• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    我國土壤受試植物篩選與毒性預(yù)測

    2022-07-19 01:11:24羅晶晶張加文劉征濤王曉南
    中國環(huán)境科學(xué) 2022年7期
    關(guān)鍵詞:毒性物種污染物

    羅晶晶,吳 凡,張加文,劉征濤,張 聰,王曉南*

    我國土壤受試植物篩選與毒性預(yù)測

    羅晶晶1,吳 凡1,張加文1,劉征濤1,張 聰2,王曉南1*

    (1.中國環(huán)境科學(xué)研究院,環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評估國家重點(diǎn)實(shí)驗(yàn)室,北京 100012;2.海油環(huán)境科技(北京)有限公司,北京 100027)

    生態(tài)毒性數(shù)據(jù)缺乏是我國土壤基準(zhǔn)與生態(tài)風(fēng)險(xiǎn)評估研究中一直存在的問題,開展本土受試植物的篩選可提供更多的生態(tài)毒理試驗(yàn)選材,從而獲得不同物種的生態(tài)毒性數(shù)據(jù).鑒于植物對土壤污染物的敏感性,從被子植物中依據(jù)分布范圍、代表性和易于獲得性等原則,對我國潛在的受試植物進(jìn)行篩選,結(jié)果發(fā)現(xiàn),13科53種被子植物分布廣泛且易于獲取,可作為本土受試植物;結(jié)合生態(tài)毒性數(shù)據(jù)的搜集與分析,其中12種受試植物的生態(tài)毒性數(shù)據(jù)相對豐富,并對部分典型污染物表現(xiàn)高敏感.此外在受試植物生態(tài)毒性預(yù)測模型研究方面,對12種受試植物兩兩進(jìn)行建模預(yù)測,共得到132個(gè)物種種間關(guān)系估算模型(Interspecies Correlation Estimation,ICE),其中88個(gè)為顯著性模型(檢驗(yàn)<0.05);此處,回歸分析了已構(gòu)建ICE模型的評價(jià)參數(shù),得出預(yù)測效果較好的ICE模型應(yīng)滿足交叉驗(yàn)證成功率380.00%、MSE£0.62、230.76和分類學(xué)距離£4的標(biāo)準(zhǔn).最終篩選出25個(gè)符合上述標(biāo)準(zhǔn)的ICE模型,涉及禾本科-禾本科、十字花科-十字花科的相互預(yù)測,其中當(dāng)燕麥、蕪青、普通小麥、玉蜀黍和黑麥草等作為替代物種時(shí),預(yù)測物種的實(shí)際生態(tài)毒性值與預(yù)測值較為接近.受試植物的篩選與生態(tài)毒性預(yù)測模型的建立有助于生態(tài)毒性數(shù)據(jù)的產(chǎn)生,并為土壤污染管理和生態(tài)風(fēng)險(xiǎn)評估提供科學(xué)依據(jù).

    土壤生態(tài)基準(zhǔn);受試生物篩選;被子植物;物種敏感度分析;ICE模型預(yù)測

    土壤污染問題的發(fā)生通常會推動土壤污染管控的進(jìn)程,1934年美國黑色風(fēng)暴事件、1979年荷蘭萊克爾克土壤污染事件,都促使這兩國較早開展了土壤污染相關(guān)研究及政策制定.在土壤生態(tài)安全方面,目前各國基本建立了相應(yīng)的土壤基準(zhǔn)值確定方法,如美國的生態(tài)篩選值(Ecological Soil Screening Levels, ECO-SSLS)、加拿大的土壤質(zhì)量指導(dǎo)值(Soil Quality Guideline,SQG)、英國的土壤篩選值(Soil Screening Values,SSVS)、澳大利亞的生態(tài)調(diào)查值(Ecological Investigation Levels,EIL)、新西蘭的生態(tài)安全環(huán)境指導(dǎo)值(Environmental Guideline Values, EGV)[1],我國于20世紀(jì)80年代后陸續(xù)開展土壤背景值和土壤環(huán)境容量的調(diào)查工作[2].目前我國土壤污染問題涉及地區(qū)較多、類型復(fù)雜、污染物種類廣泛[3],總體情況不容樂觀,這不僅提高了我國土壤生態(tài)風(fēng)險(xiǎn)評估的難度,也致使我國土壤環(huán)境基準(zhǔn)研究發(fā)展相對緩慢.

    因此有必要開展我國土壤生態(tài)風(fēng)險(xiǎn)評估和環(huán)境基準(zhǔn)中關(guān)鍵技術(shù)的探索,生態(tài)毒性數(shù)據(jù)便是其中基礎(chǔ)且重要的一環(huán),但現(xiàn)有的生態(tài)毒性數(shù)據(jù)相對缺乏,并存在污染物涵蓋不足、涉及生物物種相對單一、終點(diǎn)指標(biāo)及試驗(yàn)方法不統(tǒng)一等問題.在生態(tài)毒理試驗(yàn)中,普通小麥[4-5]、大麥[6-7]、黃瓜[5]、西紅柿[8]、蘿卜[9-10]、高粱、玉蜀黍等是現(xiàn)階段常用的受試植物,其主要是禾本科、十字花科等的農(nóng)作物,而我國植物物種資源豐富,以上農(nóng)作物的使用相對片面、代表性不全.使用基礎(chǔ)信息與來源較為全面的受試生物有助于獲得更為精確的毒性數(shù)據(jù)[11].國內(nèi)外最早在水質(zhì)基準(zhǔn)受試生物篩選上進(jìn)行了大量研究[12-13],目前土壤環(huán)境基準(zhǔn)研究方面,基于具體污染場地的情況來篩選相應(yīng)受試植物,如許霞等[14]篩選出蠶豆作為廢棄農(nóng)藥廠的敏感植物,金鑫[15]篩選了化工污染場地的受試植物.受試植物的篩選也會考慮到物種代表性及分布范圍,本文以高等植物中被子植物的篩選開展研究,為生態(tài)毒理試驗(yàn)提供可參考的備選試驗(yàn)材料,并進(jìn)一步得到更多相關(guān)植物物種的生態(tài)毒性數(shù)據(jù).

    此外,土壤生態(tài)毒性數(shù)據(jù)預(yù)測模型也能進(jìn)一步擴(kuò)充生態(tài)毒性數(shù)據(jù).美國環(huán)保署(USEPA)構(gòu)建的物種種間關(guān)系估算模型(Interspecies Correlation Estimation,ICE),在水生態(tài)毒性數(shù)據(jù)預(yù)測中得到了廣泛應(yīng)用,可以預(yù)測250多個(gè)水生生物種的生態(tài)毒性[16],如魚類和水生無脊椎動物、藻類和野生動物[17-18],且ICE模型得到的預(yù)測毒性值與實(shí)測值之間表現(xiàn)出較高的一致性[19].在土壤生態(tài)毒性研究方面,USEPA研究人員近年開始了土壤生物的ICE模型構(gòu)建,主要是土壤無脊椎動物毒性數(shù)據(jù)的預(yù)測,得出模型在目分類水平上表現(xiàn)出高的預(yù)測精度(例如,蚯蚓-蚯蚓),但在兩個(gè)跨類群物種(節(jié)肢動物-環(huán)節(jié)動物)中預(yù)測精度較低[20].目前尚未建立植物相關(guān)模型.

    本研究創(chuàng)新點(diǎn)一是提供可行的受試植物篩選方法,并得到土壤生態(tài)毒理試驗(yàn)的受試植物名單;二是探索了生態(tài)毒性數(shù)據(jù)預(yù)測模型的建立,為植物物種創(chuàng)建物種種間關(guān)系估算模型,并提出評價(jià)模型預(yù)測效果的相關(guān)標(biāo)準(zhǔn).這有助于土壤生態(tài)風(fēng)險(xiǎn)評估與環(huán)境基準(zhǔn)中生態(tài)毒性數(shù)據(jù)缺乏及現(xiàn)存問題的解決.

    1 材料與方法

    1.1 土壤受試植物的篩選

    依據(jù)《中國生物物種名錄第一卷植物》(上中下冊)[21]對我國植物物種多樣性的記錄,統(tǒng)計(jì)高等植物(苔蘚、蕨類、被子、裸子植物)的省份分布,鑒于我國氣候類型復(fù)雜、植物種類豐富,整理分布在20個(gè)省份及以上的植物物種,認(rèn)為其具有可靠的本土植物代表性.高等植物中,苔蘚植物與蕨類植物依靠孢子繁殖,對周圍生長環(huán)境變化表現(xiàn)出高敏感,現(xiàn)有毒性數(shù)據(jù)少且購買渠道不便,故未推薦作為受試植物;裸子植物均為多年生木本植物,與周圍環(huán)境因素關(guān)系復(fù)雜,不宜在短期內(nèi)觀察生長情況,故未推薦作為受試植物.因此,本研究在梳理各高等植物分布及物種量的基礎(chǔ)上,選擇被子植物作為主要的受試植物選擇庫.

    圖1 高等植物在不同分類學(xué)水平的數(shù)目

    數(shù)據(jù)來自《生物物種名錄第一卷植物》[21]

    我國被子植物物種資源豐富,《中國生物物種名錄第一卷植物》(上中下冊)[21]記錄在冊的被子植物共有263科總計(jì)30379種,占高等植物總物種數(shù)的85%(圖1),其中菊科、禾本科、豆科、蘭科、毛茛科、唇形科、莎草科、蕁麻科等均含有較多物種數(shù).從中選擇在我國20個(gè)省份及以上有分布的被子植物,進(jìn)一步搜集其購買及野外采集信息,將易獲得且分布廣泛的被子植物作為受試植物.受試植物應(yīng)具備一定的可操作性,便于獲得且易于培養(yǎng)[1],可在實(shí)驗(yàn)室環(huán)境下提供良好的毒性數(shù)據(jù).

    1.2 受試植物的生態(tài)毒性數(shù)據(jù)檢索

    搜集受試植物名單中各物種的生態(tài)毒性數(shù)據(jù),考察其對污染物的敏感性情況.在ECOTOX數(shù)據(jù)庫(https://cfpub.epa.gov/ecotox/index.cfm)以及公開發(fā)表的文獻(xiàn)中,檢索并記錄受試植物現(xiàn)有的生態(tài)毒性數(shù)據(jù),毒性終點(diǎn)選擇EC50、IC50、LC50三類指標(biāo).獲得毒性數(shù)據(jù)后按照以下條件進(jìn)行篩選:①有明確的毒性終點(diǎn)記錄;②單位統(tǒng)一,符合土壤生態(tài)毒理試驗(yàn)的真實(shí)情況.因研究人員采用不同的試驗(yàn)方法,如水培或者土培養(yǎng),導(dǎo)致毒性數(shù)據(jù)濃度值單位不一致,本研究以mg/kg作為統(tǒng)一篩選單位;③對于同一污染物,如有較多毒性值,優(yōu)先采用來源相同的可靠數(shù)據(jù),計(jì)算幾何平均值作為種平均毒性值[22].記錄毒性數(shù)據(jù)相對豐富(即含有三種及三種以上污染物毒性數(shù)據(jù))的受試植物,并將各受試植物的污染物毒性值均按從小到大的順序排列,獲得對相應(yīng)受試植物毒性最大(毒性值最小)的污染物種類.

    1.3 敏感性受試植物與高毒性污染物分析

    匯總對各受試植物毒性最大的污染物種類,記錄重疊次數(shù),排除重疊次數(shù)為1的污染物,其余污染物以CAS號、中英文名稱等從ECOTOX數(shù)據(jù)庫及公開發(fā)表的文獻(xiàn)中檢索毒性數(shù)據(jù),保留被子植物物種的毒性數(shù)據(jù).毒性數(shù)據(jù)篩選原則同1.2,計(jì)算各被子植物物種對同一污染物的累積概率,以種平均毒性值的對數(shù)為橫坐標(biāo),以對應(yīng)的累積概率為縱坐標(biāo),繪制物種敏感度分布曲線.毒性數(shù)據(jù)相對豐富的受試植物若累積概率排在前列,則為敏感性受試植物,該污染物為高毒性污染物.所用軟件為Excel 2019及Origin 9.1.

    1.4 物種種間關(guān)系估算模型構(gòu)建

    物種種間關(guān)系估算ICE模型,即將毒性數(shù)據(jù)相對豐富的受試植物,其一作替代物種,另一作預(yù)測物種,兩組數(shù)據(jù)進(jìn)行回歸分析,判斷兩組數(shù)據(jù)間是否有較強(qiáng)相關(guān)性,在強(qiáng)相關(guān)性下得出回歸方程,根據(jù)檢驗(yàn),得到顯著性模型(<0.05),計(jì)算模型的均方差誤MSE、擬合優(yōu)度R;并將預(yù)測物種的預(yù)測值與實(shí)測值進(jìn)行驗(yàn)證,得到交叉驗(yàn)證成功率;同屬物種分類學(xué)距離為1,同科物種分類學(xué)距離為2,以此外推得到分類學(xué)距離.衡量以上四個(gè)評價(jià)指標(biāo),得出本研究ICE模型的評價(jià)標(biāo)準(zhǔn)及最終的ICE模型.所用軟件為Excel 2019、SigmaPlot 12.0及Matlab 8.1.0.604.

    ICE模型采用的線性回歸方程如下:

    式中:為預(yù)測物種的毒性數(shù)據(jù)值;為替代物種的毒性數(shù)據(jù)值.

    我國土壤受試植物篩選和毒性預(yù)測ICE模型構(gòu)建的技術(shù)路線見圖2.

    圖2 受試植物的篩選和毒性預(yù)測ICE模型構(gòu)建

    2 結(jié)果與分析

    2.1 我國土壤受試植物篩選結(jié)果

    在高等植物中,分布在我國20個(gè)省份及以上的裸子植物主要有杉科的杉木、水杉;柏科的柏木、圓柏;松科的雪松、馬尾松,共6種(圖3).分布廣泛的苔蘚植物主要來自青蘚科,如青蘚屬、燕尾蘚屬、美喙蘚屬、同蒴蘚屬、鼠尾蘚屬、長喙蘚屬等,此外細(xì)鱗苔科也提供了較多的物種數(shù).分布廣泛的蕨類植物涉及24科,如鐵角蕨科.盡管苔蘚植物在我國大部分省份可見蹤跡,但部分苔蘚植物對污染物過于敏感[23],受到毒害作用可能來自于空氣中污染物,影響了其在土壤生態(tài)毒性研究中的應(yīng)用.分布廣泛的被子植物共有78種,其中53種易于購買,且部分物種可在野外進(jìn)行采集,種子獲取渠道較為多樣,符合受試植物種子易得易栽培的條件;此外,這53種植物分布在我國多數(shù)省份,橫跨多個(gè)氣候帶,在我國擁有較長的發(fā)展史,與人類生活息息相關(guān),故認(rèn)為其具有本土代表性,可作為我國土壤受試植物(表1).禾本科與十字花科依然占據(jù)了較多物種數(shù),多數(shù)主要用于農(nóng)作,唇形科的物種常見用途是藥用,其他科物種則功能不一.

    圖3 高等植物廣泛分布物種數(shù)(種分類水平)

    表1 受試植物名單

    注:以上物種均屬于被子植物,并可在網(wǎng)購平臺購買;“野外”指是否可在野外進(jìn)行采集, -表示不易在野外采集.

    在受試植物名單中,作為常見的藥用植物,和尚菜、牛蒡[24]、蒲公英、香薷、活血丹[25]、益母草[26]、一串紅[27]、馬齒莧[28]等的基因組都已得到部分研究,遺傳背景相對清晰,有利于生態(tài)毒理試驗(yàn)的開展.作為常見牧草,柳枝稷[29]近年被發(fā)現(xiàn)可作為生物燃料,格蘭馬草因具有較高的遺傳多樣性[30],在開發(fā)優(yōu)良高產(chǎn)牧草研究中顯現(xiàn)出較好應(yīng)用前景,野牛草、草木樨[31]等同樣在其他領(lǐng)域被發(fā)現(xiàn)可加以利用.作為常見的經(jīng)濟(jì)作物,如普通小麥、燕麥、玉蜀黍等,其本身在人類生活中就扮演著重要角色,一旦受到污染,不僅引發(fā)糧食安全、生態(tài)污染問題,也會影響到人體健康.篩選得到的受試植物,每個(gè)物種基本都具有兩種以上的功能,如草木樨既是常見牧草也是中草藥之一,馬齒莧既是中草藥也是牧草、蔬菜[28],多樣化的功能使得其與人類生產(chǎn)活動互相影響,因其在人類生活中的重要角色,及現(xiàn)有生物技術(shù)手段對其遺傳背景的研究,將其應(yīng)用在生態(tài)毒理試驗(yàn)中可行性較高,對于土壤生態(tài)風(fēng)險(xiǎn)評估及環(huán)境基準(zhǔn)的研究也具有實(shí)際的生態(tài)意義.

    其中,燕麥、普通小麥和蕪青被國際標(biāo)準(zhǔn)化組織(ISO)優(yōu)先推薦為受試植物,玉蜀黍與豆科植物在必要條件下也可使用[32-33];歐洲油菜、蕪青、黃瓜、綠豆、大麥、黑麥草、高粱、普通小麥、玉蜀黍、稻被經(jīng)濟(jì)合作與發(fā)展組織(OECD)推薦為土壤生態(tài)毒理試驗(yàn)的受試植物[34];黃瓜、燕麥、黑麥草、玉蜀黍、蕪青、歐洲油菜被USEPA推薦作為植物早期幼苗生長試驗(yàn)的受試植物[35-36].此外,OECD與USEPA也提出了非農(nóng)作物的受試植物名單,并認(rèn)為具有生態(tài)或經(jīng)濟(jì)價(jià)值的植物在特定條件下用作受試植物具有重大意義.

    2.2 受試植物生態(tài)毒性數(shù)據(jù)篩查結(jié)果

    對表1中53種受試植物進(jìn)行土壤生態(tài)毒性數(shù)據(jù)的搜集,根據(jù)條件篩選后,共有12種受試植物具有相對豐富的毒性數(shù)據(jù),即毒性數(shù)據(jù)涉及污染物33個(gè) (圖4).篩選后的現(xiàn)有毒性數(shù)據(jù)涉及污染物最多的是燕麥,共37個(gè)污染物,其次是蕪青,普通小麥與玉蜀黍涉及相同數(shù)目的污染物,涉及污染物最少的是大麥,僅有4個(gè),12種受試植物平均涉及的污染物個(gè)數(shù)為12,多數(shù)受試植物涉及的污染物未達(dá)到平均個(gè)數(shù).12種受試植物目前均在中國多個(gè)省份有分布[21],并有相關(guān)報(bào)道已應(yīng)用于毒理試驗(yàn)并獲得可靠的毒性數(shù)據(jù),燕麥、蕪青、普通小麥、玉蜀黍是各國際組織普遍推薦的受試植物[32-36],在考慮毒性數(shù)據(jù)共享的情況下,其他物種在符合試驗(yàn)標(biāo)準(zhǔn)的環(huán)境下得到的毒性數(shù)據(jù)同樣可錄入相關(guān)數(shù)據(jù)庫,并用于土壤基準(zhǔn)值推導(dǎo)和生態(tài)風(fēng)險(xiǎn)評估等環(huán)節(jié).

    圖4 12種受試植物毒性數(shù)據(jù)涉及的污染物數(shù)目

    12種受試植物涉及污染物總數(shù)118個(gè),對各物種毒性較大的污染物見表2,排除污染物重疊后,共有13個(gè)污染物對兩種及兩種以上受試植物表現(xiàn)出較高毒性.即阿特拉津(CAS:1912249)、西瑪津(CAS: 122349)、氨磺樂靈(CAS:19044883)、氟樂靈(CAS: 1582098)、二丙烯草胺(CAS:93710)、唑嘧磺草胺(CAS:98967409)、2,6-二氯芐腈(CAS:1194656)、重鉻酸鉀(CAS:7778509)、五氯酚(CAS:87865)、硼酸(CAS:10043353)、硫酸銅(CAS:7758987)、2,4,6-三硝基甲苯(CAS:118967)、2,4-二硝基甲苯(CAS: 121142),以上污染物用在農(nóng)業(yè)中主要起除草、殺蟲、除菌等作用.此外,對稻毒性較大的5個(gè)污染物對其他受試植物未見明顯毒害作用 (表2),可能是稻的特異性谷胱甘肽S-轉(zhuǎn)移酶(GST)對常見除草劑類污染物有解毒作用造成的[37-38].

    基于生態(tài)系統(tǒng)中物質(zhì)循環(huán)的基本原則,土壤污染與地下水污染、飲用水污染等具有一定關(guān)聯(lián)性[39].在以上13個(gè)污染物中,阿特拉津與西瑪津是常見的三嗪類除草劑,三嗪類除草劑因發(fā)明較早效果顯著得到了大面積應(yīng)用,其中阿特拉津已被公認(rèn)為地表水和地下水的主要污染物之一[40],在土壤中對豆科植物的毒性可在使用18周后仍被檢測到[41].氟樂靈是一種廣泛使用且在環(huán)境中持久存在的二硝基苯胺類除草劑,具有顯著的生態(tài)毒性[42].二丙烯草胺被歸類為土壤中的淋濾劑,其對地下水的污染潛力與甲草胺和異丙甲草胺相當(dāng)[43].在土壤中,2,6-二氯芐腈本身不但抑制燕麥幼苗發(fā)芽,還會殺死或阻礙幼嫩植物的生長[44],其降解產(chǎn)物2,6-二氯苯甲酰胺(BAM),已在19%的丹麥地下水樣本中檢出[45].2, 4,6-三硝基甲苯,對植物根系的微觀結(jié)構(gòu)會造成損害并抑制光合作用,如造成紫苜蓿氧化酶系統(tǒng)紊亂[46],其在土壤中的代謝物質(zhì)2,4-二硝基甲苯等可對人體及環(huán)境造成潛在的危害[47-48].此外,五氯酚對土壤微生物群具有高毒性[49],唑嘧磺草胺會抑制豆科作物的發(fā)芽并導(dǎo)致植物死亡[50].這13個(gè)污染物,使用年限較久,在土壤中具有一定的積累性,對土壤中植物、微生物等均有不同程度的毒害作用,它們及其降解產(chǎn)物會隨著物質(zhì)循環(huán)進(jìn)入水體影響到水體安全,當(dāng)人體直接或間接接觸到時(shí)也會產(chǎn)生相應(yīng)的健康問題,因此人們對其進(jìn)行了較多的研究.

    表2 12種受試植物的污染物毒性EC50和IC50值

    注:*前數(shù)字表示化合物CAS號.

    2.3 受試植物對高毒性污染物的敏感性

    搜集這13個(gè)污染物的毒性數(shù)據(jù),根據(jù)篩選條件得到了5種及5種以上被子植物對6個(gè)污染物的毒性數(shù)據(jù)(數(shù)據(jù)分析的基本數(shù)據(jù)點(diǎn)要求).采用log- logistic物種敏感度分布法[51–53],對2,4-二硝基甲苯、2,4,6-三硝基甲苯、阿特拉津、氟樂靈、硫酸銅和西瑪津植物毒性效應(yīng)進(jìn)行敏感性分析(圖5).結(jié)果發(fā)現(xiàn)黑麥草對2,4-二硝基甲苯、硫酸銅、2,4,6-三硝基甲苯較為敏感,紫苜蓿對2,4,6-三硝基甲苯較為敏感,大麥對阿特拉津較為敏感,高粱對氟樂靈較為敏感,普通小麥對西瑪津表現(xiàn)敏感.

    由圖5可見,現(xiàn)有研究多集中在農(nóng)作物上,其他生產(chǎn)生活功能的植物物種研究較少,植物物種代表性不足.此外,涵蓋的污染物數(shù)據(jù)也不夠全面,缺少近年新興污染物的研究,考慮到化合物總體數(shù)量的龐大,我國的生態(tài)毒性數(shù)據(jù)尚需要更多補(bǔ)充.本土生態(tài)毒性數(shù)據(jù)多維度的不足,將不利于我國土壤生態(tài)風(fēng)險(xiǎn)的評估及環(huán)境基準(zhǔn)的推導(dǎo).

    圖5 受試植物對典型污染物的物種敏感度分布

    Fig.5 Distribution of species sensitivity of test plants to typical pollutants

    未標(biāo)注物種來自于禾本科、豆科、十字花科、葫蘆科、茄科、菊科、傘形科等

    2.4 物種種間關(guān)系預(yù)測模型(ICE)

    ICE模型最初被USEPA應(yīng)用在水生生物毒性預(yù)測、水質(zhì)基準(zhǔn)和風(fēng)險(xiǎn)評估中,USEPA提出了水生生物ICE模型的篩選評價(jià)標(biāo)準(zhǔn):交叉驗(yàn)證成功率385%、MSE£0.22、230.6、分類學(xué)距離£4[54].Wang等[18]初步構(gòu)建了我國水生生物的ICE模型,經(jīng)過分析提出可依據(jù)交叉驗(yàn)證成功率380%、MSE£0.54、230.78對模型進(jìn)行篩選.

    本研究對生態(tài)毒性數(shù)據(jù)相對豐富的12種受試植物兩兩進(jìn)行ICE毒性預(yù)測,共得到132個(gè)ICE模型,任一模型均含有MSE、2參數(shù).采用檢驗(yàn)判斷模型所得方程是否顯著,當(dāng)<0.05時(shí)認(rèn)為該線性關(guān)系總體顯著,共88個(gè)模型滿足值要求(表3),其中黑麥草做替代物種時(shí),對其余11種受試植物預(yù)測得到的方程均達(dá)到顯著.采用留一交叉驗(yàn)證法(Leave-One-Out Cross Validation)來分析ICE模型的預(yù)測準(zhǔn)確度,實(shí)際生態(tài)毒性數(shù)值與預(yù)測值相比較得到ICE模型關(guān)鍵參數(shù)-交叉驗(yàn)證成功率.對交叉驗(yàn)證成功率與MSE和2的相關(guān)性進(jìn)行分析發(fā)現(xiàn): MSE與交叉驗(yàn)證成功率有顯著的負(fù)相關(guān)關(guān)系(相關(guān)系數(shù)=-0.7861),MSE與交叉驗(yàn)證成功率的線性方程:=1.1056-0.4897(2=0.61,<0.0001);2與交叉驗(yàn)證成功率有較弱的正相關(guān)關(guān)系(相關(guān)系數(shù)= 0.3676),2與交叉驗(yàn)證成功率的線性方程:= 0.3509+0.5930(2=0.13,=0.0004)(圖6).為保證ICE模型的預(yù)測效果(交叉驗(yàn)證成功率380.00%),由線性方程計(jì)算得MSE£0.62、230.76,此外,分類學(xué)距離£4有利于ICE模型預(yù)測效果更好[54].

    滿足以上四個(gè)評價(jià)標(biāo)準(zhǔn)的ICE模型共25個(gè)(表4),其中黑麥草作為替代物種時(shí),有4個(gè)模型,分別是對燕麥、稻、普通小麥、玉蜀黍的預(yù)測;燕麥、普通小麥、玉蜀黍作為替代物種時(shí),各自有4個(gè)模型滿足評價(jià)標(biāo)準(zhǔn),這三個(gè)物種的兩兩預(yù)測模型均表現(xiàn)較好,同時(shí)參與預(yù)測的毒性數(shù)據(jù)值(N)312,而燕麥與蕪青作為毒性數(shù)據(jù)值較為豐富的兩個(gè)物種,盡管分類學(xué)距離上不占優(yōu)勢,但相互預(yù)測的MSE、2均滿足評價(jià)標(biāo)準(zhǔn),且交叉驗(yàn)證成功率在95%以上.因此,豐富的毒性數(shù)據(jù)有利于預(yù)測模型的精準(zhǔn)化[20],燕麥、蕪青、普通小麥、玉蜀黍、黑麥作為替代物種時(shí),所得到ICE模型均預(yù)測效果較好.

    表3 受試植物及其顯著性模型(F檢驗(yàn)P<0.05)統(tǒng)計(jì)

    歐洲油菜與蕪青是同屬的植物物種,相互預(yù)測時(shí)ICE模型均滿足評價(jià)標(biāo)準(zhǔn),盡管歐洲油菜僅有5個(gè)毒性數(shù)據(jù)值,但交叉驗(yàn)證成功率達(dá)到了100%;對于一些同科的替代-預(yù)測物種,其預(yù)測效果不一,這可能是由毒性數(shù)據(jù)少造成的,如紫苜蓿與綠豆是同科的物種,但受限于較少的毒性數(shù)據(jù),其模型預(yù)測結(jié)果較差,綠豆作為替代物種時(shí)MSE>0.62,且交叉驗(yàn)證成功率僅有40%,紫苜蓿作為替代物種時(shí),MSE> 0.62.此外,在88個(gè)顯著性模型(檢驗(yàn)<0.05)中,禾本科做替代物種的模型有42個(gè),其中約六成模型滿足本研究評價(jià)標(biāo)準(zhǔn)(表4).由此可見,現(xiàn)有的生態(tài)毒性數(shù)據(jù)多集中在禾本科植物,其他科植物數(shù)據(jù)缺乏,因此,系統(tǒng)開展其他受試植物的土壤生態(tài)毒性數(shù)據(jù)預(yù)測是有必要的.

    跨類群進(jìn)行預(yù)測時(shí),禾本科作為替代物種對十字花科的預(yù)測效果較好,十字花科與豆科作替代物種時(shí)對禾本科的預(yù)測效果同樣較好,這與它們的物種及毒性數(shù)據(jù)較多是密切相關(guān)的.分類學(xué)距離的增加會導(dǎo)致預(yù)測精度降低[20],因此在越近的分類學(xué)距離上模型更易于有較好的預(yù)測效果,而跨類群的模型預(yù)測效果則有較多不確定性[55-56].

    表4 滿足評價(jià)標(biāo)準(zhǔn)的ICE模型

    3 結(jié)論

    3.1 篩選得到53種分布廣泛且易于獲取的被子植物物種可推薦為土壤基準(zhǔn)和生態(tài)風(fēng)險(xiǎn)評估研究中的受試植物,分別來自菊科、禾本科、豆科、薔薇科、毛茛科、唇形科、莎草科、蕁麻科、茜草科、傘形科、十字花科、馬齒莧科、葫蘆科.

    3.2 分析發(fā)現(xiàn)12種被子植物的毒性數(shù)據(jù)較為豐富,分別是禾本科的燕麥Avena sativa、大麥Hordeum vulgare、黑麥草Lolium perenne、稷Panicum miliaceum、高粱Sorghu bicolor、普通小麥Triticum aestivum、玉蜀黍Zea mays、稻Oryza sativa,十字花科的歐洲油菜Brassica napus、蕪青Brassica rapa,豆科的紫苜蓿Medicago sativa、綠豆Vigna radiata.

    3.3 共構(gòu)建了88個(gè)顯著性模型(檢驗(yàn)<0.05),統(tǒng)計(jì)分析后得出模型評價(jià)標(biāo)準(zhǔn)為:交叉驗(yàn)證成功率380.00%、MSE£0.62、230.76、分類學(xué)距離£4,符合上述標(biāo)準(zhǔn)的模型有25個(gè),涉及禾本科-禾本科、十字花科-十字花科的相互預(yù)測,其中燕麥、蕪青、普通小麥、玉蜀黍、黑麥草等做替代物種時(shí)預(yù)測效果較好,跨類群的模型預(yù)測有較多不確定性.

    [1] 馬 瑾,劉奇緣,陳海燕,等.世界主要發(fā)達(dá)國家土壤環(huán)境基準(zhǔn)與標(biāo)準(zhǔn)理論方法研究[M]. 北京:科學(xué)出版社, 2021.

    Ma J, Liu Q Y, Chen H Y, et al. Study on the theory and methods of soil environmental criteria and standard in major developed countries in the world [M]. Beijing:Science Press, 2021.

    [2] 葛 峰,徐坷坷,劉愛萍,等.國外土壤環(huán)境基準(zhǔn)研究進(jìn)展及對中國的啟示[J]. 土壤學(xué)報(bào), 2021,58(2):331-343.

    Ge F, Xu K K, Liu A P, et al. Progress of the research on soil environmental criteria in other countries and its enlightenment to China[J]. Acta Pedologica Sinica, 2021,58(2):331-343.

    [3] Hu B F, Shao S, Ni H, et al. Assessment of potentially toxic element pollution in soils and related health risks in 271cities across China[J]. Environmental Pollution, 2020,270,116196.

    [4] 宋玉芳,周啟星,許華夏,等.重金屬對土壤中小麥種子發(fā)芽與根伸長抑制的生態(tài)毒性[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2002,13(4):459-462.

    Song Y F, Zhou Q X, Xu H X, et al. Eco-toxicology of heavy metals on the inhibition of seed germination and root elongation of wheat in soils[J]. Chinese Journal of Applied Ecology, 2002,13(4):459-462.

    [5] 鞠 鑫.銻對不同植物的毒理效應(yīng)及其土壤生態(tài)基準(zhǔn)研究[D]. 北京:華北電力大學(xué), 2016.

    Ju X. The toxicological effects of antimony on different plants and its soil ecological criteria [D].Beijing:North China Electric Power University, 2016.

    [6] 朱廣云,蔣 寶,李菊梅,等.土壤Mehlich-3可浸提態(tài)鎳對大麥根伸長的毒性[J]. 中國環(huán)境科學(xué), 2018,38(8):345-352.

    Zhu G Y, Jiang B, Li J M, et al. Toxicity thresholds based on Mehlich-3extractable nickel to barley root elongation[J]. China Environmental Science, 2018,38(8):3143-3150.

    [7] 付平南,貢曉飛,羅麗韻,等.不同價(jià)態(tài)鉻和土壤理化性質(zhì)對大麥根系毒性閾值的影響[J]. 環(huán)境科學(xué), 2020,41(5):2398-2405.

    Fu P N, Gong X F, Luo L Y, et al. Toxicity of chromium to root growth of barley as affected by chromium speciation and soil properties[J]. Environmental Science, 2020,41(5):2398-2405.

    [8] 宋玉芳,周啟星,許華夏,等.菲、芘、1,2,4-三氯苯對土壤高等植物根伸長抑制的生態(tài)毒性效應(yīng)[J]. 生態(tài)學(xué)報(bào), 2002,22(11):1945-1950.

    Song Y F, Zhou Q X, Xu H X, et al. Eco-toxicological effects of phenanthrene, pyrene and 1,2,4-Trichlorobenzene in soils on the inhibition of root elongation of higher plants[J]. Acta Ecologica Sinica, 2002,22(11):1945-1950.

    [9] 龔 平,周啟星,宋玉芳,等.重金屬對土壤中蘿卜種子發(fā)芽與根伸長抑制的生態(tài)毒性[J]. 生態(tài)學(xué)雜志, 2001,20(3):4-8.

    Gong P, Zhou Q X, Song Y F, et al. Eco-Toxicology of heavy metal on the inhibition of seed germination and root elongation of turnip in soil[J]. Chinese Journal of Ecology, 2001,20(3):4-8.

    [10] 楊 倩,王 希,沈禹穎.異齡苜蓿土壤浸提液對3種植物種子萌發(fā)的影響[J]. 草地學(xué)報(bào), 2009,17(6):784-788.

    Yang Q, Wang X, Shen Y L. Effect of soil extract solution from different aged alfalfa standings on seed germination of three species[J]. Acta Agrestia Sinica, 2009,17(6):784-788.

    [11] 劉 娜,金小偉,王業(yè)耀,等.生態(tài)毒理數(shù)據(jù)篩查與評價(jià)準(zhǔn)則研究 [J]. 生態(tài)毒理學(xué)報(bào), 2016,11(3):1-10.

    Liu N, Jin X W, Wang Y Y, et al.Review of criteria for screening and evaluating ecotoxicity data [J]. Asian Journal of Ecotoxicology, 2016, 11(3):1-10.

    [12] HJ831-2022 淡水生物水質(zhì)基準(zhǔn)推導(dǎo)技術(shù)指南[S].

    HJ831-2022 Technical guideline for deriving water quality criteria for freshwater organisms [S].

    [13] Office of science and technology. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms MD their uses [M]. Washington DC: United States Environmental Protection Agency, 1985.

    [14] 許 霞,薛銀剛,劉 菲,等.廢棄農(nóng)藥廠污染場地土壤浸出液的急性毒性和遺傳毒性篩查[J]. 生態(tài)毒理學(xué)報(bào), 2017,12(6):223-232.

    Xu X, Xue Y G, Liu F, et al. Screening of acute toxicity and genetic toxicity of soil leachates from abandoned pesticide factory contaminated site[J]. Asian Journal of Ecotoxicology, 2017,12(6):223-232.

    [15] 金 鑫.典型化工類污染場地的調(diào)查診斷與生物毒性試驗(yàn)的應(yīng)用研究[D]. 南京:南京農(nóng)業(yè)大學(xué), 2008.

    Jin X. Typical chemical industry contaminated sites Investigation and diagnosis and the application of biological toxicity test research [D]. Nanjing: Nanjing Agricultural University, 2008.

    [16] Willming M M, Lilavois C R, Barron M G, et al. Acute toxicity prediction to threatened and endangeredspecies using interspecies correlation estimation (ICE) models [J]. Environmental Science and Technology, 2016,50(19):10700?10707.

    [17] Fan J, Yan Z, Zheng X, et al. Development of interspecies correlation estimation (ICE) models to predict the reproduction toxicity of EDCs to aquatic species[J]. Chemosphere, 2019,224:833-839.

    [18] Wang X N, Fan B, Fan M, et al. Development and use of interspecies correlation estimation models in China for potential application in water quality criteria [J]. Chemosphere, 2019,240:124848.

    [19] Bejarano A C, Barron M G. Aqueous and tissue residue-based interspecies correlation estimation models provide conservative hazard estimates for aromatic compounds[J]. Environmental Toxicology and Chemistry, 2016,35(1):56-64.

    [20] Barron M G, Lambert F N. Potential for interspecies toxicity estimation in soil invertebrates[J]. Toxics, 2021,9(10):265.

    [21] 王利松,賈 渝,張憲春.中國生物物種名錄第一卷植物[M]. 北京:科學(xué)出版社, 2018.

    Wang L S, Jia Y, Zhang X C. Catalogue of life China, Volume 1, Plants [M]. Beijing:Science Press, 2018.

    [22] 劉婷婷,鄭 欣,閆振廣,等.水生態(tài)基準(zhǔn)大型水生植物受試生物篩選[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014,33(11):2204-2212.

    Liu T T, Zheng X, Yan Z G, et al. Screening of native aquatic macrophytes for establishing aquatic life criteria[J]. Journal of Agro-Environment Science, 2014,33(11):2204-2212.

    [23] Ray S, Bhattacharya S. Manual for bryophytes: Morphotaxonomy, diversity, spore germination, conservation[M]. Manual for Bryophytes, 2021.

    [24] Nie L, Cui Y, Chen X, et al. Complete chloroplast genome sequence of the medicinal plant(Burdock)[J]. Genome, 2020,63(1):53-60.

    [25] Li Q, Mo J. Complete chloroplast genome of clonal medicinal plant,, in China[J]. Mitochondrial DNA Part B-Resources, 2019,4(1):2019-2020.

    [26] Sun J, Wang Y, Garran T A, et al. Heterogeneous genetic diversity estimation of a promising domestication medicinal motherwortbased on chloroplast genome resources[J]. Frontiers in Genetics, 2021,12:1806.

    [27] Dong A X, Xin H B, Li Z J, et al. High-quality assembly of the reference genome for scarlet sage,, an economically important ornamental plant[J]. GigaScience, 2018,7(7):giy068.

    [28] Liu X, Yang H, Zhao J, et al. The complete chloroplast genome sequence of the folk medicinal and vegetable plant purslane (L.)[J]. Journal of Horticultural Science and Biotechnology, 2018,93(4):356-365.

    [29] Sena K L, Goff B, Davis D, et al. Switchgrass growth and forage quality trends provide insight for management[J]. Crops and Soils, 2019,52(2):44-51.

    [30] Morales-Nieto C R, Lvarez-Holguín A, Villarreal-Guerrero F, et al. Phenotypic and genetic diversity of blue grama () populations from Northern Mexico[J]. Arid Land Research and Management, 2019,34(5):1-16.

    [31] Akhzari D, Mahdavi S, Pessarakli M, et al. Effects of arbuscular mycorrhizal fungi on seedling growth and physiological traits ofL. grown under salinity stress conditions[J]. Communications in Soil Science and Plant Analysis, 2016,47(7):822-831.

    [32] Soil quality -Determination of the effects of pollutants on soil flora.Part 1:Method for the measurement of inhibition of root growth ISO11269-1[M]. International Organization for Standardization,2012.

    [33] Soil quality -Determination of the effects of pollutants on soil flora.Part 2:Effects of chemicals on the emergence and growth of higher plants ISO11269-2[M]. International Organization for Standardization,2012.

    [34] Guideline for the testing of chemicals.Proposal for updating guideline 208 [M]. Organization for Economic Cooperation and Development,2006.

    [35] Ecological effects test guidelines.OPPTS 850.4230. Early Seedling growth toxicity test [M]. Environmental Protection Agency,2012.

    [36] Ecological Effects Test Guidelines.OPPTS 850.4100.Seedling Emergence and Seedling Growth[M]. Environmental Protection Agency,2012.

    [37] Lee J J, Jo H J, Kong K H. A plant-specific tau class glutathione S-transferase fromhaving significant detoxification activity towards chloroacetanilide herbicides[J]. Bulletin-Korean Chemical Society, 2011,32(10):3756-3759.

    [38] Hu T. A glutathione S-transferase confers herbicide tolerance in rice[J].Crop Breeding and Applied Biotechnology, 2014,14(2):76-81.

    [39] Xue X, Hawkins T R, Ingwersen W W, et al. Demonstrating an approach for including pesticide use in life-cycle assessment: estimating human and ecosystem toxicity of pesticide use in midwest corn farming[J]. The International Journal of Life Cycle Assessment, 2015,20(8):1117-1126.

    [40] Mesquini J, Sawaya A, López B, et al. Detoxification of atrazine by endophyticisolated from sugarcane and detection of nontoxic metabolite[J]. Bulletin of Environmental Contamination and Toxicology, 2015,95(6):803-809.

    [41] Simarmata M, Harsono P, Hartal H. Sensitivity of legumes and soil microorganisms to residue of herbicide mixture of atrazine and mesotrione[J]. Asian J. Agri. and Biol., 2018,6(1):12-20.

    [42] Coleman N V, Rich D J, Tang F, et al. Biodegradation and abiotic degradation of trifluralin: Acommonly used herbicide with a poorly understood environmental fate[J]. Environmental Science and Technology, 2020,54(17):10399-10410.

    [43] Balinova A M. Acetochlor-A comparative study on parameters governing the potential for water pollution[J]. Journal of Environmental Science and Health Part B, 1997,32(5):645-658.

    [44] Koopman H, Daams J. 2,6-Dichlorobenzonitrile: anew herbicide[J]. Nature, 1960,186(4718):89-90.

    [45] Holtze M S, S?rensen J, Hansen H, et al. Transformation of the herbicide 2,6-Dichlorobenzonitrile to the persistent metabolite 2,6-Dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase[J]. Biodegradation, 2006,17(6):503-510.

    [46] Yang X, Zhang Y, Lai J, et al. Analysis of the biodegradation and phytotoxicity mechanism of TNT, RDX, HMX in alfalfa ()[J]. Chemosphere, 2021,281:130842.

    [47] Neuwoehner J, Schofer A, Erlenkaemper B, et al. Toxicological characterization of 2,4,6-Trinitrotoluene, its transformation products, and two nitramine explosives[J]. Environmental Toxicology and Chemistry, 2010,26(6):1090-1099.

    [48] Doherty S J, Messan K S, Busby R R, et al. Ecotoxicity of 2,4-Dinitrotoluene to cold tolerant plant species in a sub-arctic soil[J]. International Journal of Phytoremediation, 2019,21:958-968.

    [49] Marti E, Sierra J, Caliz J, et al. Ecotoxicity of chlorophenolic compounds depending on soil characteristics[J]. Science of the Total Environment, 2011,409(14):2707-2716.

    [50] Bondareva L, Fedorova N. Pesticides: Behavior in agricultural soil and plants[J]. Molecules, 2021,26(17):5370.

    [51] Xiao P F, Lin X Y, Liu Y H, et al. Application of species sensitivity distribution in aquatic ecological risk assessment of chlopyrifos for paddy ecosystem[J]. Asian Journal of Ecotoxicology, 2017,12(3):398-407.

    [52] Wei W, Liang D L, Chen S B. Plant species sensitivity distribution to the phytotoxicity of soil exogenous Zinc[J]. Chinese Journal of Ecology, 2012,31(3):538-543.

    [53] Wang X, Yan Z, Liu Z, et al. Comparison of species sensitivity distributions for species from China and the USA[J]. Environmental Science and Pollution Research, 2014,21(1):168-176.

    [54] Raimondo S, Mineau P, Barron M G. Estimation of chemical toxicity to wildlife species using interspecies correlation models[J]. Environmental Science and Technology, 2007,41(16):5888-5894.

    [55] Connors K A, Beasley A, Barron M G, et al. Creation of a curated aquatic toxicology database: Enviro Tox[J]. Environmental Toxicology and Chemistry, 2019,38(5):1062-1072.

    [56] Gestel C A M VAN, Borgman E, Verweij R A, et al. The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates[J]. Ecotoxicology and Environmental Safety,2011,74(1):1-9.

    Screening of soil test plants and developing of their toxicity prediction models in China.

    LUO Jing-jing1, WU Fan1, ZHANG Jia-wen1, LIU Zheng-tao1, ZHANG Cong2, WANG Xiao-nan1*

    (1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;2.Offshore Environmental Technology & Services Limited, Beijing 100027, China)., 2022,42(7):3295~3305

    The lack of ecotoxicity data has always been a problem in the research of soil criteria and ecological risk assessment in China. The screening of native test plants can provide more ecotoxicity test materials, so as to obtain the ecotoxicity data of different species. In view of the sensitivity of plants to soil pollutants, potential test plants in China were screened from angiosperms according to the principles of distribution range, representativeness and accessibility. The results showed that 53 species of angiosperms in 13 families were widely distributed and easy to obtain, and could be used as native test plants. The result showed that ecotoxicity data of 12 plant species were relatively abundant. Therefore, the ecotoxicity prediction models were developed in this study. A total of 132 Interspecies Correlation Estimation (ICE) models were obtained for the 12 plant species, of which 88 were significant models (-test<0.05). Moreover, the selection and evaluation principle of the constructed ICE models were analyzed, and it was concluded that the ICE models with better prediction effects should meet the principle of cross-validation success rate380.00%, MSE£0.62,230.76 and taxonomic distance£4. Finally, 25ICE models were screened meeting the above principle, involving the mutual prediction of Gramineae-Gramineae and Cruciferae-Cruciferae. Among which when,,,andwere used as the surrogate species, the estimated toxicity values of predicted species were close to the actual tested values. The screening of the test plants and the establishment of the ecotoxicity prediction model can help generate ecotoxicity data and provide a scientific basis for soil pollution management and ecological risk assessment.

    soil ecological criteria;screening of test organisms;angiosperm species;species sensitivity analysis;ICE model prediction

    X53

    A

    1000-6923(2022)07-3295-11

    羅晶晶(1997-),女,寧夏銀川人,中國環(huán)境科學(xué)研究院碩士研究生,主要從事生態(tài)毒理學(xué)研究.

    2021-12-28

    國家重點(diǎn)研發(fā)計(jì)劃(2019YFC1804604,2019YFC1803401- 003-03)

    * 責(zé)任作者, 副研究員, wangxn@craes.org.cn

    猜你喜歡
    毒性物種污染物
    吃光入侵物種真的是解決之道嗎?
    英語世界(2023年10期)2023-11-17 09:18:18
    菌株出馬讓畜禽污染物變廢為寶
    環(huán)境科學(xué)研究(2021年6期)2021-06-23 02:39:54
    環(huán)境科學(xué)研究(2021年4期)2021-04-25 02:42:02
    你能找出污染物嗎?
    動物之最——毒性誰最強(qiáng)
    回首2018,這些新物種值得關(guān)注
    電咖再造新物種
    汽車觀察(2018年10期)2018-11-06 07:05:26
    RGD肽段連接的近紅外量子點(diǎn)對小鼠的毒性作用
    瘋狂的外來入侵物種
    亚洲成人中文字幕在线播放| 简卡轻食公司| 欧美另类亚洲清纯唯美| 少妇熟女aⅴ在线视频| 久久99精品国语久久久| 91久久精品国产一区二区三区| 国语对白做爰xxxⅹ性视频网站| 一卡2卡三卡四卡精品乱码亚洲| 亚洲无线观看免费| 汤姆久久久久久久影院中文字幕 | 国产精品,欧美在线| 少妇裸体淫交视频免费看高清| 热99re8久久精品国产| 国产大屁股一区二区在线视频| 大香蕉久久网| 久久精品久久久久久噜噜老黄 | 成人亚洲欧美一区二区av| 欧美bdsm另类| 国产精品久久久久久av不卡| 精品久久久久久久久久久久久| 少妇高潮的动态图| 在线观看一区二区三区| 美女内射精品一级片tv| 99久久人妻综合| 18禁动态无遮挡网站| 国产视频内射| 亚洲不卡免费看| 国产成人a区在线观看| 免费av观看视频| 伦理电影大哥的女人| 午夜福利在线观看免费完整高清在| 日韩精品青青久久久久久| 免费观看a级毛片全部| 亚洲在线观看片| 中文字幕熟女人妻在线| 一区二区三区四区激情视频| 日韩欧美精品免费久久| 日韩欧美精品免费久久| 99热网站在线观看| 亚洲av成人av| 午夜亚洲福利在线播放| 青青草视频在线视频观看| 简卡轻食公司| 青春草国产在线视频| 在线天堂最新版资源| 欧美另类亚洲清纯唯美| 夜夜爽夜夜爽视频| 日韩在线高清观看一区二区三区| 免费av不卡在线播放| ponron亚洲| 欧美精品一区二区大全| 日本wwww免费看| 国产精品爽爽va在线观看网站| 亚洲国产精品成人久久小说| 国产精品人妻久久久久久| 国产三级中文精品| 综合色丁香网| 尤物成人国产欧美一区二区三区| 全区人妻精品视频| 国产一区二区亚洲精品在线观看| 99热全是精品| 免费av观看视频| 国产精品国产三级专区第一集| a级毛片免费高清观看在线播放| 熟女人妻精品中文字幕| 久久久久久久久中文| 男女啪啪激烈高潮av片| 久久久精品94久久精品| 国产亚洲一区二区精品| 国产精品.久久久| 国产一区亚洲一区在线观看| 亚洲四区av| 国产成人a区在线观看| 亚洲中文字幕一区二区三区有码在线看| 美女黄网站色视频| 99久国产av精品国产电影| 亚洲人成网站高清观看| 亚洲精品自拍成人| 一夜夜www| 亚洲欧美精品综合久久99| 国产精品乱码一区二三区的特点| 搡女人真爽免费视频火全软件| 丝袜美腿在线中文| 中文在线观看免费www的网站| 人体艺术视频欧美日本| 一边亲一边摸免费视频| 桃色一区二区三区在线观看| 国产成人freesex在线| 男人舔女人下体高潮全视频| 久久国内精品自在自线图片| 亚洲在线自拍视频| 国产亚洲5aaaaa淫片| 偷拍熟女少妇极品色| 干丝袜人妻中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品久久久久久噜噜老黄 | 伦精品一区二区三区| 日本色播在线视频| 好男人视频免费观看在线| 观看免费一级毛片| 午夜福利网站1000一区二区三区| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 九草在线视频观看| 亚洲国产欧美在线一区| 人妻系列 视频| 亚洲,欧美,日韩| 人人妻人人澡欧美一区二区| 久久韩国三级中文字幕| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 免费观看性生交大片5| 午夜福利成人在线免费观看| av天堂中文字幕网| 精品久久国产蜜桃| 欧美成人精品欧美一级黄| 亚洲经典国产精华液单| 变态另类丝袜制服| 国产v大片淫在线免费观看| 大香蕉久久网| 一边亲一边摸免费视频| 亚洲欧美精品综合久久99| 免费av不卡在线播放| 免费不卡的大黄色大毛片视频在线观看 | 国产片特级美女逼逼视频| 夜夜爽夜夜爽视频| 哪个播放器可以免费观看大片| 最近中文字幕高清免费大全6| 免费黄网站久久成人精品| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av| 欧美色视频一区免费| 国产又色又爽无遮挡免| 亚洲怡红院男人天堂| 免费观看的影片在线观看| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 性插视频无遮挡在线免费观看| 国产又黄又爽又无遮挡在线| 蜜臀久久99精品久久宅男| 免费观看性生交大片5| av黄色大香蕉| 波多野结衣高清无吗| 午夜亚洲福利在线播放| 天堂网av新在线| 久久欧美精品欧美久久欧美| 好男人视频免费观看在线| 国产色婷婷99| av在线观看视频网站免费| 久久6这里有精品| 国产在视频线在精品| 人妻夜夜爽99麻豆av| or卡值多少钱| 国产亚洲av片在线观看秒播厂 | 91av网一区二区| 久久午夜福利片| 国产免费又黄又爽又色| 久久国产乱子免费精品| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| 亚洲伊人久久精品综合 | 欧美区成人在线视频| АⅤ资源中文在线天堂| 国产视频内射| 你懂的网址亚洲精品在线观看 | 一个人看的www免费观看视频| 免费av毛片视频| 成人av在线播放网站| 国产精品99久久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 婷婷色av中文字幕| 国内精品美女久久久久久| 嫩草影院精品99| 久久久久久久国产电影| 亚洲精品aⅴ在线观看| 少妇裸体淫交视频免费看高清| 精品久久久久久久久久久久久| 天天躁夜夜躁狠狠久久av| 69人妻影院| videos熟女内射| 在线观看av片永久免费下载| 午夜老司机福利剧场| av专区在线播放| 成人三级黄色视频| 久99久视频精品免费| 国产探花极品一区二区| 国产亚洲午夜精品一区二区久久 | 国产麻豆成人av免费视频| 一个人看视频在线观看www免费| 国产精品,欧美在线| 在线免费观看不下载黄p国产| 精品酒店卫生间| 国产高清视频在线观看网站| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 性插视频无遮挡在线免费观看| 久久这里有精品视频免费| 亚洲精品日韩av片在线观看| 日本欧美国产在线视频| 国产免费男女视频| 国产成年人精品一区二区| 麻豆精品久久久久久蜜桃| 在线观看66精品国产| 91久久精品国产一区二区三区| 高清毛片免费看| 中文天堂在线官网| 一区二区三区乱码不卡18| 小蜜桃在线观看免费完整版高清| 最近最新中文字幕免费大全7| 成人综合一区亚洲| 日韩欧美精品v在线| 亚洲va在线va天堂va国产| 免费一级毛片在线播放高清视频| 精品久久久久久电影网 | 日本wwww免费看| 最近的中文字幕免费完整| 少妇高潮的动态图| 偷拍熟女少妇极品色| 国产一区有黄有色的免费视频 | 丰满人妻一区二区三区视频av| 韩国高清视频一区二区三区| 亚洲欧美精品自产自拍| 国产成人a∨麻豆精品| 免费一级毛片在线播放高清视频| 国产伦精品一区二区三区视频9| 51国产日韩欧美| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 欧美极品一区二区三区四区| 只有这里有精品99| 久久国内精品自在自线图片| 久久鲁丝午夜福利片| 久久精品影院6| 蜜桃久久精品国产亚洲av| 国产三级中文精品| videossex国产| 尾随美女入室| 九色成人免费人妻av| 成年av动漫网址| 久久精品人妻少妇| 午夜免费激情av| 国产伦一二天堂av在线观看| 久久久久久久午夜电影| 久久久精品大字幕| 久久99热这里只有精品18| 最近的中文字幕免费完整| 亚洲成人av在线免费| 一级二级三级毛片免费看| 久久久精品大字幕| 七月丁香在线播放| 国产v大片淫在线免费观看| 久久久久久九九精品二区国产| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 有码 亚洲区| 高清在线视频一区二区三区 | 国产美女午夜福利| 国产一级毛片七仙女欲春2| 久久精品久久精品一区二区三区| 久久这里有精品视频免费| 国产精品久久久久久精品电影| 干丝袜人妻中文字幕| 纵有疾风起免费观看全集完整版 | 99久国产av精品国产电影| 看免费成人av毛片| 一级毛片久久久久久久久女| 一级毛片aaaaaa免费看小| 久久婷婷人人爽人人干人人爱| 精品无人区乱码1区二区| 免费观看在线日韩| 国产成人a∨麻豆精品| 亚洲无线观看免费| 久久久精品欧美日韩精品| 国产免费又黄又爽又色| 国产伦精品一区二区三区视频9| 欧美丝袜亚洲另类| 又粗又爽又猛毛片免费看| 午夜老司机福利剧场| 日本熟妇午夜| 免费大片18禁| 久久亚洲国产成人精品v| 国产男人的电影天堂91| 九九爱精品视频在线观看| av在线观看视频网站免费| 中文乱码字字幕精品一区二区三区 | 国语自产精品视频在线第100页| 狂野欧美激情性xxxx在线观看| 天堂网av新在线| 久久99热这里只有精品18| 国产精品伦人一区二区| 波多野结衣高清无吗| 久久久久网色| 人妻夜夜爽99麻豆av| 97热精品久久久久久| 久久久久久久久久成人| 免费大片18禁| 国产成人一区二区在线| 青春草亚洲视频在线观看| 欧美潮喷喷水| 久久人人爽人人爽人人片va| 国产一区有黄有色的免费视频 | 久久久久久久午夜电影| 99久久精品一区二区三区| 97超视频在线观看视频| 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看| 久久人人爽人人爽人人片va| 欧美丝袜亚洲另类| 不卡视频在线观看欧美| 少妇人妻一区二区三区视频| 亚洲精品影视一区二区三区av| 久久久a久久爽久久v久久| 精品不卡国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 观看免费一级毛片| 欧美精品一区二区大全| 青春草亚洲视频在线观看| 亚洲不卡免费看| 亚洲精品aⅴ在线观看| 免费看美女性在线毛片视频| 欧美高清性xxxxhd video| 国产女主播在线喷水免费视频网站 | 永久免费av网站大全| 99九九线精品视频在线观看视频| 亚洲不卡免费看| 国产精品综合久久久久久久免费| 亚洲欧洲日产国产| 亚洲av电影不卡..在线观看| 精品一区二区三区人妻视频| 亚洲av一区综合| 又黄又爽又刺激的免费视频.| 亚洲真实伦在线观看| 亚洲综合精品二区| 日本免费在线观看一区| 美女cb高潮喷水在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品成人久久小说| ponron亚洲| 欧美色视频一区免费| 亚洲电影在线观看av| 丰满少妇做爰视频| 中文亚洲av片在线观看爽| 久久6这里有精品| 99热精品在线国产| 久久久久久久久久久免费av| 不卡视频在线观看欧美| 日本wwww免费看| 国产精华一区二区三区| 国产在视频线在精品| 日产精品乱码卡一卡2卡三| 亚洲va在线va天堂va国产| 中国美白少妇内射xxxbb| 七月丁香在线播放| 久久久国产成人免费| 亚洲av中文字字幕乱码综合| 久久99精品国语久久久| 六月丁香七月| 欧美潮喷喷水| 亚洲欧洲国产日韩| 最近2019中文字幕mv第一页| 人人妻人人澡人人爽人人夜夜 | 国产高潮美女av| 国产探花极品一区二区| 国产精品熟女久久久久浪| 搞女人的毛片| 亚洲最大成人av| 观看免费一级毛片| 精品人妻视频免费看| 大香蕉97超碰在线| 国内精品一区二区在线观看| 男女边吃奶边做爰视频| 亚洲av成人精品一区久久| eeuss影院久久| 亚洲av免费高清在线观看| 欧美日韩国产亚洲二区| www.色视频.com| 午夜精品在线福利| 不卡视频在线观看欧美| 一边亲一边摸免费视频| 精品久久久久久成人av| 午夜日本视频在线| 亚洲五月天丁香| 国产精品不卡视频一区二区| 丰满人妻一区二区三区视频av| 国产单亲对白刺激| 日韩欧美 国产精品| 精品久久久久久电影网 | 热99re8久久精品国产| 免费av不卡在线播放| 床上黄色一级片| 美女高潮的动态| 三级男女做爰猛烈吃奶摸视频| 国产精品精品国产色婷婷| 亚洲欧美精品综合久久99| 永久免费av网站大全| 国产一区亚洲一区在线观看| 成人二区视频| 国产女主播在线喷水免费视频网站 | 亚洲av二区三区四区| 国产成人福利小说| 日本三级黄在线观看| 久久精品人妻少妇| 国内精品宾馆在线| 久久久久久久久久久免费av| 最近视频中文字幕2019在线8| 亚洲人成网站高清观看| 少妇丰满av| 韩国av在线不卡| 高清午夜精品一区二区三区| 久久精品久久精品一区二区三区| 小蜜桃在线观看免费完整版高清| 成人国产麻豆网| 51国产日韩欧美| 国产精品国产三级专区第一集| 啦啦啦啦在线视频资源| 精品国产三级普通话版| 国产又黄又爽又无遮挡在线| 精品久久国产蜜桃| 亚洲,欧美,日韩| 欧美zozozo另类| 白带黄色成豆腐渣| 日本一二三区视频观看| 日韩人妻高清精品专区| 国产69精品久久久久777片| 国产真实伦视频高清在线观看| 晚上一个人看的免费电影| 亚洲av成人精品一二三区| 丝袜喷水一区| 成人特级av手机在线观看| 欧美日本视频| 99久久无色码亚洲精品果冻| 在线天堂最新版资源| 亚洲国产色片| 日本五十路高清| 精品一区二区三区视频在线| 91久久精品电影网| 桃色一区二区三区在线观看| eeuss影院久久| 亚洲国产精品国产精品| 欧美精品国产亚洲| 在线播放无遮挡| 日本免费a在线| 黄色一级大片看看| 男插女下体视频免费在线播放| 麻豆久久精品国产亚洲av| 中文字幕精品亚洲无线码一区| 黄片无遮挡物在线观看| 亚洲久久久久久中文字幕| 国产成人免费观看mmmm| 啦啦啦韩国在线观看视频| 嫩草影院精品99| 成人高潮视频无遮挡免费网站| 嫩草影院入口| 国产精品一区二区性色av| 精品无人区乱码1区二区| 精华霜和精华液先用哪个| 尤物成人国产欧美一区二区三区| 国产av不卡久久| 国产伦理片在线播放av一区| 日日摸夜夜添夜夜爱| 你懂的网址亚洲精品在线观看 | 26uuu在线亚洲综合色| 国产乱人偷精品视频| 变态另类丝袜制服| 欧美人与善性xxx| 亚洲高清免费不卡视频| 日本黄大片高清| 久久精品国产亚洲网站| 3wmmmm亚洲av在线观看| 男女那种视频在线观看| 亚洲精品国产成人久久av| 亚洲最大成人中文| 午夜免费激情av| 91午夜精品亚洲一区二区三区| 蜜桃亚洲精品一区二区三区| 亚洲国产精品专区欧美| 可以在线观看毛片的网站| 欧美性猛交╳xxx乱大交人| www.av在线官网国产| 男人的好看免费观看在线视频| ponron亚洲| 国产一级毛片在线| 美女黄网站色视频| kizo精华| 18禁在线无遮挡免费观看视频| 国产女主播在线喷水免费视频网站 | 久久草成人影院| 免费av毛片视频| 国产精品野战在线观看| 观看美女的网站| 精品不卡国产一区二区三区| 国产黄色视频一区二区在线观看 | 亚洲天堂国产精品一区在线| 久久精品综合一区二区三区| 久久久久国产网址| 在现免费观看毛片| 国产午夜精品久久久久久一区二区三区| av线在线观看网站| 欧美一区二区国产精品久久精品| 国产成人freesex在线| 午夜福利视频1000在线观看| 自拍偷自拍亚洲精品老妇| 亚洲美女搞黄在线观看| 九色成人免费人妻av| 不卡视频在线观看欧美| 国产亚洲精品久久久com| 日产精品乱码卡一卡2卡三| 亚洲国产精品久久男人天堂| 变态另类丝袜制服| 黄色配什么色好看| 国产淫片久久久久久久久| 91av网一区二区| 国产成人a区在线观看| 免费大片18禁| 久久精品91蜜桃| 国产乱来视频区| 久久久久久伊人网av| 国产又色又爽无遮挡免| 午夜福利在线观看吧| 日韩人妻高清精品专区| 九九爱精品视频在线观看| 国产一区二区在线av高清观看| 国产成人freesex在线| 亚洲最大成人手机在线| 亚洲自拍偷在线| av在线老鸭窝| 欧美性感艳星| 日本免费在线观看一区| 干丝袜人妻中文字幕| 久久久久久久久久黄片| 亚洲,欧美,日韩| 免费观看的影片在线观看| 黄片无遮挡物在线观看| 国产成人a区在线观看| 日本免费a在线| 国产极品精品免费视频能看的| 色视频www国产| 亚洲精品乱久久久久久| 久久精品国产亚洲av涩爱| 国产亚洲精品久久久com| 日韩欧美精品v在线| 99热这里只有是精品50| 天美传媒精品一区二区| 国产午夜福利久久久久久| 亚洲精品456在线播放app| 国产男人的电影天堂91| 国产精品一区二区三区四区免费观看| 能在线免费观看的黄片| 日日摸夜夜添夜夜爱| 身体一侧抽搐| 18禁动态无遮挡网站| 变态另类丝袜制服| 国语自产精品视频在线第100页| 最近的中文字幕免费完整| 久久久成人免费电影| 久久久欧美国产精品| 能在线免费看毛片的网站| 亚洲精品,欧美精品| 又黄又爽又刺激的免费视频.| 一个人免费在线观看电影| 日本-黄色视频高清免费观看| 久久久国产成人精品二区| 亚洲av免费在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产片特级美女逼逼视频| 最新中文字幕久久久久| 日韩一区二区视频免费看| 久久99热这里只频精品6学生 | 欧美xxxx黑人xx丫x性爽| 亚洲真实伦在线观看| 亚洲av成人精品一区久久| 国产高清有码在线观看视频| ponron亚洲| 国产乱人偷精品视频| 我要搜黄色片| 高清午夜精品一区二区三区| 亚洲精品456在线播放app| 有码 亚洲区| 国产高清不卡午夜福利| 国产视频内射| 久久精品影院6| 国产精品一区二区在线观看99 | 天堂影院成人在线观看| 观看美女的网站| 久久久久久九九精品二区国产| 在线播放国产精品三级| 99九九线精品视频在线观看视频| 身体一侧抽搐| 亚洲不卡免费看| 18禁在线播放成人免费| 日本黄大片高清| 高清毛片免费看| 一级二级三级毛片免费看| 国产免费一级a男人的天堂| 精品99又大又爽又粗少妇毛片| 噜噜噜噜噜久久久久久91| 亚洲中文字幕日韩| 成人亚洲精品av一区二区| 淫秽高清视频在线观看| 永久网站在线| 精品久久久久久成人av| 美女xxoo啪啪120秒动态图| 身体一侧抽搐| 亚洲精品一区蜜桃| 青青草视频在线视频观看| 久久久久久九九精品二区国产| 中文在线观看免费www的网站| 日日干狠狠操夜夜爽| 午夜日本视频在线| 亚洲av成人精品一区久久| 一个人观看的视频www高清免费观看| 只有这里有精品99| 成人一区二区视频在线观看| 日韩高清综合在线| 97人妻精品一区二区三区麻豆|