• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stabilization of ion-temperature-gradient mode by trapped fast ions

    2022-07-13 00:37:16SiqiWANG王思琪HuishanCAI蔡輝山BaofengGAO高寶峰andDingLI李定
    Plasma Science and Technology 2022年6期

    Siqi WANG (王思琪),Huishan CAI (蔡輝山),Baofeng GAO (高寶峰) and Ding LI (李定)

    1 CAS Key Laboratory of Geospace Environment,School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,People's Republic of China

    2 Institute of Physics,Chinese Academy of Sciences,Beijing 100190,People's Republic of China

    Abstract Understanding and modeling fast-ion stabilization of ion-temperature-gradient (ITG) driven microturbulence have profound implications for designing and optimizing future fusion reactors.In this work,an analytic model is presented,which describes the effect of fast ions on ITG mode.This model is derived from a bounce-average gyro-kinetic equation for trapped fast ions and ballooning transformation for ITG mode.In addition to dilution,strong wave-fast-ion resonant interaction is involved in this model.Based on numerical calculations,the effects of the main physical parameters are studied.The increasing density of fast ions will strengthen the effects of fast ions.The effect of wave-particle resonance strongly depends on the temperature of fast ions.Furthermore,both increasing density gradient and the ratio of the temperature and density gradients can strengthen the stabilization of fast ions in ITG mode.Finally,the influence of resonance broadening of wave-particle interaction is discussed.

    Keywords: fast ions,ITG instability,gyro-kinetic

    1.Introduction

    Improving plasma confinement is beneficial for designing future nuclear fusion devices and optimizing the performance of present devices.An important limiting factor of plasma confinement in fusion devices is microturbulence [1].As a significant driver of plasma turbulence,ion-temperature-gradient (ITG)instability[2-5]is principally responsible for the degradation of ion energy confinement.Therefore,it is extremely valuable to study the mechanisms that limit its development.

    Fast ions[6]are mainly generated by fusion reactions,as well as auxiliary heating systems,such as neutral beam injection [7] and ion cyclotron resonance heating [8].Understanding the behavior of fast ions is important since they are an essential component of fusion plasma and play a major role in sustaining fusion-relevant bulk temperatures.In addition,fast ions carry large power,which implies that even small fast-ion losses can damage the first wall of a fusion device.Therefore,the confinement of fast ions is worth studying.

    The study of fast-ion interaction with plasma turbulence has recently attracted particular interest.On the one hand,background plasma turbulence can induce the transport of fast ions and lead to the redistribution or losses of fast ions[9-12].On the other hand,fast ions can affect plasma turbulence in turn [13-15].In some experimental and numerical studies[16-20],the suppression of plasma turbulence has also been observed,which is linked to the presence of fast ions.Generally,the effects of fast ions can be classified as electrostatic effects and electromagnetic effects.In [14],the effect of the dilution of the main ions on stabilizing ITG turbulence is investigated.However,the fast-ion effect can be observed even under low density,which suggests other interaction mechanisms in addition to dilution [21].In [22],a strong dynamic effect of fast ions on suppressing plasma turbulence has been observed in an electrostatic setup.Significantly,the wave-particle resonance mechanism is taken into account[23,24].With regard to electromagnetic stabilization of ITG turbulence,there are many experimental and numerical studies[25-30].As shown in[22],the linear growth rate exhibits the same behavior in the electromagnetic and electrostatic framework,while the growth rate is lower in the electromagnetic framework than that in the electrostatic framework for the same parameters.Mostly,the effects of the fast-ion stabilization of ITG turbulence are studied by both linear and nonlinear numerical simulation methods.

    In this paper,a theoretical interpretation for the observed impact of fast ions on ITG mode is offered.Both analytical and numerical calculations are presented in this work.The physical mechanisms of fast-ion stabilization on ITG mode are studied in detail.The interaction of fast ions with ITG mode is investigated in the framework of gyro-kinetic theory[31].The dispersion relation consisting of ITG mode and fast ions is normally derived by utilizing the quasi-neutrality condition and ballooning transformation.It is discovered that fast ions can interact with ITG instability via wave-particle resonance.Based on numerical calculations,the effects of density,temperature,density gradient and the ratio of the temperature and density gradients of fast ions on both the real frequency and growth rate of ITG mode are investigated.The effect of dilution is also presented in numerical calculations.It is found that,in addition to dilution,the resonant fast-ion stabilizing effect plays a significant role.

    The rest of the paper is organized as follows.In section 2,adopting proper approximations,the dispersion relation including ITG mode and trapped fast ions is established.In section 3,based on numerical calculations,the dispersion relation is solved and different physical parameters controlling the stabilizing effect are investigated.Furthermore,the influence of resonance broadening of wave-particle interaction is discussed.Our conclusions are given in section 4.

    2.Dispersion relation

    The dispersion relation for ITG mode including fast ions and the bulk plasma is given by quasi-neutrality equation:

    Here,the bulk plasma is perceived to be composed of deuterium and electrons.Zfis the charge number of fast ions.For the electron response,an adiabatic approximation is adopted for k‖vTe?ω and the electron perturbation density δneis given by,

    However,an adiabatic approximation is not appropriate for both main ions and fast ions.The perturbed ion distribution function can be written as,

    Here,j refers to the species of particles and δgjis the nonadiabatic part of the perturbed distribution function,which is determined by the gyro-kinetic equation [31]:

    Here,vdj=,ωcj=and K=v2/2,where b is a unit vector parallel to the magnetic field,κ is the magnetic curvature,Mjis the mass of species j and(r,θ,ξ) denote the minor radius,poloidal angle and toroidal angle,respectively.The equilibrium distribution function is assumed to be Maxwellian.Obviously,in the above equation,the first term in the square bracket denotes the space-gradientdriven term and the second term denotes the energy-gradientdriven term.

    First,the dynamics of background main ions is presented.According to the gyro-kinetic equation,the perturbed ion distribution function δgiis obtained as,

    where,

    In previous works [3,4],the above equation has been studied under some limits.By considering the limits?1,?1 and keeping the leading contributions inand,the perturbed density of the main ions is expressed as,

    withbi=.Here,ρTiis the Larmor radius of the background main ions.Note that,under the limits?1,?1),the growth rate of ITG mode in this work is larger than that in simulation studies [22].

    For the fast-ion dynamics,both of δgfand δφ are expanded in toroidal and poloidal Fourier harmonics:

    Then,the Fourier transform of equation (4) is,

    The ordering relationship between the terms in equation (9) is as follows:

    Here,Δr is the radial distance from a reference mode rational surface and Δrmis the distance between the two adjacent rational surfaces,implies,where ωtfis the transit frequency.It is also true thatfor ITG mode.kθρTf<1 requires.Note that the upper and lower limits of Tf/Tiare given as.Subsequently,krρTf<1 for kr~skθ.denotes the adiabatic part of the perturbed distribution function of fast ions.Then<1 and<1,where[1+ηf(E Tf-3 2)].

    Based on the above ordering,equation (9) can be expanded as,

    Equation (11) can be solved as,

    Substituting equation (13) into equation (12) and taking the bounce average [32,33],we get:

    According to equation (14),the expression for the nonadiabatic part of the perturbed trapped fast-ion distribution function can be derived as,

    Significantly,the precession motion of fast ions can resonate with ITG mode when.Here,ωris the real frequency of ITG mode.This implies that fast ions can stabilize ITG mode via wave-particle resonance.

    The equilibrium distribution function of fast ions is assumed to be a Maxwellian distribution function [11,34],wherec1=is the normalized coefficient.

    Substituting the Maxwellian distribution function into equation (15),the perturbed density of trapped fast ions is written as,

    Combining equations(2),(7)and(16)and employing the ballooning transformation [35]δφ=,the quasi-neutrality condition in equation (1) can be expressed as,

    where,

    with y=skθx,σ=,ι=,,τ1=Te/Tiand τ2=ZfTe/Tf.Ω=is the normalized frequency andis the normalized energy.=with Ω=Ωr+iγ.Here,Ωris the normalized real frequency and γ is the normalized growth rate.The bracket 〈…〉θrepresents a θ-average value.The notation for the angle part of integration is expressed as,where Q is an arbitrary function of α.

    Note that,λ1expresses the response of the background electrons.λ2comes from the background main ions.λ3,stem from fast ions.λ3expresses the adiabatic part of fast ions.All ofandarise from the non-adiabatic part of fast ions.Since the Bessel functionis expanded as≈,〈λ4〉θstems from the principal part of the Bessel function.〈λ5〉θ,〈λ6〉θcome from the poloidal component and the radial component of the Bessel function,respectively.Namely,〈λ5〉θand〈λ6〉θdenote the finite Larmor radius effect.

    To facilitate analysis,〈λ4〉θis divided into〈λ41〉θ,〈λ42〉θ,〈λ43〉θand〈λ44〉θ,i.e.〈λ4〉θ= 〈λ41〉θ+ 〈λ42〉θ+〈λ43〉θ+ 〈λ44〉θ,

    Corresponding to equation(4),〈λ41〉θimplies the effect of the energy-gradient-driven term of fast ions.〈λ42〉θrepresents the effect of the density-gradient-driven term.Both of〈λ43〉θand〈λ44〉θstem from the temperature-gradient-driven terms and are denoted simply as the-3ηf/2 term andterm.They are opposite in sign,which signifies different effects between them.The ordering relationship between〈λ42〉θ,〈λ43〉θand〈λ44〉θis about 1: 3.The same division is applied equally to〈5λ〉θand〈λ6〉θ.

    Following reference [4] and proceeding to perform the strong coupling approximation cosη+sηsinη=1+,equation (17) can be written as,

    We find that equation(20)is just the familiar Weber-Hermite equation,as shown in [4,36].The eigenfunction solution is the Hermite function.Considering only the lowest eigenstate and seeking the solution of the form=exp(-ζη2),the dispersion equation is obtained:

    with,

    Here,bs=τ1biθ.Distinctly,let nf0=0 and equation (21)returns to the eigenvalue equation of ITG mode in [4].

    It is important to note that a significant fraction of trapped fast ions can resonate with ITG mode when the precession frequency of fast ions is close to the frequency of ITG mode,i.e.when.Here,suggests the normalized energy of fast ions that resonate with ITG mode at a frequency Ωr.Distinctly,the resonant condition depends on τ2,i.e.Tf/Te.According to equation (18),the contributions to the nonadiabatic part of fast ions stem from the energy,density and temperature gradients of fast ions.If ηf?1,the temperaturegradient-driven terms (〈λ43〉θand〈λ44〉θ) will be dominant since the ordering relationship between〈λ42〉θ,〈λ43〉θand〈λ44〉θis about.Subsequently,there is a threshold condition between〈λ43〉θand〈λ44〉θ.At relatively low temperature,the energy of resonant fast ions,i.e.is relatively high.Therefore,.When the temperature of fast ions increases,the resonant energydecreases and then.The threshold condition implies that wave-fast-ion resonance may play different roles(stabilizing or destabilizing) in ITG mode at different temperatures.

    3.Numerical results

    In order to obtain further understanding of fast-ion stabilization on ITG instability,the main physical parameters including the density nf0/ne0,temperature Tf/Te,density gradientand the ratio of the temperature and density gradients ηfof fast ions are investigated in more detail.Significantly,the effects of the background-driven terms(energy and space gradients) are studied separately.

    In numerical calculation,equation (21) is solved without any approximation.The plasma parameters are mainly taken from a JET L-mode discharge 73 224[22,28]and are listed in table 1.To facilitate the analysis,there is a single fast particle species,fast helium-3,presented in the calculation and the bulk plasma is composed of deuterium and electrons.

    Figure 1.(a) Normalized growth rate and (b) normalized real frequency of ITG mode with different densities of fast ions.Red and black dashed lines show the case without fast ions and the dilution,respectively.Solid blue and orange lines show the case with fast helium at Tf=5Te and Tf=30Te.

    Table 1.Parameters for the JET discharge 73 224 with fast helium.

    3.1.Effects of fast-ion density,nf0/ne0

    In this subsection,the effects of nf0/ne0on both growth rate γ and real frequency Ωrof ITG mode are presented in figures 1(a) and (b),respectively.The temperatures of fast helium are at Tf=5Teand Tf=30Te.

    From figure 1(a),it is found that fast ions play a stabilizing role on ITG mode and the growth rate reduces with the increasing nf0/ne0.As shown by the solid blue line in figure 1(a),relative to dilution,fast ions destabilize at Tf=5Te.The dominant effect of fast ions is dilution at Tf=5Te.However,the growth rate is lower than dilution at Tf=30Te.In addition,as shown in figure 1(b),the dilution leads to a reduction in the real frequency of ITG mode.Oppositely,the real frequencies of the two cases with fast helium rise as nf0/ne0increases.A negative value of the real frequency Ωrsignifies a mode propagating in the ion direction.

    The main physical mechanisms can be simply explained.When positively-charged fast ions are added to the background plasmas,the electromagnetic fields will have less response to the main thermal ions[14,18].Consequently,the growth rate arising from the bulk ions is reduced.Compared to the pure dilution case,both the growth rates and real frequencies in the two cases with fast helium are different.This fact demonstrates that there is another kinetic effect of fast ions in addition to dilution.Furthermore,the two cases at different fast-ion temperatures imply that the kinetic effect depends on the temperature of fast ions.Distinctly,this is the resonance mechanism that conforms to the last analysis in section 2.At low temperature (Tf=5Te),two temperaturegradient-driven terms are assumedand waveparticle resonance plays a destabilizing role.However,at relatively high temperature (Tf=30Te),and resonance leads to stabilization of ITG mode.Moreover,the resonant effect is weak at low temperature since only a small fraction of fast ions can resonate with ITG mode.As the temperature of fast ions rises,the fraction of resonant fast ions increases.Thus,the resonant effect of fast ions in the case at Tf=30Teis stronger than that at Tf=5Te.

    3.2.Effects of fast-ion temperature,Tf/Te.

    In this subsection,the effects of Tf/Teon both growth rate γ and real frequency Ωrof ITG mode are given in figures 2(a)and (b),respectively.Subsequently,the results are explained in detail using figures 3-5.The density of fast ion is nf0/ne0=0.07.

    In figure 2(a),it is found that,for Tf/Te<7,wave-fastion resonance leads to destabilization of ITG mode and the dominant effect is dilution.When the temperature of fast ions exceeds a critical value(Tf/Te~7),the growth rate decreases with the increasing Tf/Te.Meanwhile,resonance plays a stabilizing role on ITG mode.At higher temperature,i.e.Tf/Te>30,as the temperature rises,the growth rate changes slowly.In figure 2(b),it can be observed that,as Tf/Terises,the real frequency Ωrincreases and then moves towards the frequency in the dilution case.

    Figure 2.ITG (a) normalized growth rate and (b) normalized real frequency as a function of Tf/Te.

    Figure 3.ITG normalized growth rate as a function of Tf/Te:(a)adiabatic response,(b)response of energy-gradient-driven term,(c)sum of adiabatic response and response of energy-gradient-driven term and (d) response of space-gradient-driven term.

    First,to understand the results,in figures 3(a)-(d) both the adiabatic response and non-adiabatic response driven by energy and space gradients are depicted separately.In figure 3(a),the adiabatic response is shown by solving equation (21) with λ3of fast ions only,namely,let〈λ4〉θ,〈λ5〉θand〈λ6〉θbe zero.As can be seen,the adiabatic part of fast ions stabilizes the ITG,but this stabilizing effect quickly decays to zero as the temperature increases.The effect of the energy-gradient-driven term is shown in figure 3(b) by retaining〈λ41〉θ,〈λ51〉θand〈λ61〉θfor fast ions only.In contrast to the adiabatic response,the energy-gradient-driven term destabilizes the ITG mode.Similarly the destabilizing effect also rapidly weakens to zero with the increasing Tf/Te.Significantly,as shown in figure 3(c),the effects of the adiabatic part and energy-gradient-driven term of fast ions almost cancel each other so that the effect of fast ions mainly results from the space-gradient-driven term,which is shown in figure 3(d).

    Second,the effects of the fast-ion space gradient including density and temperature gradients are investigated in more detail.In figure 4(a),the magnitude of the imaginary part of〈λ42〉θ,which represents the effect of density gradients,is shown.Here,to facilitate analysis,a certain angle is assumed which satisfies κ2=0.6.The imaginary part of-〈λ42〉θis basically positive,which implies that the densitygradient term plays a destabilizing role on ITG mode.Similarly,-Im(〈λ44〉θ)in figure 4(c) is also mainly positive,which suggests that one part of temperature-gradient-driven termsis destabilizing on ITG mode.However,as shown in figure 4(b),another part (-3ηf/2 term) plays a stable role on ITG since-Im(〈λ43〉θ)is mostly negative.Distinctly,both| Im(〈λ43〉θ)|and| Im(〈λ44〉θ)|are much larger than| Im(〈λ42〉θ)|,which conforms to the ordering relationship between〈λ42〉θ,〈λ43〉θand〈λ44〉θ,i.e.1: 3ηf2:Therefore,the temperature gradient of fast ions expressed by〈λ43〉θand〈λ44〉θis mainly responsible for the kinetic effect of fast ions on ITG mode.

    Figure 4.Imaginarypart offastions driven by (a) density-gradient term (〈λ42〉θ),(b) temperature-gradient term (〈λ43〉θ) and (c)temperature-gradientterm(〈λ44〉θ).

    Figure 5.Imaginary part of fast ions:(a)principal part of Bessel function(〈λ4〉θ),(b)finite Larmor radius effect in θ direction(〈5λ〉θ)and(c)finite Larmor radius effect in r direction (〈λ6〉θ).

    Third,the resonant fast-ion stabilizing mechanism is studied.As shown in figures 4(b) and (c),at relatively low temperature,the magnitude of both| Im(〈λ44〉θ)|and| Im(〈λ43〉θ)|is small.As Tf/Terises,the magnitude of| Im(〈λ44〉θ)|and| Im(〈λ43〉θ)|increases and becomes maximum around Tf~12Te.Then,the magnitude of| Im(〈λ44〉θ)|and| Im(〈λ43〉θ)|decreases with increasing Tf/Te.This result conforms to the analysis of resonance.When the temperature of fast ions is low,only a small fraction of fast ions can resonate with ITG mode.Therefore,the resonant effect of fast ions is weak at relatively low temperature.As Tf/Terises,the fraction of resonant fast ions increases,which implies that the fast-ion resonant effect strengthens.When the temperature exceeds a certain value (Tf~12Te),the fraction of resonant fast ions decreases and the resonant effect weakens with increasing Tf/Te.In addition,at relatively low temperature,| Im(〈λ44〉θ)| >| Im(〈λ43〉θ)|,which suggests the destabilizing effect of theterm is stronger than the stabilizing effect of the-3ηf/2 term.When the temperature exceeds a critical value,conversely,the stabilizing effect of the -3ηf/2 term is stronger.This result conforms to the last analysis of resonance in section 2.As the fast-ion temperature increases,decreases.When the threshold condition<3 2is satisfied,stabilization of ITG mode by fast ions realized.

    Finally,the finite Larmor radius effect is studied in figures 5(a)-(c).In figure 5(a),as the principal part from the expansion of,for low temperatures,-Im(〈λ4〉θ)is positive,which suggests the destabilizing effect.When the temperature exceeds a certain value,-Im(〈λ4〉θ)becomes negative and fast ions stabilize ITG via wave-fast-ion resonance.Significantly,as shown in figures 5(b) and (c),the finite Larmor radius effect stabilizes ITG mode since both-Im(〈λ5〉θ)and-Im(〈λ6〉θ)are negative.

    3.3.Effects of fast-ion density gradient Lne /Lnfand ηf

    In this subsection,the effects of ηfandon both growth rate γ and real frequency Ωrof ITG mode are presented in figures 6(a)-(d) separately.The density of fast ions is nf0/ne0=0.07 and the temperature of fast ions is Tf=30Te.In figures 6(a) and (b),the density gradient of fast ions remains unchanged,i.e.=1.6.In figures 6(c) and (d),ηfis fixed,i.e.ηf=14.4.

    Figure 6.ITG (a) normalized growth rate and (b) real frequency as a function of ηf.ITG (c) normalized growth rate and (d) real frequency versusL neLnf.

    First,from figures 6(a) and (c),it is observed that both increasing ηfandwill reduce the growth rate of ITG mode,which implies that the increasing ηfandwill strengthen the stabilizing effect of fast ions.Second,from figure 6(b),it is found that,as ηfincreases,the real frequency of ITG mode increases and then moves towards the frequency in the dilution case.Finally,as shown in figure 6(d),the real frequency of ITG mode rises with increasing.

    The results in figures 6(a) and (c) can be simply explained.At first,in section 3.2,it is shown that fast-ion resonance leads to the stabilization of ITG mode at Tf=30Te.Bothand ηfare unrelated to the resonance condition.Therefore,wave-particle resonance always plays a stable role at different ηfandIn equation(18),it can be seen that the temperature-gradient-driven terms of fast ions are proportional to ηf,i.e.〈λ43〉θand〈λ44〉θare proportional to ηf.Thus,the increasing ηfwill increase fast-ion resonant stabilization.From equation (18),it is also found that the spacegradient-driven terms including density- and temperaturegradient-driven terms are also proportional to,namely,〈λ42〉θ,〈λ43〉θand〈λ44〉θare proportional to.Therefore,the stabilizing effect of fast ions strengthens asincreases.

    In summary,both the increasing ηfandcan strengthen the stabilization of fast ions on ITG mode.Therefore,there are two ways to improve the stabilizing effect of fast ions on ITG mode.First,keepand increase the ratio of the temperature and density gradients of fast ions,i.e.increase ηf.Second,keep ηfand increase the density gradient of fast ions,i.e.increase.

    3.4.Influence of resonance broadening of wave-particle interaction

    The influence of resonance broadening of wave-particle interaction is discussed in this subsection.As described above,the resonance condition is written as,i.e..However,the resonance is broadened due to the growth rate of ITG mode.

    The growth rate of ITG mode without fast ions is denoted as γITGhere.Assuming γITG=0,and the wave-particle resonance contribution without resonance broadening is then evaluated.The response of the resonant fast ions is calculated by replacing〈λ4〉θwith res〈λ4〉θ.Following Landau’s prescription and res〈λ4〉θis given by,

    Here,the same angle κ2=0.6 is also assumed.

    Figure 7.Imaginary part of fast ions from wave-fast-ion resonance as a function of Tf/Te.

    In figure 7,the magnitude of res〈λ4〉θis depicted as a function of Tf/Te.It is found that wave-particle resonance plays a stabilizing role on ITG mode since-Im (res〈λ4〉θ)is negative.As Tf/Teincreases,the magnitude of-Im (res〈λ4〉θ)decreases rapidly and the fast-ion resonance stabilization effect weakens.At high temperature,i.e.,Tf~40Te,the resonance effect is probably negligible,which implies that fast ions may be modeled by pure dilution [17].

    Comparing figure 5(a) with figure 7,it is found that the resonance broadening (from γITG) actually reduces the resonance effect since the magnitude of-Im(〈λ4〉θ)is smaller than-Im (res〈λ4〉θ).Moreover,in figure 5(a),at Tf/Te>30,-Im(〈λ4〉θ)regains slowly with increasing Tf/Teand the magnitude will not reduce to zero at high temperature(Tf~40Te).The strong resonance broadening effect is the main reason for the difference between our results and the simulation ones[22].The expression of〈λ4〉θin equation(18)can be used to explain this result.Fast ions can resonate with ITG mode when.However,the denominator of〈λ4〉θis not zero since there is an imaginary part,i.e.This imaginary part makes a difference to the resonance effect.In addition,the growth rate (γITG) makes a difference to the adiabatic response of fast ions.When γITG=0,the adiabatic part of fast ions no longer contributes an imaginary part and cannot offset the effect of the energy-gradient-driven term.

    In summary,the growth rate of ITG mode brings resonance broadening which reduces the effect of the resonance and makes a difference.As a result,the stabilizing effect of fast ions on ITG mode is underestimated in our work,since γITGin our background model is much larger than the actual growth rate of ITG mode.

    4.Conclusion

    The stabilizing effect of trapped fast ions on ITG mode has been studied,based on both analytical and numerical calculations.The relevant physics mechanisms have been explained.

    It is found that fast ions can strongly affect ITG mode through a wave-particle resonance mechanism when the precession frequency of trapped fast ions is close enough to the frequency of ITG mode.The fast-ion stabilizing effect depends on density,temperature,and the density and temperature gradients of fast ions.

    Fast-ion resonance destabilizes ITG mode at very low temperature,but is stabilizing as soon as the fast-ion temperature exceeds a certain value.By investigating the effect of the fast-ion temperature in more detail,it is found that the effects of the adiabatic part and energy-gradient-driven term of fast ions almost cancel each other.Thus,the effect of fast ions mainly results from the space-gradient-driven term.The space-gradient-driven term is derived from density and temperature gradients.The density-gradient term of fast ions plays a destabilizing role on ITG mode.Moreover,one part of the temperature-gradient-driven term (?Eηfterm) is destabilizing on ITG mode,but another part (-3ηf/2 term) plays a stable role on ITG.When the threshold conditionis satisfied,stabilization of ITG mode by fast ions is realized.Increasing the density of fast ions can enhance their effects.In addition,both increasing ηfandcan strengthen the fast-ion resonant stabilization effect.

    These findings contribute to the understanding of stabilization of ITG mode by trapped fast ions and suggest a means for improving ion energy confinement in fusion devices.However,in our analytic model,the growth rate of ITG mode without fast ions,i.e.γITGis large since the resonant effect of background main ions is ignored.This large γITGweakens the wave-fast-ion resonant effect in our work.The improvement of this issue will be shown in our future work.In addition,the electromagnetic effect is different to the resonance effect.It will be complex if the mode coupling effect is considered.In this work,the electromagnetic effect is not considered,which is left for future research.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11822505,11835016 and 11675257),the Youth Innovation Promotion Association CAS,the Users with Excellence Program of Hefei Science Center CAS (No.2019HSC-UE013),the Fundamental Research Funds for the Central Universities (No.WK3420000008) and the Collaborative Innovation Program of Hefei Science Center CAS(No.2019HSC-CIP014).

    天天一区二区日本电影三级 | 丰满的人妻完整版| 亚洲全国av大片| 又紧又爽又黄一区二区| 欧美绝顶高潮抽搐喷水| 久久青草综合色| 中文字幕最新亚洲高清| 欧美成人免费av一区二区三区| 亚洲成a人片在线一区二区| 香蕉国产在线看| 99热只有精品国产| 99国产极品粉嫩在线观看| 又黄又粗又硬又大视频| 香蕉久久夜色| 中文字幕av电影在线播放| 日韩大尺度精品在线看网址 | 欧美黑人精品巨大| 欧美av亚洲av综合av国产av| 国产欧美日韩一区二区三区在线| 国产高清视频在线播放一区| 夜夜看夜夜爽夜夜摸| 一二三四在线观看免费中文在| 免费在线观看视频国产中文字幕亚洲| 欧美日本视频| 成人欧美大片| 国产成人免费无遮挡视频| 怎么达到女性高潮| 黄色a级毛片大全视频| 欧美久久黑人一区二区| 一卡2卡三卡四卡精品乱码亚洲| x7x7x7水蜜桃| 国产熟女午夜一区二区三区| 久久性视频一级片| 欧美人与性动交α欧美精品济南到| 亚洲精品中文字幕一二三四区| 性色av乱码一区二区三区2| 日本 欧美在线| 一夜夜www| 日韩视频一区二区在线观看| 国产精品九九99| 亚洲久久久国产精品| 日韩欧美三级三区| 岛国视频午夜一区免费看| 精品国产一区二区三区四区第35| 乱人伦中国视频| 国产精品久久久久久亚洲av鲁大| 黑人巨大精品欧美一区二区mp4| 亚洲色图av天堂| 欧美精品啪啪一区二区三区| 色播在线永久视频| 淫妇啪啪啪对白视频| 制服人妻中文乱码| 精品午夜福利视频在线观看一区| 精品一区二区三区四区五区乱码| 操出白浆在线播放| 无人区码免费观看不卡| 99久久国产精品久久久| 制服诱惑二区| 亚洲色图 男人天堂 中文字幕| 在线观看免费日韩欧美大片| 十八禁人妻一区二区| 母亲3免费完整高清在线观看| 日韩av在线大香蕉| 久久久久久久午夜电影| 深夜精品福利| 国产蜜桃级精品一区二区三区| 欧美在线黄色| 国产又爽黄色视频| 丁香欧美五月| 久久中文字幕一级| 久久精品aⅴ一区二区三区四区| 中文字幕人成人乱码亚洲影| 一a级毛片在线观看| 搡老岳熟女国产| 亚洲精品一区av在线观看| 国产欧美日韩一区二区三区在线| 少妇粗大呻吟视频| 欧美+亚洲+日韩+国产| 身体一侧抽搐| 午夜视频精品福利| 悠悠久久av| 一区二区三区高清视频在线| 激情视频va一区二区三区| 久久精品91蜜桃| 老司机靠b影院| 国产欧美日韩一区二区三区在线| 亚洲 国产 在线| 日韩免费av在线播放| 嫩草影视91久久| 精品电影一区二区在线| 自线自在国产av| av中文乱码字幕在线| 亚洲少妇的诱惑av| 人人妻人人澡欧美一区二区 | 国产伦人伦偷精品视频| 淫秽高清视频在线观看| 黄色视频,在线免费观看| 国产成人精品在线电影| 大陆偷拍与自拍| 成在线人永久免费视频| 亚洲欧美一区二区三区黑人| 老鸭窝网址在线观看| 给我免费播放毛片高清在线观看| 别揉我奶头~嗯~啊~动态视频| 免费在线观看亚洲国产| 久久久国产成人精品二区| 国产精品永久免费网站| 国产在线精品亚洲第一网站| 欧美大码av| 国产精品一区二区在线不卡| 国产aⅴ精品一区二区三区波| 成人18禁高潮啪啪吃奶动态图| 黄色a级毛片大全视频| 精品久久久久久久人妻蜜臀av | 欧美一区二区精品小视频在线| 婷婷精品国产亚洲av在线| 在线视频色国产色| 国产不卡一卡二| 日韩欧美一区视频在线观看| 亚洲视频免费观看视频| 亚洲精品美女久久久久99蜜臀| 天堂√8在线中文| 亚洲一码二码三码区别大吗| 高清毛片免费观看视频网站| 一本久久中文字幕| 欧美日韩一级在线毛片| 亚洲免费av在线视频| 久久精品国产99精品国产亚洲性色 | 亚洲成av片中文字幕在线观看| 国产一区二区在线av高清观看| 黄色视频,在线免费观看| 久久九九热精品免费| 别揉我奶头~嗯~啊~动态视频| 日韩一卡2卡3卡4卡2021年| 久久久久国产一级毛片高清牌| 多毛熟女@视频| 午夜久久久久精精品| 夜夜躁狠狠躁天天躁| 中文字幕精品免费在线观看视频| 精品不卡国产一区二区三区| 999久久久国产精品视频| 亚洲美女黄片视频| 国产精品久久久人人做人人爽| 国产一区二区激情短视频| 国产亚洲精品久久久久5区| 亚洲人成电影观看| 可以在线观看的亚洲视频| 精品欧美一区二区三区在线| xxx96com| 亚洲午夜理论影院| 亚洲专区国产一区二区| 日本免费一区二区三区高清不卡 | 精品国产一区二区久久| 性欧美人与动物交配| 国产精品永久免费网站| 久久 成人 亚洲| 在线十欧美十亚洲十日本专区| 精品国产亚洲在线| 成人三级黄色视频| 岛国视频午夜一区免费看| 免费观看人在逋| 99riav亚洲国产免费| 久99久视频精品免费| 美女扒开内裤让男人捅视频| 精品国产乱子伦一区二区三区| 国产精品亚洲美女久久久| 激情视频va一区二区三区| 成人三级黄色视频| 岛国视频午夜一区免费看| or卡值多少钱| 丝袜人妻中文字幕| 精品国产一区二区久久| 一区在线观看完整版| 亚洲欧美精品综合一区二区三区| 亚洲成人国产一区在线观看| 男女之事视频高清在线观看| 首页视频小说图片口味搜索| av片东京热男人的天堂| 人妻久久中文字幕网| 91精品国产国语对白视频| 欧美精品啪啪一区二区三区| 午夜精品国产一区二区电影| 欧美激情 高清一区二区三区| 国产亚洲欧美在线一区二区| 一夜夜www| 国产亚洲av嫩草精品影院| 老司机午夜福利在线观看视频| 人妻丰满熟妇av一区二区三区| 欧美不卡视频在线免费观看 | 女人被狂操c到高潮| 久久热在线av| 亚洲国产精品合色在线| 亚洲成人久久性| 久久精品国产清高在天天线| 免费观看人在逋| 真人一进一出gif抽搐免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧美网| 成人特级黄色片久久久久久久| 97人妻精品一区二区三区麻豆 | 波多野结衣高清无吗| 宅男免费午夜| 日本a在线网址| 波多野结衣一区麻豆| www.精华液| 亚洲av片天天在线观看| 久久香蕉精品热| 一级a爱片免费观看的视频| 黄色视频,在线免费观看| 久久性视频一级片| 美女扒开内裤让男人捅视频| 中文字幕av电影在线播放| 精品国产亚洲在线| 国产av一区二区精品久久| 精品国产乱码久久久久久男人| 男人操女人黄网站| 国产高清videossex| 亚洲av五月六月丁香网| 黑人巨大精品欧美一区二区蜜桃| 亚洲视频免费观看视频| 亚洲av第一区精品v没综合| 国产一区二区在线av高清观看| 国产精品久久久久久人妻精品电影| 精品免费久久久久久久清纯| 操美女的视频在线观看| 国产精品电影一区二区三区| 亚洲精品国产区一区二| 日本精品一区二区三区蜜桃| 欧美成人一区二区免费高清观看 | 黄色a级毛片大全视频| av免费在线观看网站| 久久精品aⅴ一区二区三区四区| 久久精品国产亚洲av高清一级| 狂野欧美激情性xxxx| 亚洲色图综合在线观看| 亚洲色图av天堂| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 少妇裸体淫交视频免费看高清 | 一本综合久久免费| 国内精品久久久久精免费| 真人做人爱边吃奶动态| 色播在线永久视频| 国产欧美日韩一区二区三区在线| 女人高潮潮喷娇喘18禁视频| 亚洲第一av免费看| 大陆偷拍与自拍| 国产成人影院久久av| 在线观看免费午夜福利视频| 日韩欧美在线二视频| 成人精品一区二区免费| 国产精品乱码一区二三区的特点 | 女生性感内裤真人,穿戴方法视频| 嫩草影院精品99| 99久久国产精品久久久| 熟女少妇亚洲综合色aaa.| 麻豆一二三区av精品| 亚洲成人久久性| 国语自产精品视频在线第100页| 一进一出抽搐gif免费好疼| 天天躁狠狠躁夜夜躁狠狠躁| 一a级毛片在线观看| 欧美日韩乱码在线| 18美女黄网站色大片免费观看| 麻豆国产av国片精品| 成人国语在线视频| 韩国av一区二区三区四区| 亚洲五月色婷婷综合| 午夜视频精品福利| 老汉色av国产亚洲站长工具| 国产av精品麻豆| 成年人黄色毛片网站| 久久久久久久久免费视频了| 国产精品野战在线观看| 亚洲va日本ⅴa欧美va伊人久久| 91在线观看av| 精品午夜福利视频在线观看一区| 免费在线观看视频国产中文字幕亚洲| 不卡一级毛片| 成人三级黄色视频| 男女下面插进去视频免费观看| 精品无人区乱码1区二区| 夜夜躁狠狠躁天天躁| 午夜福利高清视频| av视频免费观看在线观看| 亚洲欧美一区二区三区黑人| 久久香蕉激情| 搡老熟女国产l中国老女人| 悠悠久久av| 国产精品,欧美在线| 一夜夜www| 91大片在线观看| 老司机靠b影院| 午夜福利免费观看在线| 中文字幕久久专区| 乱人伦中国视频| 51午夜福利影视在线观看| 99久久综合精品五月天人人| 侵犯人妻中文字幕一二三四区| 动漫黄色视频在线观看| 精品乱码久久久久久99久播| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 黑人巨大精品欧美一区二区mp4| 狠狠狠狠99中文字幕| 多毛熟女@视频| 成人av一区二区三区在线看| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| www.自偷自拍.com| 老鸭窝网址在线观看| 国产亚洲欧美98| 亚洲 国产 在线| 国内毛片毛片毛片毛片毛片| 性少妇av在线| 最好的美女福利视频网| 免费看十八禁软件| 国产视频一区二区在线看| 亚洲av熟女| 最新美女视频免费是黄的| 久久精品aⅴ一区二区三区四区| 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 成人免费观看视频高清| www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 色精品久久人妻99蜜桃| 在线观看66精品国产| 亚洲熟妇熟女久久| 97超级碰碰碰精品色视频在线观看| 免费在线观看影片大全网站| 国内毛片毛片毛片毛片毛片| 一本大道久久a久久精品| 久久精品国产清高在天天线| 国产aⅴ精品一区二区三区波| 日韩免费av在线播放| 久9热在线精品视频| 欧美日本视频| 日韩视频一区二区在线观看| 少妇的丰满在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜精品久久久久久毛片777| 无限看片的www在线观看| 欧美黑人精品巨大| 精品日产1卡2卡| 老汉色∧v一级毛片| 午夜福利视频1000在线观看 | 亚洲av熟女| 两个人看的免费小视频| 国产高清激情床上av| 午夜精品久久久久久毛片777| 91九色精品人成在线观看| 久久香蕉国产精品| 国产精品久久电影中文字幕| 亚洲美女黄片视频| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 在线免费观看的www视频| 最新美女视频免费是黄的| 最好的美女福利视频网| 久久久久九九精品影院| 在线观看66精品国产| 亚洲中文av在线| 国内久久婷婷六月综合欲色啪| 午夜视频精品福利| av福利片在线| 国产视频一区二区在线看| 国产私拍福利视频在线观看| 国产亚洲欧美精品永久| 自线自在国产av| 日韩视频一区二区在线观看| 搡老熟女国产l中国老女人| 丰满的人妻完整版| 亚洲五月婷婷丁香| 丝袜在线中文字幕| cao死你这个sao货| 此物有八面人人有两片| 亚洲免费av在线视频| 亚洲人成网站在线播放欧美日韩| 51午夜福利影视在线观看| 天天一区二区日本电影三级 | 日日夜夜操网爽| 午夜福利欧美成人| 色尼玛亚洲综合影院| 国产三级在线视频| 午夜福利成人在线免费观看| 少妇被粗大的猛进出69影院| 国产精品 欧美亚洲| 婷婷精品国产亚洲av在线| 操美女的视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产麻豆69| 国产视频一区二区在线看| 黄片大片在线免费观看| 老熟妇乱子伦视频在线观看| 一级,二级,三级黄色视频| 中文字幕高清在线视频| 日本免费a在线| 国产精品一区二区在线不卡| 十八禁网站免费在线| 可以在线观看毛片的网站| 亚洲av日韩精品久久久久久密| 日本在线视频免费播放| 18禁国产床啪视频网站| 精品久久蜜臀av无| 国产蜜桃级精品一区二区三区| 波多野结衣一区麻豆| 男人舔女人的私密视频| 亚洲成av人片免费观看| 天天躁夜夜躁狠狠躁躁| 亚洲aⅴ乱码一区二区在线播放 | 国产一卡二卡三卡精品| 国产成人av教育| 国产野战对白在线观看| 最近最新免费中文字幕在线| 一本大道久久a久久精品| 欧美黑人精品巨大| 欧美色视频一区免费| 少妇粗大呻吟视频| 国产亚洲精品久久久久5区| 亚洲一区中文字幕在线| 国产精品精品国产色婷婷| 超碰成人久久| 日韩视频一区二区在线观看| www日本在线高清视频| 国产一区二区激情短视频| 黑人操中国人逼视频| 国产精品免费一区二区三区在线| 人妻丰满熟妇av一区二区三区| 婷婷六月久久综合丁香| 九色国产91popny在线| 热re99久久国产66热| 亚洲狠狠婷婷综合久久图片| 超碰成人久久| 久久天躁狠狠躁夜夜2o2o| 亚洲自偷自拍图片 自拍| 人成视频在线观看免费观看| 精品国产亚洲在线| 一边摸一边抽搐一进一小说| 亚洲精品国产区一区二| 日本vs欧美在线观看视频| 国产精品亚洲一级av第二区| 久99久视频精品免费| 涩涩av久久男人的天堂| 国产成人av教育| 巨乳人妻的诱惑在线观看| 69精品国产乱码久久久| 麻豆成人av在线观看| 露出奶头的视频| 国产精品电影一区二区三区| 午夜免费观看网址| 欧美最黄视频在线播放免费| 国产蜜桃级精品一区二区三区| 如日韩欧美国产精品一区二区三区| 18禁观看日本| 欧美人与性动交α欧美精品济南到| 精品福利观看| 午夜免费激情av| 亚洲一区中文字幕在线| 亚洲精品国产精品久久久不卡| 国产亚洲精品一区二区www| 亚洲av成人av| 老司机午夜福利在线观看视频| 美女午夜性视频免费| 一进一出抽搐动态| 亚洲国产精品999在线| 黄色丝袜av网址大全| АⅤ资源中文在线天堂| 国产伦一二天堂av在线观看| 日韩大码丰满熟妇| 国产99久久九九免费精品| 欧美在线黄色| 自拍欧美九色日韩亚洲蝌蚪91| 欧美+亚洲+日韩+国产| 亚洲专区字幕在线| 曰老女人黄片| 成人亚洲精品一区在线观看| av天堂久久9| 久久国产精品影院| 成人国产一区最新在线观看| 日本 av在线| 如日韩欧美国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 国产精品久久久久久亚洲av鲁大| 国产三级黄色录像| 欧美一级a爱片免费观看看 | 午夜福利高清视频| 如日韩欧美国产精品一区二区三区| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线| a在线观看视频网站| 国产亚洲精品av在线| av有码第一页| 精品午夜福利视频在线观看一区| 日韩国内少妇激情av| 黄色视频,在线免费观看| 国产片内射在线| 18禁国产床啪视频网站| 欧美色视频一区免费| 麻豆成人av在线观看| 黄色片一级片一级黄色片| 免费在线观看视频国产中文字幕亚洲| 亚洲人成电影观看| 欧美日韩瑟瑟在线播放| 一个人观看的视频www高清免费观看 | 桃色一区二区三区在线观看| 国产av在哪里看| 亚洲国产中文字幕在线视频| 欧美在线黄色| 欧美最黄视频在线播放免费| 黄色视频,在线免费观看| 国产精品亚洲美女久久久| 99riav亚洲国产免费| 黑人巨大精品欧美一区二区mp4| 欧美不卡视频在线免费观看 | 国产成人系列免费观看| 久久影院123| 成人三级黄色视频| 中出人妻视频一区二区| 中文字幕人妻丝袜一区二区| 高潮久久久久久久久久久不卡| 制服丝袜大香蕉在线| 9色porny在线观看| 日本免费a在线| 夜夜躁狠狠躁天天躁| 在线天堂中文资源库| 国产免费男女视频| 亚洲欧美一区二区三区黑人| 色哟哟哟哟哟哟| 午夜老司机福利片| 亚洲精品在线观看二区| 国产av一区在线观看免费| 国产欧美日韩一区二区三| 99国产精品99久久久久| 成人免费观看视频高清| 久热爱精品视频在线9| 亚洲人成77777在线视频| av免费在线观看网站| 香蕉丝袜av| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片午夜丰满| 日韩精品青青久久久久久| www.熟女人妻精品国产| 国产一卡二卡三卡精品| 午夜福利影视在线免费观看| 视频在线观看一区二区三区| 妹子高潮喷水视频| 亚洲成国产人片在线观看| 免费少妇av软件| 欧美一级a爱片免费观看看 | 亚洲av二区三区四区| 国产欧美日韩一区二区精品| 亚洲中文字幕一区二区三区有码在线看| 成人二区视频| 色噜噜av男人的天堂激情| 精品国内亚洲2022精品成人| 波多野结衣高清作品| 欧美精品啪啪一区二区三区| 一级毛片久久久久久久久女| 国内精品美女久久久久久| 成人鲁丝片一二三区免费| 最新中文字幕久久久久| 成人一区二区视频在线观看| 久久久久久大精品| 在线天堂最新版资源| 欧美在线一区亚洲| 国产爱豆传媒在线观看| 欧美国产日韩亚洲一区| 免费不卡的大黄色大毛片视频在线观看 | 啪啪无遮挡十八禁网站| 一级黄色大片毛片| 干丝袜人妻中文字幕| 少妇被粗大猛烈的视频| 亚洲中文日韩欧美视频| 久久精品影院6| 日韩国内少妇激情av| 国产人妻一区二区三区在| 久久热精品热| 一本精品99久久精品77| 波多野结衣高清作品| 熟妇人妻久久中文字幕3abv| 真人一进一出gif抽搐免费| 大型黄色视频在线免费观看| 久久精品国产鲁丝片午夜精品 | 天天一区二区日本电影三级| 熟女人妻精品中文字幕| 成人综合一区亚洲| 99九九线精品视频在线观看视频| 日韩欧美在线乱码| 亚洲内射少妇av| 在线国产一区二区在线| 国产一区二区亚洲精品在线观看| 欧美潮喷喷水| 久久精品国产亚洲av香蕉五月| 国产 一区 欧美 日韩| 国产免费av片在线观看野外av| 级片在线观看| 亚洲自拍偷在线| 亚洲av电影不卡..在线观看| av在线观看视频网站免费| 男人狂女人下面高潮的视频| 男人舔奶头视频| 久久久国产成人精品二区| 神马国产精品三级电影在线观看| 性欧美人与动物交配| 亚洲成人久久性| 我要搜黄色片| 看免费成人av毛片| 亚洲性夜色夜夜综合| 白带黄色成豆腐渣| 免费大片18禁| 在线观看66精品国产| 狠狠狠狠99中文字幕| 成人美女网站在线观看视频| a级毛片免费高清观看在线播放|