李霞 蔣彥婕 陶亞軍 李文奇 王芳權(quán) 陳智慧 許揚(yáng) 王軍 范方軍 朱建平 Sreenivasulu NESE 楊杰, *
低升糖指數(shù)水稻研究進(jìn)展
李霞1, 3蔣彥婕1陶亞軍1李文奇1王芳權(quán)1陳智慧1許揚(yáng)1, 3王軍1, 3范方軍1朱建平1Sreenivasulu NESE2楊杰1, 3, *
(1江蘇省農(nóng)業(yè)科學(xué)院 糧食作物研究所/國際水稻研究所-江蘇省農(nóng)業(yè)科學(xué)院聯(lián)合實(shí)驗(yàn)室, 南京 210014;2國際水稻研究所, 洛斯巴尼奧斯4031, 菲律賓;3揚(yáng)州大學(xué) 農(nóng)學(xué)院/江蘇省糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心, 揚(yáng)州 225009;*通信聯(lián)系人, E-mail: yangjie168@aliyun.com)
大米是典型的淀粉豐富的食物,是全世界大多數(shù)人口尤其是亞洲人口每日主要的卡路里來源。目前水稻品種大多數(shù)屬高升糖指數(shù)(全稱為血糖生成指數(shù),glycemic index, GI)水稻,會(huì)誘發(fā)由于高熱量攝入而致血糖失調(diào)的健康問題。已有大量研究者在探索降低大米血糖指數(shù)的方法。本文重點(diǎn)對(duì)稻米升糖指數(shù)的影響因素、篩選方法、遺傳基礎(chǔ)以及遺傳改良等的相關(guān)研究進(jìn)行總結(jié),并對(duì)未來的研究方向提出了一些建議。
水稻; 升糖指數(shù)(血糖生成指數(shù)); 淀粉; 遺傳機(jī)制; 遺傳改良
隨著人口結(jié)構(gòu)的變化,社會(huì)老齡化加重,加上生活節(jié)奏加快,人們的生活方式、飲食習(xí)慣和食物構(gòu)成發(fā)生改變[1],人類病譜發(fā)生了很大變化,糖尿病、心血管疾病、肥胖癥、高血脂癥以及高血壓等胰島素抵抗相關(guān)慢性疾病比例不斷上升,這些已成為全球性重大的公共衛(wèi)生問題[2]。在這些疾病中,尤以糖尿病發(fā)病率增長(zhǎng)最為顯著。據(jù)估計(jì),全世界糖尿病病人約有3.47億,其中,我國有1.14億,潛在或隱性糖尿病患者更多[3]。預(yù)防和控制上述疾病發(fā)生的關(guān)鍵在于科學(xué)合理的膳食結(jié)構(gòu)[4]。
水稻(L.)是世界一半人口的主食,尤其是亞洲等大多數(shù)發(fā)展中國家的主要能量來源,它可以提供全球大約一半以上人口通過淀粉攝取獲得的19%能量和通過蛋白質(zhì)攝取而獲得的13%能量[5]。以碳水化合物為主要成分的稻米被迅速消化和吸收時(shí),人體的血糖就容易升高。與歐洲人相比,喜食稻米的亞洲人患病風(fēng)險(xiǎn)更高[6]。升糖指數(shù)(全稱為血糖生成指數(shù),glycemic index, GI),用于描述人體對(duì)食物的消化吸收速率和食物引起的餐后血糖反應(yīng),是評(píng)價(jià)碳水化合物的生理學(xué)參數(shù)[7-8]。因此,血糖控制的主要策略應(yīng)該是減少可用于消化的碳水化合物,降低食物的消化率,減少葡萄糖的吸收率,增加血液中葡萄糖的去除率[4]。
稻米是全谷物食品來源,除去穎殼的糙米,含有較多的膳食纖維以及礦物質(zhì)等生物功能成分,但因?yàn)橛型暾牡矸垲w粒和細(xì)胞壁等物質(zhì)包被,不易消化。糙米具有較低的GI,但由于糙米的保質(zhì)期短、烹飪時(shí)間長(zhǎng),特別是口感和質(zhì)地?zé)o法獲得消費(fèi)者的青睞[9],因此,消費(fèi)者對(duì)糙米的接受度較低[10]。人們食用的通常是除去米糠層的拋光的全谷物,又稱精米(white rice,WR),它全部由胚乳組成,幾乎沒有麩皮和胚芽[11],主要營養(yǎng)成分是淀粉,占稻米籽粒干質(zhì)量的比例高達(dá)90%,只含有不到1%的膳食纖維(dietary fiber,DF)[12]。研究顯示,精米GI=78 (這里是以面包作為對(duì)照),精米GI一般高于糙米(GI=65)[13],經(jīng)常食用精米,會(huì)增加患Ⅱ型糖尿病的風(fēng)險(xiǎn)[14]。因此,在尊重稻米消費(fèi)者食用習(xí)慣的基礎(chǔ)上,倡導(dǎo)多食用糙米,或以降低精米GI值為目標(biāo),改良現(xiàn)有水稻品種,將是一條最經(jīng)濟(jì)有效的保持人類健康的策略[4]。
水稻品種類型、稻米加工方法、蒸煮方式以及大米的食用習(xí)慣等均可能影響GI,因此,稻米不能簡(jiǎn)單地定義為高GI或者低GI[15]。目前,國內(nèi)外對(duì)稻米GI的研究主要從食品和營養(yǎng)的角度,通過分析食物成分、結(jié)構(gòu)、含量和加工方式等因素,研究與GI值的關(guān)系,從而指導(dǎo)研發(fā)低GI加工或者配餐食品[16]。本研究主要從水稻資源角度,總結(jié)稻米GI的篩選方法、遺傳基礎(chǔ)及重要基因的挖掘、影響GI反應(yīng)的生理生化因素以及遺傳改良等的研究方向,并對(duì)未來研究方向進(jìn)行展望。
圖1 米飯餐后的消化過程及血糖生成指數(shù)(GI)響應(yīng)
Fig. 1. Digestion process and glycemic index response of rice after meal.
1981年,加拿大科學(xué)家Jenkins提出了食物血糖生成指數(shù)(簡(jiǎn)稱升糖指數(shù),glycemic index,GI)的概念,用以衡量食物升血糖的能力[7]。GI定義為含50 g可利用碳水化合物的某種食物與含等量可利用碳水化合物的標(biāo)準(zhǔn)參考食物相比,餐后血糖應(yīng)答曲線下增值面積之比[17]。對(duì)照碳水化合物通常是葡萄糖溶液、小麥面包或精米[4]。國際標(biāo)準(zhǔn)化組織ISO 26641: 2010中規(guī)定:GI≤55,為低GI食物;55<GI≤70,為中等GI食物;GI>70,為高GI食物[18]。GI值高的食物,進(jìn)入胃腸后消化快、吸收率高,葡萄糖釋放快,葡萄糖進(jìn)入血液后峰值高;GI值低的食物,在胃腸中停留時(shí)間長(zhǎng),吸收率低,葡萄糖釋放緩慢,葡萄糖進(jìn)入血液后的峰值低,下降速度慢,有助于維持血糖的穩(wěn)態(tài)[19-21]。不同水稻品種GI變異范圍較廣,為51~100[22]。一般認(rèn)為,糙米GI值小于精米,秈米小于粳米。以食用大米為例,米飯首先在口腔中經(jīng)過咀嚼,部分淀粉由唾液酶水解為麥芽糖,然后經(jīng)過消化器官進(jìn)入小腸,由小腸內(nèi)的胰體α-淀粉酶、糊精酶、淀粉葡萄糖苷酶、α-葡萄糖苷酶和麥芽糖酶水解成葡萄糖(圖1)。其中,在20 min內(nèi)被迅速消化吸收的淀粉稱為快速消化淀粉(rapidly digestible starch, RDS);在20~120 min內(nèi)被完全吸收但水解速度較慢的淀粉稱為慢消化淀粉(slowly digestible starch, SDS);進(jìn)入人體120 min后仍無法吸收的淀粉稱為抗性淀粉(resistant starch, RS)。快速消化淀粉在小腸中吸收快,GI高,易引發(fā)糖尿病和肥胖等病癥[20];慢消化淀粉和抗性淀粉的GI低,被認(rèn)為是健康淀粉[20, 23]。
血糖的上升速度很大程度上取決于淀粉的消化速度,稻米淀粉的消化速度受多種因素影響,其中最主要的是直鏈淀粉含量。直鏈淀粉含量越高,消化速率越慢,對(duì)應(yīng)的GI越低[24]。Fitzgerald等[25]利用體外檢測(cè)的方法測(cè)定了235個(gè)水稻品種的GI值,攜帶位點(diǎn)的品種,平均GI值高達(dá)89.7,含W位點(diǎn)的品種為72.04,含有W位點(diǎn)的品種GI平均值為60.53。目前市場(chǎng)上中低GI品種也多含高直鏈淀粉,如Doongara(28%,澳大利亞)、優(yōu)糖稻2號(hào)(31.1%)[26]、Bangladeshi(27%)[27]和Basmati(27%)[28]等。因此,GI值與直鏈淀粉含量呈負(fù)相關(guān)。直鏈淀粉由200~2000個(gè)葡萄糖分子以線性雙螺旋的方式緊密排列而成,糊化溫度較高,冷卻時(shí)容易老化[9]。但是,支鏈淀粉是高度分支,通過α-1,6糖苷鍵串連起20~30個(gè)葡萄糖分子。由于淀粉酶作用時(shí)必須結(jié)合在淀粉鏈的末端,而支鏈淀粉由于相比直鏈淀粉擁有更多的端點(diǎn),因而更易被淀粉酶降解成葡萄糖。所以,直鏈淀粉含量較高的水稻品種往往具有更低的GI值。
抗性淀粉可以逃避淀粉酶的水解,120 min后可到達(dá)結(jié)腸并被結(jié)腸中的微生物菌群發(fā)酵,被看作膳食纖維的組成成分之一,具有較多抗性淀粉的稻米GI較低[29-30]。關(guān)于抗性淀粉對(duì)人體的益處已有很多報(bào)道,如改善胰島素抵抗[31]、預(yù)防糖尿病[32]、減少脂肪含量[33]以及緩解腸道炎癥[34, 35]等。米飯?jiān)谡糁筮^程中,淀粉發(fā)生糊化,此時(shí)氫鍵打開,氫鍵位點(diǎn)與水分子結(jié)合導(dǎo)致淀粉顆粒不可逆地溶解在水中,直鏈淀粉和支鏈淀粉分子的晶體結(jié)構(gòu)消失。米飯冷卻后,淀粉的直鏈部分發(fā)生重排形成新的晶體結(jié)構(gòu),即淀粉的老化過程。其中,直鏈淀粉的結(jié)晶速度比支鏈淀粉快得多。老化的直鏈淀粉因其雙螺旋結(jié)構(gòu)無法與水和淀粉酶結(jié)合,因此難以消化[36]。抗性淀粉可進(jìn)一步再分為5種類型:RS1為物理包埋淀粉;RS2為天然淀粉顆粒;RS3稱為回生淀粉;RS4為化學(xué)修飾淀粉;RS5為直鏈淀粉-脂質(zhì)形成的復(fù)合物[22]。稻米淀粉顆粒中主要涉及RS2和RS3兩種類型。熱米飯中抗性淀粉含量一般低于1%,而冷米飯中抗性淀粉含量為1.0%~2.1%,其含量高于熱米飯主要是淀粉回生后產(chǎn)生RS3類型抗性淀粉[37]。
淀粉的結(jié)構(gòu)十分復(fù)雜,包括分子結(jié)構(gòu)(直鏈淀粉和支鏈淀粉)、聚集態(tài)結(jié)構(gòu)(短程有序結(jié)構(gòu)、螺旋結(jié)構(gòu)、晶體結(jié)構(gòu)、片層結(jié)構(gòu)、生長(zhǎng)環(huán)結(jié)構(gòu))、顆粒結(jié)構(gòu)等多層級(jí)結(jié)構(gòu)[23]。支鏈淀粉和直鏈淀粉分別排列在交替同心區(qū)域的晶體層(由支鏈淀粉雙螺旋有序平行排列形成)和非晶態(tài)層(主要含有直鏈淀粉)[38-39]。稻米淀粉的顆粒,主要是A類晶體類型,呈多態(tài)型,平均鏈長(zhǎng)更短,熱穩(wěn)定。相比之下,B型為有序的六邊形排列的雙螺旋晶體,螺旋的比例更大[40]。與B型結(jié)構(gòu)相比,A型結(jié)構(gòu)淀粉顆粒更不均勻,更容易到達(dá)淀粉表面,因此,A型結(jié)構(gòu)淀粉顆粒比B型具有更高的消化率,GI值較高[41]。研究顯示,直鏈淀粉和支鏈淀粉的鏈長(zhǎng)也會(huì)影響精米的GI特性[42-48]。在中等或者較高直鏈淀粉含量的基礎(chǔ)上,直鏈淀粉的分子鏈越長(zhǎng),即富含長(zhǎng)鏈(long chain amylose, LCAM)或中等鏈長(zhǎng)的直鏈淀粉(intermediate length amylose, ICAM)中葡聚糖鏈的淀粉分子多,則淀粉消化速率越低,GI越低[42]。支鏈淀粉的聚合度(degree of polymerization,DP)表示鏈中葡萄糖單體數(shù)目和鏈的長(zhǎng)短,它決定谷物淀粉的許多物理化學(xué)性質(zhì),包括回生、稠性以及溶脹性等,從而影響淀粉酶對(duì)淀粉的消化率[43-48]。與A型晶體淀粉相比,B型更抗淀粉酶解,支鏈淀粉中較長(zhǎng)的DP有利于形成更穩(wěn)定的B型雙螺旋結(jié)構(gòu),決定了淀粉的消化率[41],其中,中等鏈長(zhǎng)的支鏈淀粉[49]和支鏈淀粉高度分支側(cè)鏈的形成均有利于提高稻米籽粒中抗性淀粉含量,從而賦予稻米低GI特性[44]。支鏈淀粉可形成3種鏈類型:1) A鏈,鏈長(zhǎng)(chain length)2~16,存在于外部;2) B鏈,主要在內(nèi)部,外部鏈較少,分為B1(鏈長(zhǎng)為20~24)、B2(鏈長(zhǎng)為42~48)、B3(鏈長(zhǎng)為69~75)、B4(鏈長(zhǎng)為104~140);3)超長(zhǎng)鏈(extra-long chains),由100~1000個(gè)糖基單位組成,形成類似直鏈淀粉的結(jié)構(gòu)。超長(zhǎng)鏈通常出現(xiàn)在秈稻中,在粳稻中不存在[50]。
Panlasigui等[13]通過招募志愿者分別測(cè)定了人體對(duì)糙米和精米的血糖響應(yīng),發(fā)現(xiàn)在健康志愿者中,糙米的GI相較于精米降低12.1%;在糖尿病患者中,糙米的GI相較于精米降低5.6%,這可能是因?yàn)椴诿赘缓菜?、多酚、膳食纖維和油脂等[13, 51]。此外,無論是高還是低直鏈淀粉含量,糙米都表現(xiàn)出延遲的胃排空[51-52]。有研究表明,膳食多酚可以抑制淀粉消化酶活性,增加胰島素分泌和降低腸道葡萄糖攝取。富含次生代謝產(chǎn)物的食物基質(zhì)保護(hù)胰腺β細(xì)胞免受糖毒性,抑制肝臟葡萄糖的產(chǎn)生,改善外周葡萄糖攝取,緩解輕度炎癥,并通過促進(jìn)有益微生物的生長(zhǎng)調(diào)節(jié)腸道健康[53]。
綜上,淀粉粗顆粒的體外消化受顆粒的形態(tài)(如大小和形狀)、表面特征(如存在孔洞和通道)、分子組成(抗性淀粉、直鏈淀粉與支鏈淀粉的比例)、超分子結(jié)構(gòu)(結(jié)晶度、生長(zhǎng)環(huán)以及細(xì)胞內(nèi)的堆積)以及細(xì)胞壁非淀粉多糖和黃酮類化合物含量等要素的影響,共同決定稻米的GI響應(yīng)[54-55]。
升糖指數(shù)是人類對(duì)食品的血糖反應(yīng),涉及遺傳、食品以及醫(yī)學(xué)等多學(xué)科,目前國內(nèi)外測(cè)定食品GI的標(biāo)準(zhǔn)方法是通過人體體內(nèi)測(cè)定[56],并且已建立了相關(guān)的測(cè)試標(biāo)準(zhǔn)[57-58]。但是,標(biāo)準(zhǔn)的體內(nèi)GI測(cè)定方法也易受限于志愿者的個(gè)體差異(包括受試者年齡以及健康等各種因素),準(zhǔn)確性受到影響,而且人體試驗(yàn)是一項(xiàng)昂貴、低通量、耗時(shí)的工作,還需要倫理試驗(yàn)的批準(zhǔn),對(duì)于一些大型食品企業(yè)在開發(fā)產(chǎn)品前期和水稻育種在篩選低GI初級(jí)材料的研究,還是很難應(yīng)用[59]??茖W(xué)家根據(jù)食品在體內(nèi)的消化過程,很早就探索食品的體外消化模型,嘗試建立體外測(cè)定GI值的方法[60-63]。稻米籽粒中的淀粉在小腸內(nèi)被α-淀粉酶、葡糖淀粉酶和異麥芽糖酶消化,分解成游離葡萄糖,被人體吸收,從而形成不同血糖反應(yīng)特征[64]。已觀察到食用大米和以大米為基礎(chǔ)的產(chǎn)品的GI反應(yīng)高度可變[65],變幅為24~160[66]。淀粉類食品的體外GI測(cè)定原理主要是依據(jù)淀粉的體外消化率、水解指數(shù)與GI的相關(guān)性,按照產(chǎn)品配方中各成分的含量和GI值,通過算法最終得到淀粉類產(chǎn)品的GI估值(estimated glycemic index, EGI)[63]。也有研究者嘗試將種子萌發(fā)與淀粉的體外消化建立對(duì)應(yīng)關(guān)系,建立一種以生物標(biāo)記物預(yù)測(cè)GI值的替代方法[55],用于水稻品種GI特性的檢測(cè)[67-71]。
體外淀粉消化方法包括模擬口腔、胃和腸道消化等多個(gè)過程。已報(bào)道的模擬體外消化方法從粉碎方式(模擬咀嚼的方法)、胃消化的時(shí)間和淀粉酶的選擇、培養(yǎng)溫度、pH值、持續(xù)時(shí)間和攪拌方式等,均不統(tǒng)一,這些步驟的差異對(duì)測(cè)定稻米淀粉血糖效應(yīng)的EGI值有較大影響[59]。有科學(xué)家嘗試兼顧稻米消化的體內(nèi)和體外方法,以測(cè)定單個(gè)時(shí)間點(diǎn)(60 min)的淀粉水解百分率(starch hydrolysis at 60 min, SH60)作為統(tǒng)一鑒定指標(biāo),分析不同稻米的體外EGI,已成功用于驗(yàn)證不同GI值的商品化稻米產(chǎn)品[72]以及篩選GI自然變異水稻群體[25]。值得高興的是,澳大利亞科學(xué)家和美國YSI公司聯(lián)合研制了自動(dòng)檢測(cè)消化稻米葡萄糖含量的電化學(xué)儀器YSI 2700 Select Bioanalyser (Yellow Springs, OH),這些均為今后批量并定量篩選GI值提供了有力支撐,將有利于對(duì)稻米低GI遺傳基礎(chǔ)的研究。
稻米低GI的遺傳基礎(chǔ)研究多是通過自然遺傳群體和人工構(gòu)建遺傳群體的研究而獲得。已報(bào)道這些熱點(diǎn)基因序列主要分布在第1[73]、2[44, 73-76]、3[73]、5[22, 78]、6[12, 73, 74, 77-89]、7[46, 73, 87]、8[73, 86]、9[73, 87]和11[73]染色體上,尤其是第6染色體上淀粉合成相關(guān)基因,主要是通過影響淀粉含量和抗性淀粉含量而影響稻米GI值[12, 73, 74, 77-89]。受限于GI的測(cè)定方法,目前關(guān)于GI的遺傳分析多是利用抗性淀粉為指標(biāo)展開,這得益于稻米抗性淀粉含量體外定量檢測(cè)標(biāo)準(zhǔn)的建立[89]。絕大多數(shù)水稻品種抗性淀粉含量均低于1%,極個(gè)別品種抗性淀粉含量接近3%[67],較高直鏈淀粉含量的品種通常具有較高的抗性淀粉含量[49]。與粳稻相比,秈稻的抗性淀粉含量較高[43]。由于自然界中存在的高抗性淀粉含量水稻資源較少,較早的遺傳基礎(chǔ)研究多是中國科學(xué)家利用人工創(chuàng)制的高抗性淀粉突變體材料配制遺傳群體進(jìn)行的。現(xiàn)有的研究表明,控制水稻籽粒中抗性淀粉含量的性狀是受多基因控制的典型數(shù)量性狀,包括合成直鏈淀粉和支鏈淀粉相關(guān)的基因[85, 87, 89-90]。如牟方貴等[91]將高抗性淀粉突變體分別與中等和低直鏈淀粉含量水稻II-32B和宜香B雜交,構(gòu)建F2群體,發(fā)現(xiàn)位于第8染色體上的RM72和RM547以及位于第6染色體上的RM217和RM225與抗性淀粉相關(guān)。羅曦等[92]對(duì)高抗性淀粉水稻功米3號(hào)的遺傳分析表明,抗性淀粉含量是由少數(shù)主效基因和多個(gè)微效基因以及非等位基因間互作控制的數(shù)量性狀。孫春龍等[76]選用6個(gè)抗性淀粉含量具有顯著差異的水稻為材料,按Griffing雙列雜交設(shè)計(jì)配制組合及正反交F1,通過研究發(fā)現(xiàn),水稻抗性淀粉含量主要受基因加性效應(yīng)控制,同時(shí)也受非加性效應(yīng)以及細(xì)胞質(zhì)效應(yīng)的影響。進(jìn)一步利用粳稻突變體降糖稻1號(hào)(抗性淀粉含量為11.67%)與秈稻品種密陽23雜交(抗性淀粉含量為0.41%)的178株F2植株,使用了106個(gè)SSR標(biāo)記,將水稻中抗性淀粉的QTL精細(xì)定位到水稻第2染色體的淀粉分支酶()上,解釋了60.4%的遺傳變異,且突變與抗性淀粉含量共分離[93]。進(jìn)一步通過轉(zhuǎn)基因和突變的方法獲得植株,遺傳研究表明,、和被鑒定為影響水稻抗性淀粉含量的候選基因[44, 94]。李家洋團(tuán)隊(duì)利用一個(gè)從雜交稻恢復(fù)系R7954誘變?nèi)后w中篩選到的、在熱米飯中含有較高抗性淀粉含量的秈稻突變體,明確了低表達(dá)與Wx的高表達(dá)導(dǎo)致抗性淀粉含量的增加[89]。
近年來,隨著測(cè)序技術(shù)和多組學(xué)技術(shù)的發(fā)展,可利用全基因組關(guān)聯(lián)分析(GWAS)的方法鑒定水稻低GI調(diào)控位點(diǎn)。Fitzgerald等[25]利用GWAS技術(shù)對(duì)235份水稻進(jìn)行分析,關(guān)聯(lián)到一個(gè)調(diào)控GI的主效基因。Anacleto等[22]通過GWAS、靶向基因關(guān)聯(lián)研究、淀粉結(jié)構(gòu)分析以及人工精米GI體內(nèi)測(cè)定等結(jié)合,分析了包含240萬個(gè)SNP的305個(gè)秈稻資源的重測(cè)序數(shù)據(jù),進(jìn)一步預(yù)測(cè)了2個(gè)位于更小區(qū)域的導(dǎo)致GI從中到高變異的熱點(diǎn)基因關(guān)聯(lián)區(qū)域,其中,一個(gè)位于第5染色體的基因LOC_ Os05g03600的第2外顯子的一個(gè)同義SNP上,另一個(gè)在第6染色體(),涉及26個(gè)基因,主要包括和2個(gè)水解酶基因,還含有在信號(hào)傳導(dǎo)和染色質(zhì)修飾中的相關(guān)基因等。
此外,參與次生代謝物如酚類[95]和花青素[96]合成的相關(guān)酶類或基因也可以降低升糖指數(shù)(GI)。Pareween等[97]利用代謝組關(guān)聯(lián)分析發(fā)現(xiàn),稻米的消化速率與胚乳中的半乳糖以及水溶性甘露糖含量存在緊密關(guān)聯(lián),表明調(diào)控相關(guān)代謝物合成以及降解的基因也可能參與稻米的消化特性調(diào)控,從而控制GI。Butardo等[46]對(duì)233個(gè)秈稻進(jìn)行GWAS分析發(fā)現(xiàn),第5外顯子的一個(gè)SNP突變可以導(dǎo)致直鏈淀粉含量提高和黃酮類積累,從而降低稻米的消化速率。因此,增加稻米中的多酚含量、類黃酮和花青素等次生代謝物質(zhì)含量,也可以降低稻米GI[95-96]。
培育低GI水稻品種,通過調(diào)節(jié)飲食(醫(yī)食同源),從源頭預(yù)防疾病和控制疾病發(fā)生與發(fā)展,是對(duì)這些疾病如肥胖癥和糖尿病[98]最重要的防治手段,具有廣泛的健康市場(chǎng)需求。早期低GI水稻品種的培育多是以創(chuàng)制高抗性淀粉水稻材料為主,通過增加胚乳中直鏈淀粉含量或增加長(zhǎng)鏈支鏈淀粉的比例來實(shí)現(xiàn)[8]。但是,自然界高直鏈淀粉和抗性淀粉的水稻自然變異資源均較少,科學(xué)家多通過γ-射線[49]、化學(xué)突變[43]、GBSSⅠ單個(gè)氨基酸突變[99]以及提高稻米直鏈淀粉含量和降低支鏈淀粉含量的轉(zhuǎn)基因或基因編輯技術(shù)[80, 83, 99-101],獲得一系列具有較高抗性淀粉含量的水稻種質(zhì)資源或品種。
Shu等[102]用γ-射線處理不同水稻品種,降低稻米的表觀直鏈淀粉含量和糊化溫度,提高抗性淀粉含量,改變淀粉顆粒的結(jié)構(gòu),增加V-型結(jié)晶度,以降低淀粉酶解的速率。國際水稻研究所化學(xué)誘變水稻品種Kinmaze獲得突變體,再與IR36雜交,得到富含抗性淀粉的水稻突變體,其抗性淀粉含量達(dá)到8.25%[43]。Goami 2是經(jīng)過N-甲基-N-亞硝基脲處理得到的含有高抗性淀粉突變體,直鏈淀粉含量為33%[103]。浙江大學(xué)利用60Co γ輻射獲得抗性淀粉含量為3.6%的秈稻突變體浙輻201[104];以恢復(fù)系R7954為起始材料,經(jīng)航天搭載誘變,篩選創(chuàng)制了富含抗性淀粉的突變體新材料RS111[105]。
林靜等[106]通過比較抗性淀粉含量差異水稻種質(zhì)的淀粉特性,認(rèn)為直鏈淀粉含量類似的水稻材料可進(jìn)一步根據(jù)熱穩(wěn)定性來篩選高抗性淀粉的功能性水稻資源,并利用云南高抗性淀粉農(nóng)家種扎西瑪與南粳46雜交,通過花藥培養(yǎng),獲得抗性淀粉顯著提高的水稻資源[107]。上海市農(nóng)業(yè)科學(xué)院利用雜交和小孢子培養(yǎng)技術(shù)結(jié)合,選育得到高抗性淀粉含量(14.86%)的粳稻降糖稻1號(hào),并進(jìn)一步以其為母本與秀水123雜交,利用系譜法育成一個(gè)富含抗性淀粉的功能水稻新品種優(yōu)糖稻2號(hào)(商品名為優(yōu)糖米),其抗性淀粉含量可達(dá)13.1%,2018年該品種獲得植物新品種權(quán)證書(品種權(quán)號(hào): CNA20150659.3),并于2019年通過上海市農(nóng)作物品種審定委員會(huì)審定[26]。云南省農(nóng)業(yè)科學(xué)院利用其獨(dú)特的水稻優(yōu)異資源,與浙江大學(xué)合作,以功親1號(hào)為母本,云粳9號(hào)作父本進(jìn)行雜交,選育出系列功能稻米品種功米1號(hào)、功米2號(hào)、功米3號(hào)和云資粳82號(hào),其中具有高抗性淀粉含量的功米3號(hào)已作為主推品種在云南哀牢山區(qū)大力推廣[87],年生產(chǎn)稻谷已達(dá)100 t[81]。功米1號(hào)也已申請(qǐng)植物新品種權(quán)保護(hù)(公告號(hào)為CNA004253E)[108]。Dodamssal則是由韓國品種Goami與通過化學(xué)突變獲得的Goami 2雜交選育的水稻品種,具有較高的抗性淀粉含量,直鏈淀粉含量達(dá)33%[102]。
Sun等[109]利用基因編輯技術(shù)對(duì)的第1外顯子和的第3外顯子突變,將直鏈淀粉含量提高到25%,抗性淀粉含量提高至9.8%。白建江等[110]通過CRISPR/Cas9技術(shù)對(duì)水稻中的基因進(jìn)行編輯,發(fā)現(xiàn)了2個(gè)純合突變體的抗性淀粉含量高達(dá)10%。但是,這些高直鏈淀粉或者抗性淀粉含量的突變體通常表現(xiàn)出嚴(yán)重的產(chǎn)量損失和對(duì)稻米品質(zhì)的損害,高抗性淀粉含量水稻品種/資源常伴隨著高直鏈淀粉含量,米飯比較硬,尤其不能滿足喜食較軟米飯的消費(fèi)者,其經(jīng)濟(jì)效益和米飯口感均不被稻米生產(chǎn)企業(yè)和廣大消費(fèi)者接受,這成為選育低GI特性水稻品種的巨大障礙[111-112]。
最近的基因序列分析表明,自然界存在直鏈淀粉含量中等(25%)、質(zhì)地比較軟的低GI秈型水稻資源[22],而且一些已經(jīng)廣泛種植的超級(jí)稻具有低GI特征,且具有符合當(dāng)?shù)叵M(fèi)者口感,如IR64[96]、Swarna[66]、抗稻白葉枯病的超級(jí)稻品種Improved Samba Mahsuri (印度選育)[113]、Fedearroz 50(哥倫比亞選育)、Basmati[28, 114](巴基斯坦選育)以及韓國粳稻品種Dodamssal[103],但是這些報(bào)道的水稻品種測(cè)定GI的方法并不相同,有的是通過人體試驗(yàn)測(cè)定,有的是通過人體試驗(yàn)和淀粉體外消化相結(jié)合的方法[28, 66, 96, 113],還有的只是通過體外淀粉消化的方法估計(jì)GI值[103],因此,這些品種是否被人們食用后,可以降低GI,還需要進(jìn)一步的深入研究。最近的遺傳研究也觀察到,一些與影響稻米低GI值,但與已經(jīng)報(bào)道的淀粉含量相關(guān)基因不連鎖,獨(dú)立遺傳的熱點(diǎn)遺傳區(qū)域[12],育種學(xué)家可利用的單倍型尋找和培育不同直鏈淀粉含量或者高抗性淀粉含量的低GI資源或者品種[73, 115]。未來通過這些新遺傳位點(diǎn)的驗(yàn)證以及新基因的發(fā)掘,將會(huì)選育到低GI且兼顧產(chǎn)量和品質(zhì)的水稻品種。
功能稻米作為一類特殊功能的水稻產(chǎn)品,是營養(yǎng)導(dǎo)向型農(nóng)業(yè)、功能農(nóng)業(yè)或功能食品的重要組成部分[116],其中低GI特性是稻米理想的營養(yǎng)性狀,是培育功能稻米以及滿足人們對(duì)健康生活重大需求的研究?jī)?nèi)容[111]。降低GI值和增加直鏈淀粉含量會(huì)伴隨著稻米變硬而導(dǎo)致適口性差的問題,這一直是水稻育種的一個(gè)重大挑戰(zhàn)。除了加工、蒸煮以及食用人群的差異而造成稻米GI反應(yīng)的是異外,稻米的營養(yǎng)特性是決定其GI特性的關(guān)鍵,尤其是近年來低GI優(yōu)良水稻資源的發(fā)現(xiàn)。未來低GI水稻育種將從主要改變直鏈淀粉含量(高抗性淀粉)的單一育種策略提升到同時(shí)協(xié)調(diào)淀粉結(jié)構(gòu),并聚合優(yōu)良稻米品質(zhì)特性的復(fù)合育種策略,以達(dá)到低GI特性與稻米適口性的平衡。因此,今后需要從如下幾方面加強(qiáng)研究:1)加強(qiáng)低GI水稻資源的篩選。截至2018年底,中國國家農(nóng)作物種質(zhì)長(zhǎng)期庫共保存水稻品種資源87 838份,其中野生稻資源6 694份;中期庫保存各類水稻資源79 468份。廣州、南寧國家野生稻種質(zhì)資源圃保存有稻屬21個(gè)種共11 098份野生稻資源[117],在保存數(shù)量上僅次于國際水稻研究所(超過12萬份)。利用現(xiàn)存豐富的水稻資源,進(jìn)一步批量篩選低GI水稻資源,尤其是粳稻低GI資源,將為全面理解水稻低GI的遺傳以及低GI水稻品種的培育提供材料;2)批量篩選稻米低GI特性方法的優(yōu)化。現(xiàn)有的批量篩選方法雖然已經(jīng)簡(jiǎn)化,但是,對(duì)于大量的低GI中間資源的篩選還存在時(shí)間長(zhǎng)、米樣需求大等問題,難以廣泛應(yīng)用,尤其是不利于開展低GI的遺傳研究,未來需要繼續(xù)優(yōu)化更便捷、高效、標(biāo)準(zhǔn)的體外篩選GI的方法;3)水稻低GI特性的遺傳基礎(chǔ)研究。通過對(duì)新篩選的低GI的遺傳資源的宏觀和微觀營養(yǎng)特征的分析,并結(jié)合組學(xué)方法(全基因組、轉(zhuǎn)錄組、甲基化組、蛋白組以及代謝組),將一套完整的谷物品質(zhì)理化和食用烹飪參數(shù)(直鏈淀粉含量、糊化溫度以及膠稠度)與低GI性狀以及高密度遺傳圖譜聯(lián)系起來,幫助識(shí)別遺傳區(qū)域和相關(guān)功能標(biāo)記,用于遺傳育種研究;與此同時(shí),利用已經(jīng)鑒定的低GI并具有良好口感的水稻品種或資源,構(gòu)建遺傳群體,鑒定新的不依賴淀粉合成途徑的GI調(diào)控位點(diǎn);4)培育低GI且適口性優(yōu)良的水稻新品種。加強(qiáng)聚合低GI特性和具有消費(fèi)者偏好的稻米品質(zhì)屬性(硬度和黏度),是滿足未來不同飲食習(xí)慣健康需求的重要途徑。當(dāng)然,倡導(dǎo)健康的消費(fèi)習(xí)慣,多食用含有多種營養(yǎng)成分的糙米,也是未來需要倡導(dǎo)的重要理念。相信在不久的未來,將充分利用系統(tǒng)生物學(xué)、全基因組選擇、基因組學(xué)建模、其他組學(xué)技術(shù)、分子生理學(xué)和營養(yǎng)基因組學(xué)等多學(xué)科的融合,全面解析水稻低GI特性,滿足全世界以稻米為主食人們的健康需求。
[1] 范光森, 許岱, 富志磊, 許春艷, 楊然, 孫寶國, 李秀婷. 血糖生成指數(shù)研究進(jìn)展[J]. 中國食品添加劑, 2016(10): 56-68.
Fan G S, Xu D, Fu Z L, Xu C Y, Yang R, Sun B G, Li X T. Research progress of glycemic index[J]., 2016(10): 56-68. (in Chinese with English abstract)
[2] 繆銘, 江波, 張濤. 低血糖生成指數(shù)淀粉類衍生物的研究進(jìn)展[J]. 食品科學(xué), 2008, 29(4): 452-456.
Miao M, Jiang B, Zhang T. Research progress of low glycemic-index starchy derivatives[J]., 2008, 29(4): 452-456. (in Chinese with English abstract)
[3] 世界衛(wèi)生組織. 關(guān)于糖尿病的十個(gè)事實(shí)[J]. 中國衛(wèi)生政策研究, 2013, 6(10): 35.
World Health Organization. 10 facts about diabetes[J]., 2013, 6(10): 35. (in Chinese)
[4] Wee M S M, Henry C J. Reducing the glycemic impact of carbohydrates on foods and meals: Strategies for the food industry and consumers with special focus on Asia[J]., 2020, 19: 670-702.
[5] Global Rice Science Partnership. Rice Almanac[M]. Los Baňos, Philippines: International Rice Research Institute, 2013.
[6] Kataoka M, Venn B J, Williams S M, Te Morenga L A, Heemels I M, Mann J I. Glycaemic responses to glucose and rice in people of Chinese and European ethnicity[J]., 2013, 30(3): e101-e107.
[7] Jenkins D, Wolever T, Taylor R H, Barker H, Fielden H, Baldwin J M, Bowling A C, Newman H C, Jenkins A L, Goff D V. Glycemic index of foods: A physiological- basis for carbohydrate exchange[J]., 1981, 34(3): 362-366.
[8] Butardo Jr V M, Sreenivasulu N. Chapter Two-tailoring grain storage reserves for a healthier rice diet and its comparative status with other cereals[J].,2016, 323: 31-70.
[9] Juliano B O, Bechtel D B. The rice grain and its gross composition//Juliano B O. Rice: Chemistry and Technology[M]. American Association of Cereal Chemistry, St Paul, 1985: 17-57.
[10] Zhang G, Malik V S, Pan A, Kumar S, Holmes M, Spiegelman D, Lin X, Hu F B. Substituting brown rice for white rice to lower diabetes risk: A focus-group study in Chinese adults[J]., 2010, 110(8): 1216-1221.
[11] Juliano B O. Rice in Human Nutrition[M]. Rome: International Rice Research Institute in collaboration with Food and Agriculture Organization, 1993: 35-61.
[12] Butardo Jr V M, Sreenivasulu N, Juliano B O. Improving rice grain quality: State-of-the-art and future prospects[J]., 2019, 1892: 19-55.
[13] Panlasigui L N, Thompson L U. Blood glucose lowering effects of brown rice in normal and diabetic subjects[J]., 2006, 57(3-4): 151-158.
[14] Hu E A, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review[J]., 2012, 344: e1454.
[15] Miller J B, Pang E, Bramall L. Rice: A high or low glycemic index food?[J], 1992, 56: 1034-1036.
[16] 王勇, 應(yīng)劍, 董志忠, 任晨剛. 低升糖指數(shù)大米研究進(jìn)展[J]. 生物產(chǎn)業(yè)技術(shù), 2017(4): 41-47.
Wang Y, Ying J, Dong Z Z, Ren C G. Recent development of research on low glycemic index rice[J]., 2017(4): 41-47. (in Chinese with English abstract)
[17] Wolever T M S, Vorster H H, Bj?rck I, Brand-Miller J, Brighenti F, Mann J I, Ramdath D D, Granfeldt Y, Holt S, Perry T L, Venter C, Wu X M. Determination of the glycemic index of foods: Interlaboratory study[J]., 2003, 57(3): 475-482.
[18] 陳靜茹, 孟慶佳, 康樂, 陳然, 王夢(mèng)倩, 應(yīng)劍, 王黎明, 邵丹青, 向雪松. 低血糖生成指數(shù)谷物及其制品研究進(jìn)展與法規(guī)管理現(xiàn)狀[J]. 食品工業(yè)科技, 2020, 41(18): 338-343.
Chen J R, Meng Q J, Kang L, Chen R, Wang M Q, Ying J, Wang L M, Shao D Q, Xiang X S. Research progress and regulation status of low glycemic index grain and its products[J]., 2020, 41(18): 338-343. (in Chinese with English abstract)
[19] Shah B R, Li B, Wang L, Liu S, Li Y, Wei X, Jin W P, Li Z S. Health benefits of konjac glucomannan with special focus on diabetes[J]., 2015, 5: 179-187.
[20] 謝麗, 李燁琦, 楊艷, 楊莉琴. 糖尿病飲食治療現(xiàn)狀及進(jìn)展[J]. 現(xiàn)代醫(yī)藥衛(wèi)生, 2015, 31(1): 75-77.
Xie L, Li Y Q, Yang Y, Yang L Q. Current situation and progress of diabetes diet treatment[J]., 2015, 31(1): 75-77. (in Chinese)
[21] Beyer P. Golden rice and Golden crops for human nutrition[J]., 2010, 27: 478-481.
[22] Anacleto R, Badoni S, Parween S, Butardo V M, Misra G, Cuevas R P, Kuhlmann M, Trinidad T P, Mallillin A C, Acuin C, Bird A R, Morell M K, Sreenivasulu N. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycemic index and texture in rice[J]., 2019, 17(7): 1261-1275.
[23] Liu G D, Gu Z B A, Hong Y, Cheng L, Li C M. Structure, functionality and applications of debranched starch: A review[J]., 2017, 63: 70-79.
[24] Jenkins D J, Kendall C W, Augustin L S, Franceschi S, Hamidi M, Marchie A, Jenkins A L, Axelsen M. Glycemic index: Overview of implications in health and disease[J]., 2002, 76: 266S-273S.
[25] Fitzgerald M A, Rahman S, Resurreccion A P, Concepcion J C, Daygon V D, Dipti S S, Kabir K A, Klingner B, Morell M K, Bird A R. Identification of a major genetic determinant of glycaemic index in rice[J]., 2011, 4: 66-74.
[26] 楊瑞芳, 樸鐘澤, 萬常照, 李鋼夑, 龔長(zhǎng)春, 白建江.?高抗性淀粉水稻新品種優(yōu)糖稻2號(hào)的選育及其特征特性[J]. 中國稻米, 2020, 26(1): 94-95, 99.
Yang R F, Piao Z Z, Wan C Z, Li G X, Gong C C, Bai J J. Breeding and characteristics of new rice variety Youtangdao 2 with high resistant starch., 2020, 26(1): 94-95, 99. (in Chinese with English abstract)
[27] Fatema K, Rahman F, Sumi N, Kobura K, Liaquat A L. Glycemic index of three common varieties of Bangladeshi rice in healthy subjects[J]., 2010, 4(8): 531-535.
[28] Kumar A, Sahoo U, Baisakha B, Okpani OK, Ngangkham U, Parameswaran C, Basak N, Kumar G, Sharma S G. Resistant starch could be decisive in determining the glycemic index of rice cultivars[J]., 2018, 79: 348-353.
[29] King R A, Noakes M, Bird R, Morell K, Topping D L. An extruded breakfast cereal made from a high amylose barley cultivar has a low glycemic index and lower plasma insulin response than one made from a standard barley[J]., 2008, 48: 526-530.
[30] Lee K Y, Lee H G. Comparative effects of slowly digestible and resistant starch from rice in high-fat diet-induced obese mice[J]., 2016, 25: 1443-1448.
[31] Harazaki T, Inoue S, Imai C, Mochizuki K, Goda T. Resistant starch improves insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue[J]., 2014, 30: 590-595.
[32] Marlatt K L, White U A, Beyl R A, Peterson C M, Martin C K, Marco M L, Keenan M J, Martin R J, Aryana K J, Ravussin E. Role of resistant starch on diabetes risk factors in people with prediabetes: Design, conduct, and baseline results of the STARCH trial[J]., 2018, 65: 99-108.
[33] Wang Q, Zheng Y F, Zhuang W J, Lu X, Luo X L, Zheng B D. Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch[J]., 2018, 264: 427-434.
[34] Fan M Z, Archbold T, Lackeyram D, Liu Q, Mine Y, Paliyath G. Consumption of guar gum and retrograded high-amylose corn resistant starch increases IL-10 abundance without affecting pro-inflammatory cytokines in the colon of pigs fed a high-fat diet[J]., 2012, 90: 278-280.
[35] Jiminez J A, Uwiera T C, Abbott D W, Uwiera R R E, Inglis G D. Impacts of resistant starch and wheat bran consumption on enteric inflammation in relation to colonic bacterial community structures and short-chain fatty acid concentrations in mice[J]., 2016, 8: 67.
[36] Birt D F, Boylston T, Hendrich S, Jane J L, Hollis J, Li L, McClelland J, Moore S, Phillips G J, Rowling M, Schalinske K, Scott M P, Whitley E M. Resistant Starch: Promise for improving human health[J]., 2013, 4(6): 587-601.
[37] Fuentes-Zaragoza E, Riquelme-Navarrete M J, Sanchez-Zapata E, Perez-Alvarez J A. Resistant starch as functional ingredient: A review[J]., 2010, 43: 931-942.
[38] Dexter F. Fine structure of starch and its relationship to the organization of starch granules[J]., 1972, 19(1): 8-25. (in Japanese with English abstract)
[39] Robin J P, Mercier C, Charbonniere R, Guilbot A. Lintnerized starches gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch[J]., 1974, 51: 389-406.
[40] Gidley M J. Factors affecting the crystalline type (AC) of native starches and model compounds-a rationalization of observed effects in terms of polymorphic structures[J]., 1987, 161: 301-304.
[41] Dhital S, Butardo Jr V M, Jobling S A, Gidley M J. Rice starch granule amylolysis-Differentiating effects of particle size, morphology, thermal properties and crystalline polymorph[J]., 2015, 115: 305-316.
[42] Hoover R, Hughes T, Chung H J, Liu Q. Composition, molecular structure, properties, and modification of pulse starches: A review[J]., 2010, 43: 399-413.
[43] 焦桂愛, 唐紹清, 羅炬, Fitzgerald M, Roferos L T, 胡培松. 水稻抗性淀粉突變體抗性淀粉結(jié)構(gòu)的比較研究[J]. 中國水稻科學(xué), 2006, 20(6): 645-648.
Jiao G A, Tang S Q, Luo J, Fitzgerald M, Roferos L T, Hu P S. Comparative study on resistant starch structure of resistant starch enriched rice mutants[J]., 2006, 20(6): 645-648. (in Chinese with English abstract)
[44] Butardo Jr V M, Fitzgerald M A, Bird A R, Gidley M J, Flanagan B M, Larroque O, Resurreccion A P, Laidlaw H K, Jobling S A, Morell M K, Rahman S. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing[J]., 2011, 62(14): 4927-4941.
[45] Yang C Z, Shu X L, Zhang L L, Wang X Y, Zhao H J, Ma C X, Wu D X. Starch properties of mutant rice high in resistant starch[J]., 2006, 54(2): 523-528.
[46] Butardo Jr V M, Anacleto R, Parween S, Samson I, de Guzman K, Alhambra C M, Misra G, Sreenivasulu N. Systems genetics identifies a novel regulatory domain of amylose synthesis[J]., 2017, 173: 887-906.
[47] Fredriksson H, Silverio J, Andersson R, Eliasson A C, Aman P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches[J].1998, 35: 119-134.
[48] Jane J, Chen Y Y, Lee L F, McPherson A E, Wong K S, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch[J]., 1999, 76(5): 629-637.
[49] Shu X L, Jiao G A, Fitzgerald M A, Yang C Z, Shu Q Y, Wu D X. Starch structure and digestibility of rice high in resistant starch[J]., 2006, 58: 411-417.
[50] Takeda Y, Hizukuri S, Juliano B O. Structures of rice amylopectins with low and high affinities for iodine[J]., 1987, 168: 79-88.
[51] Ye J P, Hu X T, Luo S J, McClements D J, Liang L, Liu C M. Effect of endogenous proteins and lipids on starch digestibility in rice flour[J]., 2018, 106: 404-409.
[52] Pletsch E A, Hamaker B R, Brown rice compared to white rice slows gastric emptying in humans[J]., 2018, 72(3) 367-373.
[53] Kim Y, Keogh J B, Clifton P M. Polyphenols and glycemic control[J]., 2016, 8: 17.
[54] Toutounji M R, Farahnaky A, Santhakumar A B, Oli P, Butardo Jr V M, Blanchard C L. Intrinsic and extrinsic factors affecting rice starch digestibility[J]., 2019, 88: 10-22.
[55] De Guzman M K, Parween S, Butardo V M, Alhambra C M, Anacleto R, Seiler C, Bird A R, Chow C P, Sreenivasulu N. Investigating glycemic potential of rice by unraveling compositional variations in mature grain and starch mobilization patterns during seed germination[J]., 2017, 7(1): 5854.
[56] Barclay A W, Petocz P, McMillan-Price J, Flood V M, Prvan T, Mitchell P, Brand-Miller J C. Glycemic index, glycemic load, and chronic disease risk--a meta-analysis of observational studies[J]., 2008, 87: 627-637.
[57] ISO. Food products-Determination of the glycemic index (GI) and recommendation for food classification: ISO 26642 [S]. Geneva, Switzerland: ISO, 2010.
[58] 中華人民共和國國家衛(wèi)生健康委員會(huì). 食物血糖生成指數(shù)測(cè)定方法: WS /T 652-2019 [S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2019.
National Health Commission of the People’s Republic of China. Standard for determination of food glycemic index: WS /T 652-2019 [S]. Beijing: China Standard Press, 2019. (in Chinese)
[59] Woolnough J W, Monro J A, Brennan C S, Bird A R. Simulating human carbohydrate digestion in: A review of methods and the need for standardization., 2008, 43, 2245-2256.
[60] Kim J C, Kim J I, Kong Y W, Kang M J, Kim M J, Cha I J. Influence of the physical form of processed rice products on the enzymatic hydrolysis of rice starch inand on the postprandial glucose and insulin responses in patients with type 2 diabetes mellitus[J]., 2004, 68: 1831-1836.
[61] Hur S J, Lim B O, Decker E A, McClements D J. Inhuman digestion models for food applications[J]., 2011 125: 1-12.
[62] Englyst H N, Kingman S M, Cummings J H. Classification and measurement of nutritionally important starch fractions[J]., 1992, 46: S33-S50.
[63] Go?i I, Garcia-Alonso A, Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index[J]., 1997, 17: 427-437.
[64] Venn B J, Kataoka M, Mann J. The use of different reference foods in determining the glycemic index of starchy and non-starchy test foods[J]., 2014, 13: 50.
[65] Atkinson F S, Foster-Powell K, Brand-Miller J C. International tables of glycemic index and glycemic load values: 2008[J]., 2008, 31: 2281-2283.
[66] Rathinasabapathi P, Purushothaman N, Ramprasad V, Parani M. Whole genome sequencing and analysis of Swarna, a widely cultivated indica rice variety with low glycemic index[J]., 2015, 5(1): 11303.
[67] Hu P S, Zhao H J, Duan Z Y, Zhang L L, Wu D X. Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents[J]., 2004, 40(3): 231-237.
[68] Deepa G, Singh V, Naidu K A. A comparative study on starch digestibility, glycemic index and resistant starch of pigmented (‘Njavara’ and ‘Jyothi’) and a non-pigmented (‘IR 64’) rice varieties[J]., 2010, 47: 644-649.
[69] Chung H J, Liu Q, Huang R L, Yin Y L, Li A K. Physicochemical properties and instarch digestibility of cooked rice from commercially available cultivars in Canada[J]., 2010, 87: 297-304.
[70] Sumczynski D, Bubelova Z, Fisera M. Determination of chemical, insoluble dietary fibre, neutral-detergent fibre and in vitro digestibility in rice types commercialized in Czech markets[J]., 2015, 40: 8-13.
[71] Fernandes J M, Madalena D A, Pinheiro A C,Vicente A A. Rice in vitro digestion: application of INFOGEST harmonized protocol for glycemic index determination and starch morphological study[J]., 2020, 57(4): 1393-1404.
[72] Toutounji M R, Farahnaky A, Santhakumar A B, Oli P, Butardo Jr V M, Blanchard C L. Intrinsic and extrinsic factors affecting rice starch digestibility[J]., 2019, 88: 10-22.
[73] Selvaraj R, Singh A K, Singh V K, Abbai R, Habde S V, Singh U M, Kumar A. Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality[J]., 2021, 11: 10082. https://doi.org/10.1038/s41598-021-87964-8.
[74] Kharabian-Masouleh A, Waters D L, Reinke R F, Ward R, Henry R J. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice[J]., 2012, 2(8): 2016-2016.
[75] Yang R, Bai J, Fang J, Wang Y, Lee G, Piao Z. A single amino acid mutation ofcontributes to resistant starch accumulation in rice[J]., 2016, 66(4): 481-489. DOI: 10.1270/jsbbs.16037
[76] 孫春龍, 白建江, 施標(biāo), 朱輝明, 孫志敏, 樸鐘澤, 都興林. 水稻抗性淀粉含量性狀含量的配合力分析[J]. 中國農(nóng)學(xué)通報(bào), 2012, 28(12): 24-28.
Sun C L, Bai J J, Shi B, Zhu H M, Sun Z M, Piao Z Z, Du X L. Analysis on combining ability of resistant starch content in rice grain[J]., 2012, 28(12): 24-28. (in Chinese with English abstract)
[77] Baysal C, He W, Drapal M, Villorbina G, Medina V, Capell T, Khush G S, Zhu C, Fraser P D, Christou P. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming[J]., 2020, 117(42): 26503-26512.
[78] Lin L S, Zhang L, Cai X L, Liu Q Q, Zhang C Q, Wei C X. The relationship between enzyme hydrolysis and the components of rice starches with the same genetic background and amylopectin structure but different amylose contents[J]., 2018, 84: 406-413. https://doi.org/10.1016/j.foodhyd.2018.06.029.
[79] Wani A A, Singh P, Shah M A. Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties[J]., 2012, 11: 417-436.
[80] Huang L C, Li Q F, Zhang C Q, Chu R, Gu Z W, Tan H Y, Zhao D S, Fan XL, Liu Q Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]., 2020, 18: 2164-2166
[81] Biselli C, Cavalluzzo D, Perrini R, Gianinetti A, Bagnaresi P, Urso S, Orasen G, Desiderio F, Lupotto E, Cattivelli L, Valè G. Improvement of marker-based predictability of apparent amylose content in japonica rice through GBSSI allele mining[J]., 2014, 7(1): 1-18.
[82] Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Suzuki Y, Sano Y. Allelic diversification at thelocus in landraces of Asian rice[J]., 2008, 116(7): 979-989.
[83] Hoai T T T, Matsusaka H, Toyosawa Y, Suu T D, Satoh H, Kumamaru T. Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars[J]., 2014, 64: 142-148.
[84] Zeng D C, Liu T L, Ma X L, Wang B, Zheng Z Y, Zhang Y L, Xie X R, Yang B W, Zhao Z, Zhu Q L, Liu Y G. Quantitative regulation ofexpression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice[J]., 2020, 18: 2385-2387.
[85] Zhou Z K, Robards K, Helliwell S, Blanchard C. Composition and functional properties of rice., 2002, 37: 849-868.
[86] Bao J S, Zhou X, Xu F F, He Q, Park Y J. Genome-wide association study of the resistant starch content in rice grains[J].,2017, 69(7-8): 1600343.
[87] 魏明亮, 杜娟, 曾亞文, 楊樹明, 普曉英, 楊濤. 云南稻微核心種質(zhì)及其回交高代糙米功能成分含量的遺傳變異. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2013, 39(2): 121-126.
Wei M L, Du J, Zeng Y W, Yang S M, Pu X Y, Yang T. Genetic variation of functional components in brown rice of mini core collection of Yunnan landrace rice and its advanced backcross lines[J]., 2013, 39(2): 121-126. (in Chinese with English abstract)
[88] Raja R B, Agasimani S, Jaiswal S, Thiruvengadam V, Sabariappan R, Chibbar R N, Ram S G. EcoTILLING by sequencing reveals polymorphisms in genes encoding starch synthases that are associated with low glycemic response in rice[J]., 2017, 17: 13. DOI 10.1186/s12870-016-0968-0
[89] Zhou H J, Wang L J, Liu G F, Meng X B, Jing Y H, Shu X L, Kong X L, Sun J, Yu H, Smitha S M, Wu D X, Li J Y. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthasein synthesizing resistant starch in rice[J]., 2016, 113(45): 12844-12849.
[90] 楊樹明, 夏小環(huán), 趙旭, 方曉東, 杜娟, 曾亞文, 普曉英, 楊濤, 彭潞波. 不同基因型粳稻籽粒產(chǎn)量與功能成分的生態(tài)變異. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2012, 38(5): 464-471.
Yang S M, Xia X H, Zhao X, Fang X D, Du J, Zeng Y W, Pu X Y, Yang T, Peng L B. Ecological variations in yield and functional components in different genotypes of japonica rice[J]., 2012, 38(5) : 464-471. (in Chinese with English abstract)
[91] 牟方貴, 閆宗武, 冉瑞林, 滕建勛, 陳永波, 楊朝柱, 李明輝, 吳殿星.水稻抗性淀粉相關(guān)SSR標(biāo)記的初步研究. 分子植物育種, 2008, 6(3): 432-438.
Mou F G, Yan Z W, Ran R L, Teng J X, Chen Y B, Yang C Z, Li M G, Wu D X. Preliminary studies on resistant starch-linked SSR marker in rice[J]., 2008, 6(3): 432-438. (in Chinese with English abstract)
[92] 羅曦, 黃錦峰, 朱永生, 謝鴻光, 吳方喜, 張木清, 張建福, 謝華安. 水稻功米3號(hào)高抗性淀粉性狀的遺傳分析. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2014, 22(1): 10-16.
Luo X, Huang J F, Zhu Y S, Xie H G, Wu F X, Zhang M Q, Zhang J S, Xie H A. Genetic analysis of high resistant starch characteristics for rice variety Gongmi 3(ssp.)[J]., 2014, 22(1): 10-16. (in Chinese with English abstract)
[93] Yang R, Sun C, Bai J, Luo Z, Shi B, Zhang J, Yan W, Piao Z. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (L.)[J]., 2012, 7: e43026.
[94] Kumar A, Sahoo U, Baisakha B, Okpani O K, Ngangkham U, Parameswaran C, Basak N, Kumar G, Sharma S G. Resistant starch could be decisive in determining the glycemic index of rice cultivars[J]., 2018, 79: 348-353.
[95] Zhu F. Interactions between starch and phenolic compound[J]., 2015, 43(2), 129-143.
[96] Chusak C, Pasukamonset P, Chantarasinlapin P, Adisakwattana S, Glycemia P, Insulinemia, and antioxidant status in healthy subjects after ingestion of bread made from anthocyanin-rich Riceberry Rice[J]., 2020, 12: 782. DOI: 10.3390/nu12030782
[97] Parween S, Anonuevo J J, Butardo V M, Misra G, Anacleto R, Llorente C, Kosik O, Romero M V, Bandonill E H, Mendioro M S, Lovegrove A, Fernie A R, Brotman Y, Sreenivasulu N. Balancing the double-edged sword effect of increased resistant starch content and its impact on rice texture: Its genetics and molecular physiological mechanisms[J]., 2020, 18(8): 1763-1777.
[98] 吳偉, 劉成梅, 李俶, 劉偉, 萬婕, 徐雨佳. 高膳食纖維營養(yǎng)強(qiáng)化大米的制備研究. 食品科學(xué), 2009, 30: 76-80.
Wu W, Liu C M, Li T, Liu W, Wan J, Xu Y J. Preparation of nutritional rice fortified with dietary fiber[J]., 2009, 30: 76-80. (in Chinese with English abstract)
[99] Liu D, Wang W, Cai X. Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (L.)[J]., 2014, 12: 1297-1307
[100]Zhang C Q, Yang Y, Chen S J, Liu X J, Zhu J H, Zhou L H, Lu Y, Li Q F, Fan X L, Tang S Z, Gu M H, Liu Q Q. A rareallele coordinately improves rice eating and cooking quality and grain transparency[J]., 20202021,63(5):889-901
[101]Zhang J S, Zhang H, Botella J R, Zhu J K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of thegene in elite rice varieties[J]., 2018, 60: 369-375. DOI: 10.1111/jipb.12620
[102]Shu X, Xu J, Wang Y, Rasmussen S K, Wu D. Effects of gamma irradiation on starch digestibility of rice with different resistant starch content[J]., 2013, 48(1): 35-43. https://doi.org/10.1111/j.1365-2621. 2012.03154.x
[103]Park J, Oh S W, Chung H J, Park H J. Structural and physicochemical properties of native starches and non-digestible starch residues from Korean rice cultivars with different amylose contents[J]., 2020, 102: 105544.
[104]沈偉橋, 舒小麗, 張琳琳, 夏英武, 吳殿星. 加工型功能早秈稻新品種浙輻201 的選育與特性[J].核農(nóng)學(xué)報(bào), 2006, 20(4) : 312-314.
Shen W Q, Shu X L, Zhang L L, Xia Y W, Wu DX.Development and characteristics of processing- functional indica early rice cultivar “Zhefu 201”[J]., 2006, 20(4) : 312-314. (in Chinese with English abstract)
[105]楊朝柱, 李春壽, 舒小麗, 張志轉(zhuǎn), 張磊, 趙海軍, 馬傳喜, 吳殿星. 富含抗性淀粉水稻突變體的淀粉特性[J].中國水稻科學(xué), 2005, 19(6): 516-520.
Yang C Z, Li C S, Shu X L, Zhang Z Z, Zhang L, Zhao H J, Ma C X, Wu D X.Starch properties of rice mutant enriched with resistant starch[J]., 2005, 19(6): 516-520. (in Chinese with English abstract)
[106]林靜, 孫寶霞, 方先文, 王艷平, 張所兵, 汪迎節(jié). 富含抗性淀粉稻米淀粉特性研究[J]. 華北農(nóng)學(xué)報(bào), 2013, 28(1): 58-61.
Lin J, Sun B X, Fang X W, Wang Y P, Zhang S B, Wang Y J. Starch properties of rice enriched with resistant starch[J]., 2013, 28(1): 58-61. (in Chinese with English abstract)
[107]田親親, 陸長(zhǎng)梅, 劉小龍, 李霞, 魏曉東, 方先文, 張所兵, 宗壽余, ‘扎西瑪’與‘南粳46’秈粳雜交F1花藥培養(yǎng)及再生體系的建立[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2014, 23(6): 88-95.
Tian Q Q, Lu C M, Liu X L, Li X, Wei X D, Fang X W, Zhang S B, Zong S Y. Anther culture of hybrid F1of indica and japonica varieties ‘Zaxima’/‘Nanjing 46’[J]., 2014, 23(6): 88-95. (in Chinese with English abstract)
[108]楊樹明, 曾亞文, 王江民, 杜娟, 普曉英, 楊濤, 王雨辰, 普正貴, 方曉東, 粳型水稻高鈣新品系功米1號(hào)的選育與營養(yǎng)評(píng)價(jià)[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2008, 21(6): 1515- 1518.
Yang S M, Zeng Y W, Wang J M, Du J, Pu X Y, Yang T, Wang Y C, Pu Z G, Fang X D. Breeding and nutrient valuation onrice strain Gongmi 1 with high Ca content[J]., 2008, 21(6): 1515-1518. (in Chinese with English abstract)
[109]Sun Y W, Jiao G A, Liu Z P, Zhang X, Li J Y, Guo X P, Du W M, Du J L, Francis F, Zhao Y D, Xia LQ. Generation of high-amylose rice through CRISPR/Cas9- mediated targeted mutagenesis of starch branching enzymes[J]., 2017, 8: 298. https://doi. org/10.3389 /fpls.2017.00298
[110]白建江, 張建明, 樸鐘澤, 方軍, 李剛燮, 王亞, 楊瑞芳. 應(yīng)用CRISPR/Cas9系統(tǒng)編輯水稻SBE3基因獲得高抗性淀粉水稻新品系[J]. 分子植物育種, 2018, 16(5): 1510-1516.
Bai J J, Zhang J M, Piao Z Z, Fang J, Li G X, Wang Y, Yang R F. Obtain of new rice variety with high resistant starch based on the edition of ricegene by CRISPR/Cas9 system[J]., 2018, 16(5): 1510-1516. (in Chinese with English abstract)
[111]Jukanti A K, Pautong P A, Liu Q Q, Sreenivasulu N. Low glycemic index rice-a desired trait in starchy staples[J]., 2020, 106: 132-149. https://doi.org/10.1016/j.tifs.2020.10.006
[112]魏霞, 徐延浩, 丁保淼, 王容, 胡倩文, 張文英. 抗性淀粉及其遺傳改良研究進(jìn)展[J]. 長(zhǎng)江大學(xué)學(xué)報(bào): 自然科學(xué)版), 2019, 16(8): 101-107.
Wei X, Xu Y H, Ding B M, Wamg R, Hu Q W, Zhang W Y. Research progress of resistant starch and its genetic improvement[J]., 2019, 16(8): 101-107. (in Chinese)
[113]Swamy H K M, Anila M, Kale R R, Rekha G, Bhadana V P, Anantha M S, Brajendra P, Balachiranjeevi C H, Hajira S K, Prasanna B L, Pranathi K, Dilip T, Kousik M B V N, Harika G, Surekha K, Kumar R M, Cheralu C, Shankar V G, Laha G S, Prasad M S, Rao L V S, Madhav M S, Balachandran S M, Sundaram R M. Marker assisted improvement of low soil phosphorus tolerance in the bacterial blight resistant, fine-grain type rice variety, Improved Samba Mahsuri[J]., 2020, 10: 21143.
[114]Kim D Y, Kim Y, Lim H. Glycemic indices and glycemic loads of common Korean carbohydrate-rich foods[J]., 2019, 121(4): 416-425.
[115]Tripathy S K, Maharana M, Ithape D M, Mohanty M R, Dash A P, Reshmi R K R, Ganik N, Panda S. An insight into the glycemic index of rice[J]., 2016, 7(30): 1-6.
[116]胡時(shí)開, 胡培松. 功能稻米研究現(xiàn)狀與展望[J]. 中國水稻科學(xué), 2021, 35(4): 311-325.
Hu S K, Hu P S. Research progress and prospect of functional rice[J]., 35(4): 311-325. (in Chinese with English abstract)
[117]魏興華. 我國水稻品種資源研究進(jìn)展與展望[J]. 中國稻米, 2019, 25(5): 8-11.
Wei X H. Progress and prospect of rice germplasm research in China[J]., 2019, 25(5): 8-11. (in Chinese with English abstract)
Research Progress of Rice with Low Glycemic Index
LI Xia1, 3, JIANG Yanjie1, TAO Yajun1, LI Wenqi1,WANG Fangquan1, CHEN Zhihui1, XU Yang1, 3, WANG Jun1, 3, FAN Fangjun1, ZHU Jianping1, Sreenivasulu NESE2, YANG Jie1, 3, *
(1Institute of Food Crops/International Rice Research Institute-Jiangsu Academy of Agricultural Sciences Joint Laboratory, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2International Rice Research Institute, Los Baňos 4031, Philippines;3Collaborative Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Agricultural College, Yangzhou University, Yangzhou 225009, China;*Corresponding author, E-mail: yangjie168@aliyun.com)
Milled white rice is typical starch-rich food, serves as the major daily caloric source for a majority of the world population especially for Asian. Most rice varieties are of high glycemic index, a food quality inferenced to contribute to the health problems surrounding high-calorie intake and dysregulated glucose metabolism. A lot of studies have been carried out attempting to lower glycemic index. The effects of various factors, large-scale screening methods, genetic mechanism and its related genes, starch structure and genetic improvement on low glycemic index of rice were summarized in this review. And proposal researches were put forward as well.
rice; glycemic index; starch; genetic mechanism; genetic improvement
2021-09-06;
2021-11-10。
江蘇省重點(diǎn)研發(fā)計(jì)劃(現(xiàn)代農(nóng)業(yè))資助項(xiàng)目(BE2021359);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金資助項(xiàng)目[CX(20)3008];國家自然科學(xué)基金資助項(xiàng)目(31571585);國家自然科學(xué)基金國際(地區(qū))合作與交流項(xiàng)目(31861143011)。
10.16819/j.1001-7216.2022.210902