• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear hybrid simulations of low-frequency fishbone instability driven by energetic passing particles in tokamak plasmas

    2022-07-13 00:37:12JixingYANG楊吉星GuoyongFU傅國(guó)勇WeiSHEN申偉andMinyouYE葉民友
    Plasma Science and Technology 2022年6期

    Jixing YANG (楊吉星),Guoyong FU (傅國(guó)勇),Wei SHEN (申偉)and Minyou YE (葉民友),?

    1 School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    2 Institute for Fusion Theory and Simulation and Department of Physics,Zhejiang University,Hangzhou 310027,People’s Republic of China

    3 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract A linear simulation study of energetic passing particle-driven low-frequency fishbone instability in tokamak plasmas has been carried out using the global kinetic-MHD(magnetohydrodynamics) hybrid code M3D-K.This work is focused on the interaction of energetic passing beam ions and n=1 mode with a monotonic safety factor q profile and q0<1.Specifically,the stability and mode frequency as well as mode structure of the n=1 mode are calculated for scans of parameter values of beam ion beta,beam ion injection energy,beam ion orbit width,beam ion beta profile,as well as background plasma beta.The excited modes are identified as a low-frequency fishbone with the corresponding resonance of ωφ+ωθ=ω,whereωφ is the beam ion toroidal transit frequency andωθ is the beam ion poloidal transit frequency.The simulated mode frequency is approximately proportional to the beam ion injection energy and beam ion orbit width.The mode structure is similar to that of internal kink mode.These simulation results are similar to the analytic theory of Yu et al.

    Keywords: fishbone,energetic particle,hybrid simulations,tokamak

    1.Introduction

    Energetic particle physics is a key issue for burning plasmas of magnetic fusion reactors such as ITER.In a burning plasma,fusion product alpha particles can resonantly destabilize shear Alfven waves that in turn can lead to redistribution and losses of alpha particles themselves.As a consequence,these alpha-driven instabilities may degrade alpha particle heating and even damage the reactor’s first wall.Therefore,it is important to study energetic particledriven instabilities in tokamak plasmas.

    In this work,we focus on the energetic particle-driven fishbone,particularly the fishbone driven by co-passing energetic beam ions in tokamak plasmas.It is well known that energetic trapped particles can excite the (n,m)=(1,1)fishbone instabilities in a tokamak plasma with a monotonic safety factor q profile and central q value less than unity[1-3].The fishbone can be intrinsically an energetic particle mode (EPM) with mode frequency comparable to precession drift frequencyωd,hof energetic trapped particles [2].The fishbone can be destabilized when the energetic particle density exceeds a threshold.On the other hand,there is also another type of fishbone whose mode frequency is comparable to the diamagnetic drift frequency *ω,iof thermal ions.This fishbone instability,the so-called *ω,ibranch,can also be resonantly destabilized by energetic trapped particles [3].Further work has shown that energetic passing particles can also excite fishbone instabilities [4-6].Betti et al found that theω*,ifishbone can be destabilized by passing energetic particles when the effect of finite orbit width of the energetic particles is taken into account [4].The corresponding wave particle resonance isω=k‖v‖withk‖~being the parallel wave number of the (1,1) mode.More recently,Yu showed that an EPM branch of fishbone can be destabilized by energetic passing particles with mode frequency determined by the wave particle resonanceω=k‖v‖when*ω,iis neglected [5].Finally,Wang showed analytically that energetic passing particles can excite another EPM-type fishbone at a much higher mode frequency [6] satisfying the wave particle resonance ofω=ωφwhereis the toroidal transit frequency of energetic passing particles.

    In this work,energetic co-passing particle-driven n=1 internal modes in tokamak plasmas are investigated numerically using the global kinetic-MHD(magnetohydrodynamics)hybrid simulation code M3D-K [7].The energetic particles are introduced by neutral beam injection(NBI)heating.The q profile monotonically increases with radius with central valueq0<1.A systematic study of key parameter dependence has been carried out.Parameter values of beam ion beta,injection energy and beam ion orbit width are scanned.Our results show that all beam ion-driven modes are low-frequency fishbone modes driven by the wave particle resonanceωφ+ωθ=ω.The simulation results of mode structure,mode frequency and stability are similar to Yu’s theory [5].

    This article is organized as follows.Section 2 gives a brief introduction to the M3D-K code and parameters and profiles used in our simulation studies.In section 3,simulation results are presented.Section 4 provides discussion on comparison between simulation results and analytic theory.Finally,conclusions are reached in section 5.

    2.Simulation model and parameter setup

    In this work,we use the global kinetic-MHD hybrid code M3D-K [7],in which a particle/MHD hybrid model is used to describe the interaction of energetic particles and MHD waves.In this model,the thermal plasma is treated as a single fluid while the energetic particles are described by the driftkinetic equation.The drift-kinetic equation is solved by the particle-in-cell method [7].The M3D-K code has been successfully applied to study energetic particle-driven instabilities,such as fishbone and energetic particle effects on MHD modes [7-15].

    In our simulations,parameters and profiles similar to those of HL-2A tokamak plasmas are used.The main parameters include major radiusR0=1.6 m,minor radius=a0.4 m,magnetic field at magnetic axisB=1.34 T,0 central electron densityne0=1.3 ×1019m-3,Alfven speedvA==5.56 ×106ms-1,Alfven timeτA==2.88 ×10-7s and Alfven frequencyωA==3.7 ×106s-1.Both thermal ion species and energetic ion species are deuterium ion.The thermal plasma and energetic particle beta profile are respectivelyβthermal=βthermal0(1-)2andβhot=βhot0expwith= 0.11 where=(ψ-ψmin) (ψmax-ψmin)is the normalized poloidal magnetic flux function varying from= 0 at the magnetic axis to= 1 at the edge of the plasma.Figure 1 shows these two beta profiles.The q profile is given byq=0.85 +2r2,where r is the normalized minor radius,as shown in figure 2.

    Figure 1.Normalized thermal plasma beta (a) and energetic particle beta (b) as a function of the normalized poloidal flux.

    Figure 2.Safety factor as a function of the minor radius.

    For the energetic beam ions,a slowing-down distribution in velocity is used along with a peaked distribution in pitch angle for deeply co-passing particles.The beam ion distribution F is given by,

    wherecnis an overall normalization coefficient andn0is the central density of particles.,F2(v)andF3(Λ,v)are the distribution in space〈ψ〉,velocityvand pitch angle parameter Λ,respectively.Here,Λ =withμbeing the magnetic moment and E being the energy.is given by,

    where〈ψ〉 is the orbit-averaged value of the normalized poloidal flux defined bywithPφ=eψ+mv‖Rbeing the toroidal canonical angular momentum.Δψ= 0.11 is the width of radial distribution and is the same as in the energetic ion beta profile.F2(v)is given by,

    wherev0is the injection speed of NBI,vc=is the critical velocity,Δv=0.1v0represents the width of the distribution near the injection speed,and erf is the error function.F3(Λ,v)is given by,

    where Λ0= 0is the central pitch angle parameter and ΔΛ = 0.2 is the width of pitch angle distribution,which is fixed.

    For simplicity,the energetic particle pressure is assumed to be isotropic in the equilibrium calculation with the profile given by the energetic particle beta profile,as prescribed above.The equilibria are calculated using the VMEC code[16]with the prescribed total pressure profile and safety factor q profile together with the prescribed plasma boundary shape(circular in this study).The results of the equilibrium calculations are used as initial conditions for the M3D-K simulation.It should be noted that the q profile can be prescribed exactly in the VMEC calculations independent of pressure profile.

    3.Simulation results

    In this section,we present the simulation results of the n=1 mode driven by energetic co-passing beam ions.Key beam ion parameters of beta,injection energy E0and orbit width are varied in our simulation study in order to investigate the dependence of the fishbone instability on key parameters.The simulated linear mode frequencies and growth rates are compared with the analytic theory of Yu et al [5].The analytic results of mode frequencies and growth rates are obtained from the dispersion relation of Yu non-perturbatively without assumption of growth rate being much smaller than mode frequency.

    3.1.Simulation results of the baseline case at q0=0.85,E0=90 keV

    Here,we present the baseline simulation case with parametersq0=0.85,E0=90 keV,βthermal0= 2.13%,βhot0= 2.13%,andΔΛ = 0.2.Figures 3(a) and (b) show the evolution of kinetic energy associated with fluid velocity,and the evolution of mode phase at r/a=0.3,respectively.The results indicate that the mode grows linearly at a growth rate of γ=0.0184ωA.The mode frequency is quite low and is estimated to be ω=0.0195ωAbased on the phase evolution.

    Figure 3(c) shows the mode structure of the plasma velocity’s stream function U (The black circle is the radial position of the q=1 surface).As a comparison,figure 3(d)shows the mode structure of the MHD internal kink mode obtained for the corresponding case without energetic particles.We observe that the mode structure of the baseline case with beam ions is similar to that of the (1,1) internal kink mode,although there is a small but finite m=2 component outside the q=1 surface.

    Figure 3.(a)Evolution of kinetic energy Ek,(b)evolution of mode phase,(c)the mode structure of the plasma velocity’s stream function U for the baseline case and (d) the corresponding mode structure of the internal kink mode at zero energetic particle beta.

    Figure 4.(a)Contour of the normalized perturbed energetic particle distribution in the phase space,(b)locations of simulation markers with the largest values of particle weight (red circles).Black line represents the p=1 resonance line in the phase space.

    Figure 5.Comparison between simulation results (red line) and analytic results (black line) of (a) growth rate and (b) mode frequency as a function of beam ion beta.

    Figure 6.Comparison between simulation results (red line) and analytic results (black line) of (a) growth rate and (b) mode frequency as a function of beam ion injection energyE 0.

    Now,we consider the main wave particle resonance responsible for driving the mode.In general,the wave particle resonant condition is given by [17],

    where n is the toroidal mode number (n=1 in this study),p is an integer denoting the poloidal harmonic,ωis the mode frequency,ωθ≡is the poloidal transit frequency of beam ions andωφ≡is the toroidal transit frequency.

    In order to identify the main wave particle resonance,we plot both the contour of the normalized perturbed distribution(figure 4(a)) and the locations of simulation markers with the largest values of particle weightw=(figure 4(b))in the phase space of(Pφ,E)whereδfis the perturbed distribution function of energetic beam ions.We observe that both the contour of the perturbed distribution and the locations of simulation markers with largest values of particle weight are aligned with the p=1 resonant line.This is expected since resonant particles usually have the largest values of particle weight due to secular changes of perturbed distribution function at the resonance.These results indicate that the unstable mode is driven by the p=1 resonance in agreement with the analytic theory of Yu et al [5].It should be pointed out that in this study the beam ions are co-passing particles with negativeωφand positiveωθin the M3D-K convention.Furthermore,the simulated mode frequencyωis negative,indicating that the mode rotates toroidally in the direction of the plasma current.Therefore,it can be shown that our p=1 resonance ofωφ+ωθ=ωis equivalent to the p=?1 resonance ofωφ-ωθ=ωof Yuet al[5]where the values ofωφ,ωθandωare all positive.

    Table 1.Convergence in number of simulation markers.

    The above results and most other simulation results in this work are obtained with the following numerical resolutions:time step sizedt=0.01τA,100 radial grid points,400 poloidal grid points at the plasma edge and about one million simulation markers.A systematic convergence study shows that this set of resolutions is sufficient for obtaining accurate results.In particular,table 1 gives values of the growth rate and mode frequency for several simulation markers.The results indicate that about one million simulation markers are adequate for obtaining accurate results.

    3.2.Dependence on beam ion beta

    Figure 5 shows the simulation results(red lines)of(a)growth rate and(b)mode frequency as a function of central beam ion beta at the fixed value of thermal ion betaβthermal0= 0.135%.All other parameters are the same as in the baseline case.We observe that the mode becomes unstable when beam ion beta exceeds the threshold and the growth rate increases with beam ion betaβhot0.The mode frequency also increases gradually with increasingβhot0.This indicates that the unstable mode is driven by beam ions.The finite mode frequency is due to the kinetic effect of wave particle resonant interaction and beam ion diamagnetic effect.For comparison,the analytic results(black lines)from the fishbone dispersion relation of Yu et al[5] are also plotted.The analytic results are obtained by solving the dispersion relation of Yu non-perturbatively without assuming smallness of growth rate.The comparison indicates that the simulated frequency is close to the analytic results in this case.However,the simulated growth rates are much larger than the analytic values.

    3.3.Dependence on beam ion injection energy

    Here,simulations are carried out to study the dependence of fishbone on beam ion injection energy ranging from 30-90 keV.Other parameters and profiles are fixed and the same as those of the baseline case.In particular,the beam ion beta value is fixed in this scan.This means that the beam ion density physically decreases as the beam ion injection energy increases.Figure 6 shows the comparison between the simulation results(red lines)and analytic results(black lines)of the linear growth rate and frequency.We observe that both the mode frequency and growth rate increase as the beam energy increases.The simulation results agree with analytic theory trend.In particular,the simulated mode frequency increases almost linearly with beam energy,which is consistent with the analytic prediction,although the values are different.It should be noted that,in this case,the thermal beta value ofβthermal0= 2.13%is much larger than that of figure 5.Our simulation results indicate that typically the simulated mode frequencies become closer to the analytic results as the thermal beta becomes smaller.At beam energy of 60 keV,the corresponding mode structure of the instability is shown in figure 7(a) while the contour of the normalized perturbed distribution in phase space is plotted in figure 7(b).We observe that the simulated mode structure is similar to that of the baseline simulation case with dominating(1,1)mode.We also see that the contour of the perturbed distribution is roughly aligned with the p=1 resonance line.This indicates that the main resonance is again given by the p=1 resonance ofω=ωφ+ωθin agreement with the analytic theory.

    Figure 7.(a)Linear mode structure at E0=60 keV and(b)locations of resonant particles(red circles)and the p=1 resonance line(black)in the phase space.

    Figure 8.Comparison between simulation results (red line) and analytic results (black line) of (a) growth rate and (b) mode frequency as a function of beam ion orbit width parameterρ h.

    Figure 9.Comparison between simulation results (red line) and analytic results (black line) of (a) growth rate and (b) mode frequency as a function of beam ion radial profile width Δ.

    3.4.Dependence on beam ion orbit width

    According to the theory of Betti [4] and Yu [5],the lowfrequency fishbone dispersion relation is sensitively dependent on the beam ion orbit width.Therefore,here we fix the ratio of=0.45and scan the beam ion orbit width parameterwhereωhis the cyclotron frequency.This scan is done by varying beam ion mass and beam ion injection energy proportionally at the fixed beam ion injection speed.Figure 8 shows the comparison between the simulation results and analytic theory of the mode growth rate and frequency.The black line represents the theoretical values and the red line the simulated values.We observe that,as above,the simulated frequency increases almost linearly withρhin qualitative agreement with the analytic theory,while the growth rates are much larger than those of analytic theory.

    Figure 10.Comparison between simulation results(red line)and analytic results(black line)of(a)growth rate and(b)mode frequency as a function of thermal plasma beta.

    Figure 11.Comparison between simulation results(red line)and analytic results(black line)of(a)growth rate and(b)mode frequency as a function of beam ion orbit width parameterρ h.

    3.5.Dependence on beam ion radial profile

    Figure 9 shows the dependence of (a) simulated growth rate(red line) and (b) mode frequency (red line) on the beam ion radial profile width Δ.For comparison,the analytic results(black lines) are also plotted.The results show that the simulated mode frequency is not sensitive to the profile width,which is similar to that of analytic theory.

    3.6.Dependence on thermal plasma beta

    Finally,we study the dependence on thermal plasma beta at the fixed value of beam ion betaβhot0= 2.13%and the beam energyE0=60 keV.Figure 10 shows the simulation results(red circles)and analytic results (black triangles)of(a)mode growth rates and (b) mode frequency.We observe that the simulation results are consistent with analytic theory trend.First,the growth rates increase linearly with thermal beta.Second,the mode frequencies are not sensitive to thermal beta.

    3.7.Results with smaller ΔΛ and larger aspect ratio

    In order to explore the influence of the inverse aspect ratio and the width of pitch angle distribution on the fishbone,here we consider a larger aspect ratio of=10.Figure 11 gives the comparison between simulation results and analytical results as a function of beam ion orbit width at=0.53,=10,βhot0= 0.8%andβthermal0=0.008%.From the results shown in figure 11,the simulated frequencies agree quite well with analytical theory,while the growth rates are much larger than the analytical values.It should be pointed out that the good quantitative agreement between the frequencies is mainly due to the small value of thermal plasma beta rather than the larger value of=10,as will be discussed in section 4.

    We also consider the effects of the pitch angle distribution.Figure 12 shows the simulated growth rates and frequencies as a function of beam ion beta for two values ofΔΛ:ΔΛ = 0.1 (blue line) andΔΛ = 0.2 (red line).We observe that the results are nearly independent ofΔΛ.

    Figure 12.Comparison between simulation results with fixed ΔΛ = 0.2 (red line)and simulation results with fixed ΔΛ = 0.1(blue line)of(a) growth rate and (b) mode frequency as a function of beam ion beta.

    4.Discussion

    In the above sections,simulation results are presented for energetic co-passing beam ion-driven n=1 mode in tokamak plasmas with a monotonic q profile andq0<1.The linear simulation results show that a low-frequency EPM-type fishbone is driven unstable by energetic co-passing particles via the wave particle resonance ofωφ+ωθ=ω.Our numerical results are similar to the analytic theory of Yu et al[5]with respect to mode structure and mode frequency as well as the wave particle resonance responsible for the low-frequency fishbone.Specifically,the simulated mode structure is similar to that of the(1,1)internal kink mode.The simulated unstable mode is driven by energetic beam ions via the p=1 wave particle resonance ofωφ+ωθ=ω.The calculated mode frequency increases almost linearly with beam ion energy and beam ion orbit width.To our knowledge,this work is the first numerical demonstration of energetic co-passing particle-driven low-frequency fishbone with mode features similar to those of the analytic theory of Yu et al.

    It should be pointed out there are quantitative differences between the simulation results and Yu’s theory.Specifically,the simulated mode frequencies are typically lower than those of analytic theory at finite values of thermal plasma beta,although the agreement in mode frequency is quite good at low thermal plasma beta values.The simulated growth rates are much larger than those of analytic theory.The simulated mode has a finite extension beyond the q=1 radius.These discrepancies may come from the simple approximations used in deriving the analytic dispersion relation of the low-frequency fishbone.In particular,the analytic theory assumes that the mode is a pure (1,1) harmonic whereas our simulation results show a finite m=2 component beyond the q=1 surface.Second,the analytic theory assumes large aspect ratio tokamak equilibria with low plasma beta whereas our simulations use numerical equilibria with finite beta and finite aspect ratio.We have carried out simulations to investigate the effect of finite aspect ratio.Our simulation results show that a larger value of aspect ratio=10 does reduce the frequency discrepancy somewhat,but it is not enough to explain the frequency discrepancy at finite values of thermal ion beta.For example,we have carried out simulations for parameters ofβthermal0= 0.6%,βhot0= 0.8%,=10,=0.15and=0.53.The simulated mode frequency is= 0.037,which is still lower than the analytic value of 0.062.

    Finally,we note that for the parameters and profiles considered in this work,only the low-frequency fishbone is found.The energetic passing particle-driven high-frequency fishbone of Wang [6] is not found in our simulations.Future work will investigate the reasons for the absence of the high-frequency fishbone and results will be reported elsewhere.Nonlinear dynamics of the low-frequency fishbone will also be investigated in future work.

    5.Conclusion

    A linear simulation study of the energetic passing particle-driven fishbone instability in tokamak plasmas has been carried out using the global kinetic-MHD hybrid code M3D-K.Key beam ion parameters of beta,injection energy and orbit width are varied to investigate the dependence of mode properties on them.The results show that a low-frequency fishbone is excited when the energetic particle beta exceeds a critical value.The mode structure is similar to that of the(1,1)internal kink mode.The main resonance is found to beωφ+ωθ=ω.The mode frequency is approximately proportional to the beam ion injection energy and beam ion orbit width.These simulation results are similar to the recent analytic theory of passing energetic particle-driven low-frequency fishbone of Yu et al [5].

    Acknowledgments

    We thank Dr Feng Wang for useful discussions and for help with the use of the M3D-K code.This work is supported by the National MCF Energy R&D Program of China (Nos.2019YFE03030004 and 2019YFE03050001) and National Natural Science Foundation of China (Nos.11975232 and 11975270).Numerical simulations were carried out using the CFETR Integration Design Platform (CIDP) with the support of the Supercomputing Center of the University of Science and Technology of China.Part of the numerical simulations were carried out using the Qilin supercomputer #2 of the Institute for Fusion Theory and Simulation,Zhejiang University.

    ORCID iDs

    亚洲第一青青草原| 精品卡一卡二卡四卡免费| 亚洲欧美日韩另类电影网站| 波多野结衣av一区二区av| 亚洲中文av在线| 18在线观看网站| 久久久久国产一级毛片高清牌| 高潮久久久久久久久久久不卡| 亚洲欧美日韩另类电影网站| 久久中文看片网| 久久久久久久久久久久大奶| 久久久国产一区二区| 国产成+人综合+亚洲专区| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成77777在线视频| 久久性视频一级片| 国产av国产精品国产| 妹子高潮喷水视频| 亚洲成av片中文字幕在线观看| 免费看十八禁软件| 精品一区二区三区av网在线观看 | av欧美777| 国产亚洲精品久久久久5区| 极品人妻少妇av视频| 亚洲精品av麻豆狂野| 另类精品久久| 国产在线视频一区二区| 三级毛片av免费| 窝窝影院91人妻| 国产精品久久久久久精品古装| 免费少妇av软件| 精品国产乱码久久久久久男人| 国产极品粉嫩免费观看在线| 午夜日韩欧美国产| 色在线成人网| 69av精品久久久久久 | 亚洲,欧美精品.| 亚洲精品自拍成人| 黄色怎么调成土黄色| 久久久精品区二区三区| 亚洲熟妇熟女久久| 麻豆国产av国片精品| 黄色a级毛片大全视频| 国产亚洲一区二区精品| 国产欧美日韩精品亚洲av| 中文欧美无线码| 亚洲av欧美aⅴ国产| 国产97色在线日韩免费| 欧美激情久久久久久爽电影 | 最近最新中文字幕大全电影3 | 欧美日韩黄片免| 国产伦理片在线播放av一区| 99精品久久久久人妻精品| 久久久久久久久免费视频了| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| 在线观看免费午夜福利视频| 女人爽到高潮嗷嗷叫在线视频| 99国产极品粉嫩在线观看| 国产在线视频一区二区| 日本撒尿小便嘘嘘汇集6| 精品少妇内射三级| 日本五十路高清| 老司机影院毛片| aaaaa片日本免费| 午夜日韩欧美国产| 国产淫语在线视频| 免费人妻精品一区二区三区视频| 啦啦啦中文免费视频观看日本| 中文字幕制服av| 国产午夜精品久久久久久| 中文字幕人妻熟女乱码| 午夜福利影视在线免费观看| 精品一品国产午夜福利视频| 亚洲国产欧美一区二区综合| 9色porny在线观看| 午夜视频精品福利| 久久人妻福利社区极品人妻图片| 免费av中文字幕在线| 国产日韩欧美视频二区| 19禁男女啪啪无遮挡网站| 欧美日韩一级在线毛片| 咕卡用的链子| 亚洲欧美色中文字幕在线| 男女之事视频高清在线观看| 久久ye,这里只有精品| 亚洲成人免费电影在线观看| 亚洲熟妇熟女久久| 国产单亲对白刺激| 麻豆成人av在线观看| 欧美变态另类bdsm刘玥| 99精品久久久久人妻精品| 成人精品一区二区免费| 91成人精品电影| 中文字幕人妻丝袜制服| 美女扒开内裤让男人捅视频| 一区二区三区激情视频| 国产欧美亚洲国产| 日韩大片免费观看网站| 侵犯人妻中文字幕一二三四区| 久久天堂一区二区三区四区| av福利片在线| 高清欧美精品videossex| 日韩视频在线欧美| 欧美亚洲 丝袜 人妻 在线| 正在播放国产对白刺激| 亚洲全国av大片| 国产成人精品在线电影| 欧美成人免费av一区二区三区 | 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 别揉我奶头~嗯~啊~动态视频| 国产成人免费无遮挡视频| 91字幕亚洲| 久久国产精品大桥未久av| 国产精品亚洲av一区麻豆| 女性被躁到高潮视频| 成年动漫av网址| 1024视频免费在线观看| 久久热在线av| 女人被躁到高潮嗷嗷叫费观| 五月开心婷婷网| e午夜精品久久久久久久| 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 久久免费观看电影| 亚洲国产av新网站| 高潮久久久久久久久久久不卡| 成人特级黄色片久久久久久久 | 日韩有码中文字幕| 99九九在线精品视频| 在线观看一区二区三区激情| 纵有疾风起免费观看全集完整版| 在线播放国产精品三级| 激情视频va一区二区三区| 国产午夜精品久久久久久| 亚洲成a人片在线一区二区| 岛国在线观看网站| 蜜桃在线观看..| 欧美日韩一级在线毛片| 国产亚洲精品一区二区www | 久久免费观看电影| 黄色a级毛片大全视频| 老熟女久久久| 亚洲精品中文字幕一二三四区 | 色94色欧美一区二区| 欧美黄色淫秽网站| 9热在线视频观看99| 一本一本久久a久久精品综合妖精| 18禁黄网站禁片午夜丰满| 夜夜骑夜夜射夜夜干| 日韩欧美一区视频在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩高清在线视频 | 午夜成年电影在线免费观看| 午夜两性在线视频| 19禁男女啪啪无遮挡网站| 一本—道久久a久久精品蜜桃钙片| 老熟妇乱子伦视频在线观看| 亚洲av美国av| 国产国语露脸激情在线看| 一本大道久久a久久精品| 国产xxxxx性猛交| 欧美日韩成人在线一区二区| 国产1区2区3区精品| 日韩成人在线观看一区二区三区| 亚洲国产欧美一区二区综合| 50天的宝宝边吃奶边哭怎么回事| av天堂在线播放| 性色av乱码一区二区三区2| 伦理电影免费视频| 成人av一区二区三区在线看| 丝袜美腿诱惑在线| 亚洲欧洲日产国产| 美女视频免费永久观看网站| 黑丝袜美女国产一区| 美女扒开内裤让男人捅视频| 国产精品久久久久久精品古装| 国产精品av久久久久免费| 久久久精品94久久精品| 在线观看舔阴道视频| 国产xxxxx性猛交| 久久性视频一级片| 亚洲欧美一区二区三区久久| 亚洲国产毛片av蜜桃av| 18在线观看网站| 精品少妇内射三级| 国产高清激情床上av| 后天国语完整版免费观看| 女人爽到高潮嗷嗷叫在线视频| 他把我摸到了高潮在线观看 | 日韩视频在线欧美| 久久精品成人免费网站| 国产av国产精品国产| 日本欧美视频一区| 欧美精品一区二区免费开放| 一区二区三区乱码不卡18| 在线永久观看黄色视频| av福利片在线| 一边摸一边抽搐一进一出视频| 天堂动漫精品| av又黄又爽大尺度在线免费看| 天堂俺去俺来也www色官网| 黑丝袜美女国产一区| 在线播放国产精品三级| 日韩制服丝袜自拍偷拍| 亚洲精华国产精华精| 国产av国产精品国产| 国产淫语在线视频| 欧美日韩福利视频一区二区| 成年人午夜在线观看视频| 日本黄色日本黄色录像| 欧美一级毛片孕妇| 超碰97精品在线观看| 中文字幕人妻丝袜制服| 久久久久久久久免费视频了| 久久久国产欧美日韩av| 亚洲人成电影观看| 99久久99久久久精品蜜桃| 国产免费av片在线观看野外av| 免费在线观看黄色视频的| 亚洲午夜精品一区,二区,三区| 美女高潮喷水抽搐中文字幕| 国产成人免费观看mmmm| 久久久精品区二区三区| 天堂中文最新版在线下载| 高潮久久久久久久久久久不卡| 国产日韩欧美在线精品| 99精品久久久久人妻精品| 手机成人av网站| 亚洲中文av在线| av一本久久久久| 日本五十路高清| 大香蕉久久成人网| 国产成+人综合+亚洲专区| 人人妻人人爽人人添夜夜欢视频| 成人国语在线视频| 免费在线观看影片大全网站| 啪啪无遮挡十八禁网站| 美女福利国产在线| 午夜福利乱码中文字幕| 国产国语露脸激情在线看| 国产精品免费视频内射| 久久中文字幕人妻熟女| 9色porny在线观看| 巨乳人妻的诱惑在线观看| 99精品久久久久人妻精品| 水蜜桃什么品种好| 久久中文字幕人妻熟女| 色视频在线一区二区三区| 国产xxxxx性猛交| 视频区图区小说| 变态另类成人亚洲欧美熟女 | 亚洲五月色婷婷综合| 亚洲性夜色夜夜综合| 久久国产精品人妻蜜桃| 丁香欧美五月| 别揉我奶头~嗯~啊~动态视频| av免费在线观看网站| 99国产综合亚洲精品| 黄片播放在线免费| 日本欧美视频一区| 99久久国产精品久久久| 国产亚洲一区二区精品| 交换朋友夫妻互换小说| 成人精品一区二区免费| 精品乱码久久久久久99久播| 色综合欧美亚洲国产小说| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一小说 | 精品一区二区三卡| 一区二区av电影网| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区黑人| 少妇猛男粗大的猛烈进出视频| kizo精华| 人妻久久中文字幕网| 久久精品国产a三级三级三级| 大香蕉久久成人网| 成年版毛片免费区| 国产男女超爽视频在线观看| 91老司机精品| 精品视频人人做人人爽| 亚洲国产av新网站| 欧美亚洲日本最大视频资源| 久久亚洲真实| 亚洲专区字幕在线| 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图| 欧美在线黄色| 两人在一起打扑克的视频| 丝袜在线中文字幕| 视频在线观看一区二区三区| 欧美性长视频在线观看| 国产精品一区二区在线观看99| 精品一区二区三区av网在线观看 | 亚洲成国产人片在线观看| 老熟妇仑乱视频hdxx| 超色免费av| 亚洲一区中文字幕在线| 久久中文字幕人妻熟女| 国产1区2区3区精品| 日本精品一区二区三区蜜桃| 黄色丝袜av网址大全| 99re在线观看精品视频| 两人在一起打扑克的视频| 国产欧美日韩一区二区三区在线| 国产精品成人在线| 在线观看66精品国产| 国产福利在线免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 国产三级黄色录像| 91老司机精品| 亚洲精品一二三| 午夜久久久在线观看| 波多野结衣av一区二区av| 久久久精品国产亚洲av高清涩受| 妹子高潮喷水视频| 日韩大码丰满熟妇| 国产精品98久久久久久宅男小说| 国产免费福利视频在线观看| 精品少妇内射三级| 成年人免费黄色播放视频| 两个人看的免费小视频| 另类亚洲欧美激情| 国产亚洲欧美精品永久| 少妇精品久久久久久久| 亚洲国产av影院在线观看| 超碰97精品在线观看| a在线观看视频网站| 国产精品免费视频内射| 精品福利永久在线观看| 色婷婷久久久亚洲欧美| 免费观看人在逋| 亚洲av成人一区二区三| 女性生殖器流出的白浆| 窝窝影院91人妻| 一二三四社区在线视频社区8| 亚洲欧洲精品一区二区精品久久久| 美女午夜性视频免费| 久久久久视频综合| 新久久久久国产一级毛片| 亚洲国产av新网站| 伊人久久大香线蕉亚洲五| 午夜精品久久久久久毛片777| 亚洲欧美激情在线| 久久久久久久国产电影| 男人操女人黄网站| 国产精品亚洲一级av第二区| 视频在线观看一区二区三区| 国产精品免费视频内射| 国产精品 国内视频| 成年人午夜在线观看视频| 51午夜福利影视在线观看| av电影中文网址| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 十八禁网站免费在线| 人人澡人人妻人| 考比视频在线观看| 法律面前人人平等表现在哪些方面| 国产真人三级小视频在线观看| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 国产精品亚洲av一区麻豆| 丁香六月天网| 在线av久久热| 在线观看人妻少妇| 国产成人免费观看mmmm| 国产日韩欧美亚洲二区| 免费不卡黄色视频| 91成人精品电影| 欧美黄色淫秽网站| 国产精品麻豆人妻色哟哟久久| 国产区一区二久久| 一个人免费看片子| 精品欧美一区二区三区在线| 亚洲第一av免费看| 久久久国产一区二区| 久久精品熟女亚洲av麻豆精品| 大码成人一级视频| 国产日韩欧美在线精品| 一级片'在线观看视频| 美女午夜性视频免费| 2018国产大陆天天弄谢| 日韩欧美一区视频在线观看| 男女高潮啪啪啪动态图| kizo精华| 天堂8中文在线网| 高清视频免费观看一区二区| 怎么达到女性高潮| 亚洲精品国产精品久久久不卡| 久久 成人 亚洲| 性高湖久久久久久久久免费观看| 男男h啪啪无遮挡| 久久精品人人爽人人爽视色| 亚洲成人手机| 老司机影院毛片| 美国免费a级毛片| 性色av乱码一区二区三区2| 老司机亚洲免费影院| 国产福利在线免费观看视频| 97人妻天天添夜夜摸| 一级,二级,三级黄色视频| 国产日韩欧美视频二区| 制服诱惑二区| 亚洲国产欧美日韩在线播放| 免费在线观看黄色视频的| 嫩草影视91久久| aaaaa片日本免费| 无遮挡黄片免费观看| 婷婷丁香在线五月| avwww免费| 久久久久精品国产欧美久久久| 久久毛片免费看一区二区三区| 最近最新中文字幕大全电影3 | 香蕉丝袜av| www日本在线高清视频| 纵有疾风起免费观看全集完整版| 一级a爱视频在线免费观看| 嫁个100分男人电影在线观看| 不卡一级毛片| 视频区图区小说| 国产野战对白在线观看| 91麻豆av在线| 久久精品国产亚洲av香蕉五月 | 亚洲中文字幕日韩| 久久午夜亚洲精品久久| 久久久久久久国产电影| 桃花免费在线播放| 国产xxxxx性猛交| 成人18禁在线播放| 黄片小视频在线播放| 啦啦啦中文免费视频观看日本| 国产成人精品在线电影| 不卡av一区二区三区| 电影成人av| 久久久精品区二区三区| 女警被强在线播放| 一个人免费看片子| √禁漫天堂资源中文www| 日韩欧美一区视频在线观看| 欧美久久黑人一区二区| 国产欧美亚洲国产| 香蕉久久夜色| 人成视频在线观看免费观看| 建设人人有责人人尽责人人享有的| 亚洲一卡2卡3卡4卡5卡精品中文| 老熟女久久久| 成人三级做爰电影| a级片在线免费高清观看视频| xxxhd国产人妻xxx| 老司机影院毛片| 女性被躁到高潮视频| 亚洲av国产av综合av卡| 12—13女人毛片做爰片一| 性少妇av在线| avwww免费| 国产精品一区二区免费欧美| 日韩视频在线欧美| av一本久久久久| 捣出白浆h1v1| 天天躁日日躁夜夜躁夜夜| 亚洲av日韩在线播放| 国产亚洲av高清不卡| 美女主播在线视频| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线不卡| 国产精品.久久久| 亚洲专区字幕在线| 日韩大码丰满熟妇| 成人国产一区最新在线观看| 大码成人一级视频| 亚洲av美国av| 亚洲av成人一区二区三| 国产精品 国内视频| 国产精品久久久久久精品古装| 亚洲人成伊人成综合网2020| av在线播放免费不卡| 两个人看的免费小视频| 国产精品自产拍在线观看55亚洲 | 国产淫语在线视频| 看免费av毛片| 国产亚洲精品久久久久5区| 一级黄色大片毛片| 午夜老司机福利片| 国产淫语在线视频| 一级毛片女人18水好多| 少妇裸体淫交视频免费看高清 | 黄片播放在线免费| 丝袜美腿诱惑在线| 日韩一区二区三区影片| 国产成人av教育| 日韩视频在线欧美| 看免费av毛片| 亚洲七黄色美女视频| 亚洲欧美激情在线| 日本vs欧美在线观看视频| 久久亚洲精品不卡| 免费一级毛片在线播放高清视频 | 妹子高潮喷水视频| 成人国语在线视频| 亚洲av美国av| 香蕉久久夜色| 欧美亚洲 丝袜 人妻 在线| 久久精品国产a三级三级三级| 美女扒开内裤让男人捅视频| 啦啦啦 在线观看视频| 国产成+人综合+亚洲专区| 又大又爽又粗| 亚洲伊人色综图| 法律面前人人平等表现在哪些方面| 老汉色av国产亚洲站长工具| av不卡在线播放| 中文欧美无线码| 亚洲成人免费av在线播放| av天堂久久9| 国产男女超爽视频在线观看| 麻豆成人av在线观看| 久久这里只有精品19| 久久久精品免费免费高清| 久久国产亚洲av麻豆专区| 纵有疾风起免费观看全集完整版| 成人av一区二区三区在线看| av网站在线播放免费| 欧美日本中文国产一区发布| 老司机深夜福利视频在线观看| 在线观看免费日韩欧美大片| 国产亚洲精品第一综合不卡| 国产aⅴ精品一区二区三区波| 成人亚洲精品一区在线观看| 在线观看66精品国产| 国产精品秋霞免费鲁丝片| 一区福利在线观看| 成人精品一区二区免费| 午夜福利在线观看吧| 自线自在国产av| 一级毛片电影观看| 视频区欧美日本亚洲| av免费在线观看网站| 午夜老司机福利片| 一进一出好大好爽视频| 91九色精品人成在线观看| 十八禁人妻一区二区| 亚洲美女黄片视频| 国产成人av激情在线播放| 一夜夜www| 欧美亚洲日本最大视频资源| 成人三级做爰电影| 美女高潮到喷水免费观看| 欧美精品亚洲一区二区| 99精国产麻豆久久婷婷| 黄网站色视频无遮挡免费观看| 最新在线观看一区二区三区| 亚洲av美国av| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久小说| 欧美黑人精品巨大| 精品国产国语对白av| 免费人妻精品一区二区三区视频| 丝袜喷水一区| 亚洲精品久久午夜乱码| 欧美精品人与动牲交sv欧美| 国产精品影院久久| 9色porny在线观看| 最近最新中文字幕大全免费视频| 日韩免费av在线播放| 国产成人啪精品午夜网站| 国产精品一区二区在线观看99| 欧美成人午夜精品| 日韩大片免费观看网站| 捣出白浆h1v1| 亚洲欧美精品综合一区二区三区| 亚洲伊人久久精品综合| a级片在线免费高清观看视频| 无限看片的www在线观看| 如日韩欧美国产精品一区二区三区| 国产xxxxx性猛交| 国产免费视频播放在线视频| 最新的欧美精品一区二区| videos熟女内射| 91老司机精品| 欧美精品一区二区大全| 午夜免费成人在线视频| 精品一区二区三区av网在线观看 | 国精品久久久久久国模美| av超薄肉色丝袜交足视频| 极品少妇高潮喷水抽搐| 欧美大码av| 51午夜福利影视在线观看| 亚洲全国av大片| 91大片在线观看| 黄频高清免费视频| 久久久久久久国产电影| 中文字幕最新亚洲高清| 18禁美女被吸乳视频| 18禁观看日本| 久久人妻av系列| 男女免费视频国产| 日韩免费av在线播放| 搡老乐熟女国产| 久久人妻熟女aⅴ| 好男人电影高清在线观看| 国产亚洲午夜精品一区二区久久| 亚洲人成77777在线视频| 超碰97精品在线观看| √禁漫天堂资源中文www| 久久人妻福利社区极品人妻图片| 12—13女人毛片做爰片一| 国产高清videossex| 狠狠婷婷综合久久久久久88av| 久久久久久人人人人人| av天堂久久9| 99国产精品一区二区蜜桃av | 俄罗斯特黄特色一大片|