• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Amorphous Ni-Co-S nanocages assembled with nanosheet arrays as cathode for high-performance zinc ion battery

    2022-07-11 03:39:48LiGungmengQuXixiZhngShunshunZhoChenggngWngGngZhoPeiyuHouXijinXu
    Chinese Chemical Letters 2022年6期

    N Li,Gungmeng Qu,Xixi Zhng,Shunshun Zho,Chenggng Wng,Gng Zho,Peiyu Hou,Xijin Xu,?

    a School of Physics and Technology,University of Jinan,Ji’nan 250022,China

    b Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering,Shandong University,Ji’nan 250100,China

    c School of Electronic and Information Engineering (Department of Physics),Qilu University of Technology (Shandong Academy of Sciences),Ji’nan 250353,China

    Keywords:Alkaline zinc batteries Metal sulfide Hierarchical structures Amorphous structure Hollow structure

    ABSTRACT The selection and development of cathode of alkaline zinc batteries (AZBs) is still hindered and often leads to poor rate capability and short cycle life.Here,amorphous hollow nickel-cobalt-based sulfides nanocages with nanosheet arrays (AM-NCS) are designed and constructed with ZIF-67 as the selftemplate to exchange with Ni2+ and S2?by using a two-step ion exchange method.The synthesized AM-NCS possess the high specific capacity (160 mAh/g at 2 A/g),and the assembled battery has excellent rate performance (146 mAh/g reversible capacity at 5 A/g).The assembled device has excellent rate performance (155 mAh/g at 2 A/g) and long cycling stability (7000 cycles,62.5% of initial capacity).The excellent electrochemical properties of the electrode materials are mainly attributed to the unique structure,in particular,polyhedron structure with hollow structure can improve the cyclic stability,and the amorphous structure can expose more reactive sites on the surfaces of nickel,cobalt and sulfur.This work provides a new strategy for the design and fabrication of high performance cathode materials for AZBs.

    The lithium-ion batteries are famous for high energy density and long cycling life which currently dominate the commercial secondary battery market including consumer electronics,electric vehicles and aerospace applications [1–4].However,flammable organic electrolytes and rare lithium resources limit their wide applications.Recently,aqueous batteries have attracted intense interests because of their inherent safety and low cost,especially for low reduction potential of alkaline zinc anode (?1.2 Vvs.SHE),which is emerging as one of the most promising alternatives to electrochemical energy storage [5].In addition,the ionic conductivity of aqueous electrolyte (~1 S/cm) is much higher than that of non-aqueous electrolyte (~1–10 mS/cm),which endows the battery with an outstanding rate capability [6–8].

    Zn//Ni alkaline zinc batteries have many advantages,such as outstanding power density,high discharge voltage platform and environmental friendliness.Nowadays,Ni(OH)2and NiO are mostly used as active cathode materials in alkaline zinc batteries [9,10].However,the poor stability,unsatisfactory conductivity and volume expansion limit their wide applications.Many ways,including constructing multi-shell nanostructures,one-dimensional nanoarrays or 3D skeleton structures,have been used to solve the volume expansion for high-performance Ni-based cathode materials[11–13].The assembly of vertically arranged nanoarrays with many gaps facilitates the diffusion of ions and the full contact between the electrode material and the electrolyte.Besides,the amorphous phase provides larger proportion of random alignment bonds in the unsaturated electronic configuration than the crystal,which facilitates the adsorption of the reactants [14–17].Furthermore,the amorphous structure accelerates the charge transfer between the active center and the reaction intermediate.Bovineet al.synthesized MOF-derived amorphous V2O5and carbon (a-V2O5@C) composites,where amorphous V2O5is uniformly distributed in the carbon framework [18].The amorphous structure endows V2O5more isotropic Zn2+diffusion pathways and active sites,which leads to the rapid migration and high specific capacity of Zn2+and remarkable electrochemical properties of a-V2O5@C composite.What is more,nickel/cobalt sulfides have the advantages of high theoretical capacitance,abundant raw materials and environment-friendly as well as high intrinsic conductivity [19–21].

    Herein,we successfully designed and synthesized hollow Am-NCS nanocages (abbreviated as Am-NCS in short) by ion exchange method with ZIF-67 as the self-template [22–24].On one hand,the amorphous structure of synthesized Am-NCS not only accelerates the charge transfer but also have the isotropic OH?diffusion pathways,further enhancing the rate performance.On the other hand,nanosheets-assembled hollow structures alleviate the volume expansion during the intercalated process of OH-,as well as providing large electrolyte contact areas,thus increasing specific capacity and cycling stability [25–28].Therefore,the synthesized Am-NCS deliver a high capacity of 160 mAh/g at 2 A/g with excellent rate performance of 130 mAh/g at 20 A/g.The energy density of the asprepared Am-NCS//Zn battery is up to 254.2 Wh/kg with a highest power density of 3.28 kW/kg.What is more,the long cycle stability could be reached 7000 cycles,even at a high current density of 10 A/g,illustrating the high stability of Am-NCS//Zn battery.

    Methylimidazole (2-mIM),methanol,ethanol,Ni(NO3)2·6H2O,Co(NO3)2·6H2O,KOH are supplied by Aladdin Reagent Company(China).The morphologies and microstructures of the materials were observed by field emission scanning electron Microscope(QUANTA 250 FEG) and transmission electron microscope (JEOL JEM-2100F).The chemical states were characterized by C-ray photoelectron spectroscopy (XPS) with X-ray energy dispersive spectrometer (XPS).The Raman spectra of the materials were measured by HORIBA LabRAM HR 800 under 514 nm excitation light source.The electrochemical measurements were carried out on CHI660 electrochemical workstation.

    All reagents are used directly without further purification.1 mmol (0.291 g) of Co(NO3)2·6H2O was dissolved in 25 mL of methanol to obtain solution A,and 4 mmol of 2-methylimidazole(0.328 g) was dissolved in 25 ml of methanol to obtain solution B.Solution B was poured into solution A and stirred continuously for 1 hour and stand at room temperature for 24 h.Then it was centrifuged and washed several times with methanol to obtain a purple precipitate,which was dried at 60 °C for 12 h in vacuum.

    Synthesis of Ni-Co layered double hydroxides (Ni-Co LDH):76 mg ZIF-67 was dispersed into 10 mL of ethanol to obtain solution C with continuously stirred and ultrasound assisted.0.152 g of Ni(NO3)2?6H2O was dissolved into 50 mL of ethanol to obtain solution D.Solution C was mixed with solution D and stirred continuously for 1 h.Then it was centrifuged and washed several times with ethanol to obtain a light purple Ni-Co LDH,then dried at 60°C for 12 h in vacuum.

    Synthesis of Am-NCS: The as-obtained Ni-Co LDH was vulcanized by S powder at 250 °C for 2 h (1 °C/min) with a mass ratio of 1:2 under atmosphere,and then the final product of Am-NCS was collected.And the Am-NCO was prepared under the same conditions except for without S powder added.

    Furthermore,comparative experiments were conducted,in which the concentration of the first step ion-exchange nickelalcohol nitrate solution is half (AM-Ni0.5CoS),and the ratio of the second step ion-exchange material to sulfur powder is adjusted to 1:1.5 (AM-NiCoS1.5),and the curing temperature is adjusted to 350°C (AM-NiCoS-350 °C).

    The electrochemical measurements were carried out both in three-electrode system and full cell.Platinum plate and Hg/HgO electrode were used as counter electrode and reference electrode,respectively.The work electrode was prepared by the following method: A mixture of 70% Am-NCS,20% acetylene black and 10% PVDF was prepared to produce a uniform paste.Then the paste was coated with a carbon cloth collector (1.0 cm×3.0 cm)and dried for 6 h at vacuum.The electrolyte is 3.0 mol/L potassium hydroxide aqueous solution.CHI660D electrochemical workstation was used for cyclic voltammetry (CV),electrochemical impedance spectroscopy (EIS) and electrostatic discharge (GCD)measurements.The electrochemical test was carried out with zinc sheet as counter electrode and reference electrode,Am-NCS as positive electrode,3.0 mol/L potassium hydroxide and 0.03 mol/L zinc acetate as electrolyte.

    Fig.1.SEM images of (a) ZIF-67,(b) Ni-Co LDH and (c) Am-NCS.(d,e) TEM and HRTEM images of Am-NCS.(f) SAED image of Am-NCS.(g-i) The elemental mappings of Am-NCS.

    A typical ZIF-67 with rhomboid dodecahedron structure,as shown in Fig.1a and Fig S1a (Supporting information),exhibits the uniform sizes of 600–700 nm.It is obvious that the Ni-Co LDHs (Fig.1b and Fig S1b in Supporting information) well inherits the polyhedron structure from ZIF-67,which composites by huge amounts of ultrafine nanoparticles remaining hollow structures.Then these hollow structures were further preserved after calcination,as recorded in Fig.1c and Fig S1c (Supporting information),Am-NCS shows rough surfaces with many small particles dispersed on the shell,indicating that vulcanization process induces the reconstruction of the structures.Additionally,Fig.1d confirms the nanocage-like hollow structures of Am-NCS,which are composited by many ultrafine nanoparticles.The ultrafine nanoparticles effectively increase the specific surface areas providing more electroactive sites for electrochemical applications.The nanocagelike hollow structures not only greatly shorten the distance of ion diffusion path,but also prevent the structural damage and ensure the long life of the structure.HRTEM (Fig.1e) further reveals that no distinct lattice fringes are observed,and the weak crystalline is further proved by the SAED image in Fig.1f,indicating the amorphous characteristics of Am-NCS.The elemental mappings in Figs.1g-i clearly show the homogeneous distributions of Ni,Co and S elements,proving the successful synthesis of bimetallic sulfides.The elemental compositions of Am-NCS are further conformed by EDS spectrum (Fig.S2 in Supporting information),among which the C and O originate from the residual during calcination.

    The compositions and valence states of Am-NCS are characterized by X-ray Photoelectron Spectroscopy (XPS),as shown in Fig.2,from which the peaks corresponding to Ni 2p,Co 2p,S 2p,O 1s,N 1s and C 1s are clearly observed (Fig.2a).Ni 2p spectrum in Fig.2b could be fitted by two spin-orbit doublets (2p1/2and 2p3/2) and two shakeup satellites (denoted as Sat.).The peaks at 855.2 and 873.4 eV correspond to the Ni2+,and the peaks at 857.1 and 871.6 eV are ascribed to the Ni3+[29].For Co 2p in Fig.2c,the binding energies at 778.5 and 794.6 eV are attributed to Co3+and the binding energies at 780.0 and 796.3 eV are indexed to Co2+[30].In the S 2p spectrum (Fig.2d),the peaks located at 162.5 and 161.3 eV are ascribed to S 2p1/2and 2p3/2,respectively,and the peak at 169.0 eV is shakeup satellite peak [31].The wider and weaker Raman peaks in Fig.2e indicate the poor crystallinity and amorphous characteristic of the Am-NCS.There is no obvious diffraction peak of XRD for Am-NCS,as recorded in Fig.2f,further illustrating the amorphous characteristic of the Am-NCS.

    Fig.2.XPS spectra of Am-NCS: (a) Survey scan;High-resolution scan of the (b)Ni 2p,(c) Co 2p and (d) S 2p.(e) Raman image of Am-NCS.(f) XRD patterns of ZIF-67 template and Am-NCS.

    Fig.3.Schematic of synthesis process of Am-NCS.

    As schematically illustrated in Fig.3,the Ni2+ions are hydrolyzed and produced protons when Ni(NO3)2is added,which will etch the ZIF-67 template through the protonation of the 2-mim ligand.Then,the Co2+ions released from ZIF-67 MOFs will co-precipitate with Ni2+ions to form Ni-Co LDH.With continuous etching,the ultrafine nanosheets of Ni-Co LDH will be formed on the surface of ZIF-67 composited hollow structures.Finally,the Am-NCS is obtained by annealing the Ni-Co LDH precursor in a tubular furnace at atmosphere with S powder as the sulfur source.The kinetic equilibrium between shell growth and acid etching of the template may be the key factor for the formation of hollow nanolayer structures [32,33].

    In Fig.4a,the electrochemical properties of Am-NCS are investigated by three-electrode configuration.Two redox peaks at 0.2 V and 0.5 V are observed in CV curves.With the increase of scanning rate,the oxidation peak shifts to the high potential and the reduction peak to the low potential.The CV curves (Fig.4b) show that the Am-NCS has the largest area,indicating the largest specific capacitance.Fig.4c shows that the specific capacity values are as high as 160,151,141,135 and 131 mAh/g at 2,5,10,15 and 20 A/g,respectively.GCD curves (Fig.4d) show that the specific capacity of the Am-NCS is 117.5 mAh/g larger than those of Am-NiCoS-350,Am-NiCoS1.5and Am-Ni0.5CoS.The rate capabilities recorded in Fig.4e exhibit that the specific capacity of Am-NCS is remained about 82.5% of the initial at a high current density of 20 A/g,which is superior than Am-NiCoS-350,Am-NiCoS1.5and Am-Ni0.5CoS.

    Fig.4.The electrochemical characterization of Am-NCS electrode: (a) CV curves at different scanning rates;(b) CV curves of different samples;(c) GCD curves of the Am-NCS electrode at different scanning rates from 2 mV/s to 20 mV/s;(d) GCD curves,(e) capacities curves and (f) EIS of Am-NiCoS,AM-NiCoS-350,AM-Ni0.5CoS and AM-NiCoS1.5.

    Electrochemical Impedance Spectroscopy (EIS) are conducted and recorded in Fig.4f.The value of charge transfer resistance(Rct) for Am-NCS are 0.13Ωfar smaller than Am-NiCoS-350,Am-NiCoS1.5and Am-Ni0.5CoS,as displayed in Fig.S3 (Supporting information).It is demonstrated that the Am-NCS has higher charge transfer kinetics at the electrode electrolyte interface than others.The smallerRctindicates the better dispersibility of the material and the close bonding with the substrate,resulting in a higher capacity [34].Therefore,the EIS measurements testify that the Am-NCS electrode exhibits more favorable charge transfer kinetics than other samples.

    To explore the crucial role of Am-NCS cathode in rechargeable alkaline AZIBs,the Am-NCS//Zn was assembled by using Am-NCS as cathode,zinc foil as anode and non-woven fabric as separator,as depicted in Fig.5a The Faraday redox process can be deduced as follows:

    CV curves in Fig.5b show that the peak currents increase gradually without significant deformation as the scanning rates increase,signifying that the Am-NCS//Zn enjoys outstanding rate performance and reversibility by virtue of fast reaction kinetics and optimized interface characteristics.To gain further insight into the

    storage mechanism of electrode,there is a typical way of is used to analyzing analyze the CV data at various sweep rates according to the following equation [35].

    Fig.5.(a) Schematic illustration of the AZBs based on Am-NCS cathode and Zn anode.(b) CV curves of the as-assembled Am-NCS//Zn with different scan rates ranging from 1.4 V to 2.0 V.(c) GCD curves of the Am-NCS//Zn at different current densities.(d) Rate capabilities of as-assembled Am-NCS//Zn at different current densities.(e) Rate capabilities of Am-NCS at different scan rates.(f) The midpoint voltage and specific capacity of Am-NCS//Zn in comparison with recently reported energy storage systems.(g) Ragone plot of Am-NCS//Zn.(h) Cycling performance of the Am-NCS//Zn at 10 A/g.

    where the measured currentiobeys a power law relationship with the sweep ratev.Bothaandbare adjustable parameters,withbvalues determined from the slope of the plot of logi versuslogv,as described in the following:

    In particular,the coefficientbvaries in the range of 0.5–1.0,so there are two well-defined conditions,namely,b=0.5 andb=1.0.Thebvalue of 0.5 is indicative of a diffusion-controlled insertion process,while thebvalue of 1.0 is representative of a surface capacitive process [36].According to the linear relationship between logiand logvplots (Eq.4),as shown in Fig.S6 (Supporting information),thebvalues of redox peaks are calculated as 0.67 (peak 1) and 0.68 (peak 2) as shown in Fig.S6,respectively,This suggests that the electrochemical kinetic of Am-NCS electrode is related to both diffusion-controlled process and capacitive effects,but however the diffusion-controlled behavior is the dominant process.As depicted in Fig.S7 (Supporting information),the capacitive contribution is about 45.21% of the total stored charges at 5 mV/s,and the ratio of the capacitive contribution increases with the increment of the scan rates,as record in Fig.S8 (Supporting information).The capacitive contribution can be reached 90.28% at 20 mV/s,and confirming the electrochemical performances are determined by capacitive-kinetics process [37,38].

    GCD curves in Fig.5c manifest that the specific capacitance of Am-NCS//Zn are as high as 155,144,133,128,114 mAh/g at 2,5,10,15 and 20 A/g,respectively.Rate performance in Fig.5d shows that the discharge specific capacities are 160,154,146,135,127,114 and 83 mAh/g,when the current densities are 1,2,5,10,15,20 and 30 A/g,respectively.When the current density returns to 1 A/g,the reversible discharge specific capacity of the Am-NCS is retained at 160 mAh/g,indicating the good rate capabilities [39,40].Fig.5e shows that the capacities of Am-NCS//Zn are as high as 155,144,134,128 and 114 mAh/g at 2,5,10,15 and 20 mV/s corresponding well with the calculating values of GCD.Fig.5f indicates that Am-NCS//Zn has a higher capacity than previous reported batteries,such as a-Mn2O3//Zn [41],KMn8O16//Zn[42],ZKNF-086//Zn [43]and NASION//Zn [44].Besides,Am-NCS//Zn deliver higher energy densities and power densities as shown in Fig.5g (254.2 Wh/kg at 3.28 kW/kg,based on the cathode mass loading),compared to the recent works such as Co3O4//Zn [45],Co-Ni(OH)2//Zn [46],A-Co(OH)2@NiCo-LDH//Zn [47],P-Co3O4//Zn[48]and Co3O4/CFP//AC [49].The stability of Am-NCS//Zn is also conducted,as shown in Fig.5h,its capacity remains 62.5% of the initial after 7000 cycles.The high cycle stability may also be related to the unique morphology and crystallinity of the samples:(1) The layered nanostructure with a layer of nanosheets on the surface effectively prevents the aggregation or separation of particles during the cycle test;(2) The electroactive amorphous materials are activated during the first several hundred cycles,which also endows the high stability of the NiCoS nanometer layer;(3)The amorphous structure withstand large structural changes in the charge-discharge cycle test,thus achieving high stability.

    In summary,the hollow Am-NCS were successfully designed and synthesizedviaion exchange method with ZIF-67 as the selftemplate The amorphous hollow Am-NCS shows a remarkable capacity of 160 mAh/g at 2 A/g In addition,the assembled Am-NCS//Zn has an impressive specific capacity (155 mAh/g at 2 A/g)and a capacitance retention of 62.5% after 7000 cycles at 10 A/g.An impressive energy density of 254.2 Wh/kg can be achieved at the power density of 3.28 kW/kg.The excellent electrochemical performance is mainly attributed to its unique hollow structure and amorphous structure.This work provides a new strategy for the design and synthesis of high-performance cathode materials for AZBs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was supported by the Independent Cultivation Program of Innovation Team of Ji’nan City (No.2019GXRC011),and National Natural Science Foundation of China (No.51802177)and Natural Science Foundation of Shandong Province (No.ZR2020QE062).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.084.

    日韩欧美 国产精品| 国产在线一区二区三区精| 高清日韩中文字幕在线| 国产黄片美女视频| 岛国毛片在线播放| 欧美不卡视频在线免费观看| 真实男女啪啪啪动态图| 熟女人妻精品中文字幕| 听说在线观看完整版免费高清| 亚洲美女视频黄频| av网站免费在线观看视频 | 99热这里只有是精品50| 成人性生交大片免费视频hd| 久久久精品欧美日韩精品| 亚洲精品日韩在线中文字幕| 亚洲,欧美,日韩| 国产成人a区在线观看| 三级毛片av免费| 春色校园在线视频观看| 国产精品女同一区二区软件| or卡值多少钱| 一区二区三区高清视频在线| 三级经典国产精品| 91狼人影院| 国产亚洲一区二区精品| 最近视频中文字幕2019在线8| 亚洲欧美成人综合另类久久久| 黄片无遮挡物在线观看| 麻豆久久精品国产亚洲av| 久久精品熟女亚洲av麻豆精品 | 免费看av在线观看网站| 少妇裸体淫交视频免费看高清| 男女下面进入的视频免费午夜| 一个人看的www免费观看视频| 精品久久久噜噜| 国产精品久久久久久精品电影小说 | 日韩人妻高清精品专区| av在线亚洲专区| 别揉我奶头 嗯啊视频| 日韩亚洲欧美综合| 最近视频中文字幕2019在线8| 亚洲国产精品专区欧美| 亚洲激情五月婷婷啪啪| 欧美激情国产日韩精品一区| 熟妇人妻不卡中文字幕| 欧美xxxx性猛交bbbb| 91久久精品国产一区二区成人| 丰满乱子伦码专区| 亚洲av.av天堂| 男女下面进入的视频免费午夜| av播播在线观看一区| 久久久亚洲精品成人影院| 一区二区三区高清视频在线| 91久久精品电影网| 国产精品1区2区在线观看.| 女人久久www免费人成看片| 国产白丝娇喘喷水9色精品| 伊人久久精品亚洲午夜| 国产欧美日韩精品一区二区| 乱码一卡2卡4卡精品| 蜜桃久久精品国产亚洲av| 在线免费十八禁| 六月丁香七月| 久久这里只有精品中国| 国产 一区精品| 日本与韩国留学比较| 国产av在哪里看| 亚洲欧美日韩无卡精品| 免费av不卡在线播放| 成人午夜精彩视频在线观看| 欧美日韩亚洲高清精品| 国产成人aa在线观看| 大片免费播放器 马上看| av一本久久久久| 婷婷色综合大香蕉| 99视频精品全部免费 在线| 国产成人一区二区在线| 久久久久久久久久久丰满| 久久人人爽人人片av| 能在线免费看毛片的网站| 丰满乱子伦码专区| 亚洲精品乱久久久久久| 精品久久久久久久久亚洲| 纵有疾风起免费观看全集完整版 | 十八禁网站网址无遮挡 | 午夜福利成人在线免费观看| 亚洲综合精品二区| 欧美激情在线99| 少妇的逼好多水| eeuss影院久久| 欧美精品一区二区大全| 黄色配什么色好看| 中文字幕久久专区| 99热这里只有精品一区| 非洲黑人性xxxx精品又粗又长| 美女cb高潮喷水在线观看| 国产综合精华液| 日日干狠狠操夜夜爽| av在线播放精品| 免费看美女性在线毛片视频| 青青草视频在线视频观看| 日韩三级伦理在线观看| 国产 一区精品| 中文字幕av成人在线电影| 禁无遮挡网站| 日本wwww免费看| 婷婷六月久久综合丁香| 美女主播在线视频| 黄片无遮挡物在线观看| 免费观看a级毛片全部| 午夜福利在线在线| 哪个播放器可以免费观看大片| 免费不卡的大黄色大毛片视频在线观看 | 日韩人妻高清精品专区| 两个人的视频大全免费| 国产乱人视频| 亚洲精品自拍成人| 国产白丝娇喘喷水9色精品| 午夜视频国产福利| 少妇人妻精品综合一区二区| 一本久久精品| 欧美zozozo另类| 精品久久久精品久久久| 日本av手机在线免费观看| 日本猛色少妇xxxxx猛交久久| 久久久国产一区二区| 最新中文字幕久久久久| 欧美bdsm另类| 亚洲成人中文字幕在线播放| 亚洲18禁久久av| 国产精品精品国产色婷婷| 国产精品一区二区三区四区久久| 在线观看一区二区三区| 我的老师免费观看完整版| 成人毛片a级毛片在线播放| 免费看a级黄色片| 在线天堂最新版资源| 国产探花极品一区二区| av在线亚洲专区| 人妻一区二区av| 亚洲欧美成人精品一区二区| 91狼人影院| 成人亚洲精品一区在线观看 | 亚洲精品成人久久久久久| 街头女战士在线观看网站| 午夜福利网站1000一区二区三区| 91精品一卡2卡3卡4卡| 国产探花极品一区二区| 永久免费av网站大全| www.av在线官网国产| 日韩成人伦理影院| 久久亚洲国产成人精品v| 午夜免费男女啪啪视频观看| 日韩视频在线欧美| 中文字幕久久专区| 又黄又爽又刺激的免费视频.| 国产成人a区在线观看| 黄色欧美视频在线观看| av在线亚洲专区| 成年女人看的毛片在线观看| 三级国产精品欧美在线观看| 午夜福利高清视频| 看非洲黑人一级黄片| 精品国产三级普通话版| 日韩欧美三级三区| 六月丁香七月| 99热这里只有是精品在线观看| 免费黄色在线免费观看| 国模一区二区三区四区视频| 国产综合精华液| 校园人妻丝袜中文字幕| 国内精品宾馆在线| 亚洲久久久久久中文字幕| 亚洲av在线观看美女高潮| 一级av片app| 观看免费一级毛片| av在线老鸭窝| 夜夜爽夜夜爽视频| 欧美97在线视频| 免费黄频网站在线观看国产| 日本黄色片子视频| 国产v大片淫在线免费观看| 国产精品麻豆人妻色哟哟久久 | 欧美精品一区二区大全| 久久久久久久久久人人人人人人| 久久久久免费精品人妻一区二区| 亚洲,欧美,日韩| 久久鲁丝午夜福利片| 美女脱内裤让男人舔精品视频| 国产午夜福利久久久久久| 日韩av不卡免费在线播放| 亚洲精品日韩在线中文字幕| 99久久九九国产精品国产免费| 欧美日韩一区二区视频在线观看视频在线 | 最新中文字幕久久久久| 街头女战士在线观看网站| 精华霜和精华液先用哪个| 3wmmmm亚洲av在线观看| 日韩中字成人| 2018国产大陆天天弄谢| 亚洲乱码一区二区免费版| 久久久成人免费电影| 国产亚洲最大av| 欧美成人a在线观看| 在现免费观看毛片| 午夜精品国产一区二区电影 | 久久久精品94久久精品| 69人妻影院| 最近中文字幕高清免费大全6| 国产亚洲精品久久久com| 美女高潮的动态| 人人妻人人看人人澡| 一个人看的www免费观看视频| 欧美最新免费一区二区三区| 国产有黄有色有爽视频| 亚洲精品aⅴ在线观看| 日本与韩国留学比较| 久久久久久久久大av| 国产精品日韩av在线免费观看| 久久韩国三级中文字幕| 亚洲精品成人av观看孕妇| 晚上一个人看的免费电影| 国产精品麻豆人妻色哟哟久久 | 国产精品久久久久久久电影| 日韩精品青青久久久久久| 99久久中文字幕三级久久日本| 亚洲av成人av| 综合色av麻豆| 18禁在线播放成人免费| 午夜福利在线观看吧| 久久久久九九精品影院| 成人av在线播放网站| 国产精品一二三区在线看| 成人二区视频| 国产高清三级在线| 中文字幕av在线有码专区| 搞女人的毛片| 亚洲精品乱码久久久久久按摩| 少妇丰满av| 国产精品国产三级国产av玫瑰| 视频中文字幕在线观看| 99久久精品国产国产毛片| 国产单亲对白刺激| 十八禁国产超污无遮挡网站| 成人欧美大片| 成年女人在线观看亚洲视频 | 亚洲av中文字字幕乱码综合| 国产精品一区二区在线观看99 | 精品人妻偷拍中文字幕| 街头女战士在线观看网站| 美女黄网站色视频| 国产精品爽爽va在线观看网站| av卡一久久| 97热精品久久久久久| 老司机影院成人| 九九爱精品视频在线观看| 亚洲av中文字字幕乱码综合| 高清午夜精品一区二区三区| 日韩制服骚丝袜av| 噜噜噜噜噜久久久久久91| 亚洲精品影视一区二区三区av| 麻豆成人午夜福利视频| 久久99热6这里只有精品| 国产成人精品一,二区| 人人妻人人看人人澡| 亚洲三级黄色毛片| 91精品一卡2卡3卡4卡| 国产av码专区亚洲av| 亚洲精品日韩av片在线观看| 最近中文字幕2019免费版| 精品酒店卫生间| 国产精品综合久久久久久久免费| 在线观看一区二区三区| 国产国拍精品亚洲av在线观看| 成人午夜高清在线视频| 久99久视频精品免费| 蜜桃久久精品国产亚洲av| 成人午夜精彩视频在线观看| 久久鲁丝午夜福利片| 肉色欧美久久久久久久蜜桃 | 久久亚洲国产成人精品v| 精品不卡国产一区二区三区| 国产女主播在线喷水免费视频网站 | 国产爱豆传媒在线观看| 免费观看在线日韩| 国产不卡一卡二| 欧美另类一区| 丰满少妇做爰视频| 99热这里只有精品一区| 亚洲最大成人中文| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久亚洲| 777米奇影视久久| 亚洲欧美日韩卡通动漫| 欧美xxxx性猛交bbbb| 又爽又黄a免费视频| 国产成人午夜福利电影在线观看| 欧美最新免费一区二区三区| av在线观看视频网站免费| 亚洲自偷自拍三级| 一区二区三区四区激情视频| 51国产日韩欧美| 亚洲精品一区蜜桃| 伦精品一区二区三区| freevideosex欧美| 亚洲国产av新网站| 天美传媒精品一区二区| 国产69精品久久久久777片| 啦啦啦韩国在线观看视频| 欧美日韩综合久久久久久| 亚洲伊人久久精品综合| 成人无遮挡网站| 九九爱精品视频在线观看| 国产精品99久久久久久久久| 亚洲精品,欧美精品| 又粗又硬又长又爽又黄的视频| 欧美xxxx黑人xx丫x性爽| 亚洲va在线va天堂va国产| 亚洲精品456在线播放app| 免费看不卡的av| 亚洲精品,欧美精品| 亚洲熟妇中文字幕五十中出| 在线观看美女被高潮喷水网站| 成人无遮挡网站| 干丝袜人妻中文字幕| 国产色爽女视频免费观看| 国产一区二区三区综合在线观看 | kizo精华| 亚洲精品亚洲一区二区| 97超视频在线观看视频| 欧美一区二区亚洲| 非洲黑人性xxxx精品又粗又长| 国产亚洲av片在线观看秒播厂 | 我的老师免费观看完整版| 男人舔女人下体高潮全视频| 深爱激情五月婷婷| 韩国av在线不卡| 97超碰精品成人国产| 亚洲精品日韩av片在线观看| 色播亚洲综合网| 亚洲精品乱码久久久v下载方式| 亚洲成人av在线免费| 一边亲一边摸免费视频| 婷婷色综合www| 日韩一区二区视频免费看| 亚洲乱码一区二区免费版| 亚洲精品国产成人久久av| 国内精品宾馆在线| 赤兔流量卡办理| 国产精品福利在线免费观看| 国产综合精华液| 在线免费观看不下载黄p国产| 欧美97在线视频| 白带黄色成豆腐渣| 国产精品福利在线免费观看| 91久久精品国产一区二区三区| 精品一区二区三区视频在线| 一级毛片aaaaaa免费看小| 亚洲欧美精品自产自拍| 精品一区在线观看国产| 亚洲精品日本国产第一区| 亚洲三级黄色毛片| 日本黄大片高清| 亚州av有码| 一区二区三区乱码不卡18| 精品久久久久久久久久久久久| 亚洲av二区三区四区| 最新中文字幕久久久久| 亚洲欧美日韩卡通动漫| 久热久热在线精品观看| 少妇熟女aⅴ在线视频| 美女大奶头视频| 日本免费a在线| 欧美xxxx性猛交bbbb| 青春草视频在线免费观看| 久久精品人妻少妇| 超碰av人人做人人爽久久| videos熟女内射| 欧美xxⅹ黑人| 国产精品av视频在线免费观看| 超碰av人人做人人爽久久| 亚洲av在线观看美女高潮| av.在线天堂| 一级毛片电影观看| 国产视频内射| 国内精品一区二区在线观看| 七月丁香在线播放| 国产精品久久久久久精品电影小说 | 亚洲精品一二三| 97人妻精品一区二区三区麻豆| 一个人观看的视频www高清免费观看| 亚洲久久久久久中文字幕| 夫妻性生交免费视频一级片| 久久久久久久久久黄片| 在线免费观看不下载黄p国产| 欧美激情国产日韩精品一区| 国产不卡一卡二| 国产在视频线精品| 免费人成在线观看视频色| 久久热精品热| 狂野欧美激情性xxxx在线观看| 麻豆精品久久久久久蜜桃| 国产成人午夜福利电影在线观看| 国产黄色免费在线视频| 亚洲av一区综合| 欧美极品一区二区三区四区| 欧美日韩一区二区视频在线观看视频在线 | 国产成人aa在线观看| 国产午夜精品论理片| 国产伦精品一区二区三区视频9| 国精品久久久久久国模美| 亚洲国产成人一精品久久久| 精品熟女少妇av免费看| 亚洲内射少妇av| 欧美日韩亚洲高清精品| 国产高潮美女av| 舔av片在线| 女的被弄到高潮叫床怎么办| 岛国毛片在线播放| 国产精品久久久久久精品电影| 日本一二三区视频观看| 成年女人在线观看亚洲视频 | 夫妻性生交免费视频一级片| 久久久久久久久久黄片| 亚洲欧美中文字幕日韩二区| 赤兔流量卡办理| 91av网一区二区| videossex国产| 精品久久久久久久久久久久久| av在线蜜桃| 嫩草影院精品99| 亚洲av不卡在线观看| 欧美区成人在线视频| 777米奇影视久久| 成人二区视频| 女人久久www免费人成看片| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲一区二区精品| 天堂中文最新版在线下载 | 国产女主播在线喷水免费视频网站 | 能在线免费看毛片的网站| 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| 亚洲精华国产精华液的使用体验| 亚洲成人中文字幕在线播放| 久久久色成人| 国产伦在线观看视频一区| 亚洲综合色惰| 国产老妇伦熟女老妇高清| av在线亚洲专区| 久久99热这里只有精品18| 十八禁国产超污无遮挡网站| 黄色配什么色好看| 亚洲av免费在线观看| 亚洲av不卡在线观看| 国产精品一区二区性色av| 六月丁香七月| 日韩在线高清观看一区二区三区| 精品久久久久久电影网| 水蜜桃什么品种好| 女人久久www免费人成看片| 国产亚洲91精品色在线| 国产精品伦人一区二区| .国产精品久久| 夫妻午夜视频| 精品久久久久久成人av| 一区二区三区高清视频在线| 午夜老司机福利剧场| 亚洲在久久综合| 久久久精品94久久精品| 免费黄网站久久成人精品| 日日啪夜夜撸| 最近手机中文字幕大全| 九草在线视频观看| 国产精品爽爽va在线观看网站| 色尼玛亚洲综合影院| 久久99精品国语久久久| 一区二区三区乱码不卡18| 欧美人与善性xxx| 床上黄色一级片| 最近最新中文字幕大全电影3| 国产黄色免费在线视频| 国产精品久久视频播放| 免费av观看视频| 九九久久精品国产亚洲av麻豆| 亚洲成人久久爱视频| 国产黄片美女视频| 国产精品爽爽va在线观看网站| 99久久人妻综合| 国产乱人视频| 精品久久久久久久末码| 国产伦精品一区二区三区四那| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一区www在线观看| 免费无遮挡裸体视频| 一级a做视频免费观看| 熟妇人妻不卡中文字幕| 亚洲精品自拍成人| 美女cb高潮喷水在线观看| 天天一区二区日本电影三级| 亚洲av福利一区| 亚洲精品国产av蜜桃| 黄片无遮挡物在线观看| 麻豆成人午夜福利视频| 一级毛片黄色毛片免费观看视频| 69av精品久久久久久| 尾随美女入室| 天堂√8在线中文| 97超视频在线观看视频| 欧美丝袜亚洲另类| 国产精品.久久久| 一夜夜www| 国产午夜精品论理片| 麻豆国产97在线/欧美| 精品久久久久久久久久久久久| 精华霜和精华液先用哪个| 秋霞在线观看毛片| 全区人妻精品视频| 综合色丁香网| 秋霞伦理黄片| 五月玫瑰六月丁香| 成年av动漫网址| 汤姆久久久久久久影院中文字幕 | 少妇人妻精品综合一区二区| 色网站视频免费| 18禁在线无遮挡免费观看视频| 国内精品一区二区在线观看| 综合色av麻豆| 亚洲天堂国产精品一区在线| 黄片无遮挡物在线观看| 亚洲欧美中文字幕日韩二区| 波野结衣二区三区在线| 一级二级三级毛片免费看| 啦啦啦韩国在线观看视频| 美女国产视频在线观看| 99久国产av精品| 男女边摸边吃奶| 久久国内精品自在自线图片| 免费无遮挡裸体视频| 亚洲av一区综合| 国产午夜精品一二区理论片| 精品午夜福利在线看| 亚洲精品一区蜜桃| 五月伊人婷婷丁香| 韩国高清视频一区二区三区| 日韩欧美 国产精品| 婷婷色综合www| 高清午夜精品一区二区三区| 男女视频在线观看网站免费| 久久精品国产亚洲av涩爱| 欧美日韩视频高清一区二区三区二| 91精品一卡2卡3卡4卡| 中国国产av一级| 97超碰精品成人国产| 一级毛片电影观看| 免费人成在线观看视频色| 一边亲一边摸免费视频| 一级毛片aaaaaa免费看小| 国产精品人妻久久久影院| 亚洲国产精品国产精品| 日韩制服骚丝袜av| 九九爱精品视频在线观看| 国内揄拍国产精品人妻在线| 九九爱精品视频在线观看| 黄片wwwwww| 成人二区视频| 国产午夜精品久久久久久一区二区三区| 99热6这里只有精品| 亚洲激情五月婷婷啪啪| 非洲黑人性xxxx精品又粗又长| 男女啪啪激烈高潮av片| 亚洲国产精品成人久久小说| 永久网站在线| 毛片女人毛片| 精品一区二区三区人妻视频| 好男人在线观看高清免费视频| 人体艺术视频欧美日本| 日韩欧美精品免费久久| 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 特级一级黄色大片| 中国国产av一级| 亚洲精华国产精华液的使用体验| 色哟哟·www| 久久精品熟女亚洲av麻豆精品 | 在线观看美女被高潮喷水网站| 日韩在线高清观看一区二区三区| av一本久久久久| 久久久久久久久中文| 日本猛色少妇xxxxx猛交久久| 啦啦啦韩国在线观看视频| 少妇的逼好多水| 美女被艹到高潮喷水动态| 麻豆国产97在线/欧美| 午夜视频国产福利| 综合色av麻豆| 人人妻人人看人人澡| 超碰av人人做人人爽久久| 国产精品一区二区三区四区免费观看| av卡一久久| 人体艺术视频欧美日本| 春色校园在线视频观看| 欧美三级亚洲精品| 国产淫片久久久久久久久| 日韩av不卡免费在线播放| 狂野欧美白嫩少妇大欣赏| freevideosex欧美| 欧美 日韩 精品 国产| 亚洲美女视频黄频| 直男gayav资源| 免费电影在线观看免费观看| 国产成人精品一,二区| 国产成人福利小说| 国产又色又爽无遮挡免|