪里可以看免费的av片| 男男h啪啪无遮挡| 18禁国产床啪视频网站| 啦啦啦观看免费观看视频高清| 亚洲国产看品久久| 亚洲欧洲精品一区二区精品久久久| 亚洲第一av免费看| www.熟女人妻精品国产| 男人舔奶头视频| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 哪里可以看免费的av片| 一级毛片高清免费大全| 宅男免费午夜| 亚洲精品av麻豆狂野| 色综合亚洲欧美另类图片| 黑人欧美特级aaaaaa片| 97人妻精品一区二区三区麻豆 | 高清在线国产一区| 色在线成人网| 97超级碰碰碰精品色视频在线观看| 国产真人三级小视频在线观看| 亚洲成国产人片在线观看| 中文字幕精品亚洲无线码一区 |