• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Amorphous Ni-Co-S nanocages assembled with nanosheet arrays as cathode for high-performance zinc ion battery

    2022-07-11 03:39:48LiGungmengQuXixiZhngShunshunZhoChenggngWngGngZhoPeiyuHouXijinXu
    Chinese Chemical Letters 2022年6期

    N Li,Gungmeng Qu,Xixi Zhng,Shunshun Zho,Chenggng Wng,Gng Zho,Peiyu Hou,Xijin Xu,?

    a School of Physics and Technology,University of Jinan,Ji’nan 250022,China

    b Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering,Shandong University,Ji’nan 250100,China

    c School of Electronic and Information Engineering (Department of Physics),Qilu University of Technology (Shandong Academy of Sciences),Ji’nan 250353,China

    Keywords:Alkaline zinc batteries Metal sulfide Hierarchical structures Amorphous structure Hollow structure

    ABSTRACT The selection and development of cathode of alkaline zinc batteries (AZBs) is still hindered and often leads to poor rate capability and short cycle life.Here,amorphous hollow nickel-cobalt-based sulfides nanocages with nanosheet arrays (AM-NCS) are designed and constructed with ZIF-67 as the selftemplate to exchange with Ni2+ and S2?by using a two-step ion exchange method.The synthesized AM-NCS possess the high specific capacity (160 mAh/g at 2 A/g),and the assembled battery has excellent rate performance (146 mAh/g reversible capacity at 5 A/g).The assembled device has excellent rate performance (155 mAh/g at 2 A/g) and long cycling stability (7000 cycles,62.5% of initial capacity).The excellent electrochemical properties of the electrode materials are mainly attributed to the unique structure,in particular,polyhedron structure with hollow structure can improve the cyclic stability,and the amorphous structure can expose more reactive sites on the surfaces of nickel,cobalt and sulfur.This work provides a new strategy for the design and fabrication of high performance cathode materials for AZBs.

    The lithium-ion batteries are famous for high energy density and long cycling life which currently dominate the commercial secondary battery market including consumer electronics,electric vehicles and aerospace applications [1–4].However,flammable organic electrolytes and rare lithium resources limit their wide applications.Recently,aqueous batteries have attracted intense interests because of their inherent safety and low cost,especially for low reduction potential of alkaline zinc anode (?1.2 Vvs.SHE),which is emerging as one of the most promising alternatives to electrochemical energy storage [5].In addition,the ionic conductivity of aqueous electrolyte (~1 S/cm) is much higher than that of non-aqueous electrolyte (~1–10 mS/cm),which endows the battery with an outstanding rate capability [6–8].

    Zn//Ni alkaline zinc batteries have many advantages,such as outstanding power density,high discharge voltage platform and environmental friendliness.Nowadays,Ni(OH)2and NiO are mostly used as active cathode materials in alkaline zinc batteries [9,10].However,the poor stability,unsatisfactory conductivity and volume expansion limit their wide applications.Many ways,including constructing multi-shell nanostructures,one-dimensional nanoarrays or 3D skeleton structures,have been used to solve the volume expansion for high-performance Ni-based cathode materials[11–13].The assembly of vertically arranged nanoarrays with many gaps facilitates the diffusion of ions and the full contact between the electrode material and the electrolyte.Besides,the amorphous phase provides larger proportion of random alignment bonds in the unsaturated electronic configuration than the crystal,which facilitates the adsorption of the reactants [14–17].Furthermore,the amorphous structure accelerates the charge transfer between the active center and the reaction intermediate.Bovineet al.synthesized MOF-derived amorphous V2O5and carbon (a-V2O5@C) composites,where amorphous V2O5is uniformly distributed in the carbon framework [18].The amorphous structure endows V2O5more isotropic Zn2+diffusion pathways and active sites,which leads to the rapid migration and high specific capacity of Zn2+and remarkable electrochemical properties of a-V2O5@C composite.What is more,nickel/cobalt sulfides have the advantages of high theoretical capacitance,abundant raw materials and environment-friendly as well as high intrinsic conductivity [19–21].

    Herein,we successfully designed and synthesized hollow Am-NCS nanocages (abbreviated as Am-NCS in short) by ion exchange method with ZIF-67 as the self-template [22–24].On one hand,the amorphous structure of synthesized Am-NCS not only accelerates the charge transfer but also have the isotropic OH?diffusion pathways,further enhancing the rate performance.On the other hand,nanosheets-assembled hollow structures alleviate the volume expansion during the intercalated process of OH-,as well as providing large electrolyte contact areas,thus increasing specific capacity and cycling stability [25–28].Therefore,the synthesized Am-NCS deliver a high capacity of 160 mAh/g at 2 A/g with excellent rate performance of 130 mAh/g at 20 A/g.The energy density of the asprepared Am-NCS//Zn battery is up to 254.2 Wh/kg with a highest power density of 3.28 kW/kg.What is more,the long cycle stability could be reached 7000 cycles,even at a high current density of 10 A/g,illustrating the high stability of Am-NCS//Zn battery.

    Methylimidazole (2-mIM),methanol,ethanol,Ni(NO3)2·6H2O,Co(NO3)2·6H2O,KOH are supplied by Aladdin Reagent Company(China).The morphologies and microstructures of the materials were observed by field emission scanning electron Microscope(QUANTA 250 FEG) and transmission electron microscope (JEOL JEM-2100F).The chemical states were characterized by C-ray photoelectron spectroscopy (XPS) with X-ray energy dispersive spectrometer (XPS).The Raman spectra of the materials were measured by HORIBA LabRAM HR 800 under 514 nm excitation light source.The electrochemical measurements were carried out on CHI660 electrochemical workstation.

    All reagents are used directly without further purification.1 mmol (0.291 g) of Co(NO3)2·6H2O was dissolved in 25 mL of methanol to obtain solution A,and 4 mmol of 2-methylimidazole(0.328 g) was dissolved in 25 ml of methanol to obtain solution B.Solution B was poured into solution A and stirred continuously for 1 hour and stand at room temperature for 24 h.Then it was centrifuged and washed several times with methanol to obtain a purple precipitate,which was dried at 60 °C for 12 h in vacuum.

    Synthesis of Ni-Co layered double hydroxides (Ni-Co LDH):76 mg ZIF-67 was dispersed into 10 mL of ethanol to obtain solution C with continuously stirred and ultrasound assisted.0.152 g of Ni(NO3)2?6H2O was dissolved into 50 mL of ethanol to obtain solution D.Solution C was mixed with solution D and stirred continuously for 1 h.Then it was centrifuged and washed several times with ethanol to obtain a light purple Ni-Co LDH,then dried at 60°C for 12 h in vacuum.

    Synthesis of Am-NCS: The as-obtained Ni-Co LDH was vulcanized by S powder at 250 °C for 2 h (1 °C/min) with a mass ratio of 1:2 under atmosphere,and then the final product of Am-NCS was collected.And the Am-NCO was prepared under the same conditions except for without S powder added.

    Furthermore,comparative experiments were conducted,in which the concentration of the first step ion-exchange nickelalcohol nitrate solution is half (AM-Ni0.5CoS),and the ratio of the second step ion-exchange material to sulfur powder is adjusted to 1:1.5 (AM-NiCoS1.5),and the curing temperature is adjusted to 350°C (AM-NiCoS-350 °C).

    The electrochemical measurements were carried out both in three-electrode system and full cell.Platinum plate and Hg/HgO electrode were used as counter electrode and reference electrode,respectively.The work electrode was prepared by the following method: A mixture of 70% Am-NCS,20% acetylene black and 10% PVDF was prepared to produce a uniform paste.Then the paste was coated with a carbon cloth collector (1.0 cm×3.0 cm)and dried for 6 h at vacuum.The electrolyte is 3.0 mol/L potassium hydroxide aqueous solution.CHI660D electrochemical workstation was used for cyclic voltammetry (CV),electrochemical impedance spectroscopy (EIS) and electrostatic discharge (GCD)measurements.The electrochemical test was carried out with zinc sheet as counter electrode and reference electrode,Am-NCS as positive electrode,3.0 mol/L potassium hydroxide and 0.03 mol/L zinc acetate as electrolyte.

    Fig.1.SEM images of (a) ZIF-67,(b) Ni-Co LDH and (c) Am-NCS.(d,e) TEM and HRTEM images of Am-NCS.(f) SAED image of Am-NCS.(g-i) The elemental mappings of Am-NCS.

    A typical ZIF-67 with rhomboid dodecahedron structure,as shown in Fig.1a and Fig S1a (Supporting information),exhibits the uniform sizes of 600–700 nm.It is obvious that the Ni-Co LDHs (Fig.1b and Fig S1b in Supporting information) well inherits the polyhedron structure from ZIF-67,which composites by huge amounts of ultrafine nanoparticles remaining hollow structures.Then these hollow structures were further preserved after calcination,as recorded in Fig.1c and Fig S1c (Supporting information),Am-NCS shows rough surfaces with many small particles dispersed on the shell,indicating that vulcanization process induces the reconstruction of the structures.Additionally,Fig.1d confirms the nanocage-like hollow structures of Am-NCS,which are composited by many ultrafine nanoparticles.The ultrafine nanoparticles effectively increase the specific surface areas providing more electroactive sites for electrochemical applications.The nanocagelike hollow structures not only greatly shorten the distance of ion diffusion path,but also prevent the structural damage and ensure the long life of the structure.HRTEM (Fig.1e) further reveals that no distinct lattice fringes are observed,and the weak crystalline is further proved by the SAED image in Fig.1f,indicating the amorphous characteristics of Am-NCS.The elemental mappings in Figs.1g-i clearly show the homogeneous distributions of Ni,Co and S elements,proving the successful synthesis of bimetallic sulfides.The elemental compositions of Am-NCS are further conformed by EDS spectrum (Fig.S2 in Supporting information),among which the C and O originate from the residual during calcination.

    The compositions and valence states of Am-NCS are characterized by X-ray Photoelectron Spectroscopy (XPS),as shown in Fig.2,from which the peaks corresponding to Ni 2p,Co 2p,S 2p,O 1s,N 1s and C 1s are clearly observed (Fig.2a).Ni 2p spectrum in Fig.2b could be fitted by two spin-orbit doublets (2p1/2and 2p3/2) and two shakeup satellites (denoted as Sat.).The peaks at 855.2 and 873.4 eV correspond to the Ni2+,and the peaks at 857.1 and 871.6 eV are ascribed to the Ni3+[29].For Co 2p in Fig.2c,the binding energies at 778.5 and 794.6 eV are attributed to Co3+and the binding energies at 780.0 and 796.3 eV are indexed to Co2+[30].In the S 2p spectrum (Fig.2d),the peaks located at 162.5 and 161.3 eV are ascribed to S 2p1/2and 2p3/2,respectively,and the peak at 169.0 eV is shakeup satellite peak [31].The wider and weaker Raman peaks in Fig.2e indicate the poor crystallinity and amorphous characteristic of the Am-NCS.There is no obvious diffraction peak of XRD for Am-NCS,as recorded in Fig.2f,further illustrating the amorphous characteristic of the Am-NCS.

    Fig.2.XPS spectra of Am-NCS: (a) Survey scan;High-resolution scan of the (b)Ni 2p,(c) Co 2p and (d) S 2p.(e) Raman image of Am-NCS.(f) XRD patterns of ZIF-67 template and Am-NCS.

    Fig.3.Schematic of synthesis process of Am-NCS.

    As schematically illustrated in Fig.3,the Ni2+ions are hydrolyzed and produced protons when Ni(NO3)2is added,which will etch the ZIF-67 template through the protonation of the 2-mim ligand.Then,the Co2+ions released from ZIF-67 MOFs will co-precipitate with Ni2+ions to form Ni-Co LDH.With continuous etching,the ultrafine nanosheets of Ni-Co LDH will be formed on the surface of ZIF-67 composited hollow structures.Finally,the Am-NCS is obtained by annealing the Ni-Co LDH precursor in a tubular furnace at atmosphere with S powder as the sulfur source.The kinetic equilibrium between shell growth and acid etching of the template may be the key factor for the formation of hollow nanolayer structures [32,33].

    In Fig.4a,the electrochemical properties of Am-NCS are investigated by three-electrode configuration.Two redox peaks at 0.2 V and 0.5 V are observed in CV curves.With the increase of scanning rate,the oxidation peak shifts to the high potential and the reduction peak to the low potential.The CV curves (Fig.4b) show that the Am-NCS has the largest area,indicating the largest specific capacitance.Fig.4c shows that the specific capacity values are as high as 160,151,141,135 and 131 mAh/g at 2,5,10,15 and 20 A/g,respectively.GCD curves (Fig.4d) show that the specific capacity of the Am-NCS is 117.5 mAh/g larger than those of Am-NiCoS-350,Am-NiCoS1.5and Am-Ni0.5CoS.The rate capabilities recorded in Fig.4e exhibit that the specific capacity of Am-NCS is remained about 82.5% of the initial at a high current density of 20 A/g,which is superior than Am-NiCoS-350,Am-NiCoS1.5and Am-Ni0.5CoS.

    Fig.4.The electrochemical characterization of Am-NCS electrode: (a) CV curves at different scanning rates;(b) CV curves of different samples;(c) GCD curves of the Am-NCS electrode at different scanning rates from 2 mV/s to 20 mV/s;(d) GCD curves,(e) capacities curves and (f) EIS of Am-NiCoS,AM-NiCoS-350,AM-Ni0.5CoS and AM-NiCoS1.5.

    Electrochemical Impedance Spectroscopy (EIS) are conducted and recorded in Fig.4f.The value of charge transfer resistance(Rct) for Am-NCS are 0.13Ωfar smaller than Am-NiCoS-350,Am-NiCoS1.5and Am-Ni0.5CoS,as displayed in Fig.S3 (Supporting information).It is demonstrated that the Am-NCS has higher charge transfer kinetics at the electrode electrolyte interface than others.The smallerRctindicates the better dispersibility of the material and the close bonding with the substrate,resulting in a higher capacity [34].Therefore,the EIS measurements testify that the Am-NCS electrode exhibits more favorable charge transfer kinetics than other samples.

    To explore the crucial role of Am-NCS cathode in rechargeable alkaline AZIBs,the Am-NCS//Zn was assembled by using Am-NCS as cathode,zinc foil as anode and non-woven fabric as separator,as depicted in Fig.5a The Faraday redox process can be deduced as follows:

    CV curves in Fig.5b show that the peak currents increase gradually without significant deformation as the scanning rates increase,signifying that the Am-NCS//Zn enjoys outstanding rate performance and reversibility by virtue of fast reaction kinetics and optimized interface characteristics.To gain further insight into the

    storage mechanism of electrode,there is a typical way of is used to analyzing analyze the CV data at various sweep rates according to the following equation [35].

    Fig.5.(a) Schematic illustration of the AZBs based on Am-NCS cathode and Zn anode.(b) CV curves of the as-assembled Am-NCS//Zn with different scan rates ranging from 1.4 V to 2.0 V.(c) GCD curves of the Am-NCS//Zn at different current densities.(d) Rate capabilities of as-assembled Am-NCS//Zn at different current densities.(e) Rate capabilities of Am-NCS at different scan rates.(f) The midpoint voltage and specific capacity of Am-NCS//Zn in comparison with recently reported energy storage systems.(g) Ragone plot of Am-NCS//Zn.(h) Cycling performance of the Am-NCS//Zn at 10 A/g.

    where the measured currentiobeys a power law relationship with the sweep ratev.Bothaandbare adjustable parameters,withbvalues determined from the slope of the plot of logi versuslogv,as described in the following:

    In particular,the coefficientbvaries in the range of 0.5–1.0,so there are two well-defined conditions,namely,b=0.5 andb=1.0.Thebvalue of 0.5 is indicative of a diffusion-controlled insertion process,while thebvalue of 1.0 is representative of a surface capacitive process [36].According to the linear relationship between logiand logvplots (Eq.4),as shown in Fig.S6 (Supporting information),thebvalues of redox peaks are calculated as 0.67 (peak 1) and 0.68 (peak 2) as shown in Fig.S6,respectively,This suggests that the electrochemical kinetic of Am-NCS electrode is related to both diffusion-controlled process and capacitive effects,but however the diffusion-controlled behavior is the dominant process.As depicted in Fig.S7 (Supporting information),the capacitive contribution is about 45.21% of the total stored charges at 5 mV/s,and the ratio of the capacitive contribution increases with the increment of the scan rates,as record in Fig.S8 (Supporting information).The capacitive contribution can be reached 90.28% at 20 mV/s,and confirming the electrochemical performances are determined by capacitive-kinetics process [37,38].

    GCD curves in Fig.5c manifest that the specific capacitance of Am-NCS//Zn are as high as 155,144,133,128,114 mAh/g at 2,5,10,15 and 20 A/g,respectively.Rate performance in Fig.5d shows that the discharge specific capacities are 160,154,146,135,127,114 and 83 mAh/g,when the current densities are 1,2,5,10,15,20 and 30 A/g,respectively.When the current density returns to 1 A/g,the reversible discharge specific capacity of the Am-NCS is retained at 160 mAh/g,indicating the good rate capabilities [39,40].Fig.5e shows that the capacities of Am-NCS//Zn are as high as 155,144,134,128 and 114 mAh/g at 2,5,10,15 and 20 mV/s corresponding well with the calculating values of GCD.Fig.5f indicates that Am-NCS//Zn has a higher capacity than previous reported batteries,such as a-Mn2O3//Zn [41],KMn8O16//Zn[42],ZKNF-086//Zn [43]and NASION//Zn [44].Besides,Am-NCS//Zn deliver higher energy densities and power densities as shown in Fig.5g (254.2 Wh/kg at 3.28 kW/kg,based on the cathode mass loading),compared to the recent works such as Co3O4//Zn [45],Co-Ni(OH)2//Zn [46],A-Co(OH)2@NiCo-LDH//Zn [47],P-Co3O4//Zn[48]and Co3O4/CFP//AC [49].The stability of Am-NCS//Zn is also conducted,as shown in Fig.5h,its capacity remains 62.5% of the initial after 7000 cycles.The high cycle stability may also be related to the unique morphology and crystallinity of the samples:(1) The layered nanostructure with a layer of nanosheets on the surface effectively prevents the aggregation or separation of particles during the cycle test;(2) The electroactive amorphous materials are activated during the first several hundred cycles,which also endows the high stability of the NiCoS nanometer layer;(3)The amorphous structure withstand large structural changes in the charge-discharge cycle test,thus achieving high stability.

    In summary,the hollow Am-NCS were successfully designed and synthesizedviaion exchange method with ZIF-67 as the selftemplate The amorphous hollow Am-NCS shows a remarkable capacity of 160 mAh/g at 2 A/g In addition,the assembled Am-NCS//Zn has an impressive specific capacity (155 mAh/g at 2 A/g)and a capacitance retention of 62.5% after 7000 cycles at 10 A/g.An impressive energy density of 254.2 Wh/kg can be achieved at the power density of 3.28 kW/kg.The excellent electrochemical performance is mainly attributed to its unique hollow structure and amorphous structure.This work provides a new strategy for the design and synthesis of high-performance cathode materials for AZBs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was supported by the Independent Cultivation Program of Innovation Team of Ji’nan City (No.2019GXRC011),and National Natural Science Foundation of China (No.51802177)and Natural Science Foundation of Shandong Province (No.ZR2020QE062).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.084.

    真人做人爱边吃奶动态| 亚洲精品国产一区二区精华液| а√天堂www在线а√下载| 无遮挡黄片免费观看| 欧美激情久久久久久爽电影| 日本一本二区三区精品| 日韩大码丰满熟妇| 波多野结衣高清作品| 久久99热这里只有精品18| 一级a爱片免费观看的视频| 日韩国内少妇激情av| 亚洲欧洲精品一区二区精品久久久| 亚洲五月婷婷丁香| 欧美成人性av电影在线观看| 久久久久久久午夜电影| 精品久久久久久,| 激情在线观看视频在线高清| 真人做人爱边吃奶动态| 国产av一区在线观看免费| 午夜精品在线福利| 免费高清视频大片| 波多野结衣高清无吗| 国产黄片美女视频| 91九色精品人成在线观看| 国产成人精品久久二区二区免费| 成人av在线播放网站| 亚洲av第一区精品v没综合| 免费在线观看完整版高清| 一级a爱片免费观看的视频| 老司机靠b影院| 色老头精品视频在线观看| 天堂av国产一区二区熟女人妻 | 国产精品 欧美亚洲| 亚洲七黄色美女视频| 亚洲精品色激情综合| 午夜免费成人在线视频| 国产精品99久久99久久久不卡| 窝窝影院91人妻| 人妻久久中文字幕网| 香蕉国产在线看| а√天堂www在线а√下载| 男女床上黄色一级片免费看| www日本黄色视频网| 在线视频色国产色| 少妇熟女aⅴ在线视频| 国产激情偷乱视频一区二区| 欧美中文日本在线观看视频| 美女 人体艺术 gogo| 国产真实乱freesex| 69av精品久久久久久| 丰满的人妻完整版| 无遮挡黄片免费观看| 欧美日本亚洲视频在线播放| 国产精品1区2区在线观看.| 欧美不卡视频在线免费观看 | 亚洲国产看品久久| 每晚都被弄得嗷嗷叫到高潮| 精品国产亚洲在线| 精品福利观看| 超碰成人久久| 国产亚洲精品综合一区在线观看 | 久久天堂一区二区三区四区| 国产av在哪里看| 国产精品亚洲一级av第二区| 欧美绝顶高潮抽搐喷水| 在线播放国产精品三级| 首页视频小说图片口味搜索| 久久精品国产99精品国产亚洲性色| 国产av又大| 日本a在线网址| 欧美在线一区亚洲| 夜夜爽天天搞| 精品久久久久久久毛片微露脸| av在线播放免费不卡| 免费在线观看影片大全网站| 亚洲中文字幕日韩| 国产精品野战在线观看| 成人18禁在线播放| aaaaa片日本免费| 毛片女人毛片| 两个人视频免费观看高清| 亚洲精品粉嫩美女一区| 床上黄色一级片| 波多野结衣高清作品| 麻豆国产97在线/欧美 | 亚洲av美国av| 国产精品香港三级国产av潘金莲| 波多野结衣高清无吗| 久久人人精品亚洲av| 精品久久久久久,| av中文乱码字幕在线| 在线a可以看的网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲欧美98| 欧美黄色淫秽网站| 日韩欧美在线二视频| 午夜成年电影在线免费观看| 欧美一级毛片孕妇| 久久草成人影院| 国产v大片淫在线免费观看| 99热6这里只有精品| 美女 人体艺术 gogo| 又爽又黄无遮挡网站| 国产激情久久老熟女| 国产真实乱freesex| 日韩高清综合在线| 日日干狠狠操夜夜爽| 亚洲无线在线观看| 国产av不卡久久| 国产私拍福利视频在线观看| 国产欧美日韩精品亚洲av| 国产三级黄色录像| 亚洲人成77777在线视频| 90打野战视频偷拍视频| 亚洲九九香蕉| 午夜亚洲福利在线播放| 黄色视频不卡| 99久久精品热视频| 国产av一区二区精品久久| 他把我摸到了高潮在线观看| 欧美性猛交黑人性爽| 亚洲av第一区精品v没综合| 日本a在线网址| 亚洲黑人精品在线| 国产熟女午夜一区二区三区| 亚洲欧美激情综合另类| 久久久久性生活片| tocl精华| 久久性视频一级片| 国产成人aa在线观看| 日本撒尿小便嘘嘘汇集6| 日本一二三区视频观看| а√天堂www在线а√下载| 最近最新中文字幕大全免费视频| 国产成人精品无人区| 国产精品久久久久久人妻精品电影| 久久精品国产亚洲av高清一级| 亚洲一码二码三码区别大吗| 国产成人精品久久二区二区91| 午夜亚洲福利在线播放| 国产精品 国内视频| 欧美成人性av电影在线观看| 亚洲av第一区精品v没综合| 香蕉丝袜av| 亚洲性夜色夜夜综合| av在线天堂中文字幕| 90打野战视频偷拍视频| 午夜福利免费观看在线| 午夜福利免费观看在线| 91成年电影在线观看| 露出奶头的视频| 一个人免费在线观看的高清视频| 国产一区二区在线av高清观看| 国产欧美日韩精品亚洲av| 天堂√8在线中文| 床上黄色一级片| videosex国产| 听说在线观看完整版免费高清| 久久久久久大精品| av在线天堂中文字幕| 久久精品国产清高在天天线| 老汉色av国产亚洲站长工具| 一个人免费在线观看电影 | 嫩草影视91久久| 日韩精品青青久久久久久| 黄色 视频免费看| 搡老岳熟女国产| 九色成人免费人妻av| 一个人观看的视频www高清免费观看 | 欧美中文综合在线视频| 国产男靠女视频免费网站| 国产精品久久久久久亚洲av鲁大| 在线视频色国产色| 久久久水蜜桃国产精品网| 国产成人精品无人区| 欧美日韩福利视频一区二区| 欧美色欧美亚洲另类二区| 欧美3d第一页| 国产激情欧美一区二区| netflix在线观看网站| 国产午夜精品论理片| 欧美精品亚洲一区二区| 久久久久久九九精品二区国产 | 一本久久中文字幕| 久久久久国内视频| 中国美女看黄片| 国产真实乱freesex| 最新在线观看一区二区三区| 精品国产乱子伦一区二区三区| 亚洲欧美日韩东京热| 全区人妻精品视频| 精品国产超薄肉色丝袜足j| 一区二区三区高清视频在线| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷六月久久综合丁香| av在线播放免费不卡| 草草在线视频免费看| 久久中文看片网| 19禁男女啪啪无遮挡网站| 舔av片在线| 亚洲七黄色美女视频| 国模一区二区三区四区视频 | 岛国在线免费视频观看| 一夜夜www| 精品久久久久久久末码| 男人的好看免费观看在线视频 | 日韩中文字幕欧美一区二区| 757午夜福利合集在线观看| 亚洲一区二区三区色噜噜| 日本免费一区二区三区高清不卡| 午夜视频精品福利| 男女做爰动态图高潮gif福利片| 国产精品av久久久久免费| 久久久久久国产a免费观看| 亚洲性夜色夜夜综合| 国产亚洲av嫩草精品影院| 99久久综合精品五月天人人| 中文字幕高清在线视频| 国产一区二区三区视频了| 久久这里只有精品中国| 十八禁网站免费在线| 麻豆国产97在线/欧美 | tocl精华| 最近最新中文字幕大全电影3| 91在线观看av| 免费无遮挡裸体视频| 2021天堂中文幕一二区在线观| 亚洲av美国av| 69av精品久久久久久| 国产熟女午夜一区二区三区| 中文在线观看免费www的网站 | 久久精品国产清高在天天线| 黄色视频不卡| 欧美黑人巨大hd| 久久草成人影院| 波多野结衣巨乳人妻| 久久精品91蜜桃| 久久精品人妻少妇| 国产不卡一卡二| 中文字幕人妻丝袜一区二区| 久久久精品欧美日韩精品| 母亲3免费完整高清在线观看| 欧美成狂野欧美在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲第一电影网av| 一区二区三区国产精品乱码| 亚洲最大成人中文| 国产高清视频在线播放一区| 久久99热这里只有精品18| 免费观看人在逋| 一进一出抽搐动态| 精品日产1卡2卡| 成人三级做爰电影| 黄色毛片三级朝国网站| 一本综合久久免费| 欧美+亚洲+日韩+国产| 18禁国产床啪视频网站| 99riav亚洲国产免费| 级片在线观看| 亚洲一区中文字幕在线| 妹子高潮喷水视频| 欧美午夜高清在线| 免费搜索国产男女视频| 老司机午夜福利在线观看视频| 久久 成人 亚洲| 亚洲专区字幕在线| 亚洲一区二区三区色噜噜| 五月伊人婷婷丁香| 天天添夜夜摸| 亚洲欧美日韩高清专用| 国产av一区在线观看免费| 真人做人爱边吃奶动态| 变态另类成人亚洲欧美熟女| 久久久国产欧美日韩av| 国产午夜精品久久久久久| 母亲3免费完整高清在线观看| av片东京热男人的天堂| 免费观看精品视频网站| 此物有八面人人有两片| 嫩草影视91久久| 99热只有精品国产| 亚洲成av人片免费观看| 午夜久久久久精精品| 国产午夜精品论理片| 国产视频一区二区在线看| av天堂在线播放| 99精品欧美一区二区三区四区| 欧美黑人巨大hd| 成年女人毛片免费观看观看9| 韩国av一区二区三区四区| 天天躁夜夜躁狠狠躁躁| 亚洲男人天堂网一区| 在线观看午夜福利视频| 精品一区二区三区四区五区乱码| 欧美中文综合在线视频| 好看av亚洲va欧美ⅴa在| 悠悠久久av| 亚洲精品美女久久久久99蜜臀| 久久九九热精品免费| 国产片内射在线| 亚洲一区中文字幕在线| 免费在线观看影片大全网站| avwww免费| 亚洲av第一区精品v没综合| 蜜桃久久精品国产亚洲av| 日韩国内少妇激情av| 亚洲乱码一区二区免费版| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 欧美 亚洲 国产 日韩一| 久久精品人妻少妇| 长腿黑丝高跟| 好男人在线观看高清免费视频| 天堂影院成人在线观看| 色老头精品视频在线观看| 精华霜和精华液先用哪个| 69av精品久久久久久| 精品久久久久久久久久久久久| 亚洲专区国产一区二区| 日韩 欧美 亚洲 中文字幕| 变态另类丝袜制服| 夜夜爽天天搞| 免费看日本二区| 日韩精品中文字幕看吧| 成人三级黄色视频| av视频在线观看入口| 亚洲天堂国产精品一区在线| 久久久久久免费高清国产稀缺| 成人三级黄色视频| 99久久无色码亚洲精品果冻| 国产精品永久免费网站| 在线观看www视频免费| 亚洲精品国产精品久久久不卡| 在线看三级毛片| netflix在线观看网站| 亚洲美女黄片视频| 香蕉丝袜av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av五月六月丁香网| 久久中文看片网| 亚洲人成电影免费在线| 欧美乱色亚洲激情| 美女大奶头视频| 俄罗斯特黄特色一大片| 中文字幕精品亚洲无线码一区| 国产精品电影一区二区三区| 在线观看www视频免费| 国产91精品成人一区二区三区| 国产精品久久视频播放| 欧美另类亚洲清纯唯美| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线在线| 久久久久久大精品| 无人区码免费观看不卡| 亚洲av片天天在线观看| 国产爱豆传媒在线观看 | e午夜精品久久久久久久| 熟妇人妻久久中文字幕3abv| 一区福利在线观看| 国产av又大| 成人18禁在线播放| 岛国在线观看网站| 日韩精品免费视频一区二区三区| 国产高清有码在线观看视频 | 国产午夜精品论理片| 亚洲国产看品久久| 毛片女人毛片| 亚洲欧美日韩高清在线视频| 成人av一区二区三区在线看| 他把我摸到了高潮在线观看| 午夜福利在线观看吧| 国产又黄又爽又无遮挡在线| 99久久久亚洲精品蜜臀av| 久久精品影院6| 免费在线观看亚洲国产| 曰老女人黄片| 欧美黄色片欧美黄色片| 精品无人区乱码1区二区| 不卡av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 国产单亲对白刺激| 小说图片视频综合网站| 国产精品,欧美在线| 好男人在线观看高清免费视频| 真人做人爱边吃奶动态| 亚洲自拍偷在线| a级毛片在线看网站| 免费在线观看日本一区| 国产精品影院久久| 俄罗斯特黄特色一大片| 久久精品国产99精品国产亚洲性色| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久av美女十八| 成人午夜高清在线视频| 亚洲avbb在线观看| 黑人巨大精品欧美一区二区mp4| 久久精品aⅴ一区二区三区四区| 久久亚洲真实| 色尼玛亚洲综合影院| 免费在线观看影片大全网站| 国内毛片毛片毛片毛片毛片| 国产v大片淫在线免费观看| 久久久久久久久中文| 人人妻,人人澡人人爽秒播| 少妇裸体淫交视频免费看高清 | 亚洲av片天天在线观看| 少妇人妻一区二区三区视频| 这个男人来自地球电影免费观看| 啦啦啦观看免费观看视频高清| 久久久久久大精品| 亚洲第一欧美日韩一区二区三区| 精品国产超薄肉色丝袜足j| 亚洲性夜色夜夜综合| 高清在线国产一区| 欧美+亚洲+日韩+国产| 色精品久久人妻99蜜桃| 欧美最黄视频在线播放免费| 少妇人妻一区二区三区视频| 亚洲精华国产精华精| 一本精品99久久精品77| 欧美又色又爽又黄视频| 欧美在线一区亚洲| 日日夜夜操网爽| 色噜噜av男人的天堂激情| 国产成人aa在线观看| 亚洲成av人片在线播放无| 亚洲国产精品999在线| 在线观看午夜福利视频| 麻豆一二三区av精品| 亚洲国产精品sss在线观看| 丝袜人妻中文字幕| 一区二区三区国产精品乱码| 中文字幕人成人乱码亚洲影| 两性夫妻黄色片| 欧美乱码精品一区二区三区| 久久精品国产亚洲av香蕉五月| 好男人在线观看高清免费视频| 一本综合久久免费| 亚洲18禁久久av| 国产精品亚洲av一区麻豆| 日本黄色视频三级网站网址| or卡值多少钱| 精品久久久久久成人av| 国产一区二区三区视频了| 成在线人永久免费视频| 蜜桃久久精品国产亚洲av| 欧美日韩黄片免| 国产精品爽爽va在线观看网站| 精品久久久久久成人av| 黄色 视频免费看| 免费看美女性在线毛片视频| 国产成人啪精品午夜网站| 麻豆久久精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 亚洲第一电影网av| 亚洲全国av大片| 欧美zozozo另类| 午夜福利在线在线| a级毛片a级免费在线| 国产精品久久电影中文字幕| 好男人电影高清在线观看| 亚洲av熟女| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 国产视频内射| 亚洲一区二区三区色噜噜| 日韩av在线大香蕉| 91在线观看av| 久久精品国产亚洲av香蕉五月| 日韩有码中文字幕| 精品福利观看| 国内毛片毛片毛片毛片毛片| 久久国产精品人妻蜜桃| 丁香欧美五月| 国产成人av教育| 久久香蕉精品热| 狠狠狠狠99中文字幕| 日日摸夜夜添夜夜添小说| 婷婷六月久久综合丁香| 99精品久久久久人妻精品| 曰老女人黄片| 国产精品爽爽va在线观看网站| 日韩欧美国产在线观看| 成人三级黄色视频| 免费在线观看黄色视频的| 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 欧美一级a爱片免费观看看 | 操出白浆在线播放| 日本成人三级电影网站| 99国产综合亚洲精品| 人妻丰满熟妇av一区二区三区| 国产在线观看jvid| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕日韩| 一夜夜www| 一级毛片高清免费大全| 1024香蕉在线观看| 欧美另类亚洲清纯唯美| 免费看a级黄色片| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看.| a级毛片a级免费在线| 欧美一级a爱片免费观看看 | 国产成人av教育| 日本成人三级电影网站| 国产精品精品国产色婷婷| 人妻丰满熟妇av一区二区三区| 一a级毛片在线观看| av片东京热男人的天堂| 999久久久国产精品视频| 男插女下体视频免费在线播放| 777久久人妻少妇嫩草av网站| 国产高清有码在线观看视频 | 欧美成人午夜精品| 久久亚洲真实| 欧美激情久久久久久爽电影| 舔av片在线| 麻豆一二三区av精品| 亚洲熟妇熟女久久| 亚洲av成人精品一区久久| 亚洲美女视频黄频| 免费看日本二区| 亚洲av成人不卡在线观看播放网| 一边摸一边抽搐一进一小说| 久久精品亚洲精品国产色婷小说| 国产午夜精品久久久久久| 国产人伦9x9x在线观看| 巨乳人妻的诱惑在线观看| 三级毛片av免费| 亚洲一区二区三区色噜噜| 最近最新免费中文字幕在线| 欧美乱色亚洲激情| 亚洲无线在线观看| 国产探花在线观看一区二区| 国产精品久久久人人做人人爽| www国产在线视频色| 日韩欧美国产一区二区入口| 久久性视频一级片| 一二三四在线观看免费中文在| 国产黄色小视频在线观看| 中文字幕av在线有码专区| 免费高清视频大片| 天堂影院成人在线观看| 国产不卡一卡二| 99久久综合精品五月天人人| 天天躁狠狠躁夜夜躁狠狠躁| 成人国语在线视频| 国产亚洲精品第一综合不卡| 无人区码免费观看不卡| 男人舔女人的私密视频| 日本 欧美在线| 不卡av一区二区三区| 嫩草影院精品99| 可以在线观看毛片的网站| 亚洲成人国产一区在线观看| www.熟女人妻精品国产| 亚洲人成伊人成综合网2020| 精品电影一区二区在线| 国产成人aa在线观看| 一区二区三区高清视频在线| 1024手机看黄色片| 成人av一区二区三区在线看| 久久久国产成人免费| 免费在线观看影片大全网站| 久久午夜亚洲精品久久| 日韩中文字幕欧美一区二区| 99riav亚洲国产免费| 熟女电影av网| 嫁个100分男人电影在线观看| 亚洲人成网站在线播放欧美日韩| 国模一区二区三区四区视频 | 国产伦一二天堂av在线观看| 黄色视频,在线免费观看| 国产熟女xx| 俄罗斯特黄特色一大片| 91九色精品人成在线观看| 成在线人永久免费视频| 国产亚洲精品综合一区在线观看 | 国产成人av激情在线播放| 亚洲精品色激情综合| xxx96com| 男女床上黄色一级片免费看| 日本一本二区三区精品| 亚洲成人国产一区在线观看| 九色国产91popny在线| 亚洲男人天堂网一区| 高潮久久久久久久久久久不卡| 一二三四社区在线视频社区8| 免费一级毛片在线播放高清视频| 日韩三级视频一区二区三区| 精品国产乱子伦一区二区三区| 亚洲精品色激情综合| 亚洲av成人精品一区久久| 欧美黄色片欧美黄色片| 成人18禁高潮啪啪吃奶动态图| 18禁国产床啪视频网站| 久久国产精品人妻蜜桃| 深夜精品福利| 中文字幕久久专区| 亚洲精品粉嫩美女一区| 天堂av国产一区二区熟女人妻 | 成人手机av| 黄色 视频免费看| 日韩有码中文字幕| 日韩欧美国产一区二区入口| 99热6这里只有精品| 最好的美女福利视频网| 国产成人欧美在线观看| 五月伊人婷婷丁香| 国产激情久久老熟女| 日韩欧美一区二区三区在线观看| 日韩欧美国产在线观看| 深夜精品福利| 国产精品电影一区二区三区|