• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structured Controller Design for Interconnected Systems via Nonlinear Programming

    2022-07-18 06:17:42YanpengGuanJunpengDuandXinchunJia
    IEEE/CAA Journal of Automatica Sinica 2022年7期

    Yanpeng Guan, Junpeng Du, and Xinchun Jia,,

    Dear Editor,

    This letter deals with the structural controller design problem of interconnected systems with unknown feedback topology. Firstly,under a cardinality constraint on the directed communication links among sub-controllers, a distributed controller’s feedback gain and feedback topology are incorporated in a unified co-design framework. Secondly, the cardinality constraint introduced in the distributed control is represented by a binary integer programming.To deal with the complementary constraint, a nonlinear programming(NLP) is proposed to relax the binary integer programming. Finally,incorporating the NLP into the standard distributed event-triggered control method, an algorithm is developed for interconnected systems to simultaneously design the feedback topology and controller gain.

    An interconnected system is composed of several coupling subsystems, which usually coordinate with each other to accomplish a common task. Such systems exist in a large number of practical scenarios, such as power plants [1], intelligent transportation [2]. Due to their complex structure, large scale and comprehensive functions,interconnected systems are also referred to as large scale systems.With the rapid progress in embedded microprocessors and communication technology, a great amount of concern has been devoted to how to control the thriving interconnected systems [3].

    It is noted that existing distributed control strategies are mainly claimed over prescribed feedback topologies. In this way, since the distributed controller design and the feedback topology design are mutually independent, the following two unexpected cases may emerge. On the one hand, the preset feedback topology may provide redundant communication channels, which could lead to unnecessary expenditure and malicious attacks. On the other hand, it is also perhaps that the preset feedback topology could not support the required control performance, which leaves the issue of distributed controller design unsolvable. While a feasible solution can be obtained with a minor modification of the feedback topology.Therefore, one promising way to deal with the challenge is to codesign of the feedback topology and feedback gain for an interconnected system, which is the motivation of this letter.

    The overall controller gain of an interconnected system is usually a matrix with zero blocks, where each matrix block represents a channel gain and a null block implies no channel is set. Therefore,for an interconnected system, the design of a structured controller with unknown zero/nonzero structure is actually a co-design of feedback topology and feedback gain. With given controller structure, a chordal decomposition method is proposed to design sparse structured controller gain [4]. A structured controller design method is developed via constraining some decision matrix variables in the Lyapunov method [5]. In the case when feedback topology is not preset, the structured controller design problem becomes nondeterministic polynomial (NP) hard due to its combinatorial property[6]. By decomposing a nonlinear term existed in a linear matrix inequality into linear ones, a sparse promoting algorithm is presented for a liner system [7]. But a clear relationship between the sparse structure and feedback topology is not established. A alternating direction multipliers method is developed for the sake of generating a feedback gain with as many zero elements as possible in an optimal control problem [8]. A weightedl1iterative algorithm is proposed for interconnected systems to generate controller gains with null blocks[9]. More recently, a structured controller design method is proposed in [10] through a regularized mixed-integer programming (RMIP). It is noted that the method in [10] is one-step with a fixed sparsity,while iterative procedures are utilized in [9] to gradually promote sparsity in controller gain. However, one drawback of the former approach [10] is that a sufficient large upper bound should be preset for the expected structured controller gain in advance.

    On the other hand, event-triggered transmission strategy (ETS) has witnessed incredible developments over the past decade due to its advantage on resource saving [11]. In effect, the way that ETS savs resources by reducing redundant transmissions, is exactly a sparsification of feedback traffic flow in some specific channel(s).While it is obvious that sparsification of feedback topology could save the transmission resources by reducing redundant feedback communication channels, which is also an important motivation of structure controller design.

    This letter is going to investigate the issue of structured controller design for event-triggered interconnected systems via NLP. The main contributions of this letter are: 1) An algorithm based on NLP is developed to deal with the NP hard cardinality constraint. Compared withl1iterative algorithms, the initial point is not required to set beforehand; Compared with RMIP, the preset bound for controller gain is no longer needed. 2) A practicable solution is provided to codesign of feedback topology and feedback gain for event-triggered interconnected systems. And the limited transmission resources can be substantially saved from reducing redundant feedback channels as well as from reducing unnecessary transmissions in the remaining feedback channels.

    Problem statement:Consider an interconnected system that is comprised of some coupling subsystems with the model of

    wherej∈:={1,2,...,N},xj(t) denote the state vector;uj(t)represent control input generated via sub-controllerj;A jandBjare known matrices;Hjiis a constant matrix representing a coupling gain from subsystemitoj. Fig. 1 schematically illustrates the considered interconnected system.

    Each subsystem is equipped with a sub-controller, which could interact with other sub-controllers over networks. The controller for the overall system is composed ofNsub-controllers, and the form of each is given as follows:

    where the sub-controller gainsKjis are to be determined.

    It is noted that the zero/nonzero structure ofK jisconstitutes the communication topology among sub-controllers. Different from most of the existing system frameworks [12], the communication topology among sub-controllers is neither fixed nor stochastically varying in this letter, while it is to be determined under a cardinality constraint on the directed transmission links among sub-controllers.

    Fig. 1. A networked interconnected system.

    For the purpose of reducing occupation of the transmission resources, we utilize a distributed ETS (DETS) for the transmission of state measurement. An event threshold condition of sampled data is required to be evaluated before transmission. The DETS designed in this letter will only transmit data when the threshold is violated.

    In what follows,xj(kh) represents the signal sampled at instantkh.Only thexj(kh) that violates the following threshold condition will be transmitted to sub-controllerj:

    It is noted that controller gain K as well as its structure is to be designed in this letter. In the existing literature on controller design of interconnected systems, the communication topology among the sub-controllers is well set beforehand. But it is practically difficult to determine which sub-controllers should be connected in advance. For the sake of seeking some optimal control performance, it is nature to set as many feedback channels as possible. However, in this way, in addition to the waste of transmission resources to some extent, the establishment of too many communication channels can also easily incur network attacks [13]. Therefore, in this letter, we constrain the number of feedback communication channels among sub-controllers prior to the design of controller gains. This number is denoted as cardnd(K)with the following definition:

    Controller (5) with cardnd(K)≤κ will be termed a?-sparse structured controller, where κ ∈[0,N2?N) is an integer. Therefore,our purpose is to design a structured controller gain K which guarantees exponentially asymptotical stability of the following controlled system:

    where A and B can be easily obtained from (1).

    Remark 1: In the proposed system framework, to design a?-sparse structured controller for the interconnected system is actually a kind of co-design of feedback topology structure and the feedback gain for the system. Although the positive integer?is preset in this letter, it can be adjusted according to practical control and/or communication requirements. Generally, a larger?implies more feedback channels,better control performance and higher communication cost.Therefore, one purpose of structural controller design is to seek a tradeoff between control and communication performances.

    Remark 2: It is noted that all the subsystems inherit the same sampling rate in this letter. However, the developed approach applies to the multi-rate sampling scenario, where the issues of transmission delays and packet dropouts could also be considered.

    Structured controller design:It is noted that the main challenge of designing a allowable controller for event-triggered closed-loop systems (7)-(8) is how to deal with the cardinality constraint (8). We will first seek a centralized feedback gain for system (7), based on which, a?-sparse structured controller is to be designed.

    Theorem 1: With preset DETS(h,Γ,δ ), controller gain K and a positive scalarα, event-triggered system (7) is exponentially asymptotically stable, if one could find matricesX>0,Y>0,Z,Ssuch that

    where

    where

    Furthermore, a centralized controller gain is given as Kc=KX?1.And the weighting matrix is given as Γ =X?1?X?1.

    One can see that a feasible gain matrix Kcresulted from Theorem 2 does not inherit the required sparse structure. That is, the cardinality constraint cardnd(Kc)≤κ can not be guaranteed. However, from the way that Kcis generated, Kc=KX?1, one can find that cardnd(Kc)=cardnd(K)since invertible matrixXis block diagonal.Therefore, we can transfer the imposed cardinality constraint equivalently from KctoK. For this purpose, one can first partitionKinto blocks such thatKand K inherit the same block structure.Introduce a set of binary variables as follows:

    Then, the constraint c ardnd(K)≤κ can be equivalently transformed as

    To enlarge the feasible region of binary integer programming (14),we consider a relaxation of (14).

    It is noted that (15a) and (15b) still can not be directly applied into structured controller design due to the complementary constraintzjiKji=0.

    wherej≠i,K ji≤κ means that all the elements in matrixK jiare less than or equal toκwithκbeing a positive scalar. Then, we have the following result.

    Lemma 1: Given a scalarκ, constraint(K)≤κ is satisfied if and only if one could find matricesK jiand scalarsz ji,j,i∈Ξ,j≠isuch that

    Then, one can verify that (16a)?(16d) hold.

    Sufficient condition. It follows from conditions (16a) and (16b)that the number ofz jisatisfyingz ji>κ is at leastN(N?1)?κ.Therefore, conditions (16c) and (16d) lead to(K)≥N(N?1)?κ, which implies that c ardκnd(K)≤κ holds. ■

    By using Lemma 1, we can relax complementary constraint (15b)to nonlinear constraint (16b)?(16d), which can be easily resolved.Fig. 2 illustrates the feasible region of (16b)?(16d) in the scalar case,i.e., all of the matricesK jis are scalars. One can find from the figure that the feasible region of (16b)?(16d) can be described by some nonlinear functions [15].

    It follows the definition that(K) denotes the number ofK’s nondiagonal blocks whose elements can only vary between [?κ,κ].Therefore, asκapproaches 0,(K) approaches cardnd(K).Based on the NLP, we have the following Algorithm 1 to generate a feasible structured controller gain K with cardnd(K)≤κ, which guarantees exponentially asymptotical stability of event-triggered system (7).

    Remark 3: The values ofz jiandK jiare mutually constrained in binary integer programming (14) as well as in the nonlinear programming in Algorithm 1. In this case, the number of null or“small” blocks (K ji) can be constrained by constraining the sum ofz jis.

    Fig. 2. Feasible region of (16b)?(16d) in the scalar case.

    Remark 4: In Algorithm 1, the step length can take a larger value.For example, take κ=κ/10 in Step 4. After all, a smallerκimplies that the deleted block matrices are closer to a null matrix, and the verification in Step 4 is more likely to succeed. Or actually, one may directly obtain a feasible solution by taking a smaller enoughκonce and for all.

    Algorithm 1?-Sparse Structured Controller Design via NLP

    An example:We select a fourth-order power plant for simulation to validate the presented structured controller design approach. The power system consists of three subsystems. The modeling and parameters of the power plant can be found in [16].

    Chooseh=10 ms, α=0.01, δ=diag{0.1,0.2,0.1}. We takeκ=2 and κ0=0.01 in this example. Solving Algorithm 1 leads to a feasible K as follows:

    with

    In order to show the merits of the developed approach, we try to use some existing methods for sparsity optimization for the same power system, such as alternating direction method of multipliers(ADMM) in [8]. The ADMM is a typical sparsity promoting method in the literature. For the same example, the simulation results show that our nonlinear programming method can generate more zero blocks in the controller gain K in the limit case. Moreover,cardnd(K)can be easily adjustable with the developed approach.

    State responses of the controlled plant shows the exponential stability of the plant. Figs. 3?5 illustrate state responses of the controlled plant. Under the DETS. It is noted that within the simulation periodTs=6 s, the number of event-triggered transmissions in the three subsystems are respectively, 130, 135, and 136,all far less than 600, the numbers of transmissions under the periodic sampling/transmission strategy. This illustrates DETS’s merit on resource efficiency.

    Conclusions:The design of structured controller with sparse gain matrix for interconnected systems has been studied. The distributed control framework of an interconnected system under a DETS and unknown feedback topology has been developed for simultaneously designing of the feedback topology and feedback gain. The cardinality constraint involved in the structured controller design issue has been relaxed and resolved by a nonlinear programming. By incorporating the NLP into the standard centralized controller design method, an algorithm has been developed for designing sparse structured controller with cardinality constraint. The developed approach has been verified via a three machine interconnected power plant.

    Fig. 5. x 3(t)’s responses.

    Acknowledgments:This work was supported by the National Natural Science Foundation of China (61973201), and the Fundamental Research Program of Shanxi Province (20210302124030).

    校园人妻丝袜中文字幕| 亚洲婷婷狠狠爱综合网| 校园人妻丝袜中文字幕| 亚洲婷婷狠狠爱综合网| 成人av在线播放网站| 欧美日韩亚洲高清精品| 欧美人与善性xxx| 精品一区二区三区人妻视频| 99热网站在线观看| av卡一久久| 午夜激情欧美在线| 久久精品国产亚洲网站| 中文字幕制服av| 久久久久性生活片| 高清毛片免费看| av国产久精品久网站免费入址| 中国国产av一级| 综合色av麻豆| 青青草视频在线视频观看| 校园人妻丝袜中文字幕| 青青草视频在线视频观看| 国产精品久久久久久av不卡| 欧美成人a在线观看| 欧美xxxx黑人xx丫x性爽| 午夜精品在线福利| 水蜜桃什么品种好| 久久精品久久久久久久性| 99久久人妻综合| 国产淫语在线视频| 久久热精品热| 亚洲最大成人av| 人妻少妇偷人精品九色| 一级毛片aaaaaa免费看小| 国产成人精品久久久久久| 男女啪啪激烈高潮av片| 国产精品一区二区性色av| 精品久久久久久久末码| 国产精品久久久久久精品电影小说 | 亚洲综合色惰| 我的女老师完整版在线观看| 99热网站在线观看| 五月伊人婷婷丁香| av女优亚洲男人天堂| 亚洲va在线va天堂va国产| 一个人免费在线观看电影| 精品一区在线观看国产| 26uuu在线亚洲综合色| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品日韩av片在线观看| 亚洲熟女精品中文字幕| 国产一区二区在线观看日韩| 久久久久久久久大av| 国产亚洲91精品色在线| 精品久久久久久久久av| 国产亚洲最大av| 色综合站精品国产| 69人妻影院| 大片免费播放器 马上看| 最后的刺客免费高清国语| 国产精品美女特级片免费视频播放器| 国产视频内射| av黄色大香蕉| 夜夜看夜夜爽夜夜摸| 久久久久久久久大av| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 久久久久国产网址| 久久精品国产自在天天线| 日韩强制内射视频| a级毛色黄片| 精品久久久久久久人妻蜜臀av| 男的添女的下面高潮视频| 国产精品人妻久久久影院| 国产亚洲精品久久久com| 久久久久性生活片| kizo精华| 日日啪夜夜撸| 又大又黄又爽视频免费| 亚洲婷婷狠狠爱综合网| 99热这里只有是精品50| 午夜福利在线观看免费完整高清在| 日韩欧美三级三区| 一级黄片播放器| 免费av观看视频| 国产亚洲5aaaaa淫片| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 亚洲熟女精品中文字幕| 插阴视频在线观看视频| 精品久久久噜噜| 久久久久国产网址| 国产成人免费观看mmmm| 最近2019中文字幕mv第一页| 欧美+日韩+精品| 亚洲熟女精品中文字幕| 亚洲欧美清纯卡通| 夜夜爽夜夜爽视频| 中文欧美无线码| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 国产精品1区2区在线观看.| 久久久久久伊人网av| 2021少妇久久久久久久久久久| 亚洲在线自拍视频| 人妻夜夜爽99麻豆av| 高清av免费在线| 熟女人妻精品中文字幕| 欧美人与善性xxx| eeuss影院久久| 嫩草影院入口| 天堂av国产一区二区熟女人妻| 亚洲激情五月婷婷啪啪| 毛片一级片免费看久久久久| 精品亚洲乱码少妇综合久久| av网站免费在线观看视频 | 男人爽女人下面视频在线观看| 真实男女啪啪啪动态图| 亚洲精品自拍成人| 欧美成人a在线观看| 最近最新中文字幕大全电影3| 成年版毛片免费区| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| 亚洲在久久综合| 欧美bdsm另类| 久久国内精品自在自线图片| 91精品一卡2卡3卡4卡| 欧美日韩在线观看h| 成人午夜高清在线视频| 99热这里只有是精品50| 亚洲真实伦在线观看| 日本av手机在线免费观看| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 久久久久久久午夜电影| 亚洲美女搞黄在线观看| 精品人妻偷拍中文字幕| 校园人妻丝袜中文字幕| 日韩视频在线欧美| 久久99精品国语久久久| 成人无遮挡网站| 成人综合一区亚洲| 黄片wwwwww| 丰满少妇做爰视频| 91精品一卡2卡3卡4卡| 看非洲黑人一级黄片| 一本久久精品| 国产午夜精品论理片| 在线观看一区二区三区| 人妻少妇偷人精品九色| 看十八女毛片水多多多| 夫妻午夜视频| 免费黄网站久久成人精品| 你懂的网址亚洲精品在线观看| 一边亲一边摸免费视频| 如何舔出高潮| 永久免费av网站大全| 激情 狠狠 欧美| 国产69精品久久久久777片| 亚洲av免费在线观看| 日韩av免费高清视频| 午夜激情欧美在线| av福利片在线观看| 一边亲一边摸免费视频| 极品教师在线视频| 午夜福利网站1000一区二区三区| 一个人免费在线观看电影| 又爽又黄a免费视频| 国内少妇人妻偷人精品xxx网站| 亚洲av一区综合| 精品人妻一区二区三区麻豆| freevideosex欧美| 丰满少妇做爰视频| 国产午夜精品论理片| 久久久成人免费电影| 男人爽女人下面视频在线观看| 91狼人影院| 久久99热这里只有精品18| 中文乱码字字幕精品一区二区三区 | 黄片无遮挡物在线观看| 国语对白做爰xxxⅹ性视频网站| 成人午夜精彩视频在线观看| 亚洲怡红院男人天堂| av女优亚洲男人天堂| 亚洲在久久综合| 国产 亚洲一区二区三区 | 五月天丁香电影| 91狼人影院| 久久久久久伊人网av| 少妇人妻精品综合一区二区| 少妇高潮的动态图| 综合色av麻豆| 亚洲av在线观看美女高潮| 久久久久久九九精品二区国产| 综合色丁香网| 免费人成在线观看视频色| 国产精品国产三级专区第一集| 亚洲av成人av| 国产精品一区二区三区四区久久| 亚洲人成网站在线观看播放| 日韩视频在线欧美| 日本免费在线观看一区| 黑人高潮一二区| 国产成人a∨麻豆精品| 三级国产精品片| 成人美女网站在线观看视频| 免费观看av网站的网址| 亚洲成人精品中文字幕电影| 亚洲18禁久久av| 久久久久九九精品影院| 午夜精品一区二区三区免费看| 久久亚洲国产成人精品v| 国产精品久久久久久久电影| 一级毛片 在线播放| 国产成人精品久久久久久| 精华霜和精华液先用哪个| 色尼玛亚洲综合影院| 国产成人午夜福利电影在线观看| 3wmmmm亚洲av在线观看| 精品久久久久久久末码| 丝袜喷水一区| 成年女人看的毛片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜老司机福利剧场| 亚洲丝袜综合中文字幕| 国产极品天堂在线| 亚洲国产精品成人综合色| 蜜桃久久精品国产亚洲av| 免费无遮挡裸体视频| 搡女人真爽免费视频火全软件| 一个人观看的视频www高清免费观看| 免费看av在线观看网站| 久久久欧美国产精品| 亚洲精品自拍成人| 最近视频中文字幕2019在线8| 久久人人爽人人片av| 亚洲在线自拍视频| 看十八女毛片水多多多| 九九久久精品国产亚洲av麻豆| 亚洲最大成人av| 久久久色成人| 国产大屁股一区二区在线视频| 午夜免费男女啪啪视频观看| 国产高潮美女av| 国产成年人精品一区二区| 亚洲婷婷狠狠爱综合网| 亚洲天堂国产精品一区在线| 欧美不卡视频在线免费观看| 亚洲伊人久久精品综合| 亚洲高清免费不卡视频| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 亚洲乱码一区二区免费版| 国产黄片视频在线免费观看| 免费看av在线观看网站| 久久久久免费精品人妻一区二区| 自拍偷自拍亚洲精品老妇| 午夜福利在线观看吧| 久久精品熟女亚洲av麻豆精品 | 一区二区三区四区激情视频| 26uuu在线亚洲综合色| 日韩大片免费观看网站| 国产亚洲精品久久久com| av专区在线播放| 亚洲真实伦在线观看| 国产免费视频播放在线视频 | av免费观看日本| 好男人视频免费观看在线| 亚洲人成网站高清观看| 亚洲精品久久久久久婷婷小说| 麻豆成人av视频| 97人妻精品一区二区三区麻豆| 日本欧美国产在线视频| 久久精品熟女亚洲av麻豆精品 | 国产精品人妻久久久影院| 午夜老司机福利剧场| 国产一区有黄有色的免费视频 | 精品熟女少妇av免费看| 精华霜和精华液先用哪个| 国产高清国产精品国产三级 | 亚洲乱码一区二区免费版| 美女xxoo啪啪120秒动态图| 内地一区二区视频在线| 中文字幕制服av| 特大巨黑吊av在线直播| 日韩在线高清观看一区二区三区| 亚洲精品日韩av片在线观看| 一区二区三区免费毛片| 亚洲精品一区蜜桃| 亚洲av不卡在线观看| 免费观看性生交大片5| 99久久精品国产国产毛片| 国产精品蜜桃在线观看| 亚洲成人av在线免费| 久久久精品94久久精品| 亚洲精品456在线播放app| 在线免费十八禁| 国产大屁股一区二区在线视频| 天天躁夜夜躁狠狠久久av| 久久综合国产亚洲精品| 乱码一卡2卡4卡精品| 纵有疾风起免费观看全集完整版 | 搡老妇女老女人老熟妇| 国产高清三级在线| 日韩av不卡免费在线播放| 一级片'在线观看视频| 一级av片app| 亚洲成人av在线免费| 男女边吃奶边做爰视频| 国产美女午夜福利| 伦精品一区二区三区| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 欧美丝袜亚洲另类| 一个人看视频在线观看www免费| 国产精品av视频在线免费观看| 亚洲婷婷狠狠爱综合网| 一级爰片在线观看| 亚洲欧美精品自产自拍| 九九久久精品国产亚洲av麻豆| 97超视频在线观看视频| 三级国产精品欧美在线观看| 最新中文字幕久久久久| 亚洲高清免费不卡视频| 午夜久久久久精精品| 永久网站在线| 精品一区在线观看国产| 麻豆av噜噜一区二区三区| 国产精品.久久久| 美女黄网站色视频| av女优亚洲男人天堂| 一个人看视频在线观看www免费| 精品国产三级普通话版| 能在线免费看毛片的网站| 国产成人a区在线观看| 国国产精品蜜臀av免费| 国产片特级美女逼逼视频| 九草在线视频观看| 久久精品久久精品一区二区三区| av在线亚洲专区| 精品一区在线观看国产| 亚洲精华国产精华液的使用体验| 精品久久久久久久久av| 99久久精品一区二区三区| 又粗又硬又长又爽又黄的视频| 国产乱人偷精品视频| 热99在线观看视频| 九九爱精品视频在线观看| 3wmmmm亚洲av在线观看| 熟妇人妻不卡中文字幕| 日本wwww免费看| 极品教师在线视频| 少妇丰满av| 免费看日本二区| 日韩欧美精品v在线| 三级国产精品片| 婷婷色麻豆天堂久久| 最近2019中文字幕mv第一页| 久久久午夜欧美精品| 午夜激情欧美在线| 国产三级在线视频| 国产精品伦人一区二区| 国产午夜精品久久久久久一区二区三区| 51国产日韩欧美| 边亲边吃奶的免费视频| 成人性生交大片免费视频hd| 亚洲精品乱码久久久久久按摩| 久久久久精品性色| 日韩一本色道免费dvd| 国产美女午夜福利| 国产av在哪里看| 99热这里只有是精品在线观看| 汤姆久久久久久久影院中文字幕 | 欧美潮喷喷水| av一本久久久久| 亚洲av中文字字幕乱码综合| 久久久精品94久久精品| 久久亚洲国产成人精品v| 噜噜噜噜噜久久久久久91| 久久久久久久久中文| 男女边吃奶边做爰视频| 国产精品不卡视频一区二区| 国产黄色小视频在线观看| 精品少妇黑人巨大在线播放| 免费观看无遮挡的男女| 国产高清不卡午夜福利| 2021少妇久久久久久久久久久| 国产一级毛片七仙女欲春2| 老司机影院成人| 亚洲欧美一区二区三区黑人 | 久久久亚洲精品成人影院| 国产麻豆成人av免费视频| ponron亚洲| 国产成人aa在线观看| 国产永久视频网站| 建设人人有责人人尽责人人享有的 | 狂野欧美白嫩少妇大欣赏| 亚洲精品自拍成人| 女人被狂操c到高潮| 黄片无遮挡物在线观看| 中文字幕免费在线视频6| 26uuu在线亚洲综合色| 高清毛片免费看| www.色视频.com| 精品久久久久久久久久久久久| 国产精品一及| 十八禁国产超污无遮挡网站| 欧美精品国产亚洲| 日韩一区二区视频免费看| 麻豆国产97在线/欧美| 午夜免费男女啪啪视频观看| 视频中文字幕在线观看| 免费无遮挡裸体视频| 欧美成人一区二区免费高清观看| 永久网站在线| 在线免费观看不下载黄p国产| 午夜日本视频在线| 欧美3d第一页| 国产精品av视频在线免费观看| 午夜久久久久精精品| 精品午夜福利在线看| 可以在线观看毛片的网站| 国产一区二区亚洲精品在线观看| 欧美日本视频| 国产免费视频播放在线视频 | 亚洲欧美一区二区三区国产| 中文欧美无线码| 亚洲av不卡在线观看| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 久久久久久久午夜电影| 久久精品国产亚洲av涩爱| 久久97久久精品| 免费av不卡在线播放| 一级毛片我不卡| 日本-黄色视频高清免费观看| 国产精品一区www在线观看| 汤姆久久久久久久影院中文字幕 | 亚洲av中文av极速乱| 成人鲁丝片一二三区免费| 日韩中字成人| videos熟女内射| 亚洲18禁久久av| 国产在线男女| 啦啦啦中文免费视频观看日本| 国产精品.久久久| 国语对白做爰xxxⅹ性视频网站| 人妻夜夜爽99麻豆av| 非洲黑人性xxxx精品又粗又长| 深夜a级毛片| 亚洲av成人精品一二三区| 亚洲av不卡在线观看| 国产成人91sexporn| 成人综合一区亚洲| 深爱激情五月婷婷| 成年版毛片免费区| 99久国产av精品国产电影| 日韩一本色道免费dvd| 又爽又黄无遮挡网站| 草草在线视频免费看| 亚洲在线观看片| av一本久久久久| 国产成人freesex在线| 97热精品久久久久久| 国产成人精品久久久久久| 三级毛片av免费| 久久国产乱子免费精品| 中文在线观看免费www的网站| 亚洲熟妇中文字幕五十中出| 人妻一区二区av| 国产免费视频播放在线视频 | 青春草国产在线视频| 在线观看一区二区三区| 午夜精品一区二区三区免费看| 狂野欧美激情性xxxx在线观看| 搞女人的毛片| 97热精品久久久久久| 日韩欧美 国产精品| 日本黄色片子视频| 美女国产视频在线观看| 可以在线观看毛片的网站| 国产综合精华液| av天堂中文字幕网| 亚洲成人久久爱视频| 亚洲精品成人久久久久久| 国产综合懂色| 激情 狠狠 欧美| 看十八女毛片水多多多| 在线免费十八禁| 精品人妻视频免费看| videos熟女内射| 丰满乱子伦码专区| 亚洲色图av天堂| 好男人在线观看高清免费视频| 久久久午夜欧美精品| 免费黄网站久久成人精品| 亚洲熟妇中文字幕五十中出| 久久久久久久久久成人| 日本一二三区视频观看| 亚洲精品,欧美精品| 直男gayav资源| 精品久久国产蜜桃| 成人高潮视频无遮挡免费网站| 午夜老司机福利剧场| 亚洲精品自拍成人| 丝瓜视频免费看黄片| 有码 亚洲区| 成人高潮视频无遮挡免费网站| 久久国内精品自在自线图片| 日本与韩国留学比较| 别揉我奶头 嗯啊视频| 高清av免费在线| 不卡视频在线观看欧美| 男插女下体视频免费在线播放| 久久精品人妻少妇| 亚洲不卡免费看| 国产一区二区亚洲精品在线观看| 欧美不卡视频在线免费观看| 国产人妻一区二区三区在| 精品久久久久久久久亚洲| 午夜精品一区二区三区免费看| 亚洲av一区综合| 国产精品久久久久久久电影| 天堂俺去俺来也www色官网 | 成人鲁丝片一二三区免费| 亚洲av男天堂| 久久久欧美国产精品| 18禁在线无遮挡免费观看视频| 在线观看av片永久免费下载| 成人亚洲精品av一区二区| 天堂√8在线中文| 伦精品一区二区三区| 春色校园在线视频观看| 亚洲成人精品中文字幕电影| 日本一本二区三区精品| 深爱激情五月婷婷| 免费观看在线日韩| 免费看av在线观看网站| av又黄又爽大尺度在线免费看| 在线播放无遮挡| 性色avwww在线观看| 午夜日本视频在线| 国产在视频线在精品| 91久久精品国产一区二区三区| 白带黄色成豆腐渣| 熟女人妻精品中文字幕| 亚洲av成人精品一二三区| 天堂av国产一区二区熟女人妻| 91精品伊人久久大香线蕉| 国产高潮美女av| 亚洲人成网站在线播| 日韩av免费高清视频| 99久久九九国产精品国产免费| 熟女人妻精品中文字幕| 99久久精品热视频| 国产精品不卡视频一区二区| 亚洲综合精品二区| av播播在线观看一区| 亚洲av成人精品一区久久| 一夜夜www| 精品一区二区三区人妻视频| 亚洲国产成人一精品久久久| 国产精品三级大全| av福利片在线观看| 青春草国产在线视频| 亚洲精品乱久久久久久| 亚洲欧美日韩东京热| 中文乱码字字幕精品一区二区三区 | 男人爽女人下面视频在线观看| 国产不卡一卡二| 亚洲丝袜综合中文字幕| 性插视频无遮挡在线免费观看| 午夜日本视频在线| 国产亚洲av片在线观看秒播厂 | 联通29元200g的流量卡| av在线播放精品| 天天躁夜夜躁狠狠久久av| 亚洲精品一区蜜桃| 国产精品女同一区二区软件| 免费观看av网站的网址| 欧美成人精品欧美一级黄| 亚洲欧洲日产国产| 欧美日韩综合久久久久久| 人妻系列 视频| av又黄又爽大尺度在线免费看| 免费大片黄手机在线观看| 成人性生交大片免费视频hd| 久久久成人免费电影| 国产成人一区二区在线| 日韩亚洲欧美综合| 国内揄拍国产精品人妻在线| 亚洲人成网站在线观看播放| 久久久久九九精品影院| 精华霜和精华液先用哪个| 国产激情偷乱视频一区二区| 最后的刺客免费高清国语| 精品人妻视频免费看| 99久久精品一区二区三区| 性色avwww在线观看| 亚洲成人中文字幕在线播放| av专区在线播放| 18禁裸乳无遮挡免费网站照片| 亚洲欧美精品专区久久| 免费人成在线观看视频色| videossex国产| 少妇人妻一区二区三区视频| 免费观看精品视频网站| 国产精品久久视频播放| 亚洲精品日韩在线中文字幕| 丝袜喷水一区| 69av精品久久久久久| 亚洲精品视频女| 亚洲人成网站高清观看| 一个人观看的视频www高清免费观看|