• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual-metal zeolite imidazolate framework for efficient lithium storage boosted by synergistic effects and self-assembly 2D nanosheets

    2022-07-11 03:39:52MingYueYjingFuCnpingZhngJunxioFuShiqunWngJinwenLiu
    Chinese Chemical Letters 2022年6期

    Ming Yue,Yjing Fu,Cnping Zhng,Junxio Fu,Shiqun Wng,?,Jinwen Liu,b,?

    a College of Chemistry and Chemical Engineering &Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry &Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules,Hubei University,Wuhan 430062,China

    b Jiangsu Pylon Battery Co.,Ltd.,Yangzhou 211400,China

    Keywords:Lithium ion batteries Metal-organic frameworks CoCu-ZIF nanosheets Synergistic effect Self-assembly

    ABSTRACT Metal-organic framework materials (MOFs),such as zeolitic imidazolate framework (ZIF),have been widely used in energy storage due to their advantages such as high structural stability,large specific surface,more active sites and skeleton structures.Herein,a novel two-dimensional (2D) CoCu-ZIF was synthesized by a facile solvothermal method.The as-prepared CoCu-ZIF nanosheets exhibit an ultrahigh reversible capacity of 2287.4 mAh/g and remains at 1172.1 mAh/g after 300 cycles at a current density of 100 mA/g,far better than that of the single Co-ZIF and Cu-ZIF.Additionally,the specific discharge capacity of CoCu-ZIF nanosheets can maintain at about 590 mAh/g after 1000 cycles at the current density of 2 A/g.Owing to the synergistic effect of two metals,function of nitrogen in the molecular and selfassembly 2D nanosheets,our research can provide strong support for the practical application of CoCu-ZIF materials in lithium ion batteries.

    Lithium ion batteries (LIBs) have attracted extensive attention as a most useful battery system for portable devices in recent years,owing to the relatively high theoretical specific capacity and excellent cycling performance [1–4].However in order to solve the problem of large volume variation and poor electrical conductivity of high energy density electrode materials,it is imminent to search suitable anode materials [5–7].For example,graphene [8,9],Mxenes [10,11],black phosphorus [12,13],two-dimensional transition metal sulfide (TMDs) and other traditional 2D materials [14–16]gradually show structural advantages.Especially,due to the significant advantages of light weight,good electron and ion conductivity,rich pores and uniform distribution of active sites,metalorganic frameworks (MOFs) have been considered as superior anode materials [17–28].In Li’s review,transition-metal (Zn,Mn,Cu)-based MOFs as anode materials and their strategies for further enhancing performance in LIBs were proposed [29].Wanget al.reported four polyoxometalate-based metal-organic frameworks (POMOFs) with various architectures employed in anode materials of LIBs [30].Jinet al.designed a 2D few layer black phosphorous/NiCo(BP/NiCo) MOF structure with high reversible capacity,long cycle life and excellent rate capability [31].The bimetallic zeolite imidazolate framework CoZn-ZIF delivered a high reversible capacity of 605.8 mAh/g at a current density of 100 mA/g,far beyond the performance of the corresponding monometallic Co-ZIF-67 and Zn-ZIF-8 [32].

    In our work,CoCu-ZIF composites were prepared through layer-by-layer stacking of 2D nanosheets by a facile solvothermal method.These nanosheets are stacked together in an orderly way,which effectively inhibits the volume change and accelerates the transport of lithium ions.Additionally,the synergistic effect of dual-metals can significantly improve the electrochemical performance of the electrode material with practical value.As a consequence,CoCu-ZIF nanaosheets with multilayer structure display excellent electrochemical properties in LIBs,which is superior to the MOFs materials previously reported.

    In a one-step solvothermal reaction as illustrated in Fig.S1 (Supporting information),0.46 g Cu(NO3)2·3H2O and 0.96 g Co(NO3)2·6H2O (nCo:nCu=1.2:1) were dissolved in 44 mL 75%ethanol for stirring to obtain solution A and B,respectively.Then the solution A was poured into the solution B for magnetic stirring for 10 h to obtain mixed solution.1.0 g 2-methylimidazole (2-Im) was dissolved in 88 mL 75% ethanol to obtain mixed solution with the above solution.Subsequently,this mixed solution was transferred into a 100 mL teflon-lined stainless steel autoclave and heated for 12 h at 100 °C in the oven.After the reaction,it was naturally cooled to room temperature,and the yellow product was obtained by centrifugation,washing with deionized water for three times.Finally,the yellow product CoCu-ZIF was dried overnight in a vacuum oven at 60 °C.For comparison,the same procedures were carried out to synthesize Co-ZIF and Cu-ZIF without using Cu(NO3)2·3H2O or Co(NO3)2·6H2O,respectively.

    Fig 1.(a) XRD patterns and (b) N 1s high-resolution XPS spectrum of CoCu-ZIF sample.(c) FTIR spectra of CoCu-ZIF,Co-ZIF or Cu-ZIF samples.(d) FE-SEM images,(e) TEM images,(f) electronic diffraction (ED) and (g) elemental mapping of CoCu-ZIF sample (The insets are the local enlargement figures).(h) Nitrogen adsorption/desorption isotherms and pore-size distribution of CuCo-ZIF sample and (i) its comparison with Co-ZIF and Cu-ZIF samples.

    Fourier transform-infrared spectroscopy (FTIR,SHIMADZU)measurements were performed within the wavenumber range of 4000~400 cm?1.The X-ray diffractometer (XRD,Bruker D8 Advance) with Cu Kαradiation source was used to analyze the crystal phase of the as-prepared materials in the 2θrange of 5°?50°The chemical status of elements were determined by X-ray photoelectron spectroscopy (XPS,Thermo escalab 250Xi systerm).The field-emission scanning electron microscopy (FE-SEM) images were observed by a JSM-7800F &TEAM Octane Plus (Japan).Transmission electron microscopy (TEM) and high resolution TEM (HRTEM)images were tested on a TecnaiF20 device.The Brunauer-Emmett-Teller (BET) tests were carried out on a Micromeritics ASAP 2020 porosimetry system.For assembling the batteries,active material,conductive additive (super-P carbon black) and the binder(polyvinylidene tetrafluoroethylene,PVDF) with the weight ratio of 7:2:1 were mixed inN-methyl-2-pyrrolidone (NMP,solvent) to form a homogeneous slurry.All the working electrode,diaphragm,electrolyte (1.0 mol/L LiPF6in ethylene carbonate (EC) and diethyl carbonate (DEC) with a volume ratio of 1:1) and lithium foil were used to manufacture CR2035 coin cells in an Ar glove box.The galvanostatic charge and discharge cycles were tested using automatic battery testing system (Neware,China) within the voltage range from 0.01 V to 3.0 V (vs.Li+/Li).Cyclic voltammetry (CV) curves were recorded from 0.01 V to 3.0 V at a scanning rate of 0.2 mV/s using an electrochemical workstation (CHI660E).Electrochemical impedance spectroscopies (EIS) were tested applying an AC voltage of 0.1 mV within a frequency range of 0.01 Hz to 100 kHz.

    Fig.1a and Fig.S2 (Supporting information) display the XRD patterns of CoCu-ZIF,Co-ZIF and Cu-ZIF samples.Owing to the approximate ionic radius of Co2+(0.73 ?A) and Cu2+(0.72 ?A),Co2+and Cu2+ions can be simutaneously coordinated with 2-methylimidazole to form isostructure CoCu-ZIF composites [32–34].To be specific,the strong and sharp peaks observed at 7.46°,10.35° and 12.69° in Fig.S2,which are consistent with the simulated ZIF-67 (CCDC No.671,073),confirm a high degree of crystallinity of Co-ZIF samples [29,35-39].Additionally,the strong peaks recorded at 7.43°,10.38° and 12.72° for CoCu-ZIF perfectly match well with (011),(112) and (222) lattice plane in Fig.1a,proving that CoCu-ZIF composite is successfully synthesized via the coordination of Co2+and Cu2+ions with 2-Im.It must be pointed out here that the angular shifts in XRD patterns of bimetallic complex are mainly due to the introduction of Cu metal.

    In the high-resolution XPS spectra of CoCu-ZIF shown in Fig.1b and Fig S3 (Supporting information),the typical characteristic peaks of N 1s,C 1s,O 1s,Co 2p and Cu 2p can be all observed.First,the N 1s spectra exhibit significant peaks at 397.4,399.6,405.4 and 406 eV corresponding to pyridine nitrogen,pyrrole nitrogen,Co-N,and Cu-N bonds respectively,which confirms the successful coordination of Cu and Co onto ZIF skeleton [33].In C 1s spectra,there are four strong peaks located around 283.9,284.3,285.2 and 288.1 eV belonging to C–C,C–N,C=O and O–C=O bonds,respectively.The C=O and O-C=O bonds could be caused by the partial oxidation of material surface or the adsorption of water [29].The Co 2p spectra are divided into four peaks at 780 and 785.5 eV from Co3+and Co2+respectively,and followed by 796.6 and 802.7 eV as their corresponding satellite peaks.Similarily,the Cu 2p spectra display two strong peaks at 934.2 and 935.4 eV corresponding to Cu+and Cu2+,respectively,and their satellite peaks at the binding energy of 939.8 and 943 eV.

    In the FTIR spectra of Co-ZIF,Cu-ZIF and CoCu-ZIF samples displayed in Fig.1c,the characteristic bands of 2-methylimidazole are not observed at 1846 cm?1(the resonance betweenγN–H···NandυN–Hproton tensile vibration out of plane) and at 2300–3300 cm?1(the establishment of N–H···N hydrogen bond between two 2-methylimidazoles),revealing the deprotontion of 2-methylimidazole with metals after successful coordination [32,40].It is worthy noted that the N atoms in the molecular have been all participated in the coordination with Co or Cu metalviadeprotontion of 2-methylimidazole,thus resulting in no appearance of N–H groups.Therefore,we confirm that the very strong and wide peak at 3440 cm?1corresponds to the stretching vibration of O–H groups [32,33,40,41].Additionally,owing to the coordination of Co2+and Cu2+with all N atoms in 2-methylimidazoles,the wide peak of CoCu-ZIF moves towards high wavenumbers around 3531 cm?1[30].

    In the SEM images shown in Fig.1d,the as-prepared CoCu-ZIF is mainly composed of scattered nanosheets assembled by a large number of thin sheets layer by layer.The particle surface presents very flat and smooth,which can greatly slow down volume expansion during charge and discharge process.By comparison,the SEM images of Co-ZIF and Cu-ZIF in Fig.S4 (Supporting information)display embroidered globular and blocky morphology,respectively.The TEM images of CoCu-ZIF observed in Fig.1e also show the characteristics of thick accumulation and thin sheets in the edge.This unique structure can improve the specific surface area,which promotes electron transfer and enhances the electrochemical performance of CoCu-ZIF electrode.Moreover,the electronic diffraction (ED) shown in Fig.1f exhibits (011),(112),(222) lattice plane,which results are consistent with the XRD patterns.As depicted in Fig.1g,the corresponding element mapping proves that Co,Cu,C and N are uniformly distributed in whole CoCu-ZIF nanosheets.

    For evaluating the physical property of the as-prepared samples,the BET test was perfomed as shown in Figs.1h and i and Fig.S5 (Supporting information).The specific surface areas of CoCu-ZIF,Co-ZIF and Cu-ZIF samples are 107.86,95.315 and 5.195 m2/g,respectively.The CoCu-ZIF has the largest specific surface area because it is composed of thin nanosheets.According to the pore size distributions of 32.68 nm,it implies that the as-prepared CoCu-ZIF in our work is a typical mesoporous material with the advantages of regular pore structure and good structural stability.

    Fig 2.(a) CV curves,(b) selected charge-discharge profiles and (c) cycling performance at 0.1 A/g of CoCu-ZIF samples.(d) Rate capability of CoCu-ZIF,Co-ZIF and Cu-ZIF samples.Long cycling performance of CoCu-ZIF samples at the current densities of (e) 2 A/g and (f) 8 A/g.(g) Comparison of our work with other MOFs materials reported previously.

    In order to investigate the electrochemical properties of CoCu-ZIF,Co-ZIF and Cu-ZIF electrodes,the cyclic voltammetry (CV)curves are displayed in Fig.2a and Fig.S6 (Supporting information).In the lithiation process of first cycle,there is a typical peak at 1.53 V which could be attributed to the Li+insertion into Co(2-Im)2and Cu(2-Im)2to form Cu(2-Im)Li and Co(2-Im)Li (as illustrated in Eqs.1 and 2) [31].The weak reduction peaks located at 1.10 and 0.78 V might be originated from the formation of solid electrolyte interphase (SEI) and the reduction of CoxCu(1-x)(2-Im)2to CoxCu(1-x)(2-Im)2Li4(Eq.3) [32].In the cathode scanning of first circle,the two main oxidation peaks around 1.33 and 2.07/2.47 V are mainly derived from the oxidation reaction of Co and Cu to form Co2+and Cu2+,respectively.It is can be obviously observed that from the fourth cycle on the CV curves overlap well,proving that the CoCu-ZIF nanosheets exhibit better stability.The reaction mechanism of CoCu-ZIF nanosheets during charge and discharge process can be explained as the following equations.

    The battery performances of CoCu-ZIF,Co-ZIF and Cu-ZIF samples in the voltage range of 0.01~3.0 V are displayed in Fig.2 and Fig.S7 (Supporting information).These three electrodes deliver very satisfactory initial discharge specific capacities of 2287.4,1882.9 and 1924.3 mAh/g,respectively.For most MOFs electrode materials,the discharge specific capacity of second cycle is obviously reduced due to irreversible side reactions,SEI formation and electrolyte decomposition [42].Obviously,the Co-ZIF and Cu-ZIF electrodes appear significant capacity decline and maintain the low capacity cyclings.By contrast,the capacity of CoCu-ZIF nanaosheet displays a trend of decreasing first and rising then,and maintains a very stable state after dozens of cycles.For example,the specific capacity of CoCu-ZIF nanosheet remains at 1172.1 mAh/g after 300 cycles at the current density of 100 mA/g.Additionally,the specific discharge capacities of CoCu-ZIF nanosheets can still maintain at about 590 and 290 mAh/g after 1000 cycles at the current densities of 2 and 8 A/g,respectively.For the rate capability,the CoCu-ZIF nanosheet presents the reversible capacities of 1365.1,1138,887.1,777.1,595.7,401.9 and 238.6 mAh/g at the current densities of 100,200,500,1000,2000,4000 and 8000 mA/g,respectively.When the current density returns to 100 mA/g,the capacity still recover and remain at about 1005.9 mAh/g.Therefore,these results reveal that the CoCu-ZIF nanosheets has better cyclic performance and rate stability than Co-ZIF and Cu-ZIF samples.Owing to the synergistic effect of bimetallic ZIF,the CoCu-ZIF nanosheets in this work behave the excellent electrochemical performance,which much better than those in many previous reports shown in Fig.2g and Table S1 (Supporting information) [32,41,43-45].

    To understand the reaction kinetics of electrode materials,the EIS impedance profiles of CoCu-ZIF,Co-ZIF and Cu-ZIF samples are shown in Figs.3a and b.Firstly,theRctvalues of CoCu-ZIF,Co-ZIF and Cu-ZIF electrodes are 45.19,64.99 and 128.60Ωrespectively,which confirms that the bimetallic electrode material has the best conductive performance.Secondly,the slopes of impedanceZ’(Ohm) against the angular frequencyω?1/2of these three electrodes display 22.07,33.49 and 70.14,respectively.Using the following Eqs.4 and 5,the lithium ion diffusion coefficient (DLi+) are calculated as 7.01×10?11,3.04×10?11and 6.94×10?12cm/s,respectively.It is proved that CoCu-ZIF nanosheet behaves the fastest reaction kinetics and excellent lithium ion transport and diffusion ability [46–48].

    Fig 3.(a) Nyquist plots and (b) liner fitting of Z’vs.ω?1/2 in all-frequency region of the CoCu-ZIF nanosheets.(c) CV curves of the CoCu-ZIF nanosheets at different scan rate of 0.4–5.0 mV/s.(d) Calculation of b values by plotting logi versus logυ.(e) Contribution of diffusion and pseudocapacitive-controlled capacity at the scan rate of 2 mV/s.(f)Contribution percentage of pseudocapacitive-controlled capacity at different scan rates of 0.4~5.0 mV/s.

    In order to further explore the electrochemical properties and charge-discharge storage mechanism of CoCu-ZIF nanosheets,CV curves were measured at different scanning rates to evaluate the electrochemical dynamics and capacitive capacity.The CV curves of CoCu-ZIF nanosheets at different scanning rates of 0.4,0.6,0.8,1,2 and 5 mV/s over the potential 0.01–3.0 V (vs.Li/Li+) are displayed in Fig.3c.For the electrode material,the value ofbcan be calculated by Eq.6 (irepresents peak current value;υrepresents different scanning rates) to determine whether there is pseudocapacitance behavior in the process of charge and discharge.Generally,if the value ofbis within the range of 0.5–1,the electrode material exhibits both battery and pseudocapacitance properties;if the value ofbis greater than or equal to 1,the electrode material exhibits pseudocapacitance properties [49,50].By linear fitting of logiand logυfrom Eq.7,the value ofb(slope) can be obtained.As presented in the Fig.3d,the calculated and fitted values ofb1,b2andb3are 0.796,0.748 and 0.619 respectively,which reveals that the capacitance of CoCu-ZIF nanosheets is composed of pseudocapacitance contribution and diffusion control contribution [49,50].When the CV scanning rate of CoCu-ZIF nanosheets reaches 2 mV/s,the contribution rate of the pseudocapacitance reaches 60.48% in Fig.3e through calculation of Eq.8.Moreover,as the CV scanning rate gradually increases,the proportion of pseudocapacitive behavior also increases in Fig.3f.The highest pseudocapacitance contribution (83.35%) can be obtained when the scanning rate of CV reaches 5.0 mV/s.This result indicates that the CoCu-ZIF material has high pseudocapacitive behavior and exhibits excellent electrochemical capability [51].

    Fig 4.Illustration of mechanism of CoCu-ZIF nanosheets for enhanced electrochemical performance.

    Based on the above results and related analysis,the mechanism of CoCu-ZIF nanosheets for enhanced electrochemical performance can be illustrated as Fig.4.First,the better electrochemical performance of dual-metal MOFs than mono-metal MOFs could be mainly attributed to lithiation and delithiation of nitrogen atoms,accompanied by the breakage and recoordination of metal nitrogen bond.Morever,a few metal nitrogen bonds without recoordination could lead to the amorphization of CoCu-ZIF and the generation of few nitrogen radicals [16,18,19].Second,Co and Cu metals both have multiple valence states,and with the similar metal activity.Cu(II) has an electron configuration of d9 and can form stable coordination compounds from common ligands with coordination number of 2,4 and 6,such as [Cu(NH3)4]2+,[Cu(NH3)4(H2O)2]2+.Meanwhile,Co(II) can also form stable complexes with common ligands,such as [Co(H2O)6]2+,[Co(NH3)6]2+,[Co(CN)6]4?,[Co(NCS)4]2?.Additionally,Co2+(0.73 ?A) and Cu2+(0.72 ?A) have the very close ion radius.Therefore,the two metals with similar properties (Co and Cu) are more likely to play a synergistic role,which is more beneficial to battery performance[22,23].As for the function of nitrogen element,it can directly participate in the redox reactions and the formation of dense SEI film on the electrode in the process of battery charge and discharge[31,32,42].Besides,the as-synthesized unique CoCu-ZIF nanosheets in our work can provide more active sites,fast electron and ion transport channels,which can greatly improve the performance of battery.Therefore as shown in the figure,the surface of electrode after 300 cycles still presents an integrated and stable structure.

    In summary,a novel 2D CoCu-ZIF nanosheet was synthesized by a facile solvothermal method.When applied as anode material for LIBs,the CoCu-ZIF nanosheets display better electrochemical performance including cycling stability and rate performance,compared with the single Co-ZIF and Cu-ZIF.For example,the asprepared CoCu-ZIF nanosheets exhibit an ultrahigh reversible capacity of 2287.4 mAh/g and remain at 1172.1 mAh/g after 300 cycles at a current density of 100 mA/g.Additionally,the specific discharge capacity of CoCu-ZIF nanosheets can maintain at about 590 and 290 mAh/g after 1000 cycles at the current densities of 2 and 8 A/g,respectively.Until now,the battery performance in our work is superior to other bimetallic materials reported previously.These excellent electrochemical properties can be attributed to the synergistic effect of two metals,function of nitrogen in the molecular and self-assembly 2D nanosheets.This research in our study will provide support for the practical application of anode materials for lithium ion batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are very grateful for the finacial support from the National Natural Science Foundation of China (Nos.21978073 and U1903217) and the Project of Hubei Provincial Science &Technology Department (No.2018ACA147).The authors would also like to thank the Analytical and Testing Center of Hubei University for providing the facilities to fulfill the experimental measurements.The technical supports from Jiangsu Pylon Battery Co.,Ltd.are also gratefully acknowledged.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.015.

    国产精品综合久久久久久久免费| 亚洲国产精品专区欧美| 国产高清国产精品国产三级 | 国产亚洲午夜精品一区二区久久 | 直男gayav资源| 18+在线观看网站| 女人久久www免费人成看片| 久久久午夜欧美精品| 亚洲伊人久久精品综合| 国模一区二区三区四区视频| 国产久久久一区二区三区| 日韩成人伦理影院| 国产成人精品福利久久| 亚洲真实伦在线观看| 中文精品一卡2卡3卡4更新| 亚洲aⅴ乱码一区二区在线播放| 三级国产精品片| 夜夜爽夜夜爽视频| 国产成人精品久久久久久| 国内揄拍国产精品人妻在线| 91精品伊人久久大香线蕉| 日本黄色片子视频| 麻豆成人av视频| 日本黄大片高清| 精品久久久久久电影网| 精品久久久久久久末码| 直男gayav资源| 欧美激情久久久久久爽电影| 欧美日韩精品成人综合77777| 欧美性感艳星| 麻豆精品久久久久久蜜桃| 青春草视频在线免费观看| h日本视频在线播放| 少妇人妻一区二区三区视频| 嫩草影院新地址| 三级国产精品片| 少妇的逼水好多| 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 亚洲人与动物交配视频| 国产精品人妻久久久久久| 成人毛片60女人毛片免费| 国产精品久久久久久精品电影| 一个人免费在线观看电影| 少妇人妻精品综合一区二区| 亚洲精品一二三| 国产爱豆传媒在线观看| 色综合站精品国产| 国产精品一二三区在线看| 日韩欧美一区视频在线观看 | 非洲黑人性xxxx精品又粗又长| 久久久久久久亚洲中文字幕| 成人毛片a级毛片在线播放| 在线免费观看的www视频| 亚洲婷婷狠狠爱综合网| 中文在线观看免费www的网站| 网址你懂的国产日韩在线| 97人妻精品一区二区三区麻豆| 国产精品精品国产色婷婷| 欧美xxxx性猛交bbbb| 联通29元200g的流量卡| 精品一区二区三区人妻视频| 日韩av免费高清视频| 美女xxoo啪啪120秒动态图| 久久97久久精品| 精品一区二区三区视频在线| 99热这里只有精品一区| 观看免费一级毛片| 午夜视频国产福利| 亚洲最大成人中文| 1000部很黄的大片| 亚洲av中文av极速乱| 久久国产乱子免费精品| 26uuu在线亚洲综合色| 国产一区亚洲一区在线观看| 国产黄色小视频在线观看| 最近中文字幕高清免费大全6| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区国产| 韩国av在线不卡| 亚洲一区高清亚洲精品| 欧美成人精品欧美一级黄| 国产高清三级在线| 亚洲,欧美,日韩| 美女脱内裤让男人舔精品视频| 亚洲激情五月婷婷啪啪| 午夜福利在线在线| 国产精品av视频在线免费观看| 亚洲av成人av| 日韩成人av中文字幕在线观看| 国产亚洲av嫩草精品影院| 久久精品国产亚洲网站| 亚洲精品一区蜜桃| 欧美日本视频| 亚洲电影在线观看av| 亚洲真实伦在线观看| 久久久久久伊人网av| 国产精品一区二区性色av| 麻豆乱淫一区二区| 亚洲av在线观看美女高潮| 欧美一级a爱片免费观看看| 亚洲国产日韩欧美精品在线观看| 国产白丝娇喘喷水9色精品| 夫妻性生交免费视频一级片| 国产精品国产三级专区第一集| av又黄又爽大尺度在线免费看| 久久韩国三级中文字幕| 99热全是精品| 99热这里只有是精品50| 夫妻性生交免费视频一级片| 精品人妻视频免费看| 精品久久久久久久久av| 在线观看免费高清a一片| 精品久久久精品久久久| 国产人妻一区二区三区在| 少妇熟女欧美另类| 欧美高清性xxxxhd video| 日韩一区二区视频免费看| 中文资源天堂在线| 中国美白少妇内射xxxbb| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄| 校园人妻丝袜中文字幕| 亚洲成人久久爱视频| 欧美极品一区二区三区四区| 老女人水多毛片| 久久久久免费精品人妻一区二区| 日本黄大片高清| 欧美人与善性xxx| 欧美潮喷喷水| kizo精华| 夜夜看夜夜爽夜夜摸| 婷婷色综合大香蕉| 最近视频中文字幕2019在线8| 久久国内精品自在自线图片| 色视频www国产| 亚洲图色成人| 内射极品少妇av片p| 日韩av在线免费看完整版不卡| 99热网站在线观看| 色播亚洲综合网| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 秋霞伦理黄片| 国产成人精品福利久久| 大陆偷拍与自拍| 日本与韩国留学比较| 日韩大片免费观看网站| 97热精品久久久久久| 午夜激情欧美在线| 亚洲图色成人| 亚洲av中文字字幕乱码综合| 人妻夜夜爽99麻豆av| 亚洲成人中文字幕在线播放| 色哟哟·www| 在线观看免费高清a一片| 99热这里只有是精品在线观看| 免费少妇av软件| 成人亚洲欧美一区二区av| 精品国产一区二区三区久久久樱花 | 六月丁香七月| 51国产日韩欧美| 国产69精品久久久久777片| 日韩欧美国产在线观看| 在线播放无遮挡| 午夜福利网站1000一区二区三区| av免费在线看不卡| 视频中文字幕在线观看| 男插女下体视频免费在线播放| 秋霞在线观看毛片| a级一级毛片免费在线观看| 亚洲成人av在线免费| 久久久午夜欧美精品| 久久久久久久午夜电影| 99久久精品国产国产毛片| 中文字幕免费在线视频6| 乱码一卡2卡4卡精品| 亚洲,欧美,日韩| 全区人妻精品视频| 国产女主播在线喷水免费视频网站 | 18禁在线播放成人免费| 日韩亚洲欧美综合| 三级毛片av免费| 老师上课跳d突然被开到最大视频| 看十八女毛片水多多多| 在线观看av片永久免费下载| 精品一区二区免费观看| av一本久久久久| 精品一区二区免费观看| 97超视频在线观看视频| 九色成人免费人妻av| 亚洲精品乱久久久久久| 亚洲国产高清在线一区二区三| 街头女战士在线观看网站| 国产一区亚洲一区在线观看| 国产成人精品久久久久久| 免费看光身美女| 国产伦一二天堂av在线观看| 麻豆成人av视频| 永久免费av网站大全| 日韩一本色道免费dvd| 黄片wwwwww| 18禁在线播放成人免费| 免费大片18禁| 麻豆成人午夜福利视频| 99热全是精品| 国产精品蜜桃在线观看| 精品少妇黑人巨大在线播放| 国产成人freesex在线| av.在线天堂| 日本-黄色视频高清免费观看| 国产精品久久久久久久电影| 久久精品久久久久久噜噜老黄| 亚洲综合色惰| 色吧在线观看| 久久6这里有精品| av在线播放精品| 蜜桃亚洲精品一区二区三区| 麻豆av噜噜一区二区三区| 干丝袜人妻中文字幕| 成人午夜精彩视频在线观看| 午夜免费观看性视频| 国产毛片a区久久久久| 2021天堂中文幕一二区在线观| 精品久久久久久久久亚洲| 久久人人爽人人爽人人片va| 午夜亚洲福利在线播放| 精品久久久久久久久av| 亚洲精品影视一区二区三区av| 欧美性猛交╳xxx乱大交人| 一级毛片 在线播放| 国产免费视频播放在线视频 | 少妇熟女欧美另类| 亚洲国产成人一精品久久久| 国产综合懂色| 日韩 亚洲 欧美在线| 久久精品久久久久久久性| 日本三级黄在线观看| 日韩在线高清观看一区二区三区| 波野结衣二区三区在线| 亚洲欧美精品专区久久| 国内揄拍国产精品人妻在线| 偷拍熟女少妇极品色| 在线观看美女被高潮喷水网站| 五月天丁香电影| 欧美xxxx性猛交bbbb| 51国产日韩欧美| 日韩欧美一区视频在线观看 | 国产成人精品婷婷| 91久久精品国产一区二区成人| 一区二区三区乱码不卡18| 蜜桃久久精品国产亚洲av| 精品人妻一区二区三区麻豆| 国产 一区 欧美 日韩| 看十八女毛片水多多多| 午夜日本视频在线| 26uuu在线亚洲综合色| 免费观看无遮挡的男女| 久久久久久久午夜电影| 中文精品一卡2卡3卡4更新| 国产精品日韩av在线免费观看| 亚洲欧美清纯卡通| 久久久久久久国产电影| 亚洲欧美日韩东京热| 麻豆久久精品国产亚洲av| 少妇的逼好多水| 免费黄色在线免费观看| 免费在线观看成人毛片| 亚洲国产精品国产精品| 国产淫语在线视频| 熟女电影av网| 黄片无遮挡物在线观看| 激情 狠狠 欧美| 亚洲高清免费不卡视频| 欧美成人精品欧美一级黄| 亚洲av成人精品一区久久| 十八禁网站网址无遮挡 | 性色avwww在线观看| 99热这里只有精品一区| 成年女人在线观看亚洲视频 | 亚洲图色成人| 日韩电影二区| 精品熟女少妇av免费看| 亚洲真实伦在线观看| 国产精品无大码| 国产高清国产精品国产三级 | 亚洲最大成人中文| 精品久久久久久久久亚洲| 久久久久久国产a免费观看| 综合色丁香网| 午夜精品在线福利| 成人亚洲精品av一区二区| 三级经典国产精品| 国产午夜精品久久久久久一区二区三区| 观看美女的网站| 少妇人妻精品综合一区二区| 久久精品国产亚洲av涩爱| 日本与韩国留学比较| 日本与韩国留学比较| 丝袜美腿在线中文| 国产一区二区在线观看日韩| 久久久久免费精品人妻一区二区| 成人高潮视频无遮挡免费网站| 中文欧美无线码| videossex国产| 韩国av在线不卡| 国产伦理片在线播放av一区| 亚洲精品久久久久久婷婷小说| 日韩av在线大香蕉| 午夜精品在线福利| 在线免费十八禁| 欧美日韩精品成人综合77777| 日本爱情动作片www.在线观看| 亚洲精品日本国产第一区| 中文字幕制服av| 青春草视频在线免费观看| 一级毛片黄色毛片免费观看视频| 日本熟妇午夜| 能在线免费观看的黄片| 成人性生交大片免费视频hd| 日韩一区二区视频免费看| 国产熟女欧美一区二区| 精品一区二区免费观看| 亚洲四区av| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站 | 国产亚洲av片在线观看秒播厂 | 又大又黄又爽视频免费| 国产高清国产精品国产三级 | 国产黄色小视频在线观看| 国产精品国产三级国产专区5o| 天天一区二区日本电影三级| 亚洲自拍偷在线| 18禁裸乳无遮挡免费网站照片| 又爽又黄a免费视频| 中文字幕av成人在线电影| 日本色播在线视频| 久久久久久伊人网av| 久久久色成人| 亚洲人成网站高清观看| 中文欧美无线码| 嫩草影院新地址| 十八禁国产超污无遮挡网站| 岛国毛片在线播放| 亚洲怡红院男人天堂| 久久6这里有精品| 中文字幕人妻熟人妻熟丝袜美| 乱码一卡2卡4卡精品| 99久国产av精品国产电影| 最近2019中文字幕mv第一页| 精品99又大又爽又粗少妇毛片| 久久久久久久久久人人人人人人| 菩萨蛮人人尽说江南好唐韦庄| 国产老妇伦熟女老妇高清| 成人亚洲精品一区在线观看 | 少妇人妻一区二区三区视频| av免费在线看不卡| 我的女老师完整版在线观看| 啦啦啦韩国在线观看视频| 久久久久久久久中文| 欧美人与善性xxx| 成人亚洲精品一区在线观看 | 午夜精品在线福利| 亚洲国产色片| 国产在线一区二区三区精| 少妇高潮的动态图| 免费看a级黄色片| 久久久精品欧美日韩精品| 国产片特级美女逼逼视频| 女人被狂操c到高潮| 国产伦精品一区二区三区四那| 久久99蜜桃精品久久| 男插女下体视频免费在线播放| 久久久欧美国产精品| 欧美日韩在线观看h| 亚洲最大成人手机在线| 1000部很黄的大片| 日本猛色少妇xxxxx猛交久久| 久久久久精品性色| 国产精品不卡视频一区二区| 国产 一区精品| 欧美xxxx性猛交bbbb| 夫妻性生交免费视频一级片| 在线观看美女被高潮喷水网站| 国产日韩欧美在线精品| 国内揄拍国产精品人妻在线| 成年免费大片在线观看| 肉色欧美久久久久久久蜜桃 | 亚洲18禁久久av| 美女高潮的动态| 国内少妇人妻偷人精品xxx网站| 69av精品久久久久久| 极品教师在线视频| 国产午夜福利久久久久久| 女人十人毛片免费观看3o分钟| 亚洲av二区三区四区| 91久久精品国产一区二区成人| 国产午夜精品论理片| 免费看美女性在线毛片视频| 又爽又黄无遮挡网站| 91午夜精品亚洲一区二区三区| 非洲黑人性xxxx精品又粗又长| 久久这里有精品视频免费| 91久久精品国产一区二区三区| 欧美变态另类bdsm刘玥| 亚洲18禁久久av| 免费人成在线观看视频色| 我的女老师完整版在线观看| 国产91av在线免费观看| 亚洲精品成人久久久久久| 两个人视频免费观看高清| 精品久久久久久久人妻蜜臀av| 国产成年人精品一区二区| 久久精品熟女亚洲av麻豆精品 | 女人十人毛片免费观看3o分钟| 亚洲一区高清亚洲精品| 在线观看一区二区三区| 精品人妻一区二区三区麻豆| 老司机影院毛片| 最近中文字幕高清免费大全6| 日本av手机在线免费观看| 精品久久久久久久人妻蜜臀av| 国产精品av视频在线免费观看| 国产老妇伦熟女老妇高清| 欧美激情久久久久久爽电影| 69av精品久久久久久| 国产激情偷乱视频一区二区| 又大又黄又爽视频免费| 国内精品宾馆在线| 色网站视频免费| 美女内射精品一级片tv| 九草在线视频观看| 午夜免费激情av| 联通29元200g的流量卡| 少妇人妻一区二区三区视频| 乱系列少妇在线播放| 国产精品一区二区三区四区免费观看| 97人妻精品一区二区三区麻豆| 韩国av在线不卡| 欧美精品一区二区大全| 中文乱码字字幕精品一区二区三区 | 夜夜看夜夜爽夜夜摸| 成人漫画全彩无遮挡| 日韩欧美一区视频在线观看 | 有码 亚洲区| 秋霞伦理黄片| 亚洲精品久久久久久婷婷小说| 国产精品伦人一区二区| 亚洲精品,欧美精品| 简卡轻食公司| 国产av码专区亚洲av| 综合色av麻豆| 亚洲不卡免费看| 亚洲欧美成人综合另类久久久| 国产乱来视频区| 男人舔奶头视频| 欧美成人一区二区免费高清观看| 国产免费福利视频在线观看| 国产综合精华液| 国产精品不卡视频一区二区| 夫妻午夜视频| 亚洲欧美一区二区三区国产| 大陆偷拍与自拍| 精品一区二区三区视频在线| 中文字幕av在线有码专区| 日本猛色少妇xxxxx猛交久久| 国产探花在线观看一区二区| 亚洲av免费在线观看| 99热全是精品| 少妇丰满av| 特大巨黑吊av在线直播| 久久精品国产自在天天线| 久久久久性生活片| 只有这里有精品99| 最后的刺客免费高清国语| 欧美最新免费一区二区三区| 一区二区三区免费毛片| 人妻制服诱惑在线中文字幕| 在线免费观看的www视频| 国产亚洲av片在线观看秒播厂 | 国产美女午夜福利| 国产免费一级a男人的天堂| 99热全是精品| 国产探花极品一区二区| 欧美激情在线99| 岛国毛片在线播放| 日日干狠狠操夜夜爽| 亚洲最大成人中文| 一级毛片电影观看| 少妇熟女aⅴ在线视频| 一区二区三区四区激情视频| 免费看光身美女| 婷婷色综合www| 人体艺术视频欧美日本| 97热精品久久久久久| 色综合色国产| 69av精品久久久久久| 精品酒店卫生间| 亚洲国产欧美在线一区| 老师上课跳d突然被开到最大视频| 欧美日韩综合久久久久久| 天堂av国产一区二区熟女人妻| a级毛色黄片| 22中文网久久字幕| 人人妻人人澡欧美一区二区| 日韩亚洲欧美综合| 少妇熟女aⅴ在线视频| 色综合站精品国产| 成年av动漫网址| 自拍偷自拍亚洲精品老妇| 精品欧美国产一区二区三| 高清视频免费观看一区二区 | 青春草视频在线免费观看| 草草在线视频免费看| 亚洲人与动物交配视频| 插逼视频在线观看| 校园人妻丝袜中文字幕| 亚洲丝袜综合中文字幕| 蜜臀久久99精品久久宅男| 日韩av不卡免费在线播放| 国产欧美另类精品又又久久亚洲欧美| 蜜桃久久精品国产亚洲av| 欧美日韩在线观看h| 国产淫片久久久久久久久| 一级毛片黄色毛片免费观看视频| 国产高清有码在线观看视频| 成人一区二区视频在线观看| 精品国产三级普通话版| 99久久人妻综合| 国产精品一区二区性色av| 美女内射精品一级片tv| 亚洲人成网站在线观看播放| 只有这里有精品99| 男插女下体视频免费在线播放| 国产亚洲精品久久久com| 高清视频免费观看一区二区 | 久久久久久久久久黄片| 一个人免费在线观看电影| 国产亚洲av嫩草精品影院| h日本视频在线播放| 国精品久久久久久国模美| 一级毛片aaaaaa免费看小| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 精品人妻熟女av久视频| 男人爽女人下面视频在线观看| 国产精品一区二区三区四区久久| 一夜夜www| 久久人人爽人人片av| 伦精品一区二区三区| 国产麻豆成人av免费视频| 国产在视频线精品| 国产大屁股一区二区在线视频| 精品不卡国产一区二区三区| 亚洲一级一片aⅴ在线观看| 精品不卡国产一区二区三区| 汤姆久久久久久久影院中文字幕 | 久久国产乱子免费精品| av国产免费在线观看| 69人妻影院| 国产欧美日韩精品一区二区| 狂野欧美激情性xxxx在线观看| 蜜桃久久精品国产亚洲av| 国产女主播在线喷水免费视频网站 | 国产精品福利在线免费观看| 麻豆精品久久久久久蜜桃| 寂寞人妻少妇视频99o| 国产片特级美女逼逼视频| 白带黄色成豆腐渣| 日日撸夜夜添| 麻豆av噜噜一区二区三区| 国产伦理片在线播放av一区| 亚洲一级一片aⅴ在线观看| 国产单亲对白刺激| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 国产午夜精品一二区理论片| 精品久久久久久电影网| 尤物成人国产欧美一区二区三区| 久久久久国产网址| 舔av片在线| 久久久久网色| av.在线天堂| 亚洲最大成人av| kizo精华| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 国产成人freesex在线| 色播亚洲综合网| 内射极品少妇av片p| 夫妻午夜视频| av在线老鸭窝| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 亚洲人成网站高清观看| 两个人的视频大全免费| 免费在线观看成人毛片| 国产男女超爽视频在线观看| 午夜福利视频精品| 人体艺术视频欧美日本| 六月丁香七月| 精品国产一区二区三区久久久樱花 | 国产精品久久久久久久久免| 亚洲国产高清在线一区二区三| 精品久久久精品久久久| 男人狂女人下面高潮的视频| 看免费成人av毛片| av网站免费在线观看视频 | 亚洲乱码一区二区免费版| 色综合站精品国产| 国产亚洲精品av在线| 精品久久久久久电影网| 国产视频内射| 边亲边吃奶的免费视频| 国产精品久久久久久av不卡|