• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Amorphous Ni-Co-S nanocages assembled with nanosheet arrays as cathode for high-performance zinc ion battery

    2022-07-11 03:39:48LiGungmengQuXixiZhngShunshunZhoChenggngWngGngZhoPeiyuHouXijinXu
    Chinese Chemical Letters 2022年6期

    N Li,Gungmeng Qu,Xixi Zhng,Shunshun Zho,Chenggng Wng,Gng Zho,Peiyu Hou,Xijin Xu,?

    a School of Physics and Technology,University of Jinan,Ji’nan 250022,China

    b Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering,Shandong University,Ji’nan 250100,China

    c School of Electronic and Information Engineering (Department of Physics),Qilu University of Technology (Shandong Academy of Sciences),Ji’nan 250353,China

    Keywords:Alkaline zinc batteries Metal sulfide Hierarchical structures Amorphous structure Hollow structure

    ABSTRACT The selection and development of cathode of alkaline zinc batteries (AZBs) is still hindered and often leads to poor rate capability and short cycle life.Here,amorphous hollow nickel-cobalt-based sulfides nanocages with nanosheet arrays (AM-NCS) are designed and constructed with ZIF-67 as the selftemplate to exchange with Ni2+ and S2?by using a two-step ion exchange method.The synthesized AM-NCS possess the high specific capacity (160 mAh/g at 2 A/g),and the assembled battery has excellent rate performance (146 mAh/g reversible capacity at 5 A/g).The assembled device has excellent rate performance (155 mAh/g at 2 A/g) and long cycling stability (7000 cycles,62.5% of initial capacity).The excellent electrochemical properties of the electrode materials are mainly attributed to the unique structure,in particular,polyhedron structure with hollow structure can improve the cyclic stability,and the amorphous structure can expose more reactive sites on the surfaces of nickel,cobalt and sulfur.This work provides a new strategy for the design and fabrication of high performance cathode materials for AZBs.

    The lithium-ion batteries are famous for high energy density and long cycling life which currently dominate the commercial secondary battery market including consumer electronics,electric vehicles and aerospace applications [1–4].However,flammable organic electrolytes and rare lithium resources limit their wide applications.Recently,aqueous batteries have attracted intense interests because of their inherent safety and low cost,especially for low reduction potential of alkaline zinc anode (?1.2 Vvs.SHE),which is emerging as one of the most promising alternatives to electrochemical energy storage [5].In addition,the ionic conductivity of aqueous electrolyte (~1 S/cm) is much higher than that of non-aqueous electrolyte (~1–10 mS/cm),which endows the battery with an outstanding rate capability [6–8].

    Zn//Ni alkaline zinc batteries have many advantages,such as outstanding power density,high discharge voltage platform and environmental friendliness.Nowadays,Ni(OH)2and NiO are mostly used as active cathode materials in alkaline zinc batteries [9,10].However,the poor stability,unsatisfactory conductivity and volume expansion limit their wide applications.Many ways,including constructing multi-shell nanostructures,one-dimensional nanoarrays or 3D skeleton structures,have been used to solve the volume expansion for high-performance Ni-based cathode materials[11–13].The assembly of vertically arranged nanoarrays with many gaps facilitates the diffusion of ions and the full contact between the electrode material and the electrolyte.Besides,the amorphous phase provides larger proportion of random alignment bonds in the unsaturated electronic configuration than the crystal,which facilitates the adsorption of the reactants [14–17].Furthermore,the amorphous structure accelerates the charge transfer between the active center and the reaction intermediate.Bovineet al.synthesized MOF-derived amorphous V2O5and carbon (a-V2O5@C) composites,where amorphous V2O5is uniformly distributed in the carbon framework [18].The amorphous structure endows V2O5more isotropic Zn2+diffusion pathways and active sites,which leads to the rapid migration and high specific capacity of Zn2+and remarkable electrochemical properties of a-V2O5@C composite.What is more,nickel/cobalt sulfides have the advantages of high theoretical capacitance,abundant raw materials and environment-friendly as well as high intrinsic conductivity [19–21].

    Herein,we successfully designed and synthesized hollow Am-NCS nanocages (abbreviated as Am-NCS in short) by ion exchange method with ZIF-67 as the self-template [22–24].On one hand,the amorphous structure of synthesized Am-NCS not only accelerates the charge transfer but also have the isotropic OH?diffusion pathways,further enhancing the rate performance.On the other hand,nanosheets-assembled hollow structures alleviate the volume expansion during the intercalated process of OH-,as well as providing large electrolyte contact areas,thus increasing specific capacity and cycling stability [25–28].Therefore,the synthesized Am-NCS deliver a high capacity of 160 mAh/g at 2 A/g with excellent rate performance of 130 mAh/g at 20 A/g.The energy density of the asprepared Am-NCS//Zn battery is up to 254.2 Wh/kg with a highest power density of 3.28 kW/kg.What is more,the long cycle stability could be reached 7000 cycles,even at a high current density of 10 A/g,illustrating the high stability of Am-NCS//Zn battery.

    Methylimidazole (2-mIM),methanol,ethanol,Ni(NO3)2·6H2O,Co(NO3)2·6H2O,KOH are supplied by Aladdin Reagent Company(China).The morphologies and microstructures of the materials were observed by field emission scanning electron Microscope(QUANTA 250 FEG) and transmission electron microscope (JEOL JEM-2100F).The chemical states were characterized by C-ray photoelectron spectroscopy (XPS) with X-ray energy dispersive spectrometer (XPS).The Raman spectra of the materials were measured by HORIBA LabRAM HR 800 under 514 nm excitation light source.The electrochemical measurements were carried out on CHI660 electrochemical workstation.

    All reagents are used directly without further purification.1 mmol (0.291 g) of Co(NO3)2·6H2O was dissolved in 25 mL of methanol to obtain solution A,and 4 mmol of 2-methylimidazole(0.328 g) was dissolved in 25 ml of methanol to obtain solution B.Solution B was poured into solution A and stirred continuously for 1 hour and stand at room temperature for 24 h.Then it was centrifuged and washed several times with methanol to obtain a purple precipitate,which was dried at 60 °C for 12 h in vacuum.

    Synthesis of Ni-Co layered double hydroxides (Ni-Co LDH):76 mg ZIF-67 was dispersed into 10 mL of ethanol to obtain solution C with continuously stirred and ultrasound assisted.0.152 g of Ni(NO3)2?6H2O was dissolved into 50 mL of ethanol to obtain solution D.Solution C was mixed with solution D and stirred continuously for 1 h.Then it was centrifuged and washed several times with ethanol to obtain a light purple Ni-Co LDH,then dried at 60°C for 12 h in vacuum.

    Synthesis of Am-NCS: The as-obtained Ni-Co LDH was vulcanized by S powder at 250 °C for 2 h (1 °C/min) with a mass ratio of 1:2 under atmosphere,and then the final product of Am-NCS was collected.And the Am-NCO was prepared under the same conditions except for without S powder added.

    Furthermore,comparative experiments were conducted,in which the concentration of the first step ion-exchange nickelalcohol nitrate solution is half (AM-Ni0.5CoS),and the ratio of the second step ion-exchange material to sulfur powder is adjusted to 1:1.5 (AM-NiCoS1.5),and the curing temperature is adjusted to 350°C (AM-NiCoS-350 °C).

    The electrochemical measurements were carried out both in three-electrode system and full cell.Platinum plate and Hg/HgO electrode were used as counter electrode and reference electrode,respectively.The work electrode was prepared by the following method: A mixture of 70% Am-NCS,20% acetylene black and 10% PVDF was prepared to produce a uniform paste.Then the paste was coated with a carbon cloth collector (1.0 cm×3.0 cm)and dried for 6 h at vacuum.The electrolyte is 3.0 mol/L potassium hydroxide aqueous solution.CHI660D electrochemical workstation was used for cyclic voltammetry (CV),electrochemical impedance spectroscopy (EIS) and electrostatic discharge (GCD)measurements.The electrochemical test was carried out with zinc sheet as counter electrode and reference electrode,Am-NCS as positive electrode,3.0 mol/L potassium hydroxide and 0.03 mol/L zinc acetate as electrolyte.

    Fig.1.SEM images of (a) ZIF-67,(b) Ni-Co LDH and (c) Am-NCS.(d,e) TEM and HRTEM images of Am-NCS.(f) SAED image of Am-NCS.(g-i) The elemental mappings of Am-NCS.

    A typical ZIF-67 with rhomboid dodecahedron structure,as shown in Fig.1a and Fig S1a (Supporting information),exhibits the uniform sizes of 600–700 nm.It is obvious that the Ni-Co LDHs (Fig.1b and Fig S1b in Supporting information) well inherits the polyhedron structure from ZIF-67,which composites by huge amounts of ultrafine nanoparticles remaining hollow structures.Then these hollow structures were further preserved after calcination,as recorded in Fig.1c and Fig S1c (Supporting information),Am-NCS shows rough surfaces with many small particles dispersed on the shell,indicating that vulcanization process induces the reconstruction of the structures.Additionally,Fig.1d confirms the nanocage-like hollow structures of Am-NCS,which are composited by many ultrafine nanoparticles.The ultrafine nanoparticles effectively increase the specific surface areas providing more electroactive sites for electrochemical applications.The nanocagelike hollow structures not only greatly shorten the distance of ion diffusion path,but also prevent the structural damage and ensure the long life of the structure.HRTEM (Fig.1e) further reveals that no distinct lattice fringes are observed,and the weak crystalline is further proved by the SAED image in Fig.1f,indicating the amorphous characteristics of Am-NCS.The elemental mappings in Figs.1g-i clearly show the homogeneous distributions of Ni,Co and S elements,proving the successful synthesis of bimetallic sulfides.The elemental compositions of Am-NCS are further conformed by EDS spectrum (Fig.S2 in Supporting information),among which the C and O originate from the residual during calcination.

    The compositions and valence states of Am-NCS are characterized by X-ray Photoelectron Spectroscopy (XPS),as shown in Fig.2,from which the peaks corresponding to Ni 2p,Co 2p,S 2p,O 1s,N 1s and C 1s are clearly observed (Fig.2a).Ni 2p spectrum in Fig.2b could be fitted by two spin-orbit doublets (2p1/2and 2p3/2) and two shakeup satellites (denoted as Sat.).The peaks at 855.2 and 873.4 eV correspond to the Ni2+,and the peaks at 857.1 and 871.6 eV are ascribed to the Ni3+[29].For Co 2p in Fig.2c,the binding energies at 778.5 and 794.6 eV are attributed to Co3+and the binding energies at 780.0 and 796.3 eV are indexed to Co2+[30].In the S 2p spectrum (Fig.2d),the peaks located at 162.5 and 161.3 eV are ascribed to S 2p1/2and 2p3/2,respectively,and the peak at 169.0 eV is shakeup satellite peak [31].The wider and weaker Raman peaks in Fig.2e indicate the poor crystallinity and amorphous characteristic of the Am-NCS.There is no obvious diffraction peak of XRD for Am-NCS,as recorded in Fig.2f,further illustrating the amorphous characteristic of the Am-NCS.

    Fig.2.XPS spectra of Am-NCS: (a) Survey scan;High-resolution scan of the (b)Ni 2p,(c) Co 2p and (d) S 2p.(e) Raman image of Am-NCS.(f) XRD patterns of ZIF-67 template and Am-NCS.

    Fig.3.Schematic of synthesis process of Am-NCS.

    As schematically illustrated in Fig.3,the Ni2+ions are hydrolyzed and produced protons when Ni(NO3)2is added,which will etch the ZIF-67 template through the protonation of the 2-mim ligand.Then,the Co2+ions released from ZIF-67 MOFs will co-precipitate with Ni2+ions to form Ni-Co LDH.With continuous etching,the ultrafine nanosheets of Ni-Co LDH will be formed on the surface of ZIF-67 composited hollow structures.Finally,the Am-NCS is obtained by annealing the Ni-Co LDH precursor in a tubular furnace at atmosphere with S powder as the sulfur source.The kinetic equilibrium between shell growth and acid etching of the template may be the key factor for the formation of hollow nanolayer structures [32,33].

    In Fig.4a,the electrochemical properties of Am-NCS are investigated by three-electrode configuration.Two redox peaks at 0.2 V and 0.5 V are observed in CV curves.With the increase of scanning rate,the oxidation peak shifts to the high potential and the reduction peak to the low potential.The CV curves (Fig.4b) show that the Am-NCS has the largest area,indicating the largest specific capacitance.Fig.4c shows that the specific capacity values are as high as 160,151,141,135 and 131 mAh/g at 2,5,10,15 and 20 A/g,respectively.GCD curves (Fig.4d) show that the specific capacity of the Am-NCS is 117.5 mAh/g larger than those of Am-NiCoS-350,Am-NiCoS1.5and Am-Ni0.5CoS.The rate capabilities recorded in Fig.4e exhibit that the specific capacity of Am-NCS is remained about 82.5% of the initial at a high current density of 20 A/g,which is superior than Am-NiCoS-350,Am-NiCoS1.5and Am-Ni0.5CoS.

    Fig.4.The electrochemical characterization of Am-NCS electrode: (a) CV curves at different scanning rates;(b) CV curves of different samples;(c) GCD curves of the Am-NCS electrode at different scanning rates from 2 mV/s to 20 mV/s;(d) GCD curves,(e) capacities curves and (f) EIS of Am-NiCoS,AM-NiCoS-350,AM-Ni0.5CoS and AM-NiCoS1.5.

    Electrochemical Impedance Spectroscopy (EIS) are conducted and recorded in Fig.4f.The value of charge transfer resistance(Rct) for Am-NCS are 0.13Ωfar smaller than Am-NiCoS-350,Am-NiCoS1.5and Am-Ni0.5CoS,as displayed in Fig.S3 (Supporting information).It is demonstrated that the Am-NCS has higher charge transfer kinetics at the electrode electrolyte interface than others.The smallerRctindicates the better dispersibility of the material and the close bonding with the substrate,resulting in a higher capacity [34].Therefore,the EIS measurements testify that the Am-NCS electrode exhibits more favorable charge transfer kinetics than other samples.

    To explore the crucial role of Am-NCS cathode in rechargeable alkaline AZIBs,the Am-NCS//Zn was assembled by using Am-NCS as cathode,zinc foil as anode and non-woven fabric as separator,as depicted in Fig.5a The Faraday redox process can be deduced as follows:

    CV curves in Fig.5b show that the peak currents increase gradually without significant deformation as the scanning rates increase,signifying that the Am-NCS//Zn enjoys outstanding rate performance and reversibility by virtue of fast reaction kinetics and optimized interface characteristics.To gain further insight into the

    storage mechanism of electrode,there is a typical way of is used to analyzing analyze the CV data at various sweep rates according to the following equation [35].

    Fig.5.(a) Schematic illustration of the AZBs based on Am-NCS cathode and Zn anode.(b) CV curves of the as-assembled Am-NCS//Zn with different scan rates ranging from 1.4 V to 2.0 V.(c) GCD curves of the Am-NCS//Zn at different current densities.(d) Rate capabilities of as-assembled Am-NCS//Zn at different current densities.(e) Rate capabilities of Am-NCS at different scan rates.(f) The midpoint voltage and specific capacity of Am-NCS//Zn in comparison with recently reported energy storage systems.(g) Ragone plot of Am-NCS//Zn.(h) Cycling performance of the Am-NCS//Zn at 10 A/g.

    where the measured currentiobeys a power law relationship with the sweep ratev.Bothaandbare adjustable parameters,withbvalues determined from the slope of the plot of logi versuslogv,as described in the following:

    In particular,the coefficientbvaries in the range of 0.5–1.0,so there are two well-defined conditions,namely,b=0.5 andb=1.0.Thebvalue of 0.5 is indicative of a diffusion-controlled insertion process,while thebvalue of 1.0 is representative of a surface capacitive process [36].According to the linear relationship between logiand logvplots (Eq.4),as shown in Fig.S6 (Supporting information),thebvalues of redox peaks are calculated as 0.67 (peak 1) and 0.68 (peak 2) as shown in Fig.S6,respectively,This suggests that the electrochemical kinetic of Am-NCS electrode is related to both diffusion-controlled process and capacitive effects,but however the diffusion-controlled behavior is the dominant process.As depicted in Fig.S7 (Supporting information),the capacitive contribution is about 45.21% of the total stored charges at 5 mV/s,and the ratio of the capacitive contribution increases with the increment of the scan rates,as record in Fig.S8 (Supporting information).The capacitive contribution can be reached 90.28% at 20 mV/s,and confirming the electrochemical performances are determined by capacitive-kinetics process [37,38].

    GCD curves in Fig.5c manifest that the specific capacitance of Am-NCS//Zn are as high as 155,144,133,128,114 mAh/g at 2,5,10,15 and 20 A/g,respectively.Rate performance in Fig.5d shows that the discharge specific capacities are 160,154,146,135,127,114 and 83 mAh/g,when the current densities are 1,2,5,10,15,20 and 30 A/g,respectively.When the current density returns to 1 A/g,the reversible discharge specific capacity of the Am-NCS is retained at 160 mAh/g,indicating the good rate capabilities [39,40].Fig.5e shows that the capacities of Am-NCS//Zn are as high as 155,144,134,128 and 114 mAh/g at 2,5,10,15 and 20 mV/s corresponding well with the calculating values of GCD.Fig.5f indicates that Am-NCS//Zn has a higher capacity than previous reported batteries,such as a-Mn2O3//Zn [41],KMn8O16//Zn[42],ZKNF-086//Zn [43]and NASION//Zn [44].Besides,Am-NCS//Zn deliver higher energy densities and power densities as shown in Fig.5g (254.2 Wh/kg at 3.28 kW/kg,based on the cathode mass loading),compared to the recent works such as Co3O4//Zn [45],Co-Ni(OH)2//Zn [46],A-Co(OH)2@NiCo-LDH//Zn [47],P-Co3O4//Zn[48]and Co3O4/CFP//AC [49].The stability of Am-NCS//Zn is also conducted,as shown in Fig.5h,its capacity remains 62.5% of the initial after 7000 cycles.The high cycle stability may also be related to the unique morphology and crystallinity of the samples:(1) The layered nanostructure with a layer of nanosheets on the surface effectively prevents the aggregation or separation of particles during the cycle test;(2) The electroactive amorphous materials are activated during the first several hundred cycles,which also endows the high stability of the NiCoS nanometer layer;(3)The amorphous structure withstand large structural changes in the charge-discharge cycle test,thus achieving high stability.

    In summary,the hollow Am-NCS were successfully designed and synthesizedviaion exchange method with ZIF-67 as the selftemplate The amorphous hollow Am-NCS shows a remarkable capacity of 160 mAh/g at 2 A/g In addition,the assembled Am-NCS//Zn has an impressive specific capacity (155 mAh/g at 2 A/g)and a capacitance retention of 62.5% after 7000 cycles at 10 A/g.An impressive energy density of 254.2 Wh/kg can be achieved at the power density of 3.28 kW/kg.The excellent electrochemical performance is mainly attributed to its unique hollow structure and amorphous structure.This work provides a new strategy for the design and synthesis of high-performance cathode materials for AZBs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was supported by the Independent Cultivation Program of Innovation Team of Ji’nan City (No.2019GXRC011),and National Natural Science Foundation of China (No.51802177)and Natural Science Foundation of Shandong Province (No.ZR2020QE062).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.084.

    婷婷成人精品国产| 国产成人a∨麻豆精品| 国产日韩欧美视频二区| 热99久久久久精品小说推荐| 麻豆av在线久日| xxx大片免费视频| 男男h啪啪无遮挡| 性色av一级| 在线观看免费视频网站a站| 大陆偷拍与自拍| 99香蕉大伊视频| 中文字幕最新亚洲高清| a 毛片基地| av在线老鸭窝| 寂寞人妻少妇视频99o| 日韩制服骚丝袜av| 久久韩国三级中文字幕| 国产深夜福利视频在线观看| 亚洲精品美女久久av网站| 婷婷色麻豆天堂久久| 国产精品三级大全| 免费日韩欧美在线观看| 精品亚洲成国产av| 中文字幕人妻丝袜制服| 少妇人妻久久综合中文| 久久99热这里只频精品6学生| 国产乱来视频区| 久久婷婷青草| 日韩人妻精品一区2区三区| 又粗又硬又长又爽又黄的视频| 咕卡用的链子| 美女午夜性视频免费| 国产熟女欧美一区二区| 各种免费的搞黄视频| 卡戴珊不雅视频在线播放| 精品国产超薄肉色丝袜足j| 成人午夜精彩视频在线观看| 美女大奶头黄色视频| 在线观看三级黄色| 一级a爱视频在线免费观看| 一级爰片在线观看| 亚洲欧美一区二区三区黑人 | 巨乳人妻的诱惑在线观看| 国产熟女欧美一区二区| 欧美日韩亚洲国产一区二区在线观看 | 丝瓜视频免费看黄片| 精品人妻熟女毛片av久久网站| 18在线观看网站| 午夜久久久在线观看| 又黄又粗又硬又大视频| tube8黄色片| 人体艺术视频欧美日本| 国产一区亚洲一区在线观看| 狂野欧美激情性bbbbbb| h视频一区二区三区| 最近最新中文字幕大全免费视频 | 亚洲精品,欧美精品| 在线观看国产h片| 少妇熟女欧美另类| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| 国产日韩一区二区三区精品不卡| 黄色 视频免费看| 高清视频免费观看一区二区| 欧美bdsm另类| 国产在视频线精品| 午夜免费观看性视频| 成人毛片60女人毛片免费| 一级片'在线观看视频| 国产熟女欧美一区二区| 国产精品三级大全| 婷婷色av中文字幕| 日韩熟女老妇一区二区性免费视频| 26uuu在线亚洲综合色| 高清不卡的av网站| tube8黄色片| 国产伦理片在线播放av一区| 日韩人妻精品一区2区三区| 亚洲av男天堂| 综合色丁香网| 十八禁高潮呻吟视频| 色网站视频免费| 亚洲一级一片aⅴ在线观看| 亚洲综合精品二区| 考比视频在线观看| 五月伊人婷婷丁香| 午夜老司机福利剧场| 精品人妻一区二区三区麻豆| 大话2 男鬼变身卡| 亚洲av电影在线观看一区二区三区| 精品少妇一区二区三区视频日本电影 | 一区二区三区激情视频| 久久精品国产亚洲av涩爱| 美女主播在线视频| videossex国产| 国产在线一区二区三区精| 国产熟女欧美一区二区| 国产亚洲最大av| 国产精品一二三区在线看| 亚洲,欧美,日韩| 日本av免费视频播放| 看免费av毛片| 国产亚洲av片在线观看秒播厂| 美女脱内裤让男人舔精品视频| 十分钟在线观看高清视频www| 欧美 亚洲 国产 日韩一| 天天影视国产精品| 男女边摸边吃奶| 久久影院123| 飞空精品影院首页| 精品国产露脸久久av麻豆| 久久久久国产一级毛片高清牌| 美女国产高潮福利片在线看| 精品一品国产午夜福利视频| 国产精品无大码| 国产av国产精品国产| 亚洲国产精品国产精品| 欧美xxⅹ黑人| 中国国产av一级| 欧美成人精品欧美一级黄| 久久久久国产网址| 极品人妻少妇av视频| 免费日韩欧美在线观看| 久久这里有精品视频免费| 国产精品国产三级专区第一集| 美女xxoo啪啪120秒动态图| 蜜桃国产av成人99| 一级毛片黄色毛片免费观看视频| 夫妻午夜视频| 欧美 日韩 精品 国产| 国产精品.久久久| 国产成人91sexporn| 欧美人与性动交α欧美软件| 亚洲精品一二三| 日本午夜av视频| 午夜日韩欧美国产| 国产精品国产av在线观看| 国产精品一国产av| 一本久久精品| 国产成人午夜福利电影在线观看| 少妇人妻久久综合中文| av女优亚洲男人天堂| 熟女av电影| 婷婷色综合大香蕉| 欧美 亚洲 国产 日韩一| 80岁老熟妇乱子伦牲交| 波多野结衣一区麻豆| 大片免费播放器 马上看| 天天躁狠狠躁夜夜躁狠狠躁| 两性夫妻黄色片| 日日摸夜夜添夜夜爱| 伊人久久国产一区二区| 婷婷色麻豆天堂久久| 一区二区三区四区激情视频| av在线老鸭窝| 免费观看a级毛片全部| 亚洲婷婷狠狠爱综合网| 18+在线观看网站| 免费观看a级毛片全部| 午夜老司机福利剧场| 在线观看免费视频网站a站| 91国产中文字幕| 午夜日韩欧美国产| 欧美激情 高清一区二区三区| 国产欧美日韩综合在线一区二区| 免费在线观看视频国产中文字幕亚洲 | 两性夫妻黄色片| 午夜日韩欧美国产| 国产成人午夜福利电影在线观看| 精品一区二区免费观看| 人妻系列 视频| www.av在线官网国产| 色吧在线观看| 国产乱来视频区| 成人亚洲精品一区在线观看| 黑人猛操日本美女一级片| 亚洲av综合色区一区| 波野结衣二区三区在线| 中文字幕最新亚洲高清| 国产在线一区二区三区精| 人成视频在线观看免费观看| 91精品伊人久久大香线蕉| 国产成人精品一,二区| 免费高清在线观看视频在线观看| 大片免费播放器 马上看| 成年动漫av网址| 欧美日韩视频精品一区| 亚洲国产精品成人久久小说| 五月开心婷婷网| 日韩三级伦理在线观看| 在线亚洲精品国产二区图片欧美| a级毛片在线看网站| 午夜免费鲁丝| 91成人精品电影| 亚洲精品日韩在线中文字幕| 嫩草影院入口| 亚洲精华国产精华液的使用体验| 中国三级夫妇交换| 久久久久久人人人人人| 电影成人av| 久久青草综合色| 亚洲av在线观看美女高潮| av网站免费在线观看视频| 一区二区三区四区激情视频| 国产又色又爽无遮挡免| 精品一区二区免费观看| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 9色porny在线观看| 欧美在线黄色| 菩萨蛮人人尽说江南好唐韦庄| 水蜜桃什么品种好| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 精品人妻一区二区三区麻豆| 成人国产麻豆网| 人妻少妇偷人精品九色| 国产av精品麻豆| 搡老乐熟女国产| 男女午夜视频在线观看| 观看av在线不卡| 国产片特级美女逼逼视频| 久久久久国产网址| 久久久久人妻精品一区果冻| 精品一区二区三卡| 日韩不卡一区二区三区视频在线| 少妇熟女欧美另类| 久久精品国产亚洲av高清一级| 久久人人爽av亚洲精品天堂| 一区福利在线观看| 少妇人妻 视频| 国产精品久久久久成人av| 国产深夜福利视频在线观看| 亚洲av欧美aⅴ国产| 欧美国产精品一级二级三级| 亚洲三区欧美一区| 亚洲精品aⅴ在线观看| 久久国产亚洲av麻豆专区| 两个人免费观看高清视频| 日韩伦理黄色片| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 国产av国产精品国产| h视频一区二区三区| 日韩精品有码人妻一区| 青春草国产在线视频| av.在线天堂| 免费观看性生交大片5| 一区福利在线观看| 成年女人毛片免费观看观看9 | 精品少妇久久久久久888优播| 日本91视频免费播放| 国产 一区精品| 五月天丁香电影| 看十八女毛片水多多多| 天美传媒精品一区二区| av视频免费观看在线观看| 亚洲综合色惰| 如何舔出高潮| 日产精品乱码卡一卡2卡三| 超碰成人久久| 国产在线免费精品| www.熟女人妻精品国产| 国产日韩欧美亚洲二区| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 日韩一本色道免费dvd| av国产久精品久网站免费入址| 少妇被粗大的猛进出69影院| 亚洲内射少妇av| 韩国精品一区二区三区| 欧美日韩视频精品一区| 一边摸一边做爽爽视频免费| 一级片免费观看大全| 亚洲国产最新在线播放| 人妻一区二区av| 免费久久久久久久精品成人欧美视频| 天天影视国产精品| 爱豆传媒免费全集在线观看| 搡老乐熟女国产| 成人国产麻豆网| a 毛片基地| 老司机影院毛片| 丰满迷人的少妇在线观看| 国产成人精品一,二区| 日韩精品有码人妻一区| 少妇 在线观看| 天堂中文最新版在线下载| 久久韩国三级中文字幕| www.av在线官网国产| 久久午夜综合久久蜜桃| 青春草视频在线免费观看| 性少妇av在线| 女的被弄到高潮叫床怎么办| 国产精品成人在线| 九色亚洲精品在线播放| 免费女性裸体啪啪无遮挡网站| 91精品国产国语对白视频| 国产伦理片在线播放av一区| 多毛熟女@视频| 亚洲欧美色中文字幕在线| 国产欧美日韩综合在线一区二区| 香蕉精品网在线| 最新的欧美精品一区二区| 久久久久网色| 日本免费在线观看一区| 国产成人免费无遮挡视频| 久久av网站| √禁漫天堂资源中文www| 涩涩av久久男人的天堂| 日本vs欧美在线观看视频| 欧美成人精品欧美一级黄| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 亚洲精品在线美女| 一区二区三区精品91| 亚洲国产色片| 成年美女黄网站色视频大全免费| 性色avwww在线观看| 女性生殖器流出的白浆| 免费观看性生交大片5| 午夜福利一区二区在线看| 日韩三级伦理在线观看| 老女人水多毛片| 久久久精品国产亚洲av高清涩受| 国产一级毛片在线| 只有这里有精品99| 侵犯人妻中文字幕一二三四区| 久久99一区二区三区| 性色avwww在线观看| videosex国产| 亚洲国产欧美网| 美女高潮到喷水免费观看| 综合色丁香网| 国产一区二区三区综合在线观看| 午夜免费鲁丝| 亚洲,欧美精品.| 激情五月婷婷亚洲| 日韩精品免费视频一区二区三区| 国产精品人妻久久久影院| 亚洲伊人色综图| 久久精品久久久久久噜噜老黄| 老汉色∧v一级毛片| 久久精品亚洲av国产电影网| 国产精品99久久99久久久不卡 | 一区二区av电影网| 亚洲av在线观看美女高潮| 精品国产乱码久久久久久小说| 蜜桃国产av成人99| 一区二区三区精品91| 99热全是精品| 亚洲精品日韩在线中文字幕| 亚洲国产色片| 高清黄色对白视频在线免费看| 我要看黄色一级片免费的| 国产精品一区二区在线观看99| 久久97久久精品| 捣出白浆h1v1| 一二三四中文在线观看免费高清| 欧美激情极品国产一区二区三区| 国产1区2区3区精品| 欧美日本中文国产一区发布| 国产av国产精品国产| 国产一区二区三区综合在线观看| 亚洲精品久久午夜乱码| 99国产精品免费福利视频| 国产综合精华液| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 蜜桃在线观看..| 久久ye,这里只有精品| 国产精品国产av在线观看| 欧美另类一区| 国产午夜精品一二区理论片| 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看 | 国产色婷婷99| 国产精品三级大全| 亚洲精品一二三| 久久午夜综合久久蜜桃| 欧美+日韩+精品| 亚洲国产精品一区三区| 亚洲成av片中文字幕在线观看 | 午夜免费观看性视频| 国产精品免费大片| 18+在线观看网站| 久久午夜综合久久蜜桃| 在线精品无人区一区二区三| 久久 成人 亚洲| 看十八女毛片水多多多| 咕卡用的链子| 你懂的网址亚洲精品在线观看| 夜夜骑夜夜射夜夜干| 日本-黄色视频高清免费观看| 欧美 亚洲 国产 日韩一| 国产成人精品久久久久久| 免费日韩欧美在线观看| 久久99一区二区三区| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 97精品久久久久久久久久精品| 日韩人妻精品一区2区三区| 久久久久国产精品人妻一区二区| 久久99蜜桃精品久久| 婷婷成人精品国产| 搡女人真爽免费视频火全软件| 久久精品国产鲁丝片午夜精品| av片东京热男人的天堂| 精品一区二区三卡| 国产人伦9x9x在线观看 | 咕卡用的链子| 男女下面插进去视频免费观看| 午夜激情av网站| freevideosex欧美| 蜜桃国产av成人99| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲成国产av| 国产亚洲午夜精品一区二区久久| 亚洲男人天堂网一区| 久久精品久久精品一区二区三区| 亚洲经典国产精华液单| 中文字幕精品免费在线观看视频| 永久免费av网站大全| 欧美精品亚洲一区二区| 黄片无遮挡物在线观看| www.自偷自拍.com| 国产一区亚洲一区在线观看| 赤兔流量卡办理| 9色porny在线观看| 看十八女毛片水多多多| 国产精品久久久久成人av| 亚洲精品aⅴ在线观看| 少妇人妻精品综合一区二区| 成人黄色视频免费在线看| 精品99又大又爽又粗少妇毛片| 极品人妻少妇av视频| 亚洲国产毛片av蜜桃av| 国产男女内射视频| 深夜精品福利| 色播在线永久视频| 亚洲一码二码三码区别大吗| 日韩一区二区三区影片| 久久精品久久久久久噜噜老黄| 极品少妇高潮喷水抽搐| 国产成人精品婷婷| 国产伦理片在线播放av一区| 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 女性被躁到高潮视频| 麻豆av在线久日| 国产精品久久久久久精品古装| 国产国语露脸激情在线看| 国产亚洲av片在线观看秒播厂| 午夜激情久久久久久久| 另类亚洲欧美激情| 亚洲,一卡二卡三卡| 午夜福利在线免费观看网站| 老司机影院成人| 亚洲一区二区三区欧美精品| 久久久久久人人人人人| 一本色道久久久久久精品综合| 精品一品国产午夜福利视频| 欧美日韩视频高清一区二区三区二| av有码第一页| 老司机亚洲免费影院| 亚洲av中文av极速乱| 如何舔出高潮| 亚洲成国产人片在线观看| 一区二区日韩欧美中文字幕| 人人妻人人添人人爽欧美一区卜| 色94色欧美一区二区| 精品少妇内射三级| 成人亚洲欧美一区二区av| 男人爽女人下面视频在线观看| 亚洲精品久久久久久婷婷小说| 如何舔出高潮| 各种免费的搞黄视频| 久热这里只有精品99| 在线观看美女被高潮喷水网站| 国产精品一区二区在线观看99| 老司机亚洲免费影院| 亚洲精品久久久久久婷婷小说| 晚上一个人看的免费电影| 一级毛片 在线播放| 午夜免费观看性视频| 人人妻人人添人人爽欧美一区卜| 欧美最新免费一区二区三区| 中文乱码字字幕精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 天天躁夜夜躁狠狠躁躁| av又黄又爽大尺度在线免费看| 国产不卡av网站在线观看| 日日爽夜夜爽网站| 在线看a的网站| 国产亚洲一区二区精品| 少妇人妻久久综合中文| 一区二区日韩欧美中文字幕| 欧美日韩视频高清一区二区三区二| 夫妻性生交免费视频一级片| 国产成人aa在线观看| 观看av在线不卡| 波多野结衣av一区二区av| 伦理电影免费视频| 亚洲经典国产精华液单| 国产成人aa在线观看| 99香蕉大伊视频| 老女人水多毛片| 黑人猛操日本美女一级片| 九草在线视频观看| 在线 av 中文字幕| 国产熟女午夜一区二区三区| 在线观看免费视频网站a站| 久久99热这里只频精品6学生| 肉色欧美久久久久久久蜜桃| 国产亚洲一区二区精品| av免费在线看不卡| 黄片小视频在线播放| 9191精品国产免费久久| 成人毛片a级毛片在线播放| 亚洲国产欧美日韩在线播放| 精品午夜福利在线看| 伦精品一区二区三区| 毛片一级片免费看久久久久| 亚洲国产精品一区二区三区在线| 婷婷成人精品国产| 精品午夜福利在线看| 99re6热这里在线精品视频| 午夜福利影视在线免费观看| 汤姆久久久久久久影院中文字幕| 国产在线一区二区三区精| 久久久精品94久久精品| 亚洲av电影在线进入| 亚洲欧美精品综合一区二区三区 | 少妇人妻精品综合一区二区| 搡女人真爽免费视频火全软件| 午夜免费观看性视频| 久久综合国产亚洲精品| 免费女性裸体啪啪无遮挡网站| 天堂俺去俺来也www色官网| 国产成人免费观看mmmm| 欧美老熟妇乱子伦牲交| 最近中文字幕高清免费大全6| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区国产| 国产国语露脸激情在线看| h视频一区二区三区| 一二三四中文在线观看免费高清| 成人毛片a级毛片在线播放| 中文字幕制服av| 国产激情久久老熟女| 看免费成人av毛片| 欧美日韩精品网址| 亚洲美女视频黄频| h视频一区二区三区| 日本av手机在线免费观看| 永久网站在线| 欧美 日韩 精品 国产| 2018国产大陆天天弄谢| 精品酒店卫生间| 日韩 亚洲 欧美在线| 亚洲国产av新网站| 蜜桃在线观看..| 一区二区三区乱码不卡18| 免费高清在线观看视频在线观看| tube8黄色片| 91在线精品国自产拍蜜月| 成人毛片a级毛片在线播放| www.自偷自拍.com| 制服人妻中文乱码| 制服丝袜香蕉在线| 国产片特级美女逼逼视频| 亚洲熟女精品中文字幕| 成年女人在线观看亚洲视频| 午夜日韩欧美国产| 久久精品亚洲av国产电影网| 日本欧美视频一区| 在线观看免费高清a一片| 丝袜人妻中文字幕| 亚洲国产毛片av蜜桃av| av国产精品久久久久影院| 一级片免费观看大全| 极品少妇高潮喷水抽搐| 天美传媒精品一区二区| 欧美精品人与动牲交sv欧美| 国产乱人偷精品视频| 天堂8中文在线网| 边亲边吃奶的免费视频| 亚洲av在线观看美女高潮| 国产精品女同一区二区软件| 国产成人精品无人区| 99久久人妻综合| 黄片播放在线免费| 天天操日日干夜夜撸| 国产乱人偷精品视频| 观看美女的网站| 老鸭窝网址在线观看| 乱人伦中国视频| 亚洲av电影在线观看一区二区三区| 成年美女黄网站色视频大全免费| 狠狠精品人妻久久久久久综合| 丰满乱子伦码专区| 免费观看在线日韩| 国产爽快片一区二区三区| 久久影院123| 国产成人精品无人区| 亚洲国产精品国产精品| 日韩成人av中文字幕在线观看| 一级片免费观看大全| 老女人水多毛片| 啦啦啦视频在线资源免费观看| 汤姆久久久久久久影院中文字幕| 免费少妇av软件| 色播在线永久视频| 国产 一区精品| 亚洲人成网站在线观看播放|