• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)

    2022-07-13 00:36:36DongkuanLIU劉東寬WeixingDING丁衛(wèi)星WenzheMAO毛文哲QiaofengZHANG張喬楓LonglongSANG桑龍龍QuanmingLU陸全明andJinlinXIE謝錦林
    Plasma Science and Technology 2022年6期
    關(guān)鍵詞:衛(wèi)星

    Dongkuan LIU(劉東寬),Weixing DING(丁衛(wèi)星),,?,Wenzhe MAO(毛文哲),Qiaofeng ZHANG(張喬楓),Longlong SANG(桑龍龍),Quanming LU(陸全明) and Jinlin XIE (謝錦林),

    1 CAS Key Lab of Geoscience Environment,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    2 Department of Plasma Physics and Nuclear Engineering,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    Abstract Motivated by the need of the electron density measurement for the Keda Reconnection eXperiment (KRX) facility which is under development,an interferometer system has been designed and tested in bench.The 320 GHz solid-state microwave source with 1 mm wavelength is used to fulfill the high phase difference measurement in such low temperature plasma device.The results of the bench test show that the phase difference is accurately measured.In contrast to tens of degrees of phase shift expected to be measured on the KRX,the system noise (~1°) is low enough for the KRX diagnostics.In order to optimize the system for better performance,we utilize the Terasense sub-THz imaging system to adjust alignment.The interferometer system has also been calibrated via changing of the optical path length controlled by the piezo inertial motor.Simultaneously,high density polyethylene thin film is introduced successfully to change a tiny phase difference and test the sensitivity of the interferometer system.

    Keywords: magnetic reconnection,diagnostics,interferometer

    1.Introduction

    Magnetic reconnection,known as an important physical process,can abruptly convert the stored magnetic energy to particle energy,and is associated with amounts of explosive phenomena in interplanetary space,solar atmosphere,the earth’s magnetosphere,and laboratory experiments [1-10].Understanding the magnetic reconnection mechanism and structure remains a key scientific challenge.Compared with in situ observation and theoretical numerical simulation,the ground experiment in the laboratory has a large amount of advantages in studying magnetic reconnection: (I) controlled conditions,(II) numerous-point measurements,(III) reproducibility,and (IV) authenticity.

    The Keda Reconnection eXperiment device (KRX) has been built for investigating the fundamental reconnection physics.The KRX is a φ3 ×10m cylindrical vacuum chamber facility,as shown in figure 1.The plasma is produced by hot cathode source in the top of the vacuum chamber [11].The electrons emitted from the hot cathode ionize the inert gas(argon or helium) and the uniform plasma can be produced.The axial magnetic field is produced by 10 coils with a maximum value of magnetic fieldB=100 Gauss.The current flows through a pair of drive plates to create the opposed magnetic field,resulting in anti-parallel reconnection.The reconnection magnetic field can be controlled in 0-500 Gauss.The experiment size is 2.5×1 m2,the plasma density(1016-1019m-3) and the electron/ion inertial length(c/ωpe(ωpi))can be controlled via discharge by different inert gases.The overall experimental size is 5-10 times ion inertial lengths which satisfies the electron scale and ion scale reconnection investigation.The facility is housed in the east of Hefei and the first discharge has been completed in 2021.The KRX is expected to start to run formally in 2022.Meanwhile,the plasma diagnostics is also on the way.

    The main diagnostics methods in reconnection experiments are based on the probe measurement (magnetic probes,Rogowski coils,Langmuir probes and speed probes,etc),like the experiments in MRX [4,12],LAPD [13,14] and TREX [15].Nevertheless,the probe diagnostic is difficult to measure the absolute density.In addition,the thin current sheet measurement remains a challenge in laboratory plasma due to disturbance of matter probes.The polarimeter-interferometer diagnostic,known as no perturbation electron/current density and magnetic field measurement means,has been used for plenty of fusion tokamak facilities [16-19],and it also contributes to the feedback control of plasma density.Motivated by the demand of advanced electron density and current measurement for the low temperature plasma,it is necessary for us to develop polarimeter-interferometer diagnostics technology for the KRX facility.

    In this paper,section 2 gives the schematic of the polarimeter-interferometer system for the KRX,section 3 presents the bench test of the interferometer system,the overall summary and the future plan are given in section 4.

    2.The layout of conception design of the KRX interferometer system

    As shown in figure 2(a),the KRX has 6 pairs of rectangular windows and dozens of circular windows in the cross section,and each window is allowed for the probes,microwave and optical diagnostics.The size of the rectangular window is 100×25 cm2and the radius of the circular window is 12.5 cm.The conception design of the polarimeter-interferometer measurement for the KRX has been finished.As shown in figures 2(b) and (c),the design applies the heterodyne Mach-Zehnder type polarimetry-interferometer detection method [20].The probing beam passes through the plasma via two long flanged windows horizontally,the longflanged windows are sealed with high density polyethylene(HDPE) so that the microwave can pass through.The diameter of the beam will be smaller than the width of the rectangular window.The reference beam bypasses the vacuum chamber along the gap of the base,the two beams are combined into the mixer to form heterodyne measurement.The line-integrated density can be measured by the phase difference from the interferometer,which is shown

    whereneis the electron density,λis the detection wave wavelength,andlis the path length of plasma.The corresponding magnetic field and current density measurement from the Faraday effect can be expressed as

    wherefθis the measured Faraday rotation angle,B||is magnetic field parallel to the direction of detection wave.The polarimeter-interferometer system will be installed on the fourth rectangular window in 2022,and this optical path can be extended into multiple channels from the middle of the two current plates.Therefore,we can get the electron density and current density profile with the evolution of the reconnection and acquire further understanding of the reconnection physics.

    The polarimeter-interferometer diagnostic requires fast time-resolution for magnetic reconnection experiments.The difficulty in the diagnostics is the phase difference measurement in such low density plasma.For this purpose,the proper wavelength (~1 mm) is selected to ensure there is large enough phase difference to measure [21].The interferometer phase difference evaluated by the working gases is from~π/6 to2πwhich is easily measurable,and thus the density can be accurately determined.Previously,the 650-700 GHz microwaves have been widely and successfully applied in plenty of fusion devices and provide the accurate measurement [16,18,22-24].Nevertheless,for the 320 GHz solidstate sources,the bench test is indispensable to verify measurement feasibility on the KRX.

    3.Bench test of the interferometer system

    The purpose of the bench test is to optimize and verify the feasibility of the system.The noise of the system largely depends on the optical design and alignment the two beams.Due to this motivation,the sub-THz camera,movable mirror and the HDPE films are introduced to optimize the design and examine the measurement vability.

    3.1.Optical path design of the interferometer system

    As shown in figure 3(a),the bench test applies the heterodyne interferometer means [25].Figure 3(b) presents the layout of the optical components on the two 1×0.8×0.8 m3stages with broadband damping for vibration isolation.Two frequency adjustable 320 GHz (316-324 GHz) solid-state Virginia Diodes Inc(VDI)microwave sources S1(ω1)and S2(ω2)are used as the signal sources.The output frequency of the sources can be set with a resolution better than 20 Hz with 15 mW output power.The intermediate frequency (IF) is set to be ~1 MHz(we set the S1(1ω)frequency to 320 GHz,and the S2(ω2) to 320 GHz+IF).The VDI Schottky planardiode mixers with high response (~1300 V W-1) are introduced as the detectors[26].We use the 70 LPI(lines per inch)wire mesh as the beam splitter which is suitable for the budget of the 320 GHz microwave (~50% reflection/transmission).The LABVIEW controlled NI (National Instruments) card with 0-60 MS s-1sampling is utilized as our data acquisition.

    Figure 1.The machine drawing of the KRX device.

    Figure 2.(a) The machine structure of the KRX device.The main diagnostics windows are 6 pairs of rectangular windows and dozens of circular ports in the middle of the vacuum chamber.(b) The conception design of the polarimeter-interferometer diagnostics system for KRX.(c) The optical path design of the interferometer system.The heterodyne detection method is utilized in this design,the signal beam passes through the fourth rectangular window,the reference beam bypasses the vacuum chamber,and the two beams are mixed into detectors on the other side.The system will be upgraded to multi-channels eventually.

    Figure 3.(a) The schematic bench test of the interferometer system and (b) the layout of the optical components on two optical tables.Probing beam is shown as the red,and the reference beam is in blue.

    Figure 4.(a)-(c) The relative power distribution of the probe beam along the propagation direction measured by the Terasense sub-THz camera at z=0.5,1,and 1.5 m,respectively,where z is the distance between the source antenna horn to the camera.(d)-(f)The cuts of the relative power (blue line) of corresponding (a)-(c) along the line y=0 mm,and the red dotted lines represent the Gaussian fitting of the beam relative power.

    Figure 5.Schematic propagation of the Gaussian beam of the microwave source and the layout of the Terasense camera.

    Figure 6.The relative power distributions of microwave beam measured by the sub-THz camera in front of the mixer with the camera placed at the same distance as the focal length of lens(15 cm).(a)-(c)The relative power distributions of microwave sources S1,S2,and the mixing of S1 and S2,respectively.(d)-(f)The cuts of the relative power of corresponding(a)-(c)along the line y=-1.65 mm(blue line),the red dotted lines represent the Gaussian fitting of the beam relative power.

    Figure 7.Band-pass filter half bandwidth versus rms phase difference noise for the cases with IF=1.5,2 and 3 MHz,respectively.The sampling is 10 MS s-1.

    Figure 8.The sampling versus system noise with 0.5 MHz bandpass of 1 MHz IF.

    Figure 9.Schematic optical design of the interferometer calibration.A mirror(green)which is perpendicular to the optical path is utilized to adjust optical path difference in the interferometer system.The mirror is mounted on the movable platform which is driven by the piezoelectric inertial actuator.The yellow arrow represents the move direction.

    All of the optical components are mounted on the optical tables.The optical height is 15.6 cm,and the corresponding meshes and the mirrors are also designed as the same height.The entire optical path is ~2 m for the signal (reference)chord.The lens (focal length=20 cm) in front of the microwave source is applied to focusing beams.An additional electromagnetic wave absorbing material (BPUFA-50CV) is added around the mirrors and the meshes to minimize the stray light.

    3.2.Alignment of the interferometer system

    The beam coming from the antenna horn of the sources propagates in Gaussian profile.The radius of the Gaussian beam is approximately 4.8 cm simulated by ZEMAX (an optical design software) after passing through the focal lens.Despite the two beams are firstly aligned by He-Ne lasers,it is not clear how collinear they are.In other words,it is difficult to determine the profile and the location of the propagation because the placement of the sources and the optical components (meshes,mirrors,etc) still cause deviations.It is necessary to measure the power distribution of the Gaussian beam and evaluate the alignment of the interferometer system.

    The Terasense sub-THz camera system (model T15/32/32) is used to image the beams.The camera is sensitive to polarization of incoming power with bandwidth approximately 50-700 GHz.The relative power distributions in figure 4 prove that the probing beam has a Gaussian distribution.The lines fitting show that the waist of the probing beam (~4 cm) is approximately consistent with the result from the simulation of ZEMAX.The error is most likely that we assume the Gaussian beam propagates from the antenna horn,practically,the starting position of the probing beam in the antenna is unknown.

    If the collinearity is not well satisfied in front of the mixer,the two beams will introduce the system errors.In order to check the alignment of the two beams,as shown in figure 5,the camera is placed in front of the mixer and a focal lens (focal length=15 cm) is housed near the camera to increase the intensity of imaging.Figure 6 presents the imaging of the relative power distributions of S1 beam,S2 beam and the mixing of the S1 and S2 in front of the mixer respectively.It can be concluded that the two beams are well overlapped.This indicates that the alignment of the two beams is successfully achieved which is important to optimize the interferometer system.

    3.3.Noise and the error analysis

    Since frequency difference of the two sources commanded by the computer corresponds to the frequency of IF,the IF signal is clean enough and fully controlled.As shown in[21],the IF in 1 MHz with 10 MS s-1sampling is stable and the rootmean-square (rms) phase difference noise level is low.The stability is the key issue to minimize the phase noise.Nevertheless,the phase noise of the IF largely depends on the stray light,optical deviation and the mixer sensitivity,etc.In addition,the frequency of the IF is also important for the noise evaluation.Figure 7 gives the digital band-pass filter half bandwidth versus rms phase difference noise for the cases with different IFs.The noise increases with a larger IF,but the noise is restricted in the level of ~1° with different IFs.This suggests that the minimum line-averaged electron density isne≈1015m-3.

    Since the phase difference of the interferometer measurement assessment on the KRX is tens of degrees [21],the interferometer system resolution is sufficient to investigate the accurate density measurement.However,the small noise is essential demand for the investigation of the plasma fluctuation and transport [17].The sampling versus noise in the figure 8 implies that we can also reduce the noise by increasing the sampling because the noise level is effectively improved with the increase of the sampling from 5 MS s-1to 20 MS s-1.However,the noise reduces slowly with higher sampling.Given the above results,the sampling should be reasonably considered.Furthermore,other factors that affect the noise should also be investigated which is significant for the further optimization of the noise.

    3.4.Interferometer calibration

    In order to calibrate the interferometer system on bench,a piezoelectric inertial actuator with typical step size of 20 nm has been utilized to change optical path length (phase change).As shown in figure 9,a movable mirror (green) is introduced in the optical design to change the optical path.The piezoelectric inertial actuator drives the movable stage to move the mirror,and the move direction follows the direction of the beam as the yellow arrow points to in figure 9.Since the mirror is located far away from the microwave source,the output power reflected back to the source is small and will not damage the microwave source.

    The piezo inertial motor controller is used to control the movement of the mirror for continuous jogging.Due to the reflection of the beam,theoretically,the phase difference of the two IFs caused by the jogging of the mirror can be presented as

    whereΔLis the jogging distance,λis the wavelength.Figure 10 gives the calibration results of the interferometer system.After ensemble average,the measured results are pretty well close to the theoretical values which are based on the ideal wave phase theory.The errors in the interferometer system are most likely caused by the installation and optical components deviations.

    Figure 10.The interferometer calibration.The move distance of the mirror and the measured phase difference,with the red line being the theoretical value and the dots being the measured values.

    Because the KRX device is being optimized,the HDPE thin film is used to simulate as the uniform plasma.The key issue of measuring plasma is refractive index measurement.The HDPE thin film is placed in signal beam path as an additional optical offset,as shown the grey ‘plasma’ area in figure 3(a).The phase difference of the reference chord and the signal chord caused by the optical path difference of thin film can be expressed as

    whereNis the refractive index of the thin film,dis the thin film width,andλis the beam wavelength.Here,we assume the air refractive index is 1,and the refractive index of the thin film can be expressed as

    Benefiting from optimization of the system,the refractive index measured is 1.60 (the theoretical value is 1.52),which suggests that the measurement error of our interferometer system is negligible.

    4.Conclusion

    In conclusion,the 320 GHz(1 mm wavelength)probing beam is selected to ensure the sensitivity of the interferometer measurement for KRX facility.The bench tests of solid-state microwave sources show that the IF is stable,and the phase noise (<1°) of the system is low enough for electron density diagnostics on the KRX.Besides,to optimize the system,the Terasense sub-THz imaging camera has been introduced to check the propagation of the Gaussian beam and has successfully improved the optical alignment.The interferometer system has been well calibrated by changing the optical path length with the help of precision movement of piezo motor with minimum 20 nm step.The HDPE thin film experiment has also verified that the system is capable of the MHD and turbulence fluctuation measurement.Meanwhile,benefiting from the interferometer system,the development of polarimeter diagnostics system based on Faraday effect for the magnetic field and current measurement will be achieved in the near future.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (No.11975231).

    猜你喜歡
    衛(wèi)星
    把衛(wèi)星甩上天
    miniSAR遙感衛(wèi)星
    如何確定衛(wèi)星的位置?
    軍事文摘(2021年16期)2021-11-05 08:48:58
    滿(mǎn)天都是小衛(wèi)星
    靜止衛(wèi)星派
    科學(xué)家(2019年3期)2019-08-18 09:47:43
    衛(wèi)星掠影
    咣當(dāng)! 天上掉衛(wèi)星
    Puma" suede shoes with a focus on the Product variables
    競(jìng)射導(dǎo)航衛(wèi)星為哪般
    太空探索(2015年6期)2015-07-12 12:48:29
    我國(guó)成功發(fā)射遙感衛(wèi)星二十五號(hào)
    河北遙感(2014年4期)2014-07-10 13:54:59
    夜夜爽天天搞| 午夜免费男女啪啪视频观看| 欧美激情久久久久久爽电影| 国产成人午夜福利电影在线观看| 亚洲欧美精品自产自拍| 男的添女的下面高潮视频| 色综合亚洲欧美另类图片| 少妇裸体淫交视频免费看高清| 久99久视频精品免费| 日本一本二区三区精品| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 卡戴珊不雅视频在线播放| 韩国av在线不卡| 中文字幕久久专区| 成人毛片60女人毛片免费| 日韩制服骚丝袜av| 久久午夜福利片| 成熟少妇高潮喷水视频| 久久久久久久久久久免费av| 少妇丰满av| 搡老妇女老女人老熟妇| 亚洲av电影不卡..在线观看| 久久久久久久久久久免费av| 久久精品国产亚洲av香蕉五月| 日本爱情动作片www.在线观看| 久久精品国产亚洲网站| 国产免费男女视频| 久久国产乱子免费精品| 嫩草影院新地址| 美女高潮的动态| 欧美变态另类bdsm刘玥| 只有这里有精品99| 欧美一区二区国产精品久久精品| 日韩一区二区三区影片| 人妻制服诱惑在线中文字幕| 国产高清激情床上av| 69av精品久久久久久| 国产精品久久久久久久久免| 亚洲色图av天堂| 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看| 久久精品国产99精品国产亚洲性色| 免费人成在线观看视频色| 亚洲中文字幕一区二区三区有码在线看| 亚洲一级一片aⅴ在线观看| 欧美成人a在线观看| 精品久久久久久成人av| 亚洲人成网站在线播放欧美日韩| АⅤ资源中文在线天堂| 秋霞在线观看毛片| 欧美高清成人免费视频www| 大型黄色视频在线免费观看| 国产精品精品国产色婷婷| 在线免费观看不下载黄p国产| 成人一区二区视频在线观看| av天堂在线播放| 国产视频首页在线观看| 欧美成人精品欧美一级黄| 内射极品少妇av片p| 村上凉子中文字幕在线| 久久韩国三级中文字幕| 真实男女啪啪啪动态图| 悠悠久久av| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩高清专用| 久久久欧美国产精品| 亚洲av中文av极速乱| 九九热线精品视视频播放| 欧美xxxx性猛交bbbb| 国产在线男女| 国产 一区精品| 嫩草影院新地址| 午夜福利成人在线免费观看| 亚洲人成网站在线播放欧美日韩| 国产精品日韩av在线免费观看| 午夜爱爱视频在线播放| 国产精品99久久久久久久久| 99久久精品热视频| 久久久久网色| 欧美日本视频| avwww免费| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜 | 国产精品永久免费网站| 国产极品精品免费视频能看的| 日韩三级伦理在线观看| 美女 人体艺术 gogo| 午夜免费男女啪啪视频观看| 欧美bdsm另类| 亚洲欧美日韩高清专用| 麻豆成人av视频| 日产精品乱码卡一卡2卡三| 久久久精品欧美日韩精品| 乱码一卡2卡4卡精品| 亚洲经典国产精华液单| 亚洲国产欧美在线一区| 成人av在线播放网站| 美女被艹到高潮喷水动态| 天天躁夜夜躁狠狠久久av| 久久久久久大精品| 亚洲av不卡在线观看| 久久久久久久久久久免费av| 少妇的逼好多水| 久久精品夜色国产| 国产精品一区二区三区四区免费观看| 午夜a级毛片| 好男人视频免费观看在线| 中文字幕人妻熟人妻熟丝袜美| 久久精品91蜜桃| 国产精品一区二区三区四区久久| 国产69精品久久久久777片| 国产成人freesex在线| 91aial.com中文字幕在线观看| 国产黄片视频在线免费观看| 久久精品国产亚洲av天美| av.在线天堂| 天堂√8在线中文| 国产美女午夜福利| 亚洲最大成人中文| 国产高清视频在线观看网站| 欧美丝袜亚洲另类| 成年版毛片免费区| 深夜精品福利| 嘟嘟电影网在线观看| 国语自产精品视频在线第100页| www.色视频.com| 亚洲四区av| 国产av麻豆久久久久久久| 午夜福利在线在线| 午夜福利在线观看吧| 十八禁国产超污无遮挡网站| av在线观看视频网站免费| 日日干狠狠操夜夜爽| 高清毛片免费看| 欧美日韩综合久久久久久| 久久精品久久久久久噜噜老黄 | 久久九九热精品免费| 久久久国产成人精品二区| 国产伦在线观看视频一区| 少妇丰满av| 禁无遮挡网站| 亚洲欧美日韩东京热| 国产成人91sexporn| 国产精品嫩草影院av在线观看| 中文字幕av在线有码专区| 国产 一区精品| 成人无遮挡网站| 国产av麻豆久久久久久久| 国产真实伦视频高清在线观看| 99久久无色码亚洲精品果冻| 精品久久久久久久人妻蜜臀av| 村上凉子中文字幕在线| 欧美成人一区二区免费高清观看| 看黄色毛片网站| 亚洲精品日韩av片在线观看| 一本久久中文字幕| 中国美白少妇内射xxxbb| 日韩精品有码人妻一区| 一进一出抽搐动态| 日本成人三级电影网站| 中国国产av一级| 国产精品久久电影中文字幕| 又粗又爽又猛毛片免费看| 精品免费久久久久久久清纯| 国产探花在线观看一区二区| 成人国产麻豆网| 日韩亚洲欧美综合| 色综合色国产| 色综合站精品国产| 在线播放国产精品三级| av在线观看视频网站免费| 国产精品久久久久久av不卡| 美女被艹到高潮喷水动态| 97人妻精品一区二区三区麻豆| 日韩欧美精品免费久久| 熟妇人妻久久中文字幕3abv| 一边亲一边摸免费视频| 91精品国产九色| 国产熟女欧美一区二区| 观看美女的网站| 高清毛片免费看| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品sss在线观看| av免费在线看不卡| 91麻豆精品激情在线观看国产| 好男人视频免费观看在线| 免费看av在线观看网站| 国产成人午夜福利电影在线观看| 亚洲精品日韩在线中文字幕 | 男人的好看免费观看在线视频| 99久久精品国产国产毛片| av女优亚洲男人天堂| 亚洲人与动物交配视频| 麻豆乱淫一区二区| 国产精品蜜桃在线观看 | 亚洲欧美日韩东京热| .国产精品久久| 身体一侧抽搐| 91午夜精品亚洲一区二区三区| 亚洲成人精品中文字幕电影| 哪个播放器可以免费观看大片| 最新中文字幕久久久久| 在线免费观看的www视频| 国产一区二区在线av高清观看| 国产视频首页在线观看| 亚洲av第一区精品v没综合| 亚洲精品影视一区二区三区av| 午夜福利视频1000在线观看| 亚洲欧美中文字幕日韩二区| 中文字幕精品亚洲无线码一区| 久久久国产成人精品二区| 亚洲图色成人| 久久久精品大字幕| 国产午夜精品一二区理论片| 不卡视频在线观看欧美| 婷婷亚洲欧美| 久久精品91蜜桃| 2022亚洲国产成人精品| 五月伊人婷婷丁香| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 两性午夜刺激爽爽歪歪视频在线观看| 99久久九九国产精品国产免费| 久久久久国产网址| 全区人妻精品视频| 22中文网久久字幕| 国产真实伦视频高清在线观看| 丰满的人妻完整版| 精品久久国产蜜桃| 校园人妻丝袜中文字幕| 欧美xxxx黑人xx丫x性爽| 1024手机看黄色片| 成人鲁丝片一二三区免费| 日韩欧美国产在线观看| 国产av麻豆久久久久久久| 少妇熟女aⅴ在线视频| 小说图片视频综合网站| 大型黄色视频在线免费观看| 色噜噜av男人的天堂激情| av又黄又爽大尺度在线免费看 | 亚洲七黄色美女视频| 久久精品国产亚洲网站| 国产激情偷乱视频一区二区| 午夜福利在线在线| 亚洲欧美日韩卡通动漫| 久久久久久久久久久丰满| 日本黄色视频三级网站网址| 长腿黑丝高跟| 韩国av在线不卡| 看免费成人av毛片| www.色视频.com| 一级毛片我不卡| 中文字幕久久专区| 亚洲自拍偷在线| 男女视频在线观看网站免费| 又爽又黄a免费视频| 人妻夜夜爽99麻豆av| a级毛片a级免费在线| 国产精华一区二区三区| 少妇的逼水好多| 日韩中字成人| 亚洲va在线va天堂va国产| 久久久精品大字幕| 男人舔奶头视频| 综合色av麻豆| 欧美极品一区二区三区四区| 中文亚洲av片在线观看爽| 精品久久国产蜜桃| 国产精品久久久久久久久免| 成人亚洲欧美一区二区av| 99在线人妻在线中文字幕| 国产精品一二三区在线看| 婷婷亚洲欧美| 亚洲熟妇中文字幕五十中出| 久久久久性生活片| 少妇高潮的动态图| 日韩三级伦理在线观看| 免费在线观看成人毛片| 国产白丝娇喘喷水9色精品| av又黄又爽大尺度在线免费看 | 美女内射精品一级片tv| 国产色婷婷99| av在线观看视频网站免费| 六月丁香七月| 日韩一区二区视频免费看| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡免费网站照片| 可以在线观看毛片的网站| 国产真实伦视频高清在线观看| 一级毛片我不卡| 在线国产一区二区在线| 成人国产麻豆网| 亚洲国产精品成人久久小说 | 女人十人毛片免费观看3o分钟| av在线老鸭窝| 久久欧美精品欧美久久欧美| 欧美在线一区亚洲| 成人综合一区亚洲| 美女大奶头视频| 国产精华一区二区三区| 日日摸夜夜添夜夜添av毛片| 婷婷六月久久综合丁香| 亚洲人与动物交配视频| 看十八女毛片水多多多| 亚洲内射少妇av| 亚洲av电影不卡..在线观看| 悠悠久久av| 国产黄片视频在线免费观看| 午夜精品一区二区三区免费看| av在线观看视频网站免费| 日韩欧美精品免费久久| 亚洲国产日韩欧美精品在线观看| 国产高清激情床上av| 熟女人妻精品中文字幕| 91狼人影院| 91麻豆精品激情在线观看国产| 秋霞在线观看毛片| 在线观看免费视频日本深夜| 综合色av麻豆| 乱码一卡2卡4卡精品| 少妇被粗大猛烈的视频| 欧美色欧美亚洲另类二区| 老熟妇乱子伦视频在线观看| 中文字幕熟女人妻在线| 久久久久久久亚洲中文字幕| 日韩中字成人| 三级毛片av免费| 亚洲中文字幕日韩| 变态另类丝袜制服| 国产精品伦人一区二区| 天堂中文最新版在线下载 | 免费人成视频x8x8入口观看| 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 在线观看午夜福利视频| 国产精品野战在线观看| 日本与韩国留学比较| 日本爱情动作片www.在线观看| 精品久久久久久久久久久久久| 国产精品久久久久久久电影| a级毛片a级免费在线| 精品久久久久久成人av| 22中文网久久字幕| 99久久无色码亚洲精品果冻| 午夜视频国产福利| 男人舔女人下体高潮全视频| 麻豆成人午夜福利视频| 免费看光身美女| 亚洲精品色激情综合| 青春草国产在线视频 | 久久久久久伊人网av| a级毛色黄片| 亚洲中文字幕日韩| 天美传媒精品一区二区| 又黄又爽又刺激的免费视频.| 只有这里有精品99| 禁无遮挡网站| 人妻制服诱惑在线中文字幕| 国产成人福利小说| 亚洲精品乱码久久久v下载方式| 黄色视频,在线免费观看| 中文字幕久久专区| 床上黄色一级片| 欧美潮喷喷水| 亚洲无线在线观看| 国产午夜精品论理片| 国产一区二区三区在线臀色熟女| 国产伦理片在线播放av一区 | 成人一区二区视频在线观看| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 九九热线精品视视频播放| 久久久欧美国产精品| 国产精品爽爽va在线观看网站| 成人午夜精彩视频在线观看| 久久久久久大精品| 欧美激情国产日韩精品一区| 成人午夜高清在线视频| 人人妻人人澡人人爽人人夜夜 | 男女做爰动态图高潮gif福利片| 亚洲美女搞黄在线观看| 99热网站在线观看| 国产色婷婷99| 淫秽高清视频在线观看| 国产免费男女视频| 毛片一级片免费看久久久久| 人体艺术视频欧美日本| 1024手机看黄色片| 男人舔奶头视频| 99热这里只有是精品在线观看| 中文欧美无线码| 女人被狂操c到高潮| 亚洲精品成人久久久久久| 欧美成人精品欧美一级黄| 久久精品久久久久久噜噜老黄 | 国产老妇女一区| 99riav亚洲国产免费| 亚洲国产高清在线一区二区三| 男人的好看免费观看在线视频| 亚洲第一区二区三区不卡| 国产片特级美女逼逼视频| 边亲边吃奶的免费视频| 精品无人区乱码1区二区| 2022亚洲国产成人精品| 国产精品一二三区在线看| 久久国产乱子免费精品| 国内久久婷婷六月综合欲色啪| 美女国产视频在线观看| 精品国内亚洲2022精品成人| 国产视频首页在线观看| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频 | 国产黄色小视频在线观看| 日韩一区二区视频免费看| 淫秽高清视频在线观看| 可以在线观看毛片的网站| 亚洲综合色惰| 亚洲在线自拍视频| 狂野欧美激情性xxxx在线观看| 中国美白少妇内射xxxbb| 亚洲av第一区精品v没综合| 亚洲色图av天堂| 日韩高清综合在线| 一区二区三区高清视频在线| 久久久久性生活片| 男女下面进入的视频免费午夜| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 免费人成在线观看视频色| 国产一区二区三区在线臀色熟女| www.av在线官网国产| 亚洲高清免费不卡视频| 麻豆久久精品国产亚洲av| 国产麻豆成人av免费视频| 亚洲真实伦在线观看| 99久久精品热视频| 精品久久久久久久久久久久久| 国产一区亚洲一区在线观看| 波多野结衣巨乳人妻| 青青草视频在线视频观看| 黄色配什么色好看| 国产精华一区二区三区| 日韩精品青青久久久久久| 夜夜夜夜夜久久久久| 男女下面进入的视频免费午夜| 乱码一卡2卡4卡精品| 精品久久久久久久久av| 欧美人与善性xxx| 毛片一级片免费看久久久久| av在线蜜桃| 少妇熟女欧美另类| 久久精品国产自在天天线| 中文在线观看免费www的网站| 一边亲一边摸免费视频| 熟妇人妻久久中文字幕3abv| 最后的刺客免费高清国语| 成人毛片a级毛片在线播放| 青春草国产在线视频 | 国产69精品久久久久777片| 在线观看一区二区三区| 天堂网av新在线| 91久久精品国产一区二区三区| 麻豆成人av视频| 亚洲高清免费不卡视频| 国产精品综合久久久久久久免费| 国产69精品久久久久777片| 草草在线视频免费看| 亚洲在线观看片| 久久久久久大精品| 成年版毛片免费区| 亚洲国产色片| 免费观看a级毛片全部| 国产精品永久免费网站| 成年女人永久免费观看视频| 黄色配什么色好看| 久久久色成人| 深夜a级毛片| 国产在视频线在精品| 亚洲国产欧美人成| 岛国毛片在线播放| 欧美色视频一区免费| 日韩av不卡免费在线播放| 晚上一个人看的免费电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦精品一区二区三区视频9| 亚洲在线观看片| 国产精品精品国产色婷婷| 黄色日韩在线| 最近2019中文字幕mv第一页| 少妇被粗大猛烈的视频| 中文字幕久久专区| 精品免费久久久久久久清纯| 国产午夜福利久久久久久| 秋霞在线观看毛片| 菩萨蛮人人尽说江南好唐韦庄 | 91狼人影院| 久久午夜福利片| 在线观看av片永久免费下载| 午夜福利成人在线免费观看| АⅤ资源中文在线天堂| 看免费成人av毛片| 久久久久网色| 黄片wwwwww| 亚洲人成网站高清观看| 18禁在线播放成人免费| 人体艺术视频欧美日本| 欧美色欧美亚洲另类二区| 日韩制服骚丝袜av| 在线国产一区二区在线| 97热精品久久久久久| 22中文网久久字幕| 蜜桃久久精品国产亚洲av| 国产男人的电影天堂91| 搞女人的毛片| 毛片女人毛片| 亚洲欧美日韩无卡精品| 亚洲人成网站高清观看| 日本av手机在线免费观看| 成年女人看的毛片在线观看| 国产单亲对白刺激| 日韩欧美三级三区| 欧美人与善性xxx| 亚洲精品国产av成人精品| 亚洲精品久久久久久婷婷小说 | 中文字幕av在线有码专区| 男女视频在线观看网站免费| 又粗又爽又猛毛片免费看| 日本三级黄在线观看| 国产精品三级大全| 婷婷亚洲欧美| 亚洲人与动物交配视频| 久久久成人免费电影| 免费av观看视频| 午夜老司机福利剧场| 亚洲精品日韩在线中文字幕 | 色综合站精品国产| 免费无遮挡裸体视频| 成人性生交大片免费视频hd| 久久亚洲精品不卡| 18+在线观看网站| 能在线免费看毛片的网站| 久久欧美精品欧美久久欧美| 亚洲天堂国产精品一区在线| 欧美一区二区亚洲| 国产午夜福利久久久久久| 久久草成人影院| 天堂√8在线中文| 国产精品国产高清国产av| 精品人妻熟女av久视频| 男女做爰动态图高潮gif福利片| 看黄色毛片网站| 在线观看午夜福利视频| 亚洲乱码一区二区免费版| 成人特级av手机在线观看| 久久久久久久久久久免费av| 精品无人区乱码1区二区| 99久久精品热视频| 尾随美女入室| 午夜精品在线福利| 美女大奶头视频| 丝袜喷水一区| 国产男人的电影天堂91| 国产伦精品一区二区三区四那| 九色成人免费人妻av| 国产伦理片在线播放av一区 | 亚洲国产精品久久男人天堂| 丰满人妻一区二区三区视频av| 亚洲欧美日韩高清在线视频| 国产精品日韩av在线免费观看| 91狼人影院| 一个人观看的视频www高清免费观看| 欧美区成人在线视频| 亚洲国产精品成人久久小说 | 亚洲自拍偷在线| 午夜精品国产一区二区电影 | 久久人人爽人人爽人人片va| 亚洲丝袜综合中文字幕| 听说在线观看完整版免费高清| 久久亚洲国产成人精品v| 欧美激情在线99| 久久精品91蜜桃| 99热6这里只有精品| 日韩中字成人| 久久久久久久亚洲中文字幕| 色综合站精品国产| 看免费成人av毛片| 日本一二三区视频观看| 亚洲精品自拍成人| 亚洲av不卡在线观看| 国产精品,欧美在线| 久久久久久久久中文| 99国产精品一区二区蜜桃av| av.在线天堂| 国产精品一区www在线观看| 大香蕉久久网| 久久这里只有精品中国| 一级黄片播放器| av国产免费在线观看| 中文字幕人妻熟人妻熟丝袜美| 丰满的人妻完整版| 可以在线观看毛片的网站| 最近中文字幕高清免费大全6| 久久精品91蜜桃| 美女高潮的动态| 99热只有精品国产| 18+在线观看网站| 天美传媒精品一区二区| 国产高清不卡午夜福利| 成人av在线播放网站| 欧美日韩精品成人综合77777| 级片在线观看| 久久久精品94久久精品|