• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structured Controller Design for Interconnected Systems via Nonlinear Programming

    2022-07-18 06:17:42YanpengGuanJunpengDuandXinchunJia
    IEEE/CAA Journal of Automatica Sinica 2022年7期

    Yanpeng Guan, Junpeng Du, and Xinchun Jia,,

    Dear Editor,

    This letter deals with the structural controller design problem of interconnected systems with unknown feedback topology. Firstly,under a cardinality constraint on the directed communication links among sub-controllers, a distributed controller’s feedback gain and feedback topology are incorporated in a unified co-design framework. Secondly, the cardinality constraint introduced in the distributed control is represented by a binary integer programming.To deal with the complementary constraint, a nonlinear programming(NLP) is proposed to relax the binary integer programming. Finally,incorporating the NLP into the standard distributed event-triggered control method, an algorithm is developed for interconnected systems to simultaneously design the feedback topology and controller gain.

    An interconnected system is composed of several coupling subsystems, which usually coordinate with each other to accomplish a common task. Such systems exist in a large number of practical scenarios, such as power plants [1], intelligent transportation [2]. Due to their complex structure, large scale and comprehensive functions,interconnected systems are also referred to as large scale systems.With the rapid progress in embedded microprocessors and communication technology, a great amount of concern has been devoted to how to control the thriving interconnected systems [3].

    It is noted that existing distributed control strategies are mainly claimed over prescribed feedback topologies. In this way, since the distributed controller design and the feedback topology design are mutually independent, the following two unexpected cases may emerge. On the one hand, the preset feedback topology may provide redundant communication channels, which could lead to unnecessary expenditure and malicious attacks. On the other hand, it is also perhaps that the preset feedback topology could not support the required control performance, which leaves the issue of distributed controller design unsolvable. While a feasible solution can be obtained with a minor modification of the feedback topology.Therefore, one promising way to deal with the challenge is to codesign of the feedback topology and feedback gain for an interconnected system, which is the motivation of this letter.

    The overall controller gain of an interconnected system is usually a matrix with zero blocks, where each matrix block represents a channel gain and a null block implies no channel is set. Therefore,for an interconnected system, the design of a structured controller with unknown zero/nonzero structure is actually a co-design of feedback topology and feedback gain. With given controller structure, a chordal decomposition method is proposed to design sparse structured controller gain [4]. A structured controller design method is developed via constraining some decision matrix variables in the Lyapunov method [5]. In the case when feedback topology is not preset, the structured controller design problem becomes nondeterministic polynomial (NP) hard due to its combinatorial property[6]. By decomposing a nonlinear term existed in a linear matrix inequality into linear ones, a sparse promoting algorithm is presented for a liner system [7]. But a clear relationship between the sparse structure and feedback topology is not established. A alternating direction multipliers method is developed for the sake of generating a feedback gain with as many zero elements as possible in an optimal control problem [8]. A weightedl1iterative algorithm is proposed for interconnected systems to generate controller gains with null blocks[9]. More recently, a structured controller design method is proposed in [10] through a regularized mixed-integer programming (RMIP). It is noted that the method in [10] is one-step with a fixed sparsity,while iterative procedures are utilized in [9] to gradually promote sparsity in controller gain. However, one drawback of the former approach [10] is that a sufficient large upper bound should be preset for the expected structured controller gain in advance.

    On the other hand, event-triggered transmission strategy (ETS) has witnessed incredible developments over the past decade due to its advantage on resource saving [11]. In effect, the way that ETS savs resources by reducing redundant transmissions, is exactly a sparsification of feedback traffic flow in some specific channel(s).While it is obvious that sparsification of feedback topology could save the transmission resources by reducing redundant feedback communication channels, which is also an important motivation of structure controller design.

    This letter is going to investigate the issue of structured controller design for event-triggered interconnected systems via NLP. The main contributions of this letter are: 1) An algorithm based on NLP is developed to deal with the NP hard cardinality constraint. Compared withl1iterative algorithms, the initial point is not required to set beforehand; Compared with RMIP, the preset bound for controller gain is no longer needed. 2) A practicable solution is provided to codesign of feedback topology and feedback gain for event-triggered interconnected systems. And the limited transmission resources can be substantially saved from reducing redundant feedback channels as well as from reducing unnecessary transmissions in the remaining feedback channels.

    Problem statement:Consider an interconnected system that is comprised of some coupling subsystems with the model of

    wherej∈:={1,2,...,N},xj(t) denote the state vector;uj(t)represent control input generated via sub-controllerj;A jandBjare known matrices;Hjiis a constant matrix representing a coupling gain from subsystemitoj. Fig. 1 schematically illustrates the considered interconnected system.

    Each subsystem is equipped with a sub-controller, which could interact with other sub-controllers over networks. The controller for the overall system is composed ofNsub-controllers, and the form of each is given as follows:

    where the sub-controller gainsKjis are to be determined.

    It is noted that the zero/nonzero structure ofK jisconstitutes the communication topology among sub-controllers. Different from most of the existing system frameworks [12], the communication topology among sub-controllers is neither fixed nor stochastically varying in this letter, while it is to be determined under a cardinality constraint on the directed transmission links among sub-controllers.

    Fig. 1. A networked interconnected system.

    For the purpose of reducing occupation of the transmission resources, we utilize a distributed ETS (DETS) for the transmission of state measurement. An event threshold condition of sampled data is required to be evaluated before transmission. The DETS designed in this letter will only transmit data when the threshold is violated.

    In what follows,xj(kh) represents the signal sampled at instantkh.Only thexj(kh) that violates the following threshold condition will be transmitted to sub-controllerj:

    It is noted that controller gain K as well as its structure is to be designed in this letter. In the existing literature on controller design of interconnected systems, the communication topology among the sub-controllers is well set beforehand. But it is practically difficult to determine which sub-controllers should be connected in advance. For the sake of seeking some optimal control performance, it is nature to set as many feedback channels as possible. However, in this way, in addition to the waste of transmission resources to some extent, the establishment of too many communication channels can also easily incur network attacks [13]. Therefore, in this letter, we constrain the number of feedback communication channels among sub-controllers prior to the design of controller gains. This number is denoted as cardnd(K)with the following definition:

    Controller (5) with cardnd(K)≤κ will be termed a?-sparse structured controller, where κ ∈[0,N2?N) is an integer. Therefore,our purpose is to design a structured controller gain K which guarantees exponentially asymptotical stability of the following controlled system:

    where A and B can be easily obtained from (1).

    Remark 1: In the proposed system framework, to design a?-sparse structured controller for the interconnected system is actually a kind of co-design of feedback topology structure and the feedback gain for the system. Although the positive integer?is preset in this letter, it can be adjusted according to practical control and/or communication requirements. Generally, a larger?implies more feedback channels,better control performance and higher communication cost.Therefore, one purpose of structural controller design is to seek a tradeoff between control and communication performances.

    Remark 2: It is noted that all the subsystems inherit the same sampling rate in this letter. However, the developed approach applies to the multi-rate sampling scenario, where the issues of transmission delays and packet dropouts could also be considered.

    Structured controller design:It is noted that the main challenge of designing a allowable controller for event-triggered closed-loop systems (7)-(8) is how to deal with the cardinality constraint (8). We will first seek a centralized feedback gain for system (7), based on which, a?-sparse structured controller is to be designed.

    Theorem 1: With preset DETS(h,Γ,δ ), controller gain K and a positive scalarα, event-triggered system (7) is exponentially asymptotically stable, if one could find matricesX>0,Y>0,Z,Ssuch that

    where

    where

    Furthermore, a centralized controller gain is given as Kc=KX?1.And the weighting matrix is given as Γ =X?1?X?1.

    One can see that a feasible gain matrix Kcresulted from Theorem 2 does not inherit the required sparse structure. That is, the cardinality constraint cardnd(Kc)≤κ can not be guaranteed. However, from the way that Kcis generated, Kc=KX?1, one can find that cardnd(Kc)=cardnd(K)since invertible matrixXis block diagonal.Therefore, we can transfer the imposed cardinality constraint equivalently from KctoK. For this purpose, one can first partitionKinto blocks such thatKand K inherit the same block structure.Introduce a set of binary variables as follows:

    Then, the constraint c ardnd(K)≤κ can be equivalently transformed as

    To enlarge the feasible region of binary integer programming (14),we consider a relaxation of (14).

    It is noted that (15a) and (15b) still can not be directly applied into structured controller design due to the complementary constraintzjiKji=0.

    wherej≠i,K ji≤κ means that all the elements in matrixK jiare less than or equal toκwithκbeing a positive scalar. Then, we have the following result.

    Lemma 1: Given a scalarκ, constraint(K)≤κ is satisfied if and only if one could find matricesK jiand scalarsz ji,j,i∈Ξ,j≠isuch that

    Then, one can verify that (16a)?(16d) hold.

    Sufficient condition. It follows from conditions (16a) and (16b)that the number ofz jisatisfyingz ji>κ is at leastN(N?1)?κ.Therefore, conditions (16c) and (16d) lead to(K)≥N(N?1)?κ, which implies that c ardκnd(K)≤κ holds. ■

    By using Lemma 1, we can relax complementary constraint (15b)to nonlinear constraint (16b)?(16d), which can be easily resolved.Fig. 2 illustrates the feasible region of (16b)?(16d) in the scalar case,i.e., all of the matricesK jis are scalars. One can find from the figure that the feasible region of (16b)?(16d) can be described by some nonlinear functions [15].

    It follows the definition that(K) denotes the number ofK’s nondiagonal blocks whose elements can only vary between [?κ,κ].Therefore, asκapproaches 0,(K) approaches cardnd(K).Based on the NLP, we have the following Algorithm 1 to generate a feasible structured controller gain K with cardnd(K)≤κ, which guarantees exponentially asymptotical stability of event-triggered system (7).

    Remark 3: The values ofz jiandK jiare mutually constrained in binary integer programming (14) as well as in the nonlinear programming in Algorithm 1. In this case, the number of null or“small” blocks (K ji) can be constrained by constraining the sum ofz jis.

    Fig. 2. Feasible region of (16b)?(16d) in the scalar case.

    Remark 4: In Algorithm 1, the step length can take a larger value.For example, take κ=κ/10 in Step 4. After all, a smallerκimplies that the deleted block matrices are closer to a null matrix, and the verification in Step 4 is more likely to succeed. Or actually, one may directly obtain a feasible solution by taking a smaller enoughκonce and for all.

    Algorithm 1?-Sparse Structured Controller Design via NLP

    An example:We select a fourth-order power plant for simulation to validate the presented structured controller design approach. The power system consists of three subsystems. The modeling and parameters of the power plant can be found in [16].

    Chooseh=10 ms, α=0.01, δ=diag{0.1,0.2,0.1}. We takeκ=2 and κ0=0.01 in this example. Solving Algorithm 1 leads to a feasible K as follows:

    with

    In order to show the merits of the developed approach, we try to use some existing methods for sparsity optimization for the same power system, such as alternating direction method of multipliers(ADMM) in [8]. The ADMM is a typical sparsity promoting method in the literature. For the same example, the simulation results show that our nonlinear programming method can generate more zero blocks in the controller gain K in the limit case. Moreover,cardnd(K)can be easily adjustable with the developed approach.

    State responses of the controlled plant shows the exponential stability of the plant. Figs. 3?5 illustrate state responses of the controlled plant. Under the DETS. It is noted that within the simulation periodTs=6 s, the number of event-triggered transmissions in the three subsystems are respectively, 130, 135, and 136,all far less than 600, the numbers of transmissions under the periodic sampling/transmission strategy. This illustrates DETS’s merit on resource efficiency.

    Conclusions:The design of structured controller with sparse gain matrix for interconnected systems has been studied. The distributed control framework of an interconnected system under a DETS and unknown feedback topology has been developed for simultaneously designing of the feedback topology and feedback gain. The cardinality constraint involved in the structured controller design issue has been relaxed and resolved by a nonlinear programming. By incorporating the NLP into the standard centralized controller design method, an algorithm has been developed for designing sparse structured controller with cardinality constraint. The developed approach has been verified via a three machine interconnected power plant.

    Fig. 5. x 3(t)’s responses.

    Acknowledgments:This work was supported by the National Natural Science Foundation of China (61973201), and the Fundamental Research Program of Shanxi Province (20210302124030).

    亚洲伊人色综图| 琪琪午夜伦伦电影理论片6080| 天堂中文最新版在线下载| 亚洲成人免费av在线播放| 日本一区二区免费在线视频| 777久久人妻少妇嫩草av网站| 视频区图区小说| 黄色女人牲交| 亚洲专区国产一区二区| 成人黄色视频免费在线看| 国产三级黄色录像| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| 成人免费观看视频高清| 色哟哟哟哟哟哟| 久久精品国产99精品国产亚洲性色 | 色在线成人网| 一二三四在线观看免费中文在| 女性生殖器流出的白浆| 亚洲成人久久性| 欧美丝袜亚洲另类 | 日韩国内少妇激情av| avwww免费| 午夜福利影视在线免费观看| 国产极品粉嫩免费观看在线| 女生性感内裤真人,穿戴方法视频| 国产伦一二天堂av在线观看| 女警被强在线播放| 日本 av在线| 激情视频va一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲aⅴ乱码一区二区在线播放 | 日本三级黄在线观看| 电影成人av| 国产亚洲精品久久久久久毛片| 亚洲欧美日韩高清在线视频| 亚洲男人的天堂狠狠| 亚洲九九香蕉| 日韩欧美三级三区| 在线观看66精品国产| 亚洲欧美精品综合久久99| 中文字幕另类日韩欧美亚洲嫩草| 女人被躁到高潮嗷嗷叫费观| 亚洲色图综合在线观看| 亚洲一区高清亚洲精品| 国产成人精品在线电影| 欧美黄色片欧美黄色片| 人人妻,人人澡人人爽秒播| 不卡av一区二区三区| 亚洲男人的天堂狠狠| 欧美丝袜亚洲另类 | 中文字幕av电影在线播放| 精品一区二区三区四区五区乱码| 天堂动漫精品| 搡老岳熟女国产| 在线观看舔阴道视频| 人人澡人人妻人| 久久久精品欧美日韩精品| 久久精品aⅴ一区二区三区四区| 欧美一区二区精品小视频在线| 亚洲精品av麻豆狂野| 怎么达到女性高潮| 精品高清国产在线一区| 男女高潮啪啪啪动态图| 精品久久蜜臀av无| 久久精品亚洲av国产电影网| 80岁老熟妇乱子伦牲交| 欧美日韩精品网址| 最近最新中文字幕大全电影3 | 亚洲国产精品一区二区三区在线| 国产一区二区三区在线臀色熟女 | 高清毛片免费观看视频网站 | 亚洲av成人av| 亚洲三区欧美一区| 侵犯人妻中文字幕一二三四区| 国产成人av激情在线播放| 欧美色视频一区免费| 亚洲五月天丁香| 亚洲精品中文字幕一二三四区| 男女午夜视频在线观看| 妹子高潮喷水视频| 国产成人精品久久二区二区免费| 成人三级做爰电影| 美女 人体艺术 gogo| 色精品久久人妻99蜜桃| www.www免费av| 如日韩欧美国产精品一区二区三区| 99国产精品一区二区蜜桃av| 男女之事视频高清在线观看| 国产午夜精品久久久久久| 久久久久久久午夜电影 | 在线看a的网站| 午夜福利在线免费观看网站| 视频区欧美日本亚洲| 国产精品爽爽va在线观看网站 | 午夜福利在线观看吧| 国产一区二区三区在线臀色熟女 | 在线av久久热| 免费在线观看黄色视频的| 一级a爱片免费观看的视频| 999精品在线视频| 精品国产亚洲在线| 亚洲欧美精品综合一区二区三区| 在线十欧美十亚洲十日本专区| 精品一区二区三区四区五区乱码| 91成年电影在线观看| 国产精品国产av在线观看| 国产又色又爽无遮挡免费看| 一边摸一边做爽爽视频免费| 国产精品综合久久久久久久免费 | 午夜免费观看网址| 又紧又爽又黄一区二区| 国产在线精品亚洲第一网站| 国产国语露脸激情在线看| 午夜老司机福利片| 老司机午夜福利在线观看视频| 亚洲精品国产一区二区精华液| 校园春色视频在线观看| 国产在线精品亚洲第一网站| 99热只有精品国产| 久久国产精品男人的天堂亚洲| 丁香欧美五月| 日本欧美视频一区| 欧美在线黄色| 国产精品久久久人人做人人爽| 亚洲久久久国产精品| 一二三四社区在线视频社区8| 欧美激情极品国产一区二区三区| 午夜福利免费观看在线| 免费观看人在逋| 满18在线观看网站| www.www免费av| 丝袜人妻中文字幕| 欧美精品一区二区免费开放| 亚洲人成电影观看| 国产成人av教育| 日本vs欧美在线观看视频| 亚洲免费av在线视频| 精品欧美一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 欧美另类亚洲清纯唯美| 久久久国产一区二区| 欧美另类亚洲清纯唯美| 人妻丰满熟妇av一区二区三区| 9191精品国产免费久久| netflix在线观看网站| 欧美日韩av久久| 国产亚洲精品久久久久久毛片| 欧美+亚洲+日韩+国产| 波多野结衣高清无吗| 午夜免费成人在线视频| 亚洲国产精品999在线| 91麻豆精品激情在线观看国产 | 51午夜福利影视在线观看| 久久中文字幕一级| 中国美女看黄片| 国产亚洲欧美在线一区二区| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看日本一区| 国产激情久久老熟女| 国产成人一区二区三区免费视频网站| 久99久视频精品免费| tocl精华| 美女 人体艺术 gogo| 中文字幕色久视频| 国产色视频综合| a级毛片在线看网站| 亚洲激情在线av| 久久精品aⅴ一区二区三区四区| 欧美+亚洲+日韩+国产| 国产无遮挡羞羞视频在线观看| 成人特级黄色片久久久久久久| 午夜两性在线视频| 精品电影一区二区在线| 亚洲国产精品sss在线观看 | 黑人巨大精品欧美一区二区蜜桃| 午夜视频精品福利| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美黄色片欧美黄色片| 一进一出好大好爽视频| 国产蜜桃级精品一区二区三区| 亚洲av美国av| 亚洲第一青青草原| 国产亚洲精品综合一区在线观看 | 亚洲视频免费观看视频| 国产精品久久久av美女十八| 精品一区二区三卡| 亚洲全国av大片| 男女午夜视频在线观看| 午夜a级毛片| 精品人妻1区二区| 久久人人精品亚洲av| 国产免费av片在线观看野外av| 亚洲精品久久成人aⅴ小说| 亚洲成人精品中文字幕电影 | 丰满的人妻完整版| 国产真人三级小视频在线观看| 12—13女人毛片做爰片一| 新久久久久国产一级毛片| 国产精品久久久av美女十八| 国产成人欧美| 精品电影一区二区在线| 欧美av亚洲av综合av国产av| 国产av在哪里看| 少妇粗大呻吟视频| 黄色成人免费大全| 动漫黄色视频在线观看| 精品国产亚洲在线| 每晚都被弄得嗷嗷叫到高潮| 欧美+亚洲+日韩+国产| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩另类电影网站| 精品国产亚洲在线| 亚洲自拍偷在线| 久久中文看片网| 19禁男女啪啪无遮挡网站| 久久中文字幕一级| 男女之事视频高清在线观看| 一夜夜www| 中国美女看黄片| 免费在线观看黄色视频的| 老司机午夜十八禁免费视频| 国产高清国产精品国产三级| 麻豆国产av国片精品| 国产av又大| a级毛片在线看网站| 香蕉国产在线看| 很黄的视频免费| 欧美中文日本在线观看视频| √禁漫天堂资源中文www| 怎么达到女性高潮| 在线观看舔阴道视频| 色婷婷久久久亚洲欧美| 亚洲精品在线观看二区| 欧美+亚洲+日韩+国产| 韩国精品一区二区三区| 成人三级黄色视频| 男女午夜视频在线观看| 在线观看一区二区三区激情| 天堂√8在线中文| 色精品久久人妻99蜜桃| 免费久久久久久久精品成人欧美视频| 久久国产亚洲av麻豆专区| 亚洲专区国产一区二区| 欧美黑人精品巨大| 狠狠狠狠99中文字幕| 狂野欧美激情性xxxx| 成人精品一区二区免费| 欧美日韩精品网址| 99久久久亚洲精品蜜臀av| 亚洲自拍偷在线| 久久香蕉国产精品| 90打野战视频偷拍视频| 99热只有精品国产| 99精国产麻豆久久婷婷| 精品国产乱码久久久久久男人| 亚洲av日韩精品久久久久久密| 亚洲,欧美精品.| 日韩 欧美 亚洲 中文字幕| 一a级毛片在线观看| 他把我摸到了高潮在线观看| 亚洲精品国产精品久久久不卡| 中文字幕人妻丝袜制服| 亚洲九九香蕉| 国产精品免费一区二区三区在线| 99国产精品免费福利视频| 久久人妻福利社区极品人妻图片| 一边摸一边抽搐一进一小说| x7x7x7水蜜桃| 50天的宝宝边吃奶边哭怎么回事| 久久精品亚洲精品国产色婷小说| 动漫黄色视频在线观看| 亚洲成人精品中文字幕电影 | 宅男免费午夜| 久久天躁狠狠躁夜夜2o2o| av片东京热男人的天堂| 淫妇啪啪啪对白视频| 亚洲精品中文字幕在线视频| a级片在线免费高清观看视频| av在线天堂中文字幕 | 日韩欧美免费精品| 美女 人体艺术 gogo| 人人妻人人澡人人看| 国产高清国产精品国产三级| 曰老女人黄片| 久久精品91蜜桃| 天堂俺去俺来也www色官网| a级片在线免费高清观看视频| 在线看a的网站| 两人在一起打扑克的视频| 亚洲精品久久午夜乱码| 黑人巨大精品欧美一区二区mp4| 变态另类成人亚洲欧美熟女 | 成人手机av| 69精品国产乱码久久久| 黑人欧美特级aaaaaa片| 国产免费男女视频| 国产又色又爽无遮挡免费看| 亚洲国产精品一区二区三区在线| 女人精品久久久久毛片| 超碰成人久久| 亚洲国产精品999在线| 国产精品av久久久久免费| 老司机午夜福利在线观看视频| 中文字幕精品免费在线观看视频| av欧美777| 日韩av在线大香蕉| 精品久久久久久电影网| 亚洲精品久久午夜乱码| 国产亚洲精品久久久久久毛片| 在线永久观看黄色视频| 69av精品久久久久久| 婷婷丁香在线五月| 老司机亚洲免费影院| 亚洲中文字幕日韩| 久久久精品欧美日韩精品| 精品久久久久久成人av| 亚洲午夜精品一区,二区,三区| 免费久久久久久久精品成人欧美视频| 国产亚洲精品综合一区在线观看 | 午夜老司机福利片| 丰满迷人的少妇在线观看| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 最近最新中文字幕大全免费视频| 美女扒开内裤让男人捅视频| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 国产一区二区在线av高清观看| 亚洲精华国产精华精| svipshipincom国产片| 久久久久久久久中文| 亚洲精品中文字幕在线视频| 亚洲第一青青草原| 国产极品粉嫩免费观看在线| 最近最新中文字幕大全电影3 | 97人妻天天添夜夜摸| 在线观看一区二区三区激情| 日韩欧美免费精品| 一级作爱视频免费观看| 伦理电影免费视频| 国产精品1区2区在线观看.| 国产一区在线观看成人免费| 亚洲国产欧美一区二区综合| 国产区一区二久久| 亚洲一区二区三区不卡视频| 国产在线观看jvid| 久久久久久久午夜电影 | 淫妇啪啪啪对白视频| 欧美激情久久久久久爽电影 | 国产伦一二天堂av在线观看| 亚洲人成网站在线播放欧美日韩| 一级a爱视频在线免费观看| 新久久久久国产一级毛片| 国产精品爽爽va在线观看网站 | 久久精品国产99精品国产亚洲性色 | 黑人巨大精品欧美一区二区mp4| 亚洲欧美日韩无卡精品| 黑丝袜美女国产一区| 18禁黄网站禁片午夜丰满| 午夜成年电影在线免费观看| 变态另类成人亚洲欧美熟女 | 757午夜福利合集在线观看| 18禁观看日本| 久久久国产精品麻豆| 亚洲人成电影免费在线| 久久热在线av| 少妇 在线观看| 久久精品aⅴ一区二区三区四区| 久久中文字幕人妻熟女| 国产精品秋霞免费鲁丝片| 精品国内亚洲2022精品成人| 国产成人欧美| 久久久久久久午夜电影 | 麻豆一二三区av精品| 激情视频va一区二区三区| 国产一区在线观看成人免费| 久久精品91无色码中文字幕| 免费观看精品视频网站| 嫩草影视91久久| 国产欧美日韩精品亚洲av| av福利片在线| xxxhd国产人妻xxx| 婷婷精品国产亚洲av在线| 黄色视频不卡| aaaaa片日本免费| 黑人操中国人逼视频| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 欧美中文综合在线视频| www日本在线高清视频| 精品国产一区二区三区四区第35| 亚洲欧美一区二区三区黑人| 99久久精品国产亚洲精品| 久久国产亚洲av麻豆专区| 97碰自拍视频| 国产成人精品久久二区二区91| 成人18禁在线播放| 亚洲精品在线美女| 99精品欧美一区二区三区四区| 国产av又大| 亚洲在线自拍视频| 伊人久久大香线蕉亚洲五| 免费观看人在逋| 国产激情久久老熟女| 久热爱精品视频在线9| 亚洲久久久国产精品| 亚洲欧美激情综合另类| 九色亚洲精品在线播放| 国产av一区二区精品久久| 男人的好看免费观看在线视频 | 99精品久久久久人妻精品| 黄片播放在线免费| 99久久久亚洲精品蜜臀av| 欧美激情极品国产一区二区三区| 精品久久久久久电影网| 又黄又爽又免费观看的视频| 欧美激情 高清一区二区三区| 麻豆av在线久日| 国产麻豆69| a级毛片黄视频| 亚洲国产精品999在线| 母亲3免费完整高清在线观看| 91老司机精品| 国产三级在线视频| 亚洲黑人精品在线| 99精品在免费线老司机午夜| 涩涩av久久男人的天堂| 亚洲五月天丁香| √禁漫天堂资源中文www| 亚洲欧美精品综合一区二区三区| 一二三四社区在线视频社区8| 久久狼人影院| 男女做爰动态图高潮gif福利片 | 老熟妇仑乱视频hdxx| 亚洲九九香蕉| 黄片播放在线免费| 亚洲自拍偷在线| 午夜免费激情av| 咕卡用的链子| 欧美黑人精品巨大| 三级毛片av免费| 老熟妇乱子伦视频在线观看| 国产精品久久久人人做人人爽| 精品久久久久久电影网| 亚洲中文字幕日韩| 国内毛片毛片毛片毛片毛片| 熟女少妇亚洲综合色aaa.| 99久久久亚洲精品蜜臀av| 免费女性裸体啪啪无遮挡网站| 91老司机精品| 女人高潮潮喷娇喘18禁视频| 中国美女看黄片| 久久久久久久久中文| 在线观看一区二区三区| 成人手机av| netflix在线观看网站| 两个人免费观看高清视频| 国产成人一区二区三区免费视频网站| 久久久久国产精品人妻aⅴ院| 老汉色av国产亚洲站长工具| 一级片'在线观看视频| 亚洲国产欧美日韩在线播放| 一个人观看的视频www高清免费观看 | 欧美色视频一区免费| 热99国产精品久久久久久7| 日韩欧美三级三区| 人人妻人人澡人人看| 曰老女人黄片| 国产精品九九99| 色综合欧美亚洲国产小说| 夜夜看夜夜爽夜夜摸 | 久久九九热精品免费| av电影中文网址| 黄片小视频在线播放| 操美女的视频在线观看| 一级黄色大片毛片| 国内毛片毛片毛片毛片毛片| 亚洲精品av麻豆狂野| 国产精品国产av在线观看| 可以免费在线观看a视频的电影网站| 夜夜看夜夜爽夜夜摸 | 免费看十八禁软件| 国产99久久九九免费精品| 美女大奶头视频| 69精品国产乱码久久久| 欧美不卡视频在线免费观看 | 最好的美女福利视频网| 国产精品久久视频播放| 欧美日韩国产mv在线观看视频| 91精品三级在线观看| www.熟女人妻精品国产| 人人妻,人人澡人人爽秒播| 成年人黄色毛片网站| av免费在线观看网站| 成人亚洲精品一区在线观看| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 如日韩欧美国产精品一区二区三区| 老熟妇乱子伦视频在线观看| 琪琪午夜伦伦电影理论片6080| 国产成人av激情在线播放| 精品一区二区三卡| 性欧美人与动物交配| 纯流量卡能插随身wifi吗| 高清毛片免费观看视频网站 | 久久人人97超碰香蕉20202| 在线观看免费日韩欧美大片| 又黄又粗又硬又大视频| 国产一区二区激情短视频| 男女高潮啪啪啪动态图| 欧美av亚洲av综合av国产av| 操出白浆在线播放| 久久精品91蜜桃| 亚洲av第一区精品v没综合| netflix在线观看网站| 亚洲精品美女久久av网站| 国产日韩一区二区三区精品不卡| 一a级毛片在线观看| 欧美另类亚洲清纯唯美| 国产亚洲精品第一综合不卡| 99久久国产精品久久久| 成人av一区二区三区在线看| 国产精品偷伦视频观看了| 午夜两性在线视频| 亚洲五月天丁香| 久久国产精品影院| 1024视频免费在线观看| 欧美成人午夜精品| 免费人成视频x8x8入口观看| 午夜日韩欧美国产| 亚洲精品国产精品久久久不卡| 丰满迷人的少妇在线观看| 日韩欧美一区二区三区在线观看| 久久久久久亚洲精品国产蜜桃av| 国产精品综合久久久久久久免费 | 99热只有精品国产| 国内久久婷婷六月综合欲色啪| 美女大奶头视频| 最新在线观看一区二区三区| 午夜影院日韩av| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| x7x7x7水蜜桃| 久久人人97超碰香蕉20202| 精品熟女少妇八av免费久了| 超碰97精品在线观看| 国产av又大| 妹子高潮喷水视频| 91国产中文字幕| 精品国产亚洲在线| 十八禁人妻一区二区| 国产视频一区二区在线看| 一边摸一边抽搐一进一小说| 亚洲欧美日韩另类电影网站| 亚洲国产欧美一区二区综合| 色老头精品视频在线观看| 亚洲av第一区精品v没综合| 亚洲专区字幕在线| 久久人妻福利社区极品人妻图片| 午夜91福利影院| 亚洲狠狠婷婷综合久久图片| 看黄色毛片网站| 成人亚洲精品一区在线观看| 男男h啪啪无遮挡| 国产精品爽爽va在线观看网站 | 91在线观看av| 91av网站免费观看| 国产精品乱码一区二三区的特点 | 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲| 丝袜美腿诱惑在线| 亚洲专区字幕在线| 日韩欧美免费精品| 欧美精品啪啪一区二区三区| 亚洲av熟女| 亚洲精品成人av观看孕妇| 青草久久国产| 一本大道久久a久久精品| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久久毛片| 亚洲色图 男人天堂 中文字幕| 亚洲 欧美 日韩 在线 免费| 一进一出抽搐动态| 99久久人妻综合| 久久久久久亚洲精品国产蜜桃av| 久久久国产欧美日韩av| 91麻豆av在线| 久久精品aⅴ一区二区三区四区| 人妻久久中文字幕网| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频| 日韩精品免费视频一区二区三区| 法律面前人人平等表现在哪些方面| 久久精品aⅴ一区二区三区四区| 国产av一区在线观看免费| 91麻豆精品激情在线观看国产 | 午夜影院日韩av| 国产单亲对白刺激| 国产真人三级小视频在线观看| 亚洲国产中文字幕在线视频| 18禁国产床啪视频网站| 国产精品电影一区二区三区| 99国产综合亚洲精品| 亚洲一区中文字幕在线| 免费看十八禁软件| 老汉色∧v一级毛片| 欧美日韩一级在线毛片| 亚洲 国产 在线| 两人在一起打扑克的视频| 国产精品久久久av美女十八| 免费久久久久久久精品成人欧美视频| 国产91精品成人一区二区三区| 精品一区二区三区av网在线观看| 国产精品九九99|