• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variability of size-fractionated phytoplankton standing stock in the Amundsen Sea during summer

    2022-07-20 01:34:50ZHANGWeiHAOQiangHEJianfengPANJianming
    Advances in Polar Science 2022年1期

    ZHANG Wei, HAO Qiang*, HE Jianfeng & PAN Jianming

    Variability of size-fractionated phytoplankton standing stock in the Amundsen Sea during summer

    ZHANG Wei1,2, HAO Qiang1,2*, HE Jianfeng3& PAN Jianming1,2

    1Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou 310000, China;2Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310000, China;3Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai 200136, China

    The size-fractionated composition of phytoplankton greatly influences the transfer efficiency of biomass in pelagic food chains and the biological carbon flux from surface waters to the deep sea. To better understand phytoplankton abundance and composition in polynya, ice zone, and open ocean regions of the Amundsen Sea Sector of the Southern Ocean (110°W–150°W), its size-fractionated distribution and vertical structure are reported for January to February 2020. Vertical integrated (0–200 m) chlorophyll (Chl)concentrations within Amundsen polynya regions are significantly higher than those within ice zone (test,< 0.01) and open ocean (test,< 0.01) regions, averaging 372.3 ± 189.0, 146.2 ± 152.1, and 49.0 ± 20.8 mg·m?2, respectively. High Chl is associated with shallow mixed-layer depths and near-shelf regions, especially at the southern ends of 112°W and 145°W. Netplankton (> 20 μm) contribute 60% of the total Chl in Amundsen polynya and sea ice areas, and form subsurface chlorophyll maxima (SCM) above the pycnocline in the upper water column, probably because of diatom blooms. Net-, nano-, and picoplankton comprise 39%, 32%, and 29% of total Chl in open ocean stations, respectively. The open-ocean SCM migrates deeper and is below the pycnocline.The Amundsen Sea SCM is moderately, positively correlated with the euphotic zone depth and moderately, negatively correlated with column-integrated net- and nanoplankton Chl.

    size-fractionated phytoplankton, chlorophyll, subsurface chlorophyll maxima, polynya, Amundsen Sea

    1 Introduction0F

    Because of its high productivity and extensive sea–air gas and heat exchange, the Amundsen Sea is disproportionately important in Antarctic elemental cycles relative to its size (Sarmiento et al., 2004). Polynyas, seasonal open waters surrounded by sea ice, are focal points for the exchange of matter and energy between the atmosphere and polar oceans (Smith Jr. and Barber, 2007). Polynyas in the Amundsen Sea are expansive, the most productive in the Antarctic, and vary substantially between years (Arrigo et al., 2012). Seasonally averaged chlorophyll(Chl-) concentrations in Amundsen Sea polynya, 2.2 ± 3.0 mg·m?3, are almost 47% higher than the much larger Ross Sea polynya (1.5 ± 1.5 mg·m?3), with mean Chl varying substantially from 1997–2002 (138% of the mean) (Yager et al., 2012). Substantial interannual variations in Chl might be attributed to recent rapid glacier and ice cover melting in the Amundsen Sea (Rignot et al., 2008), driven mainly by increased relatively warm (~ 2°C) Circumpolar Deep Water below the ice shelf (Jacobs et al., 2011). Normally, Amundsen Sea Chl begins to increase in October because of increased light, and peaks during the austral summer in December and January (Arrigo and van Dijken, 2003).

    Environmental changes in the Southern Ocean significantly impact phytoplankton community structure. Moline et al. (2004) reported that periodic shifts in phytoplankton community structure, from netplankton (large diatoms) to relatively small nanoplankton (cryptophytes), might be closely related to changes in glacial meltwater runoff. In the nutrient-rich, strongly stratified western Ross Sea waters in the summer, the highest Chl (129–358 mg·m?2in the upper 100 m) occurred in the stratified region and was dominated by netplankton. However, in nutrient-poor, unstratified south-central Ross Sea waters in early spring, moderate Chl (55–186 mg·m?2in the upper 100 m) occurred in polynya and ice-edge areas, dominated by nanoplankton () (Goffart et al., 2000).

    Phytoplankton size structure is controlled by complex interactions between physical mixing conditions, the light environment, and macro- and micronutrient concentrations. Changes in phytoplankton community structure have significant biological and chemical implications (Fragoso and Smith, 2012). For example,(nanoplankton) absorbs twice as much CO2per mole of phosphate removed than do diatoms (netplankton) (Arrigo et al., 1999). Additionally, it is not the preferred prey of microzooplankton, and its presence is closely linked to the dimethyl sulfide cycle between the ocean and atmosphere (Liss et al., 1994; Caron et al., 2000). Picoplankton also plays an important role in energy flow and nutrient cycling in marine planktonic ecosystems. Phototrophic picoplankton contributes significantly to phytoplankton biomass and production, while non-photosynthetic picoplankton is instrumental in carbon and nutrient transformation and remineralization.Therefore, monitoring of both the total and size-fractionated phytoplankton in the Amundsen Sea is necessary to identify responses of these marine ecosystems to environmental change.

    Southern Ocean phytoplankton are important in Antarctic food webs and for regulating global climate through the oceanic carbon cycle (Deppeler and Davidson, 2017). In this region, phytoplankton blooms mainly comprise large diatoms with a unique physiology adapted to low iron, light, and temperature conditions (Strzepek et al., 2019). Under severe iron limitation and in intensely stratified waters, large diatoms aggregate in the pycnocline and form a subsurface chlorophyll maximum (SCM) in the Seasonal Ice Zone (Gomi et al., 2007). Most commonly tropical SCM forms just above the pycnocline and is directly related to an increase in phytoplankton abundance. Unlike in the tropics, the Southern Ocean SCM is usually located at or below the pycnocline (Tripathy et al., 2015). The SCM contributes to water column primary production, facilitating large-scale downward carbon export events, and represents an area where macrofauna forage and intense zooplanktonic grazing occurs (Siegelman et al., 2019).

    With limited information available on the spatial and temporal formation of the Antarctic SCM, especially in the Amundsen Sea, studying its formation in this area will help identify the distributions of subsurface phytoplankton communities that are currently undetectable by satellites. We investigate total and size-fractionated phytoplankton and subsurface chlorophyll maxima in the Amundsen Sea polynya, ice zones, and open ocean regions during the austral summer of 2020. Differences in phytoplankton composition and bathymetric distribution between the Amundsen polynya, ice zones, and open ocean are identified, and possible reasons are discussed.

    2 Materials and methods

    2.1 Study area and sea ice concentrations

    The western-Antarctic Amundsen Sea lies between Cape Flying Fish (the northwestern tip of Thurston Island) and Cape Dart, Siple Island. From 3 January to 5 February 2020 aboard the Chinese icebreaker R/V, samples from 46 size-fractionated Chl stations (Figure 1) from Amundsen polynya (AP), ice zones, and open ocean regions were collected. Polynya regions had sea-ice concentrations below 10% and were surrounded by ice (Arrigo and van Dijken, 2003). Two polynya regions (red dashed ellipses) were identified, with labelled dark dots indicating polynya stations (Figure 2). Sea-ice was absent in open-ocean stations. Data for sea-ice concentrations are derived from the Norwegian Meteorological Institute (https://osi-saf. eumetsat.int/products/sea-ice-products).

    Figure 1 Amundsen Sea size-fractionated Chl-stations (dots) and transects (lines), 2020.

    Figure 2 Sea ice concentration derived from the Norwegian Meteorological Institute. Dashed ellipses: red, polynya regions; black, open-ocean regions. Labeled dark dots indicate polynya stations.

    2.2 Euphotic zone and mixed layer depths (MLDs)

    We define the depth of the mixed layer as the depth at which the density is 0.05 kg·m?3higher than that of the sea surface (Brainerd and Gregg, 1995). The depth at which photosynthetically active radiation (PAR) is 1% that of surface PAR is defined as the euphotic zone depth (eu). Vertical light attenuation (d) for each station is calculated from the linear relationship established betweendand average Chl-concentrations (Morel et al., 2007).euis quantitatively related withd(Yang et al., 2015) as follows:

    2.3 Size-fractionated Chl analyses and vertical distribution

    Water samples for size-fractionated Chl were obtained for each station at 7 depths (0, 30, 50, 75, 100, 150, 200 m) using a CTD rosette sampler. Water samples (0.5–1 L) were filtered sequentially through 20 and 2 μm Nucleopore filters (47 mm) and Whatman GF/F filters (47 mm). Chl on filters was extracted in 90% acetone at ?20°C for 24 h. Chl samples were measured onboard using a Trilogy fluorometer (Turner Designs, USA) (Holm-Hansen et al., 1965).

    2.4 SCM analysis

    SCM was obtained by fitting measured vertical Chl-data to a slightly modified version of the MB89 pattern (Uitz et al., 2006), using:

    2.5 Data analysis

    A Spearman correlation analysis was conducted to examine correlations between SCM and sea ice concentration,eu, MLD, and size-fractionated column-integrated Chl at survey stations. A Students-test was used to analyze for significant differences. Analyses were performed using SPSS 22.0.

    3 Results

    3.1 Euphotic zone and MLDs

    euranged 11.3–24.3 m in the AP, 33.7–74.5 m in open ocean, and 13.1–53.5 m in ice zones (Table 1). Euphotic zone depth at AP stations were significantly lower than in open sea (test,< 0.01) and sea ice (test,< 0.05) stations because of higher Chl-concentrations.

    MLD in AP, open ocean, and ice zones are detailed in Table 1. Because of stratification from melted sea ice or surface warming, MLD ranged 10–55 m at all stations. MLD in AP, open ocean, and ice zones did not differ significantly (test,> 0.05).

    3.2 Total and size-fractionated Chl

    Total column (200 m) integrated Chl (Figure 3) in AP stations ranged 167.6–766.3 mg·m?2(mean ± SD, 372.3 ± 189.0 mg·m?2), in open ocean stations 18.6–90.7 mg·m?2(49.0 ± 20.8 mg·m?2), and in ice zone stations 35.4– 424.8 mg·m?2(146.2 ± 152.1 mg·m?2). The highest and lowest integrated Chl values were 766.3 mg·m?2at station RA2-2 and 18.6 mg·m?2at station A3-8. Total column-integrated Chl in the AP was significantly higher than in open ocean (test,< 0.01) and ice zones (test,< 0.01). Total column-integrated Chl within ice zones was greater than in open ocean regions, but the difference was not significant (test,> 0.05). Highest Chl values occurred near shelf regions, especially at the southern ends of transects RA2 and A11.

    Table 1 Amundsen Sea sea-ice concentration, Zeu, MLD, SCM, size-fractionated Chl, and total column integrated Chl

    Continued

    Figure 3 Total column-integrated Chl (0–200 m).

    Column-integrated Chl (0–200 m, mg·m?2) values for netplankton (> 20 μm), nanoplankton (2–20 μm), and picoplankton (0.2–2 μm) in AP, open ocean, and ice zones are presented in Figure 4. Highest and lowest netplankton values were 590.9 mg·m?2at station RA2-2 and 1.8 mg·m?2at station A3-8, ranging 66.0–590.9 mg·m?2(233.6 ± 159.8 mg·m?2) in AP stations, 1.8–62.3 mg·m?2(19.0 ± 14.8 mg·m?2) in open ocean stations, and 3.4–350.2 mg·m?2(96.5 ± 132.3 mg·m?2) in ice zones (Figure 4a). Column-integrated netplankton Chl in AP stations was significantly higher than in open sea (test,< 0.01) and sea-ice (test,< 0.05) stations. The netplankton and total Chl-distributions were similar.

    Highest and lowest nanoplankton Chl values were 140.6 mg·m?2at station A9-2 and 6.1 mg·m?2at station A3-8, ranging30.9–140.6 mg·m?2(75.9 ± 34.0 mg·m?2) in AP stations, 6.1–34.6 mg·m?2(15.9 ± 7.0 mg·m?2) in open ocean stations, and 12.8–77.6 mg·m?2(30.9 ± 20.3 mg·m?2) in ice zones (Figure 4b). Nanoplankton Chl in AP stations was significantly higher than in the open ocean (test,< 0.01) and ice zones (test,< 0.01). Column-integrated nanoplankton Chl in ice zones was significantly higher than in the open ocean regions (test,< 0.05).

    Figure 4 Column-integrated Chl (0–200 m) for netplankton (> 20 μm, a), nanoplankton (2–20 μm, b), and picoplankton (0.2–2 μm, c).

    Highest and lowest integrated picoplankton Chl values were 173.9 mg·m?2at station A9-2 and 8.0 mg·m?2at station A3-10, ranging 16.3–173.9 mg·m?2(62.8 ± 42.0 mg·m?2) in AP stations, 8.0–32.7 mg·m?2(14.1 ± 5.3 mg·m?2) in open ocean stations, and 15.1–22.8 mg·m?2(18.8 ± 2.6 mg·m?2) in ice zones (Figure 4c). Picoplankton Chl in the AP was significantly higher than in the open ocean (test,< 0.01) and ice zones (test,< 0.01). Although the integrated picoplankton Chl in ice zones was similar to that of open ocean regions, they differed significantly (test,< 0.05).

    Size-fractionated Chl indicates two distinctly different phytoplankton communities exist in the Amundsen Sea (Figure 5). In polynya, net-, nano-, and picoplankton cells comprise 63%, 20%, and 17% of the total Chl, respectively (Figure 5b).In ice zones, net-, nano-, and picoplankton cells comprise 63%, 23%, and 14% of the total Chl, respectively (Figure 5c). In contrast, the contribution to total Chl of net- (39%), nano- (32%), and picoplankton(29%) in open ocean stations was more evenly spread. The total phytoplankton community in the Amundsen Sea was dominated by netplankton, accounting for 60% of the total Chl, followed by nano-plankton (22%) and picoplankton (18%) (Figure 5a).

    Figure 5 Size-fractionated Chl compositions in the overall Amundsen Sea (a), polynya (b), ice zones (c), and open ocean areas (d).

    Chl-vertical distributions are shown in Figure 6. Maximum Chl occurs above 50 m, and decreases from 50–200 m Chl at all stations. Average Chl in the upper 50 m at AP stations, 4.9 ± 2.9 mg·m?3, was significantly higher than in ice zones (2.9 ± 3.4 mg·m?3,test,< 0.01) and open ocean stations (0.5 ± 0.4 mg·m?3,test,< 0.01). Intermediate average Chl values occurred in ice zones; open ocean stations had the lowest average Chl-concentration.

    Chl-vertical distributions from 0–200 m along transects RA1–3, and A3 are presented in Figure 7. Maxima in the upper 50 m are associated with AP stations near the coast along all transects, and deep Chl-(> 50 m) are associated with AP station RA2-2 along transect RA2 (Figure 7b).

    3.3 SCM

    Chl-vertical profiles and corresponding modeled dimensionless Chl-profiles are shown in Figure 8. Measured Chl-vertical profiles were used in conjunction with equation (2), with the fitting procedure allowing the five parameters in this equation to be derived for each station (Table S1). Corresponding modeled dimensionless Chl-profiles compared well with measured Chl-vertical profiles for all stations (Figure 8). TheSCM ranged 0– 59.0 m (20.0 ± 16.5 m) in AP stations, 0–86.9 m (36.6 ± 28.6 m) in the open ocean, and 0–86.9 m (22.9 ± 31.2 m) in ice zones (Table 1). Average SCM values are lowest in the AP, followed by ice zones, then the open ocean.

    SCM distributions along transects RA1 (a), RA2 (b), RA3 (c), and A3 (d) are presented in Figure 7. In polynya and ice zones near the shelf, the SCM was very low and generally remained at approximately 10 m. As the latitude decreases, in the open ocean, the SCM occurred deeper, excepting station RA1-5 on transect RA1, RA2-5 on transect RA2, and A3-10 on transect A3. Marginal ice zone stations RA1-5 and RA2-5, where sea ice melting released phytoplankton and iron, resulted in the SCM occurring in the upper water column, above the mixed layer. At station A3-10, physical processes such as eddies may have reintroduced the limiting micro-nutrient iron from depths into the upper water column, causing a phytoplankton bloom, lowering the SCM.

    4 Discussion

    4.1 Amundsen Sea Chl-a concentrations

    Phytoplankton concentrations in the Amundsen Sea vary seasonally (Kim et al., 2015). Average column-integrated Chl from 0–30 m peaked in summer and decreased in winter (Smith et al., 1998). A comparison of dominant phytoplankton and Chl-concentrations throughout the Southern Ocean is presented in Table 2. Lee et al. (2012) reported high average Chl in polynya stations (395.1 ± 219.4 mg·m?2) compared to non-polynya stations (33.2 ± 23.9 mg·m?2) integrated from the surface to the bottom of the euphotic zone from 21 December 2010 to 23 January 2011. In contrast, Kim et al. (2016) reported a relatively low average Chl (49.2 mg·m?2) from 11 February to 14 March 2012. We report average Chl (372.32 ± 189.00 mg·m?2) from 3 January to 5 February 2020, column integrated from 0–200 m in polynya, being twice higher than in ice zones (146.17 ± 152.07 mg·m?2) and seven times higher than in open ocean areas (48.95 ± 20.82 mg·m?2). Ouraverage Chl in polynya areas is within the range reported by Lee et al. (2012), but significantly higher in non-polynya areas, possibly due to different integrated depths between studies (~ 50 m in the euphotic zone in Lee et al. (2012), but 200 m herein).

    4.2 Amundsen Sea phytoplankton composition

    Phytoplankton community structure can significantly affect trophic levels, phytoplankton biochemical composition, and particulate organic carbon transfer efficiency in pelagic food chains (Harrison et al., 1990; Lee et al., 2007; Cotti-Rausch et al., 2020). While the biomass of phytoplankton of given sizes can affect food webs, the activity of size fractions is more directly relevant to trophic dynamics and biogeochemical cycling (Cotti-Rausch et al., 2020). At higher ammonium concentrations (~ 5 μM) in the Chukchi Sea and Bering Strait, small phytoplankton (< 5 μm) incorporate more carbon into proteins than larger phytoplankton (> 5 μm) (Lee et al., 2009). We reported netplankton (> 20 μm) to dominate (63%) in polynya and ice zones, possibly because ofblooms in seasonal ice zones and coastal Antarctic waters (DiTullio et al., 2000). In contrast, with decreased latitude, the proportion of netplankton gradually decreases and that of nano- and picoplankton increases. The three size-fractionated phytoplankton groups are more evenly distributed in open ocean stations, possibly because of iron limitation inhibiting uptake of major macronutrients by phytoplankton (Peloquin and Smith, 2007).

    Figure 6 Chl-vertical distributions in polynya (a), ice zone (b), and open ocean (c) stations.

    Figure 7 Chl-distributions from 0–200 m along transects RA1 (a), RA2 (b), RA3 (c), and A3 (d). Dashed lines: black, MLD; orange, SCM.

    Figure 8 Chl-vertical profiles and corresponding modeled dimensionless Chl-profiles at polynya (a), ice zone (b), and open-ocean (c) stations.

    4.3 Amundsen Sea subsurface chlorophyll maxima

    The stability of the tropical SCM relies on the vertical mixing input of limiting nutrients that enter the base of the mixed layer through the pycnocline, combined with a light field that decreases exponentially with depth (Latasa et al., 2017). This creates an optimum depth for phytoplankton to grow (at the SCM), usually just above the pycnocline (Baldry et al., 2020). Unalike tropical regions, sufficient subsurface inputs of iron, the limiting micro-nutrient, are not widely present in the Southern Ocean (Arteaga et al., 2019). The Southern Ocean SCM is influenced by various processes, such as iron fertilization from land masses, sea-ice retreat, eddies, buoyancy regulation by large diatoms, and grazing (Ardyna et al., 2019). In Amundsen Sea polynya and ice edge areas, sea-ice retreat releases phytoplankton, alleviates light limitation, and increases bioavailable iron concentrations with the melting of ice, resulting in surface water phytoplankton blooms. Around the Amundsen Sea shelf, the continuous supply of iron from ocean depths because of the Antarctic Circumpolar Current promotes large-scale phytoplankton blooms dominated by diatoms (netplankton, > 20 μm) in surface waters. The Amundsen Sea SCM is moderately, positively correlated witheu, and moderately, negatively correlated with column-integrated net- and nanoplankton Chl (Table 3). With diatom blooms,eudecreases and diatom SCMs occur in surface blooms, above the pycnocline. The diatom SCM forms under continuous iron or silicate limiting conditions with the reduction of surface blooms (Gomi et al., 2007).When nutrients from meltwater are rapidly depleted, the net- and nanoplankton column-integrated Chl gradually decreases and the surface bloom at the sea ice edge sinks rapidly. Sinking phytoplankton find an appropriate environment deeper than the pycnocline, aggregating to form a SCM in the Amundsen Sea open ocean.

    5 Summary and conclusions

    Average column-integrated (0–200 m) Chl from 3 January to 5 February 2020 in the Amundsen polynya ranged 372.3 ± 189.0 mg·m?2, consistent with values reported by Lee et al. (2012) for average Chl integrated from surface to the bottom of the euphotic zone in polynya regions. However, our average Chl in non-polynya areas is significantly higher than that reported by Lee et al. (2012). Phytoplankton communities in Amundsen Sea polynya and ice zones are dominated by netplankton, which accounts for 60% of the total Chl because ofblooms (DiTullio et al., 2000). Diatom SCMs are located in surface blooms, above the pycnocline. In contrast, net-, nano-, and picoplankton contribute more evenly to total Chl in open-ocean stations, likely because of iron limitation. In the open ocean, because of iron and light colimitation, the SCM migrates deeper and occurs below the pycnocline. The Amundsen Sea SCM is moderately correlated witheuand column-integrated net- and nanoplankton Chl. In the Amundsen Sea, sea-ice concentrations decrease by about 7% per decade (Cavalieri and Parkinson, 2008). To better understand the mechanisms driving significant differences in Chl, phytoplankton composition, and SCM depths among polynya and non-polynya areas in the Amundsen Sea, more seasonal and annual surveys are required.

    Table 2 Comparison of dominant phytoplankton and Chl-a concentrations in the Southern Ocean

    Notes: * mean Chl-concentration from satellite data; ** column-integrated Chl-concentration in the upper 100 m; *** column-integrated Chl-concentration from surface to the bottom of the euphotic zone; **** column-integrated Chl-concentration in the upper 200 m.

    Table 3 Correlations between the SCM and environmental parameters

    Notes: *< 0.05, **< 0.01.

    Acknowledgments We thank the captain, Bing Zhu and crew of R/V, and Mr. Shuo He from Zhejiang University for their assistance during sampling. This research was financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant no. IRASCC 01-02-01).We appreciate two anonymous reviewers, and Guest Editor Prof. Rujian Wang for their constructive comments that have further improved the manuscript.

    Note Zhang Wei and Hao Qiangcontributedequallytothisworkandshouldbeconsideredco-firstauthors.

    Ardyna M, Lacour L, Sergi S, et al. 2019. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat Commun, 10(1), 2451, doi:10.1038/s41467-019-09973-6.

    Arrigo K R, van Dijken G L. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res, 108(C8): 3271, doi:10.1029/2002jc001739.

    Arrigo K R, Lowry K E, van Dijken G L. 2012. Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 71-76: 5-15, doi:10.1016/ j.dsr2.2012.03.006.

    Arrigo K R, Robinson D H, Worthen D L, et al. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2in the Southern Ocean. Science, 283(5400): 365-367, doi:10.1126/science. 283.5400.365.

    Arteaga L A, Pahlow M, Bushinsky S M, et al. 2019. Nutrient controls on export production in the Southern Ocean. Global Biogeochem Cycles, 33(8): 942-956, doi:10.1029/2019gb006236.

    Baldry K, Strutton P G, Hill N A, et al. 2020. Subsurface chlorophyll-maxima in the Southern Ocean. Front Mar Sci, 7: 671, doi:10.3389/ fmars.2020.00671.

    Brainerd K E, Gregg M C. 1995. Surface mixed and mixing layer depths. Deep Sea Res Part I Oceanogr Res Pap, 42(9): 1521-1543, doi:10.1016/0967-0637(95)00068-H.

    Caron D A, Dennett M R, Lonsdale D J, et al. 2000. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 47(15-16): 3249-3272, doi:10.1016/S0967-0645(00)00067- 9.

    Cavalieri D J, Parkinson C L. 2008. Antarctic sea ice variability and trends, 1979–2006. J Geophys Res, 113(C7): C07004, doi:10.1029/2007jc 004564.

    Cotti-Rausch B E, Lomas M W, Lachenmyer E M, et al. 2020. Size-fractionated biomass and primary productivity of Sargasso Sea phytoplankton. Deep Sea Res Part I Oceanogr Res Pap, 156: 103141, doi:10.1016/j.dsr.2019.103141.

    Deppeler S L, Davidson A T. 2017. Southern Ocean phytoplankton in a changing climate. Front Mar Sci, 4: 1-28, doi:10.3389/fmars.2017. 00040.

    DiTullio G R, Grebmeier J M, Arrigo K R, et al. 2000. Rapid and early export ofblooms in the Ross Sea, Antarctica. Nature, 404(6778): 595-598, doi:10.1038/35007061.

    Fragoso G M, Smith W O. 2012. Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica. J Mar Syst, 89(1): 19-29, doi:10.1016/j.jmarsys.2011.07.008.

    Goffart A, Catalano G, Hecq J H. 2000. Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. J Mar Syst, 27(1-3): 161-175, doi:10.1016/S0924-7963(00)00065-8.

    Gomi Y, Taniguchi A, Fukuchi M. 2007. Temporal and spatial variation of the phytoplankton assemblage in the eastern Indian sector of the Southern Ocean in summer 2001/2002. Polar Biol, 30(7): 817-827, doi:10.1007/s00300-006-0242-2.

    Harrison P J, Thompson P A, Calderwood G S. 1990. Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol, 2(1): 45-56, doi:10.1007/BF02179768.

    Holm-Hansen O, Lorenzen C J, Holmes R W, et al. 1965. Fluorometric determination of chlorophyll. J Mar Sci, 30: 3-15, doi:10.1093/ icesjms/30.1.3.

    Jacobs S S, Jenkins A, Giulivi C F, et al. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat Geosci, 4(8): 519-523, doi:10.1038/ngeo1188.

    Kim B K, Joo H, Song H J, et al. 2015. Large seasonal variation in phytoplankton production in the Amundsen Sea. Polar Biol, 38(3): 319-331, doi:10.1007/s00300-014-1588-5.

    Kim B K, Lee J H, Joo H, et al. 2016. Macromolecular compositions of phytoplankton in the Amundsen Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr, 123: 42-49, doi:10.1016/j.dsr2.2015.04.024.

    Latasa M, Cabello A M, Morán X A G, et al. 2017. Distribution of phytoplankton groups within the deep chlorophyll maximum. Limnol Oceanogr, 62(2): 665-685, doi:10.1002/lno.10452.

    Lee, S H, Kim B K, Yun M S, et al. 2012. Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica. Polar Biol, 35: 1721-1733, doi:10.1007/s00300-012-1220-5.

    Lee S H, Kim H J, Whitledge T E. 2009. High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea Cont Shelf Res, 29(14): 1689-1696, doi:10.1016/j.csr.2009.05.012.

    Lee S H, Whitledge T E, Kang S H. 2007. Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Cont Shelf Res, 27(17): 2231-2249, doi:10.1016/j.csr.2007. 05.009.

    Liss P S, Malin G, Turner S M, et al. 1994. Dimethyl sulphide and: a review. J Mar Syst, 5(1): 41-53, doi:10.1016/0924- 7963(94)90015-9.

    Moline M A, Claustre H, Frazer T K, et al. 2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol, 10(12): 1973-1980, doi:10.1111/j.1365-2486. 2004.00825.x.

    Morel A, Huot Y, Gentili B, et al. 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens Environ, 111(1): 69-88, doi:10.1016/j.rse.2007.03.012.

    Peloquin J A, Smith W O. 2007. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition. J Geophys Res, 112(C8): C08013, doi:10.1029/ 2006jc003816.

    Rignot E, Bamber J L, van den Broeke M R, et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci, 1 (2): 106-110, doi:10.1038/ngeo102.

    Saggiomo V, Carrada G C, Mangoni O, et al. 1998. Spatial and temporal variability of size-fractionated biomass and primary production in the Ross Sea (Antarctica) during austral spring and summer. J Mar Syst, 17(1-4): 115-127, doi:10.1016/S0924-7963(98)00033-5.

    Sarmiento J L, Slater R, Barber R, et al. 2004. Response of ocean ecosystems to climate warming. Global Biogeochem Cycles, 18(3): GB3003, doi:10.1029/2003gb002134.

    Siegelman L, O’Toole M, Flexas M, et al. 2019. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci Rep, 9(1), 5588, doi:10.1038/s41598-019-42117-w.

    Smith R C, Baker K S, Vernet M. 1998. Seasonal and interannual variability of phytoplankton biomass west of the Antarctic Peninsula. J Mar Syst, 17(1-4): 229-243, doi:10.1016/s0924-7963(98)00040-2.

    Smith Jr. W, Barber D. 2007. Polynyas: windows to the world. Elsevier.

    Strzepek R F, Boyd P W, Sunda W G. 2019. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. PNAS, 116(10): 4388-4393, doi:10.1073/pnas.1810886116.

    Tripathy S C, Pavithran S, Sabu P, et al. 2015. Deep chlorophyll maximum and primary productivity in Indian Ocean sector of the Southern Ocean: Case study in the Subtropical and Polar Front during austral summer 2011. Deep Sea Res Part II Top Stud Oceanogr, 118: 240-249, doi:10.1016/j.dsr2.2015.01.004.

    Uitz J, Claustre H, Morel A, et al. 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res, 111(C8): C08005, doi:10.1029/ 2005jc003207.

    Yager P, Sherrell R, Stammerjohn S, et al. 2012. ASPIRE: The Amundsen Sea polynya international research expedition. Oceanography, 25(3): 40-53, doi:10.5670/oceanog.2012.73.

    Yang W, Matsushita B, Yoshimura K, et al. 2015. A modified semianalytical algorithm for remotely estimating euphotic zone depth in Turbid Inland waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8: 1-10, doi:10.1109/ JSTARS.2015.2415853.

    Table S1 Values of the five parameters to be used in equation (7) obtained for the dimensionless vertical profiles of Chl-and subsurface chlorophyll maximum (SCM) for all stations in the Amundsen Sea polynya, ice zones, and open ocean

    LocationStationChl-aSCM/m CbSCmaxdmaxDd PolynyaRA1-1?0.15?0.011.370.673.579.19 RA1-2?0.040.001.480.891.7413.29 RA1-30.160.021.340.660.9713.61 RA2-20.310.010.951.022.9213.39 RA2-3?0.030.001.410.701.6911.35 RA2-40.960.100.591.620.8633.60 RA3-30.030.001.360.311.255.70 A3-1?0.060.002.99?6.277.030.00 A9-00.170.011.150.991.7617.87 A9-21.140.091.103.041.1359.02 A9-30.950.121.261.570.4938.19 A11-00.010.001.291.624.4318.25 A11-10.070.001.69?4.087.030.00 A11-20.690.051.142.241.8339.77 A11-30.270.031.431.120.8526.45 Ice zonesRA2-1?0.030.001.321.132.9015.77 RA3-20.000.001.240.371.356.74 A3-363.045.90?69.19?3.459.890.00 A3-5?0.42?0.071.66?0.603.090.00 A3-61.220.351.651.690.1786.91 RA1-0?0.040.001.320.812.2810.59 RA1-40.940.260.561.350.8272.45 RA3-40.040.003.280.490.3811.02 RA3-50.810.180.510.580.4525.18 A11-4?27.20?2.6541.17?7.1111.680.00 Open oceanRA1-50.340.060.870.371.0412.37 A3-100.050.011.250.320.9911.07 A3-71.100.330.571.520.6485.86 RA1-70.780.171.860.830.2234.83 A3-80.560.221.310.990.4673.70 RA2-50.350.060.950.430.7314.81 RA2-60.610.110.580.490.9818.11 RA2-70.590.130.900.720.3830.91 A3-90.800.151.141.390.6851.28 A4-60.290.051.04?0.341.950.00 RA3-60.600.130.610.530.7922.33 RA3-70.480.100.700.491.0819.96 RA4-60.390.090.940.910.7954.51 RA4-7?9.47?1.6211.00?1.074.430.00 RA4-81.240.414.681.440.1486.92 A4-7?0.31?0.151.360.801.3841.96 A4-80.880.250.751.320.7576.45 A4-90.420.070.770.560.7923.98

    10.13679/j.advps.2021.0035

    12 July 2021;

    26 October 2021;

    30 March 2022

    : Zhang W, Hao Q, He J F, et al.Variability of size-fractionated phytoplankton standing stock in the Amundsen Sea during summer. Adv Polar Sci, 2022, 33(1): 1-13,doi:10.13679/j.advps.2021.0035

    , ORCID: 0000-0003-2145-2703, E-mail: haoq@sio.org.cn

    深夜精品福利| 色精品久久人妻99蜜桃| 天天躁夜夜躁狠狠躁躁| 99re在线观看精品视频| 久久久久国产精品人妻aⅴ院| 黑人巨大精品欧美一区二区mp4| 日本黄色视频三级网站网址| 国产成+人综合+亚洲专区| 精品国产乱子伦一区二区三区| 两个人看的免费小视频| 人人妻人人澡人人看| 免费在线观看亚洲国产| 免费在线观看亚洲国产| 中文在线观看免费www的网站 | 中文亚洲av片在线观看爽| 亚洲va日本ⅴa欧美va伊人久久| 91国产中文字幕| 国产精品二区激情视频| 午夜福利18| 女人爽到高潮嗷嗷叫在线视频| 黄色片一级片一级黄色片| 男女做爰动态图高潮gif福利片| 欧美日本视频| 国产在线精品亚洲第一网站| 99国产综合亚洲精品| 亚洲久久久国产精品| 夜夜看夜夜爽夜夜摸| 国产片内射在线| 我的亚洲天堂| 婷婷精品国产亚洲av| 999久久久国产精品视频| 久久精品亚洲精品国产色婷小说| 一二三四在线观看免费中文在| 亚洲午夜理论影院| 级片在线观看| 九色国产91popny在线| 成人亚洲精品av一区二区| 首页视频小说图片口味搜索| 性欧美人与动物交配| 国产av一区在线观看免费| 脱女人内裤的视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲电影在线观看av| 看黄色毛片网站| 曰老女人黄片| av天堂在线播放| 国产不卡一卡二| 中文字幕人妻丝袜一区二区| 婷婷六月久久综合丁香| 亚洲av电影在线进入| 免费人成视频x8x8入口观看| 国产单亲对白刺激| 亚洲成国产人片在线观看| 日本在线视频免费播放| 国产亚洲精品一区二区www| 丝袜人妻中文字幕| 国产成人欧美在线观看| 国产激情偷乱视频一区二区| 黄色成人免费大全| 午夜福利18| 国产av一区二区精品久久| 久久香蕉国产精品| 久久天躁狠狠躁夜夜2o2o| 热99re8久久精品国产| 久久这里只有精品19| 国产激情久久老熟女| 亚洲欧美日韩高清在线视频| 国语自产精品视频在线第100页| 亚洲一区二区三区色噜噜| 亚洲自拍偷在线| 亚洲国产欧洲综合997久久, | 少妇熟女aⅴ在线视频| 激情在线观看视频在线高清| 婷婷精品国产亚洲av在线| 国内揄拍国产精品人妻在线 | 巨乳人妻的诱惑在线观看| 国产精品综合久久久久久久免费| 欧美日韩精品网址| 精品不卡国产一区二区三区| 一边摸一边做爽爽视频免费| 日日摸夜夜添夜夜添小说| 欧美大码av| 99久久99久久久精品蜜桃| 成人国产综合亚洲| 嫩草影视91久久| 婷婷六月久久综合丁香| 满18在线观看网站| av片东京热男人的天堂| 日本一本二区三区精品| 精品不卡国产一区二区三区| 国产高清激情床上av| 黄色视频不卡| 久久精品91无色码中文字幕| 99久久精品国产亚洲精品| 青草久久国产| 色综合站精品国产| 制服丝袜大香蕉在线| 麻豆国产av国片精品| 国产精品久久电影中文字幕| 一本大道久久a久久精品| 精品一区二区三区视频在线观看免费| 国产亚洲av高清不卡| 亚洲国产精品sss在线观看| 天堂动漫精品| 高清毛片免费观看视频网站| 成人国语在线视频| 久久 成人 亚洲| 亚洲精品一卡2卡三卡4卡5卡| 久久欧美精品欧美久久欧美| 一二三四社区在线视频社区8| 久久久水蜜桃国产精品网| 亚洲精华国产精华精| 在线看三级毛片| 国内精品久久久久精免费| 欧美成狂野欧美在线观看| 琪琪午夜伦伦电影理论片6080| 视频在线观看一区二区三区| 色综合欧美亚洲国产小说| 99热这里只有精品一区 | 免费看日本二区| 国产99久久九九免费精品| 精品一区二区三区av网在线观看| 精品国产国语对白av| 日韩中文字幕欧美一区二区| 国内揄拍国产精品人妻在线 | 看黄色毛片网站| 国产精品 欧美亚洲| 黄色毛片三级朝国网站| 日本黄色视频三级网站网址| 亚洲精品久久成人aⅴ小说| 日韩三级视频一区二区三区| 99在线视频只有这里精品首页| 亚洲人成电影免费在线| 色尼玛亚洲综合影院| 欧美绝顶高潮抽搐喷水| 一进一出抽搐gif免费好疼| 韩国精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 俺也久久电影网| 亚洲avbb在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美日韩黄片免| 一进一出好大好爽视频| 色精品久久人妻99蜜桃| www.熟女人妻精品国产| 超碰成人久久| 在线观看一区二区三区| 人成视频在线观看免费观看| 色av中文字幕| 国产精品国产高清国产av| 每晚都被弄得嗷嗷叫到高潮| 岛国视频午夜一区免费看| 日韩av在线大香蕉| 无人区码免费观看不卡| 亚洲avbb在线观看| 国产免费男女视频| 欧美精品亚洲一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 欧美+亚洲+日韩+国产| 一区福利在线观看| 男女之事视频高清在线观看| 桃色一区二区三区在线观看| 在线av久久热| 久久久久免费精品人妻一区二区 | 黄片大片在线免费观看| 99久久无色码亚洲精品果冻| 校园春色视频在线观看| 黄色丝袜av网址大全| netflix在线观看网站| 亚洲国产欧美日韩在线播放| 久久久久久久久久黄片| 久久精品91无色码中文字幕| 精品午夜福利视频在线观看一区| 美女国产高潮福利片在线看| 国产精品一区二区三区四区久久 | 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美国产在线观看| 国产视频内射| 亚洲第一欧美日韩一区二区三区| 午夜久久久在线观看| 99在线视频只有这里精品首页| 色播亚洲综合网| 久久久久久久午夜电影| 亚洲精华国产精华精| 成熟少妇高潮喷水视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产欧美日韩av| 一夜夜www| 亚洲免费av在线视频| 视频在线观看一区二区三区| 婷婷丁香在线五月| 亚洲成av人片免费观看| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 久久婷婷人人爽人人干人人爱| 日本 欧美在线| 可以在线观看的亚洲视频| 精品久久久久久久久久免费视频| 欧美亚洲日本最大视频资源| 亚洲av日韩精品久久久久久密| 亚洲片人在线观看| 日韩av在线大香蕉| 国产在线精品亚洲第一网站| 一区二区三区高清视频在线| 亚洲国产欧洲综合997久久, | 大香蕉久久成人网| 在线观看日韩欧美| 国产高清videossex| 一级毛片高清免费大全| 色在线成人网| 欧美激情极品国产一区二区三区| www.www免费av| 欧美色视频一区免费| 亚洲第一电影网av| 欧美乱码精品一区二区三区| 日韩欧美国产一区二区入口| 欧美黑人精品巨大| 国产亚洲欧美在线一区二区| 国产黄色小视频在线观看| 国产伦人伦偷精品视频| 熟女少妇亚洲综合色aaa.| 99精品在免费线老司机午夜| 91九色精品人成在线观看| 国内少妇人妻偷人精品xxx网站 | 51午夜福利影视在线观看| 日本撒尿小便嘘嘘汇集6| 欧美一级a爱片免费观看看 | 欧美日韩一级在线毛片| 黄色a级毛片大全视频| 高清在线国产一区| 天天一区二区日本电影三级| 黄色视频不卡| 亚洲欧美一区二区三区黑人| 在线av久久热| 黄色成人免费大全| 老汉色av国产亚洲站长工具| 久久香蕉激情| 99久久99久久久精品蜜桃| 一进一出抽搐gif免费好疼| 日本精品一区二区三区蜜桃| √禁漫天堂资源中文www| 在线观看免费视频日本深夜| 国产精品日韩av在线免费观看| a级毛片在线看网站| 伦理电影免费视频| 亚洲熟女毛片儿| 黄网站色视频无遮挡免费观看| 久久精品91蜜桃| 亚洲人成网站在线播放欧美日韩| 一二三四社区在线视频社区8| 好男人在线观看高清免费视频 | 久9热在线精品视频| 可以在线观看毛片的网站| 动漫黄色视频在线观看| 亚洲人成77777在线视频| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 色综合亚洲欧美另类图片| 久久中文字幕人妻熟女| 很黄的视频免费| 国产又黄又爽又无遮挡在线| 欧美最黄视频在线播放免费| 午夜福利18| 亚洲av熟女| 免费搜索国产男女视频| 午夜免费鲁丝| 亚洲国产欧美日韩在线播放| 亚洲第一青青草原| 午夜精品在线福利| 特大巨黑吊av在线直播 | 国产aⅴ精品一区二区三区波| 国产一级毛片七仙女欲春2 | 一进一出抽搐动态| 精品久久久久久久人妻蜜臀av| 在线视频色国产色| 精品一区二区三区四区五区乱码| 欧美不卡视频在线免费观看 | 久久精品人妻少妇| 亚洲欧美一区二区三区黑人| 亚洲欧洲精品一区二区精品久久久| 一级毛片女人18水好多| 免费看a级黄色片| 中亚洲国语对白在线视频| 在线看三级毛片| 欧美不卡视频在线免费观看 | 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区高清视频在线| 亚洲av第一区精品v没综合| 一本久久中文字幕| 免费在线观看日本一区| 人人妻人人澡欧美一区二区| 午夜福利免费观看在线| 麻豆av在线久日| 啦啦啦韩国在线观看视频| 午夜影院日韩av| 亚洲人成77777在线视频| 色综合欧美亚洲国产小说| 亚洲三区欧美一区| 久久亚洲精品不卡| 在线观看日韩欧美| 欧美亚洲日本最大视频资源| 亚洲av电影在线进入| 亚洲精品国产一区二区精华液| 亚洲熟女毛片儿| 亚洲无线在线观看| 欧美另类亚洲清纯唯美| 欧美日韩黄片免| 亚洲性夜色夜夜综合| 国产久久久一区二区三区| 一边摸一边做爽爽视频免费| 欧美日韩亚洲综合一区二区三区_| 熟女少妇亚洲综合色aaa.| 亚洲三区欧美一区| 哪里可以看免费的av片| 亚洲一区高清亚洲精品| 一二三四在线观看免费中文在| 欧美日韩中文字幕国产精品一区二区三区| 精品国产乱码久久久久久男人| 欧美成人免费av一区二区三区| 在线观看www视频免费| 欧美激情极品国产一区二区三区| 国内精品久久久久久久电影| 夜夜夜夜夜久久久久| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 国产精品精品国产色婷婷| 国产av一区在线观看免费| 色老头精品视频在线观看| 亚洲激情在线av| www.999成人在线观看| 欧美一级毛片孕妇| 动漫黄色视频在线观看| 亚洲欧美一区二区三区黑人| 18禁黄网站禁片午夜丰满| 欧美中文综合在线视频| 999精品在线视频| 香蕉丝袜av| 午夜久久久久精精品| 亚洲一区中文字幕在线| 国产高清视频在线播放一区| 国产精品 国内视频| 老司机午夜福利在线观看视频| 校园春色视频在线观看| 中文字幕精品免费在线观看视频| 免费电影在线观看免费观看| 成人午夜高清在线视频 | 精品一区二区三区av网在线观看| 国产亚洲精品第一综合不卡| 国产精品九九99| 91麻豆av在线| 成人av一区二区三区在线看| 91成年电影在线观看| 国产av一区在线观看免费| 免费无遮挡裸体视频| 两个人免费观看高清视频| 亚洲精品中文字幕一二三四区| 99riav亚洲国产免费| 可以免费在线观看a视频的电影网站| 色播在线永久视频| 99re在线观看精品视频| 成人亚洲精品一区在线观看| 大香蕉久久成人网| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 精品午夜福利视频在线观看一区| 久久久久久人人人人人| 免费观看人在逋| 午夜成年电影在线免费观看| 18禁观看日本| 十八禁网站免费在线| 少妇的丰满在线观看| 国产亚洲精品av在线| 久久99热这里只有精品18| 成人手机av| 久久久久九九精品影院| 一本精品99久久精品77| 午夜影院日韩av| 色播在线永久视频| netflix在线观看网站| 18禁黄网站禁片免费观看直播| 久久性视频一级片| 亚洲成人免费电影在线观看| 日韩av在线大香蕉| 国产片内射在线| 久久精品国产清高在天天线| 老司机福利观看| 日本黄色视频三级网站网址| 又大又爽又粗| 脱女人内裤的视频| 视频区欧美日本亚洲| 亚洲第一电影网av| 18禁黄网站禁片免费观看直播| 色综合欧美亚洲国产小说| 亚洲五月色婷婷综合| 精品国产美女av久久久久小说| e午夜精品久久久久久久| 成人特级黄色片久久久久久久| 少妇裸体淫交视频免费看高清 | 精品少妇一区二区三区视频日本电影| 一个人免费在线观看的高清视频| 久久久久久久久免费视频了| 啦啦啦免费观看视频1| 午夜激情福利司机影院| 国产一级毛片七仙女欲春2 | 亚洲av电影不卡..在线观看| 国产又爽黄色视频| 免费在线观看亚洲国产| 啦啦啦免费观看视频1| 日韩有码中文字幕| 日韩中文字幕欧美一区二区| 免费搜索国产男女视频| 久久午夜综合久久蜜桃| 日本五十路高清| tocl精华| 变态另类成人亚洲欧美熟女| 1024视频免费在线观看| 又黄又爽又免费观看的视频| 国内毛片毛片毛片毛片毛片| 欧美精品啪啪一区二区三区| 亚洲九九香蕉| 黑人欧美特级aaaaaa片| 免费高清视频大片| 成人18禁在线播放| 午夜影院日韩av| 人妻久久中文字幕网| 人人妻,人人澡人人爽秒播| 久久午夜亚洲精品久久| 欧美精品亚洲一区二区| 欧美性猛交╳xxx乱大交人| 丰满人妻熟妇乱又伦精品不卡| 婷婷精品国产亚洲av在线| 亚洲欧美激情综合另类| 老司机靠b影院| 老鸭窝网址在线观看| 白带黄色成豆腐渣| 久久久久久久久久黄片| 色综合欧美亚洲国产小说| 黄色视频,在线免费观看| 观看免费一级毛片| 精品久久久久久,| 在线观看免费日韩欧美大片| 不卡av一区二区三区| 在线天堂中文资源库| 日韩欧美在线二视频| 国产一级毛片七仙女欲春2 | 窝窝影院91人妻| 两个人免费观看高清视频| 十分钟在线观看高清视频www| 777久久人妻少妇嫩草av网站| 俄罗斯特黄特色一大片| 国产av一区在线观看免费| 午夜福利欧美成人| 成年免费大片在线观看| 欧美一区二区精品小视频在线| 久久久久久久精品吃奶| 国产成+人综合+亚洲专区| 成人亚洲精品一区在线观看| 成熟少妇高潮喷水视频| 悠悠久久av| x7x7x7水蜜桃| 欧美一区二区精品小视频在线| 国产精华一区二区三区| 久久久久国产精品人妻aⅴ院| 国产一区二区三区在线臀色熟女| 中文字幕久久专区| 国产精品久久久久久精品电影 | 嫩草影院精品99| 日韩国内少妇激情av| 在线观看午夜福利视频| 午夜视频精品福利| 国产成人av教育| 18禁黄网站禁片免费观看直播| 国产人伦9x9x在线观看| 亚洲无线在线观看| 白带黄色成豆腐渣| 别揉我奶头~嗯~啊~动态视频| 亚洲精品在线观看二区| 日韩欧美在线二视频| 亚洲精品美女久久久久99蜜臀| 男男h啪啪无遮挡| 两个人视频免费观看高清| 久久 成人 亚洲| 88av欧美| 韩国av一区二区三区四区| 午夜福利免费观看在线| 日日夜夜操网爽| 99精品欧美一区二区三区四区| 亚洲第一电影网av| 久久精品aⅴ一区二区三区四区| 最新在线观看一区二区三区| 午夜视频精品福利| 99riav亚洲国产免费| 一边摸一边做爽爽视频免费| 久久亚洲真实| 久久久久免费精品人妻一区二区 | 国产一区二区三区在线臀色熟女| 可以在线观看毛片的网站| 亚洲精品色激情综合| 亚洲欧洲精品一区二区精品久久久| 亚洲国产高清在线一区二区三 | 国产黄a三级三级三级人| 男女那种视频在线观看| 日韩 欧美 亚洲 中文字幕| 最新在线观看一区二区三区| 午夜福利高清视频| 麻豆成人午夜福利视频| netflix在线观看网站| 99在线人妻在线中文字幕| 中文字幕久久专区| 天堂√8在线中文| 91老司机精品| 在线永久观看黄色视频| 亚洲精品国产一区二区精华液| 国产成人系列免费观看| 亚洲成国产人片在线观看| 日韩成人在线观看一区二区三区| xxx96com| 国产精品爽爽va在线观看网站 | 看片在线看免费视频| 亚洲精品美女久久久久99蜜臀| 成熟少妇高潮喷水视频| 女同久久另类99精品国产91| 99在线人妻在线中文字幕| 欧美一级a爱片免费观看看 | 亚洲自拍偷在线| 欧美色欧美亚洲另类二区| 亚洲 国产 在线| 别揉我奶头~嗯~啊~动态视频| 国产又爽黄色视频| 国产激情久久老熟女| 国产一区在线观看成人免费| 欧美一级a爱片免费观看看 | 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区四区五区乱码| 91字幕亚洲| 亚洲精品国产一区二区精华液| 久久精品夜夜夜夜夜久久蜜豆 | 日日干狠狠操夜夜爽| 老司机深夜福利视频在线观看| а√天堂www在线а√下载| 99国产精品一区二区三区| 岛国视频午夜一区免费看| 老司机福利观看| 午夜视频精品福利| 亚洲国产精品久久男人天堂| 成人av一区二区三区在线看| 女警被强在线播放| 欧美一区二区精品小视频在线| 一进一出抽搐动态| 精品人妻1区二区| aaaaa片日本免费| 久久久久亚洲av毛片大全| 日韩有码中文字幕| 亚洲专区中文字幕在线| 人人妻人人澡人人看| 日本五十路高清| 久久久国产成人免费| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 成人av一区二区三区在线看| 1024视频免费在线观看| 成人特级黄色片久久久久久久| 18美女黄网站色大片免费观看| 欧美日韩精品网址| 91国产中文字幕| 搞女人的毛片| 日日干狠狠操夜夜爽| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线一区亚洲| 美女国产高潮福利片在线看| 欧美成人一区二区免费高清观看 | 黄色成人免费大全| 日日干狠狠操夜夜爽| 国产精品乱码一区二三区的特点| 免费看美女性在线毛片视频| 日韩精品中文字幕看吧| 亚洲成av人片免费观看| 午夜福利高清视频| 欧美黄色淫秽网站| 国产不卡一卡二| 国产激情久久老熟女| 日韩精品免费视频一区二区三区| 国产激情偷乱视频一区二区| av在线天堂中文字幕| 色播在线永久视频| 国产成人精品久久二区二区91| 在线观看66精品国产| 两性夫妻黄色片| 18禁观看日本| 国产97色在线日韩免费| 色在线成人网| 免费看十八禁软件| 伊人久久大香线蕉亚洲五| 成人国语在线视频| 亚洲第一av免费看| 成人18禁在线播放| 在线免费观看的www视频| 特大巨黑吊av在线直播 | 一个人免费在线观看的高清视频| 欧美日韩一级在线毛片| 国产乱人伦免费视频| 真人一进一出gif抽搐免费| 少妇粗大呻吟视频| 桃色一区二区三区在线观看| 日本免费一区二区三区高清不卡| 中文字幕精品亚洲无线码一区 | 久久天堂一区二区三区四区| 91大片在线观看| 亚洲av成人av| 国产亚洲精品av在线| 欧美zozozo另类| 少妇 在线观看| 久久精品国产亚洲av高清一级| 男人舔奶头视频| 精品午夜福利视频在线观看一区|