• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Differentiable Automatic Data Augmentation by Proximal Update for Medical Image Segmentation

    2022-07-18 06:17:34WenxuanHeMinLiuYiTangQinghaoLiuandYaonanWang
    IEEE/CAA Journal of Automatica Sinica 2022年7期

    Wenxuan He, Min Liu, Yi Tang, Qinghao Liu, and Yaonan Wang

    Dear editor,

    This letter presents an automatic data augmentation algorithm for medical image segmentation. To increase the scale and diversity of medical images, we propose a differentiable automatic data augmentation algorithm based on proximal update by finding an optimal augmentation policy. Specifically, on the one hand, a dedicated search space is designed for the medical image segmentation task. On the other hand, we introduce a proximal differentiable gradient descent strategy to update the data augmentation policy, which would increase the searching efficiency. Results of the experiments indicate that the proposed algorithm significantly outperforms state-of-the-art methods, and search speed is 10 times faster than state-of-the-art methods.

    Deep neural networks have made great progress in medical image segmentation and contributed to the rapid development of intelligent healthcare in recent years [1]. It is conducive to the surgical planning,pathological analysis, and disease diagnosis of patients. A variety of medical segmentation models have been proposed based on obtained training data [2], [3], the performance of which depends heavily on large-scale labeled data, while medical images are extremely difficult to obtain. This is because the increasing awareness of patients’privacy protection makes it more difficult to obtain patient case data,and many professional physicians need to spend a lot of time and effort labeling medical images for deep learning-based methods [4].Moreover, multimodal data of diseases are characterized by a large span and low density due to the variety of diseases and various inspection methods. Therefore, it still has many challenges in medical image segmentation.

    Data augmentation is an effective way for enlarging data size,which has been commonly employed in computer vision tasks with remarkable results [1], [2], [4]?[7]. More specifically, data augmentation is regularly utilized to address the problem of insufficient medical image data. Typical data augmentation methods in medical image segmentation include rotation, vertical flip, and random scaling [1], [4]. Since large differences exist in the samples for different types of diseases, resulting in different optimal data augmentation policies. And some experiments in [8] demonstrate that selecting an inappropriate data augmentation policy will reduce the segmentation accuracy. In other words, we need to redesign a reasonable and effective data augmentation policy for a new medical segmentation task, which requires professional experience and a variety of time to manually adjust the probability and the magnitude of the data augmentation operations. Additionally, the model [9] is also used to generate extra data, but it may not be optimal for the specific task because of the large variation in organs, tissues, and lesions and the connection of spatial contexts in medical images.Therefore, it is necessary to develop an automatic data augmentation algorithm for medical image segmentation. In this letter, we propose an automatic data augmentation algorithm to find the optimal data augmentation policy. Firstly, a dedicated search space is designed for the medical image segmentation task. Then an optimization strategy is proposed to transform the automatic data augmentation problem into a single-step optimization problem, which is resolved by a proximal differential update. The experimental results on the publicly available liver tumor dataset, the publicly available pneumothorax dataset, and our private liver tumor dataset demonstrate that the proposed algorithm achieves state-of-the-art performance with the basic network architecture. Besides, the efficiency of the search policy of the proposed algorithm is improved by at least one order of magnitude compared to existing algorithms.

    Related work:Deep neural networks have made significant progress in medical image segmentation. Currently researchers generally utilize UNet [2] and its variants nnUNet [1], UNet++ [4],etc. for medical image segmentation tasks.

    Data augmentation is critical to the generalization performance and robustness properties of the network with only a relatively small number of training samples available. A combination of expert handdesigned augmentation strategies is commonly used for medical image segmentation. Valanarasuet al. [10] apply the horizontal flip,vertical flip, and addNoise to the task of brain anatomy segmentation,and Ronnebergeret al. [2] apply shift, rotation, and elastic deformations to the microscopical images during preprocessing. However,these combinations of transformations are manually designed, which consumes the massive efforts of experts, and segmentation accuracy is hard to improve. Different from these methods, the first automatic data augmentation algorithm in [11] is proposed to find augmentation policies automatically based on reinforcement learning. However,this method takes 768 GPU hours by searching the probability of the augmentation policy. In [12], network weights and parameters can be optimized simultaneously with less time than in [11], but the time taken to find a reasonable policy is still hard to meet the requirements of the researchers [12]. In contrast, differentiable automatic data augmentation (DADA) [13] greatly reduces the time cost of searching policy in a differentiable way. Nevertheless, it also has the problem of the inaccurate searched policy and being not robust [13].Moreover, medical images differ from natural images, which contain spatial contextual information, a smaller dataset size, and diverse morphologies of lesions and tissues. Thus, the transformations in natural images are hard to be adapted to medical images. To this end,we develop a novel and huge search space. Moreover, an efficient and accurate search algorithm is proposed. The proposed algorithm flow is as follows: The original training set is firstly divided into a training set and a validation set. Then a data augmentation sub-policy is sampled from the search space and applied to the training set.Meanwhile, in the search stage, the network weights are updated and used for forward propagation, when the validation set loss is used to update the data augmentation policy parameters by proximal differentiable gradient descent. The above process is repeated until the loss of the validation set is converged. Finally, in the retraining stage, we selectN= 25 sub-policies with the highest probability for expanding the scale of the original training set for network retraining,as shown in Fig. 1.

    Problem statement:The automatic data augmentation (DA)algorithm finds the optimal DA policy for model training. The DA policy is composed ofN= 25 sub-policiesssampled from search spaceS, which has a vector parametera(the probability of applying the sub-policies). A sub-policy contains two operations sampled from search spaceS, which are applied in sequence. Every operation has two parameters:b(the probability of applying the operation) andv(the magnitude of the operation).Ois a set of image processing operations. The original training set is divided into a training set Φtrainand a validation set Φval. The optimization objective is to find the optimal parameters ={a,b,v} by minimizing the validation lossLvalwhen training lossLtrainis converged via updating network weightw. Then the data augmentation policy optimization framework is represented as

    Fig. 1. The structure of the proposed algorithm.

    Search space:Since the automatic data augmentation algorithm needs to be employed for medical image segmentation, a dedicated search space is designed for diverse morphologies of tissues and lesions in medical images. We select 17 operations containing pixellevel and spatial-level transformations from albumentations [14],which are suitable for the variety of diseases and the uniqueness of the lesions in medical image, including contrast, randomgamma,brightness, clahe, gaussnoise, horizontalflip, verticalflip, elastictransform, opticaldistortion, gridfistortion, randomscale, rotate, shiftscalerotate, translateX/Y, shearX/Y. A data augmentation policy consisting of 136 sub-policies is sampled from the search spaceS. To increase the diversity of policies, we set the magnitude of operations in a continuous range. Therefore, we need to determine the scope of the interval. Besides the magnitude of the operation, the probabilities of applying these operations are also to be searched. The range of magnitudes and possibilities of the seventeen operations are illustrated in Table 1.

    Proposed search algorithm:Based on (1), since the gradient ofφis not available directly,φis difficult to be updated via gradient descent. To this end, we use Gumbel-Softmax [13], [15] to approximate the discrete parameterφto continuous values, and then validation lossLvalis differentiable toφ. Finally, an efficient optimization method is introduced to updateφwith discrete constraints andwby proximal gradient descent.

    Firstly, the sub-policy selection and operation application are sampled from Categorical and Bernoulli distributions, respectively[13]. In order to determine which sub-policy is selected, probabilityhis sampled from the Categorical distributionH.

    wherexdenotes image.

    To estimate the gradient of the DA policy parameters {a,b}, the Gumbel-Softmax reparameterization trick is utilized to make the parameters {a,b} differentiable. Next, we describe in detail the differentiable of relaxation of sub-policy selectionaand operation applicationb. With the Gumbel-Softmax reparameterization, (2)could be represented as

    wheref=?log(?log(μ)) with μ~Uniform(0,1), andηis thetemperature coefficient. Then, the reparameterization is applied to the Bernoulli distribution [13]

    Table 1.The Designed Search Space for Medical Image Segmentation

    The magnitude parametervis optimized by approximating the gradient. Since the magnitude parameter is not differentiable, we apply a gradient estimator [13], [16] to optimize it for an image,

    With the reparameterization trick, we keep {a,b} continuous,which is optimized by gradient descent, but constrains the selections of {a,b} to be discrete. Therefore, we generalize (4) as below:

    whereM={k|||k||0=1, and 0 ≤ks≤1}. Whilekis continuous to be differentiable,kis a one-hot vector when sampled. We formulate the applications of the combination of operations with the same discrete constraint. Then, the selection of operationszis sampled.

    The proximal algorithm could quickly solve such convex optimization problems: A part of the objective function may be nondifferentiable, but it can be split into the sum of a differentiable convex function and a non-differentiable convex function [17]. The proximal algorithm is difficult to obtain reasonable solutions with discrete constraints. And proximal algorithm cannot be applied with the additional constraint.

    To solve the optimization problem as minLval(w?,Φval), following[17], a similar proximal algorithms is adopted. We optimizeφas a continuous variable subject to the constraintQ2. The discreteis constrained during the iteration by the constraintQ1derived fromφ.We denoteQ=Q1∩Q2, whereQ1={φ//ks//0=1and 0 ≤//zi//0≤2}andQ2={φ|0 ≤ks,zi≤1}. Then, the proximal update is given by

    The constraintQ1is meant to imply thatm*could be expressed asjdi, wherejis the parameter to be determined anddiis a vector that contains the value 0 or 1. Letφbe ann-dimensional vector, and (9) is divided into n problems to be resolved

    The procedure of the proposed algorithm is given in Algorithm 1.

    Algorithm 1 The Proposed Algorithm

    Dataset:We conducted experiments on three datasets including the publicly available LiTs dataset, the publicly available pneumothorax dataset, and our private liver tumor dataset.

    The LiTs dataset is a publicly available liver tumor dataset containing liver and tumor labels. The dataset is provided by the 2017 Liver Tumor Segmentation Challenge organized by Medical Image Computing and Computer Assisted Intervention and IEEE International Symposium on Biomedical Imaging. The training set and the test set contain 130 CT scans and 70 CT scans, respectively.

    The pneumothorax dataset is also a publicly available dataset containing only pneumothorax labels. The dataset is provided by Society for Imaging Informatics in Medicine-American College of Radiology (SIIM-ACR) pneumothorax segmentation. The training set contains 10 712 images and the test set has 1377 images.

    The liver tumor dataset is an unpublished dataset containing the liver tumor label. The dataset is provided by a tertiary care hospital in Changsha, China, which contains 107 liver tumor CT scans of patients. This dataset is divided randomly into a training set and a test set in the ratio of 4:1.

    Evaluation metrics:For the segmentation task, the common evaluation metrics are used [1], [4]: Dice coefficient and IoU.

    Implementation detail:As the test set labels of the LiTs dataset are unpublished, we need to submit the predictions of the test set.Since the number of submissions is limited, we compare only two well-known methods: UNet and nnUNet on the LiTs datasets. The Dice coefficient is the main evaluation metric on the LiTs and pneumothorax datasets.

    Our experiments are divided into two parts: the data augmentation policy search stage and the network retraining stage. We divide the training set into two parts, half for optimizing the policy parameters and the remaining for updating the network weights in the policy search stage. Firstly, the top-25 sub-policies are obtained, when the validation loss is converged. Then the searched sub-policies are applied to the model for retraining. The model is trained using a cross-entropy loss function with a standard stochastic gradient descent (SGD) optimizer and a learning rate of 0.001. The data augmentation parameters are optimized using an Adam optimizer with a learning rate of 0.005 and a weight decay of 0. All experiments are implemented based on PyTorch and the model is trained on an NVIDIA RTX 2080Ti.

    Comparisons with state-of-the-art methods:We aim to search for a group of data augmentation sub-policies suitable for multiple medical image segmentation tasks, and then the sub-policies obtained from the search stage are applied to common medical segmentation networks, such as UNet [2], UNet++ [4], DenseUNet, MANet [18],nnUNet [1], and FPN [19]. DenseNet [20] achieves better performance with fewer parameters and computational costs by linking features on channels to achieve feature reuse. Densenet161 is chosen as the encoder for UNet, which is a variant of UNet, called DenseUNet. We conducted comparison experiments on liver tumor,LiTs, and pneumothorax datasets, respectively.

    Comparative results of liver tumor segmentation and pneumothorax segmentation are shown in Tables 2 and 3. The results in Tables 2 and 3 show that the searched data augmentation policy could improve segmentation accuracy when applied to networks.And the best segmentation results we achieve outperform current methods, especially nnUNet [1], which is considered to be the best segmentation framework in medical image segmentation. It is worth mentioning that our algorithm is used for the basic network architecture, and still achieves the best segmentation accuracy. This demonstrates the effectiveness of our algorithm. Moreover, as shown in Table 4, [11] takes 768 hours, and [12] takes nearly 100 hours.And * represents the results from the paper in Table 4. By contrast,our algorithm takes approximately 5 hours, which is at least one order of magnitude faster than [11] and [12]. Thus, the proposed algorithm has an advantage in speed.

    Table 2.Comparative Results of Liver Tumor Segmentation (Liver Tumor and LiTs Dataset)

    Besides, we adapt the automatic data augmentation algorithm DADA [13] from the natural image domain to medical image segmentation. Then we choose the traditional data augmentation policies [1], [10] as well as DADA to compare with the proposed algorithm. In the implementation, MANet [18] is a relatively novel network for liver tumor segmentation, selected as the baseline on the liver tumor dataset, and * represents the data augmentation policy in the paper in Table 5. Additionally, UNet is selected as the baseline on the LiTs dataset, and * represents the combinations of traditional data augmentation transformations which include brightnesscontrast,randomgamma, elastictransform, griddistortion, opticaldistortion, and shiftscalerotate in Table 6 . As shown in Tables 5 and 6 , the performance of the proposed algorithm exceeds that of DADA and traditional data augmentation policies, which confirms the efficiency of the proposed algorithm. Moreover, we also plot the variation curve of the validation set loss in the search stage. As shown in Fig. 2, the proposed algorithm solves the problem that the DADA algorithm is not robust and also converges faster than DADA. These experiments demonstrate the superior robustness and convergence performance of the proposed algorithm.

    Conclusions: The small scale and lack of diversity of medical image datasets, as well as the unique shapes and morphologies of different lesions, remain challenges in medical image segmentation.To solve the above problems, we firstly design a huge and novel search space that is suitable for most medical image segmentation tasks. Then, we propose a differentiable automatic data augmentation algorithm based on proximal update that searches for the optimal data augmentation policy. Finally, the comprehensive experiments demonstrate that the proposed algorithm outperforms state-of-the-art methods. And we could achieve the best segmentation accuracy by applying the searched data augmentation policy to basic network architecture. Additionally, the search speed of the proposed algorithm exceeds the best current automatic data augmentation algorithms in medical image segmentation.

    Table 3.Comparison of Pneumothorax Segmentation Results on Pneumothorax Dataset

    Table 4.Comparison of GPU Hours

    Table 5.Comparison Results of Traditional and Automatic Data Augmentation Algorithms on Liver Tumor Dataset

    Table 6.Comparison Results of Traditional and Automatic Data Augmentation Algorithms on LiTs Dataset

    Fig. 2. Comparison results of validation set loss between ours (blue) and DADA (orange) in the search stage. Notably, the validation set loss of our method has been steadily decreasing, yet the loss curve of DADA oscillates during the search stage.

    Acknowledgments:This work was supported by the National Natural Science Foundation of China (62073126), the Hunan Provincial Natural Science Foundation of China (2020JJ2008), the Key Research and Development Program of Hunan Province(2022WK2011), the Science and Technology Program of Changsha(897202102345).

    亚洲av电影在线进入| 嫁个100分男人电影在线观看| 午夜精品久久久久久毛片777| 中文精品一卡2卡3卡4更新| 欧美人与性动交α欧美软件| www.自偷自拍.com| 国产亚洲欧美在线一区二区| 国产欧美日韩综合在线一区二区| 免费av中文字幕在线| 欧美乱码精品一区二区三区| 在线观看人妻少妇| 视频区欧美日本亚洲| 最新的欧美精品一区二区| 高清av免费在线| 欧美日韩国产mv在线观看视频| 纯流量卡能插随身wifi吗| 久久中文看片网| 免费看十八禁软件| 中国国产av一级| 777久久人妻少妇嫩草av网站| 久久久久久久大尺度免费视频| 国产精品麻豆人妻色哟哟久久| 999精品在线视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲成av片中文字幕在线观看| 99re6热这里在线精品视频| 国产av一区二区精品久久| h视频一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲第一av免费看| 在线观看一区二区三区激情| 在线观看免费视频网站a站| 亚洲,欧美精品.| 999久久久国产精品视频| 国产精品久久久av美女十八| 国产又色又爽无遮挡免| www.自偷自拍.com| 男女午夜视频在线观看| 久久久精品免费免费高清| 久久中文字幕一级| 中文精品一卡2卡3卡4更新| 亚洲av片天天在线观看| 亚洲精品中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| av视频免费观看在线观看| 国产成人精品在线电影| 国产97色在线日韩免费| 久久久久网色| 国产精品久久久人人做人人爽| 伊人亚洲综合成人网| 欧美日韩亚洲国产一区二区在线观看 | 80岁老熟妇乱子伦牲交| 美女大奶头黄色视频| 亚洲综合色网址| 中文字幕精品免费在线观看视频| avwww免费| 国产成人精品无人区| 亚洲第一欧美日韩一区二区三区 | 午夜两性在线视频| 十八禁网站网址无遮挡| 亚洲欧美成人综合另类久久久| 日日摸夜夜添夜夜添小说| 999精品在线视频| 亚洲久久久国产精品| 青草久久国产| 亚洲中文字幕日韩| 欧美黑人欧美精品刺激| 精品熟女少妇八av免费久了| 女人爽到高潮嗷嗷叫在线视频| av天堂在线播放| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美精品济南到| www.熟女人妻精品国产| 动漫黄色视频在线观看| 男女床上黄色一级片免费看| 久久久国产成人免费| 一区二区三区四区激情视频| 午夜视频精品福利| 男女床上黄色一级片免费看| 日本wwww免费看| 亚洲av片天天在线观看| 一区福利在线观看| 这个男人来自地球电影免费观看| 免费在线观看日本一区| 久久久国产欧美日韩av| 麻豆av在线久日| 制服人妻中文乱码| 国产亚洲一区二区精品| 亚洲精品国产精品久久久不卡| 国产成人av教育| 9191精品国产免费久久| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区大全| 男女高潮啪啪啪动态图| 亚洲熟女毛片儿| 99精品欧美一区二区三区四区| 亚洲五月婷婷丁香| 黄色毛片三级朝国网站| 91成人精品电影| 国产伦人伦偷精品视频| 夫妻午夜视频| 欧美日韩亚洲高清精品| 久久女婷五月综合色啪小说| 2018国产大陆天天弄谢| www日本在线高清视频| 日韩欧美国产一区二区入口| 日本a在线网址| 高清av免费在线| 亚洲精品第二区| 午夜福利,免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国内亚洲2022精品成人 | 狂野欧美激情性xxxx| 美女国产高潮福利片在线看| 日韩,欧美,国产一区二区三区| 免费在线观看黄色视频的| 男男h啪啪无遮挡| 精品人妻一区二区三区麻豆| 最近最新免费中文字幕在线| 我的亚洲天堂| videos熟女内射| 欧美激情高清一区二区三区| 欧美少妇被猛烈插入视频| 精品少妇一区二区三区视频日本电影| 国产一区二区三区综合在线观看| 日韩大片免费观看网站| 9热在线视频观看99| 欧美老熟妇乱子伦牲交| 视频区图区小说| 又黄又粗又硬又大视频| 80岁老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 丰满少妇做爰视频| 女人被躁到高潮嗷嗷叫费观| 免费女性裸体啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩另类电影网站| 久久女婷五月综合色啪小说| 伦理电影免费视频| 亚洲少妇的诱惑av| 日韩大码丰满熟妇| 亚洲精品国产av成人精品| 男女无遮挡免费网站观看| 最新的欧美精品一区二区| 啦啦啦中文免费视频观看日本| 中文字幕制服av| 亚洲精品美女久久av网站| 免费观看a级毛片全部| 91老司机精品| 国产精品免费视频内射| 亚洲成人免费av在线播放| 男女床上黄色一级片免费看| 男女之事视频高清在线观看| 嫁个100分男人电影在线观看| 制服诱惑二区| av又黄又爽大尺度在线免费看| 男女国产视频网站| 老司机深夜福利视频在线观看 | 一区二区av电影网| 亚洲色图综合在线观看| 亚洲成人免费电影在线观看| 久热这里只有精品99| 人成视频在线观看免费观看| 18禁裸乳无遮挡动漫免费视频| 一本久久精品| 亚洲精品在线美女| 日韩欧美一区视频在线观看| 狠狠婷婷综合久久久久久88av| 最黄视频免费看| 久久人妻福利社区极品人妻图片| 69精品国产乱码久久久| 亚洲国产精品一区三区| 秋霞在线观看毛片| 亚洲,欧美精品.| 十八禁网站网址无遮挡| 国产极品粉嫩免费观看在线| 亚洲欧美日韩高清在线视频 | 欧美日韩av久久| 免费少妇av软件| 亚洲九九香蕉| 十八禁人妻一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 日本vs欧美在线观看视频| 久久综合国产亚洲精品| 国产精品一二三区在线看| 国产av一区二区精品久久| 少妇裸体淫交视频免费看高清 | 国产亚洲精品第一综合不卡| 亚洲精品成人av观看孕妇| 精品亚洲乱码少妇综合久久| 18禁国产床啪视频网站| 91av网站免费观看| 大香蕉久久成人网| 777米奇影视久久| 亚洲精品av麻豆狂野| 亚洲五月色婷婷综合| 男女午夜视频在线观看| 在线天堂中文资源库| 大陆偷拍与自拍| 香蕉国产在线看| 久久热在线av| 曰老女人黄片| 精品亚洲成国产av| 国产成人精品在线电影| 国产人伦9x9x在线观看| 亚洲第一av免费看| 日本一区二区免费在线视频| 国产精品一区二区精品视频观看| 大陆偷拍与自拍| av天堂久久9| 国产精品影院久久| 欧美成狂野欧美在线观看| 一区二区三区乱码不卡18| 午夜精品国产一区二区电影| 欧美日韩中文字幕国产精品一区二区三区 | 国产欧美日韩一区二区三区在线| 嫩草影视91久久| 国产在线免费精品| 国产熟女午夜一区二区三区| 亚洲色图综合在线观看| 国产一级毛片在线| 亚洲成人国产一区在线观看| 大型av网站在线播放| 在线av久久热| 又黄又粗又硬又大视频| 在线观看一区二区三区激情| 久久中文字幕一级| 别揉我奶头~嗯~啊~动态视频 | 国产精品麻豆人妻色哟哟久久| 午夜福利在线免费观看网站| 三级毛片av免费| 精品国内亚洲2022精品成人 | 国产成人影院久久av| av一本久久久久| 热99国产精品久久久久久7| 亚洲男人天堂网一区| 一级,二级,三级黄色视频| 国产激情久久老熟女| 午夜激情av网站| 亚洲综合色网址| 久久九九热精品免费| 国产av精品麻豆| 国产成人一区二区三区免费视频网站| 国产成人精品久久二区二区免费| 性色av一级| 在线精品无人区一区二区三| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| 久久精品国产综合久久久| 另类精品久久| 99re6热这里在线精品视频| 青草久久国产| xxxhd国产人妻xxx| 欧美 日韩 精品 国产| av有码第一页| 免费在线观看黄色视频的| 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 十八禁网站网址无遮挡| 亚洲天堂av无毛| 91精品国产国语对白视频| 国产高清视频在线播放一区 | 精品久久久久久电影网| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区蜜桃| 精品久久久久久久毛片微露脸 | 好男人电影高清在线观看| 欧美精品一区二区大全| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲综合色网址| 91字幕亚洲| 国产精品成人在线| av免费在线观看网站| 国产免费现黄频在线看| 一级毛片精品| 久久精品aⅴ一区二区三区四区| 桃花免费在线播放| av线在线观看网站| 男人操女人黄网站| 久久久精品区二区三区| 美女大奶头黄色视频| 人妻人人澡人人爽人人| 女人久久www免费人成看片| 中国国产av一级| 国产在线观看jvid| 日本vs欧美在线观看视频| 成人av一区二区三区在线看 | 久久亚洲国产成人精品v| 久久久国产一区二区| 十八禁高潮呻吟视频| 香蕉国产在线看| 少妇 在线观看| 亚洲九九香蕉| 在线观看免费高清a一片| 人妻一区二区av| 人妻久久中文字幕网| 十八禁高潮呻吟视频| 波多野结衣一区麻豆| 一二三四在线观看免费中文在| 久久国产精品大桥未久av| www.熟女人妻精品国产| h视频一区二区三区| 操美女的视频在线观看| 18禁观看日本| 美女主播在线视频| 蜜桃国产av成人99| 如日韩欧美国产精品一区二区三区| 岛国在线观看网站| 99国产精品一区二区蜜桃av | 免费在线观看日本一区| 男女床上黄色一级片免费看| 91老司机精品| kizo精华| 搡老乐熟女国产| 国产又爽黄色视频| 成人国语在线视频| 一二三四在线观看免费中文在| 久久久水蜜桃国产精品网| 男人操女人黄网站| 午夜福利视频在线观看免费| 一本一本久久a久久精品综合妖精| 久久这里只有精品19| 中文字幕精品免费在线观看视频| 男人添女人高潮全过程视频| 美女主播在线视频| 一边摸一边抽搐一进一出视频| 一本一本久久a久久精品综合妖精| 午夜老司机福利片| 丝袜人妻中文字幕| 国产人伦9x9x在线观看| 老司机在亚洲福利影院| 欧美午夜高清在线| 少妇人妻久久综合中文| 少妇猛男粗大的猛烈进出视频| 少妇被粗大的猛进出69影院| 日本wwww免费看| 久久久精品区二区三区| 黄色视频,在线免费观看| 欧美精品av麻豆av| 丝瓜视频免费看黄片| 国产精品久久久久成人av| 国产xxxxx性猛交| 免费高清在线观看视频在线观看| 天天躁日日躁夜夜躁夜夜| 99精品欧美一区二区三区四区| 爱豆传媒免费全集在线观看| 亚洲成人免费电影在线观看| 久久国产精品大桥未久av| 操美女的视频在线观看| 亚洲欧美日韩另类电影网站| 岛国毛片在线播放| 最新在线观看一区二区三区| 久久久久国产精品人妻一区二区| 日韩三级视频一区二区三区| 女警被强在线播放| 老司机亚洲免费影院| a级片在线免费高清观看视频| 欧美人与性动交α欧美精品济南到| 无限看片的www在线观看| 久久久欧美国产精品| 国产国语露脸激情在线看| 热re99久久国产66热| 欧美国产精品一级二级三级| 国产野战对白在线观看| 日韩大码丰满熟妇| 少妇猛男粗大的猛烈进出视频| 久久久精品免费免费高清| 精品国产乱码久久久久久小说| 一级毛片精品| 亚洲欧美色中文字幕在线| 老鸭窝网址在线观看| 国产高清国产精品国产三级| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 亚洲av电影在线观看一区二区三区| 三上悠亚av全集在线观看| 精品久久久久久久毛片微露脸 | 在线观看www视频免费| 一级,二级,三级黄色视频| 亚洲一区中文字幕在线| 色精品久久人妻99蜜桃| 亚洲精品成人av观看孕妇| 亚洲一区二区三区欧美精品| 黑人巨大精品欧美一区二区mp4| 91av网站免费观看| 欧美日韩av久久| 交换朋友夫妻互换小说| 少妇 在线观看| a级毛片在线看网站| 色婷婷久久久亚洲欧美| 永久免费av网站大全| 精品福利观看| 久久久久国内视频| 亚洲成人免费电影在线观看| 国产色视频综合| 国产精品99久久99久久久不卡| 中亚洲国语对白在线视频| 欧美日韩精品网址| 汤姆久久久久久久影院中文字幕| 又紧又爽又黄一区二区| 后天国语完整版免费观看| 蜜桃国产av成人99| 一区二区av电影网| 国产日韩欧美亚洲二区| 亚洲精品国产一区二区精华液| 成年动漫av网址| 高清在线国产一区| www.自偷自拍.com| e午夜精品久久久久久久| 一个人免费看片子| 熟女少妇亚洲综合色aaa.| 少妇被粗大的猛进出69影院| 9色porny在线观看| 久久久国产精品麻豆| 免费一级毛片在线播放高清视频 | e午夜精品久久久久久久| 新久久久久国产一级毛片| 18禁裸乳无遮挡动漫免费视频| 亚洲专区中文字幕在线| 一本色道久久久久久精品综合| 人妻一区二区av| 久久久精品94久久精品| 91麻豆精品激情在线观看国产 | 欧美日韩亚洲综合一区二区三区_| 美国免费a级毛片| 亚洲一码二码三码区别大吗| 亚洲精品成人av观看孕妇| 永久免费av网站大全| 97精品久久久久久久久久精品| 最新的欧美精品一区二区| 国产一级毛片在线| 久久人妻熟女aⅴ| 99久久综合免费| 狠狠婷婷综合久久久久久88av| 国产精品久久久久成人av| 国产福利在线免费观看视频| 国产精品1区2区在线观看. | 欧美日本中文国产一区发布| 黄色毛片三级朝国网站| 男女之事视频高清在线观看| 亚洲欧美精品综合一区二区三区| 久久精品亚洲av国产电影网| 亚洲 国产 在线| 国产成人欧美在线观看 | 亚洲精品国产区一区二| 欧美日韩成人在线一区二区| 成年av动漫网址| 久久精品亚洲av国产电影网| 国产精品影院久久| 中文精品一卡2卡3卡4更新| 精品视频人人做人人爽| 色视频在线一区二区三区| 国产精品.久久久| 在线观看舔阴道视频| 日韩欧美免费精品| 一二三四在线观看免费中文在| 一区二区三区精品91| 欧美日韩亚洲高清精品| 亚洲免费av在线视频| 亚洲全国av大片| 国产精品成人在线| 老司机亚洲免费影院| 亚洲成人免费电影在线观看| 最近中文字幕2019免费版| 在线观看免费高清a一片| 99re6热这里在线精品视频| 欧美久久黑人一区二区| 亚洲视频免费观看视频| 亚洲avbb在线观看| 亚洲欧美色中文字幕在线| 如日韩欧美国产精品一区二区三区| 国产精品免费视频内射| 满18在线观看网站| 夜夜骑夜夜射夜夜干| 久久中文看片网| 亚洲一卡2卡3卡4卡5卡精品中文| 男人爽女人下面视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 蜜桃在线观看..| 777米奇影视久久| 男人舔女人的私密视频| 成人手机av| 亚洲五月色婷婷综合| 国产精品 国内视频| 日日摸夜夜添夜夜添小说| 国产精品.久久久| 精品国产国语对白av| 91成年电影在线观看| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| 大片电影免费在线观看免费| 老熟女久久久| 午夜精品久久久久久毛片777| 欧美日韩精品网址| 国产伦人伦偷精品视频| 一区二区三区乱码不卡18| 女人久久www免费人成看片| av在线播放精品| 日韩,欧美,国产一区二区三区| 午夜91福利影院| 精品免费久久久久久久清纯 | 五月天丁香电影| 亚洲一区二区三区欧美精品| 欧美+亚洲+日韩+国产| 亚洲精品国产一区二区精华液| 亚洲久久久国产精品| 午夜福利影视在线免费观看| 免费人妻精品一区二区三区视频| 成年av动漫网址| 国产男女内射视频| 日韩,欧美,国产一区二区三区| 超碰成人久久| 成人手机av| 亚洲成人免费av在线播放| av天堂久久9| 国产一区二区三区在线臀色熟女 | 在线观看免费午夜福利视频| 午夜影院在线不卡| 精品国产乱子伦一区二区三区 | 亚洲精品第二区| 99热国产这里只有精品6| 国产日韩欧美在线精品| 50天的宝宝边吃奶边哭怎么回事| 国产伦人伦偷精品视频| 不卡一级毛片| 亚洲av男天堂| 黄片小视频在线播放| 男男h啪啪无遮挡| a级毛片在线看网站| 每晚都被弄得嗷嗷叫到高潮| 老司机福利观看| 91精品三级在线观看| 亚洲欧美一区二区三区久久| 国产成人影院久久av| 国产深夜福利视频在线观看| 国产亚洲午夜精品一区二区久久| 深夜精品福利| 又黄又粗又硬又大视频| 嫁个100分男人电影在线观看| 涩涩av久久男人的天堂| svipshipincom国产片| 久久精品人人爽人人爽视色| 国产精品一区二区精品视频观看| 日本一区二区免费在线视频| 久久精品国产亚洲av香蕉五月 | 欧美久久黑人一区二区| 免费女性裸体啪啪无遮挡网站| 久久国产精品影院| 精品久久久久久电影网| 在线永久观看黄色视频| 91九色精品人成在线观看| 嫁个100分男人电影在线观看| 国产一级毛片在线| 国产精品免费大片| 一二三四社区在线视频社区8| 老司机影院成人| 精品熟女少妇八av免费久了| 精品人妻在线不人妻| 日本av手机在线免费观看| 狠狠婷婷综合久久久久久88av| 每晚都被弄得嗷嗷叫到高潮| 国产麻豆69| 国产精品久久久久久精品电影小说| 久久亚洲精品不卡| 亚洲欧洲日产国产| 捣出白浆h1v1| 国产成人精品久久二区二区免费| 亚洲欧美精品自产自拍| 老司机福利观看| 久久av网站| 黄色a级毛片大全视频| 黄片小视频在线播放| 中文字幕av电影在线播放| av有码第一页| 欧美 亚洲 国产 日韩一| 高清黄色对白视频在线免费看| 老司机深夜福利视频在线观看 | 一级片'在线观看视频| 热99久久久久精品小说推荐| 久久久久久久久免费视频了| 黄色视频不卡| 久久精品亚洲熟妇少妇任你| 这个男人来自地球电影免费观看| 欧美日韩亚洲高清精品| 操美女的视频在线观看| 国产主播在线观看一区二区| 成人18禁高潮啪啪吃奶动态图| 女人久久www免费人成看片| 夜夜骑夜夜射夜夜干| 精品福利永久在线观看| 欧美日韩亚洲国产一区二区在线观看 | avwww免费| 久久人人爽av亚洲精品天堂| 美女脱内裤让男人舔精品视频| 亚洲欧美精品综合一区二区三区| 欧美精品一区二区免费开放| 成年av动漫网址| 国产97色在线日韩免费| 国产一区有黄有色的免费视频| 多毛熟女@视频| 免费在线观看完整版高清| 日本av手机在线免费观看| 国产免费现黄频在线看| 亚洲va日本ⅴa欧美va伊人久久 | 青春草亚洲视频在线观看| 国产三级黄色录像| 午夜91福利影院| 母亲3免费完整高清在线观看| 99热全是精品| 亚洲熟女精品中文字幕| 久久狼人影院| 91九色精品人成在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品aⅴ一区二区三区四区| 一本综合久久免费|