• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual-metal zeolite imidazolate framework for efficient lithium storage boosted by synergistic effects and self-assembly 2D nanosheets

    2022-07-11 03:39:52MingYueYjingFuCnpingZhngJunxioFuShiqunWngJinwenLiu
    Chinese Chemical Letters 2022年6期

    Ming Yue,Yjing Fu,Cnping Zhng,Junxio Fu,Shiqun Wng,?,Jinwen Liu,b,?

    a College of Chemistry and Chemical Engineering &Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry &Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules,Hubei University,Wuhan 430062,China

    b Jiangsu Pylon Battery Co.,Ltd.,Yangzhou 211400,China

    Keywords:Lithium ion batteries Metal-organic frameworks CoCu-ZIF nanosheets Synergistic effect Self-assembly

    ABSTRACT Metal-organic framework materials (MOFs),such as zeolitic imidazolate framework (ZIF),have been widely used in energy storage due to their advantages such as high structural stability,large specific surface,more active sites and skeleton structures.Herein,a novel two-dimensional (2D) CoCu-ZIF was synthesized by a facile solvothermal method.The as-prepared CoCu-ZIF nanosheets exhibit an ultrahigh reversible capacity of 2287.4 mAh/g and remains at 1172.1 mAh/g after 300 cycles at a current density of 100 mA/g,far better than that of the single Co-ZIF and Cu-ZIF.Additionally,the specific discharge capacity of CoCu-ZIF nanosheets can maintain at about 590 mAh/g after 1000 cycles at the current density of 2 A/g.Owing to the synergistic effect of two metals,function of nitrogen in the molecular and selfassembly 2D nanosheets,our research can provide strong support for the practical application of CoCu-ZIF materials in lithium ion batteries.

    Lithium ion batteries (LIBs) have attracted extensive attention as a most useful battery system for portable devices in recent years,owing to the relatively high theoretical specific capacity and excellent cycling performance [1–4].However in order to solve the problem of large volume variation and poor electrical conductivity of high energy density electrode materials,it is imminent to search suitable anode materials [5–7].For example,graphene [8,9],Mxenes [10,11],black phosphorus [12,13],two-dimensional transition metal sulfide (TMDs) and other traditional 2D materials [14–16]gradually show structural advantages.Especially,due to the significant advantages of light weight,good electron and ion conductivity,rich pores and uniform distribution of active sites,metalorganic frameworks (MOFs) have been considered as superior anode materials [17–28].In Li’s review,transition-metal (Zn,Mn,Cu)-based MOFs as anode materials and their strategies for further enhancing performance in LIBs were proposed [29].Wanget al.reported four polyoxometalate-based metal-organic frameworks (POMOFs) with various architectures employed in anode materials of LIBs [30].Jinet al.designed a 2D few layer black phosphorous/NiCo(BP/NiCo) MOF structure with high reversible capacity,long cycle life and excellent rate capability [31].The bimetallic zeolite imidazolate framework CoZn-ZIF delivered a high reversible capacity of 605.8 mAh/g at a current density of 100 mA/g,far beyond the performance of the corresponding monometallic Co-ZIF-67 and Zn-ZIF-8 [32].

    In our work,CoCu-ZIF composites were prepared through layer-by-layer stacking of 2D nanosheets by a facile solvothermal method.These nanosheets are stacked together in an orderly way,which effectively inhibits the volume change and accelerates the transport of lithium ions.Additionally,the synergistic effect of dual-metals can significantly improve the electrochemical performance of the electrode material with practical value.As a consequence,CoCu-ZIF nanaosheets with multilayer structure display excellent electrochemical properties in LIBs,which is superior to the MOFs materials previously reported.

    In a one-step solvothermal reaction as illustrated in Fig.S1 (Supporting information),0.46 g Cu(NO3)2·3H2O and 0.96 g Co(NO3)2·6H2O (nCo:nCu=1.2:1) were dissolved in 44 mL 75%ethanol for stirring to obtain solution A and B,respectively.Then the solution A was poured into the solution B for magnetic stirring for 10 h to obtain mixed solution.1.0 g 2-methylimidazole (2-Im) was dissolved in 88 mL 75% ethanol to obtain mixed solution with the above solution.Subsequently,this mixed solution was transferred into a 100 mL teflon-lined stainless steel autoclave and heated for 12 h at 100 °C in the oven.After the reaction,it was naturally cooled to room temperature,and the yellow product was obtained by centrifugation,washing with deionized water for three times.Finally,the yellow product CoCu-ZIF was dried overnight in a vacuum oven at 60 °C.For comparison,the same procedures were carried out to synthesize Co-ZIF and Cu-ZIF without using Cu(NO3)2·3H2O or Co(NO3)2·6H2O,respectively.

    Fig 1.(a) XRD patterns and (b) N 1s high-resolution XPS spectrum of CoCu-ZIF sample.(c) FTIR spectra of CoCu-ZIF,Co-ZIF or Cu-ZIF samples.(d) FE-SEM images,(e) TEM images,(f) electronic diffraction (ED) and (g) elemental mapping of CoCu-ZIF sample (The insets are the local enlargement figures).(h) Nitrogen adsorption/desorption isotherms and pore-size distribution of CuCo-ZIF sample and (i) its comparison with Co-ZIF and Cu-ZIF samples.

    Fourier transform-infrared spectroscopy (FTIR,SHIMADZU)measurements were performed within the wavenumber range of 4000~400 cm?1.The X-ray diffractometer (XRD,Bruker D8 Advance) with Cu Kαradiation source was used to analyze the crystal phase of the as-prepared materials in the 2θrange of 5°?50°The chemical status of elements were determined by X-ray photoelectron spectroscopy (XPS,Thermo escalab 250Xi systerm).The field-emission scanning electron microscopy (FE-SEM) images were observed by a JSM-7800F &TEAM Octane Plus (Japan).Transmission electron microscopy (TEM) and high resolution TEM (HRTEM)images were tested on a TecnaiF20 device.The Brunauer-Emmett-Teller (BET) tests were carried out on a Micromeritics ASAP 2020 porosimetry system.For assembling the batteries,active material,conductive additive (super-P carbon black) and the binder(polyvinylidene tetrafluoroethylene,PVDF) with the weight ratio of 7:2:1 were mixed inN-methyl-2-pyrrolidone (NMP,solvent) to form a homogeneous slurry.All the working electrode,diaphragm,electrolyte (1.0 mol/L LiPF6in ethylene carbonate (EC) and diethyl carbonate (DEC) with a volume ratio of 1:1) and lithium foil were used to manufacture CR2035 coin cells in an Ar glove box.The galvanostatic charge and discharge cycles were tested using automatic battery testing system (Neware,China) within the voltage range from 0.01 V to 3.0 V (vs.Li+/Li).Cyclic voltammetry (CV) curves were recorded from 0.01 V to 3.0 V at a scanning rate of 0.2 mV/s using an electrochemical workstation (CHI660E).Electrochemical impedance spectroscopies (EIS) were tested applying an AC voltage of 0.1 mV within a frequency range of 0.01 Hz to 100 kHz.

    Fig.1a and Fig.S2 (Supporting information) display the XRD patterns of CoCu-ZIF,Co-ZIF and Cu-ZIF samples.Owing to the approximate ionic radius of Co2+(0.73 ?A) and Cu2+(0.72 ?A),Co2+and Cu2+ions can be simutaneously coordinated with 2-methylimidazole to form isostructure CoCu-ZIF composites [32–34].To be specific,the strong and sharp peaks observed at 7.46°,10.35° and 12.69° in Fig.S2,which are consistent with the simulated ZIF-67 (CCDC No.671,073),confirm a high degree of crystallinity of Co-ZIF samples [29,35-39].Additionally,the strong peaks recorded at 7.43°,10.38° and 12.72° for CoCu-ZIF perfectly match well with (011),(112) and (222) lattice plane in Fig.1a,proving that CoCu-ZIF composite is successfully synthesized via the coordination of Co2+and Cu2+ions with 2-Im.It must be pointed out here that the angular shifts in XRD patterns of bimetallic complex are mainly due to the introduction of Cu metal.

    In the high-resolution XPS spectra of CoCu-ZIF shown in Fig.1b and Fig S3 (Supporting information),the typical characteristic peaks of N 1s,C 1s,O 1s,Co 2p and Cu 2p can be all observed.First,the N 1s spectra exhibit significant peaks at 397.4,399.6,405.4 and 406 eV corresponding to pyridine nitrogen,pyrrole nitrogen,Co-N,and Cu-N bonds respectively,which confirms the successful coordination of Cu and Co onto ZIF skeleton [33].In C 1s spectra,there are four strong peaks located around 283.9,284.3,285.2 and 288.1 eV belonging to C–C,C–N,C=O and O–C=O bonds,respectively.The C=O and O-C=O bonds could be caused by the partial oxidation of material surface or the adsorption of water [29].The Co 2p spectra are divided into four peaks at 780 and 785.5 eV from Co3+and Co2+respectively,and followed by 796.6 and 802.7 eV as their corresponding satellite peaks.Similarily,the Cu 2p spectra display two strong peaks at 934.2 and 935.4 eV corresponding to Cu+and Cu2+,respectively,and their satellite peaks at the binding energy of 939.8 and 943 eV.

    In the FTIR spectra of Co-ZIF,Cu-ZIF and CoCu-ZIF samples displayed in Fig.1c,the characteristic bands of 2-methylimidazole are not observed at 1846 cm?1(the resonance betweenγN–H···NandυN–Hproton tensile vibration out of plane) and at 2300–3300 cm?1(the establishment of N–H···N hydrogen bond between two 2-methylimidazoles),revealing the deprotontion of 2-methylimidazole with metals after successful coordination [32,40].It is worthy noted that the N atoms in the molecular have been all participated in the coordination with Co or Cu metalviadeprotontion of 2-methylimidazole,thus resulting in no appearance of N–H groups.Therefore,we confirm that the very strong and wide peak at 3440 cm?1corresponds to the stretching vibration of O–H groups [32,33,40,41].Additionally,owing to the coordination of Co2+and Cu2+with all N atoms in 2-methylimidazoles,the wide peak of CoCu-ZIF moves towards high wavenumbers around 3531 cm?1[30].

    In the SEM images shown in Fig.1d,the as-prepared CoCu-ZIF is mainly composed of scattered nanosheets assembled by a large number of thin sheets layer by layer.The particle surface presents very flat and smooth,which can greatly slow down volume expansion during charge and discharge process.By comparison,the SEM images of Co-ZIF and Cu-ZIF in Fig.S4 (Supporting information)display embroidered globular and blocky morphology,respectively.The TEM images of CoCu-ZIF observed in Fig.1e also show the characteristics of thick accumulation and thin sheets in the edge.This unique structure can improve the specific surface area,which promotes electron transfer and enhances the electrochemical performance of CoCu-ZIF electrode.Moreover,the electronic diffraction (ED) shown in Fig.1f exhibits (011),(112),(222) lattice plane,which results are consistent with the XRD patterns.As depicted in Fig.1g,the corresponding element mapping proves that Co,Cu,C and N are uniformly distributed in whole CoCu-ZIF nanosheets.

    For evaluating the physical property of the as-prepared samples,the BET test was perfomed as shown in Figs.1h and i and Fig.S5 (Supporting information).The specific surface areas of CoCu-ZIF,Co-ZIF and Cu-ZIF samples are 107.86,95.315 and 5.195 m2/g,respectively.The CoCu-ZIF has the largest specific surface area because it is composed of thin nanosheets.According to the pore size distributions of 32.68 nm,it implies that the as-prepared CoCu-ZIF in our work is a typical mesoporous material with the advantages of regular pore structure and good structural stability.

    Fig 2.(a) CV curves,(b) selected charge-discharge profiles and (c) cycling performance at 0.1 A/g of CoCu-ZIF samples.(d) Rate capability of CoCu-ZIF,Co-ZIF and Cu-ZIF samples.Long cycling performance of CoCu-ZIF samples at the current densities of (e) 2 A/g and (f) 8 A/g.(g) Comparison of our work with other MOFs materials reported previously.

    In order to investigate the electrochemical properties of CoCu-ZIF,Co-ZIF and Cu-ZIF electrodes,the cyclic voltammetry (CV)curves are displayed in Fig.2a and Fig.S6 (Supporting information).In the lithiation process of first cycle,there is a typical peak at 1.53 V which could be attributed to the Li+insertion into Co(2-Im)2and Cu(2-Im)2to form Cu(2-Im)Li and Co(2-Im)Li (as illustrated in Eqs.1 and 2) [31].The weak reduction peaks located at 1.10 and 0.78 V might be originated from the formation of solid electrolyte interphase (SEI) and the reduction of CoxCu(1-x)(2-Im)2to CoxCu(1-x)(2-Im)2Li4(Eq.3) [32].In the cathode scanning of first circle,the two main oxidation peaks around 1.33 and 2.07/2.47 V are mainly derived from the oxidation reaction of Co and Cu to form Co2+and Cu2+,respectively.It is can be obviously observed that from the fourth cycle on the CV curves overlap well,proving that the CoCu-ZIF nanosheets exhibit better stability.The reaction mechanism of CoCu-ZIF nanosheets during charge and discharge process can be explained as the following equations.

    The battery performances of CoCu-ZIF,Co-ZIF and Cu-ZIF samples in the voltage range of 0.01~3.0 V are displayed in Fig.2 and Fig.S7 (Supporting information).These three electrodes deliver very satisfactory initial discharge specific capacities of 2287.4,1882.9 and 1924.3 mAh/g,respectively.For most MOFs electrode materials,the discharge specific capacity of second cycle is obviously reduced due to irreversible side reactions,SEI formation and electrolyte decomposition [42].Obviously,the Co-ZIF and Cu-ZIF electrodes appear significant capacity decline and maintain the low capacity cyclings.By contrast,the capacity of CoCu-ZIF nanaosheet displays a trend of decreasing first and rising then,and maintains a very stable state after dozens of cycles.For example,the specific capacity of CoCu-ZIF nanosheet remains at 1172.1 mAh/g after 300 cycles at the current density of 100 mA/g.Additionally,the specific discharge capacities of CoCu-ZIF nanosheets can still maintain at about 590 and 290 mAh/g after 1000 cycles at the current densities of 2 and 8 A/g,respectively.For the rate capability,the CoCu-ZIF nanosheet presents the reversible capacities of 1365.1,1138,887.1,777.1,595.7,401.9 and 238.6 mAh/g at the current densities of 100,200,500,1000,2000,4000 and 8000 mA/g,respectively.When the current density returns to 100 mA/g,the capacity still recover and remain at about 1005.9 mAh/g.Therefore,these results reveal that the CoCu-ZIF nanosheets has better cyclic performance and rate stability than Co-ZIF and Cu-ZIF samples.Owing to the synergistic effect of bimetallic ZIF,the CoCu-ZIF nanosheets in this work behave the excellent electrochemical performance,which much better than those in many previous reports shown in Fig.2g and Table S1 (Supporting information) [32,41,43-45].

    To understand the reaction kinetics of electrode materials,the EIS impedance profiles of CoCu-ZIF,Co-ZIF and Cu-ZIF samples are shown in Figs.3a and b.Firstly,theRctvalues of CoCu-ZIF,Co-ZIF and Cu-ZIF electrodes are 45.19,64.99 and 128.60Ωrespectively,which confirms that the bimetallic electrode material has the best conductive performance.Secondly,the slopes of impedanceZ’(Ohm) against the angular frequencyω?1/2of these three electrodes display 22.07,33.49 and 70.14,respectively.Using the following Eqs.4 and 5,the lithium ion diffusion coefficient (DLi+) are calculated as 7.01×10?11,3.04×10?11and 6.94×10?12cm/s,respectively.It is proved that CoCu-ZIF nanosheet behaves the fastest reaction kinetics and excellent lithium ion transport and diffusion ability [46–48].

    Fig 3.(a) Nyquist plots and (b) liner fitting of Z’vs.ω?1/2 in all-frequency region of the CoCu-ZIF nanosheets.(c) CV curves of the CoCu-ZIF nanosheets at different scan rate of 0.4–5.0 mV/s.(d) Calculation of b values by plotting logi versus logυ.(e) Contribution of diffusion and pseudocapacitive-controlled capacity at the scan rate of 2 mV/s.(f)Contribution percentage of pseudocapacitive-controlled capacity at different scan rates of 0.4~5.0 mV/s.

    In order to further explore the electrochemical properties and charge-discharge storage mechanism of CoCu-ZIF nanosheets,CV curves were measured at different scanning rates to evaluate the electrochemical dynamics and capacitive capacity.The CV curves of CoCu-ZIF nanosheets at different scanning rates of 0.4,0.6,0.8,1,2 and 5 mV/s over the potential 0.01–3.0 V (vs.Li/Li+) are displayed in Fig.3c.For the electrode material,the value ofbcan be calculated by Eq.6 (irepresents peak current value;υrepresents different scanning rates) to determine whether there is pseudocapacitance behavior in the process of charge and discharge.Generally,if the value ofbis within the range of 0.5–1,the electrode material exhibits both battery and pseudocapacitance properties;if the value ofbis greater than or equal to 1,the electrode material exhibits pseudocapacitance properties [49,50].By linear fitting of logiand logυfrom Eq.7,the value ofb(slope) can be obtained.As presented in the Fig.3d,the calculated and fitted values ofb1,b2andb3are 0.796,0.748 and 0.619 respectively,which reveals that the capacitance of CoCu-ZIF nanosheets is composed of pseudocapacitance contribution and diffusion control contribution [49,50].When the CV scanning rate of CoCu-ZIF nanosheets reaches 2 mV/s,the contribution rate of the pseudocapacitance reaches 60.48% in Fig.3e through calculation of Eq.8.Moreover,as the CV scanning rate gradually increases,the proportion of pseudocapacitive behavior also increases in Fig.3f.The highest pseudocapacitance contribution (83.35%) can be obtained when the scanning rate of CV reaches 5.0 mV/s.This result indicates that the CoCu-ZIF material has high pseudocapacitive behavior and exhibits excellent electrochemical capability [51].

    Fig 4.Illustration of mechanism of CoCu-ZIF nanosheets for enhanced electrochemical performance.

    Based on the above results and related analysis,the mechanism of CoCu-ZIF nanosheets for enhanced electrochemical performance can be illustrated as Fig.4.First,the better electrochemical performance of dual-metal MOFs than mono-metal MOFs could be mainly attributed to lithiation and delithiation of nitrogen atoms,accompanied by the breakage and recoordination of metal nitrogen bond.Morever,a few metal nitrogen bonds without recoordination could lead to the amorphization of CoCu-ZIF and the generation of few nitrogen radicals [16,18,19].Second,Co and Cu metals both have multiple valence states,and with the similar metal activity.Cu(II) has an electron configuration of d9 and can form stable coordination compounds from common ligands with coordination number of 2,4 and 6,such as [Cu(NH3)4]2+,[Cu(NH3)4(H2O)2]2+.Meanwhile,Co(II) can also form stable complexes with common ligands,such as [Co(H2O)6]2+,[Co(NH3)6]2+,[Co(CN)6]4?,[Co(NCS)4]2?.Additionally,Co2+(0.73 ?A) and Cu2+(0.72 ?A) have the very close ion radius.Therefore,the two metals with similar properties (Co and Cu) are more likely to play a synergistic role,which is more beneficial to battery performance[22,23].As for the function of nitrogen element,it can directly participate in the redox reactions and the formation of dense SEI film on the electrode in the process of battery charge and discharge[31,32,42].Besides,the as-synthesized unique CoCu-ZIF nanosheets in our work can provide more active sites,fast electron and ion transport channels,which can greatly improve the performance of battery.Therefore as shown in the figure,the surface of electrode after 300 cycles still presents an integrated and stable structure.

    In summary,a novel 2D CoCu-ZIF nanosheet was synthesized by a facile solvothermal method.When applied as anode material for LIBs,the CoCu-ZIF nanosheets display better electrochemical performance including cycling stability and rate performance,compared with the single Co-ZIF and Cu-ZIF.For example,the asprepared CoCu-ZIF nanosheets exhibit an ultrahigh reversible capacity of 2287.4 mAh/g and remain at 1172.1 mAh/g after 300 cycles at a current density of 100 mA/g.Additionally,the specific discharge capacity of CoCu-ZIF nanosheets can maintain at about 590 and 290 mAh/g after 1000 cycles at the current densities of 2 and 8 A/g,respectively.Until now,the battery performance in our work is superior to other bimetallic materials reported previously.These excellent electrochemical properties can be attributed to the synergistic effect of two metals,function of nitrogen in the molecular and self-assembly 2D nanosheets.This research in our study will provide support for the practical application of anode materials for lithium ion batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are very grateful for the finacial support from the National Natural Science Foundation of China (Nos.21978073 and U1903217) and the Project of Hubei Provincial Science &Technology Department (No.2018ACA147).The authors would also like to thank the Analytical and Testing Center of Hubei University for providing the facilities to fulfill the experimental measurements.The technical supports from Jiangsu Pylon Battery Co.,Ltd.are also gratefully acknowledged.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.015.

    亚洲国产中文字幕在线视频| 欧美乱码精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 日本一区二区免费在线视频| 国产成人啪精品午夜网站| 91精品伊人久久大香线蕉| a级毛片黄视频| 12—13女人毛片做爰片一| avwww免费| 亚洲精品粉嫩美女一区| 桃红色精品国产亚洲av| 大码成人一级视频| 又黄又粗又硬又大视频| 涩涩av久久男人的天堂| 国产精品av久久久久免费| 啪啪无遮挡十八禁网站| 亚洲国产欧美在线一区| 欧美人与性动交α欧美软件| 日韩大片免费观看网站| 久久 成人 亚洲| 亚洲精品第二区| 无遮挡黄片免费观看| www.999成人在线观看| 美女大奶头黄色视频| 日本vs欧美在线观看视频| 乱人伦中国视频| 亚洲国产精品999| 欧美日韩亚洲综合一区二区三区_| 后天国语完整版免费观看| 法律面前人人平等表现在哪些方面 | 国产高清视频在线播放一区 | 精品久久蜜臀av无| 精品少妇内射三级| 亚洲 国产 在线| 99精品欧美一区二区三区四区| 欧美在线一区亚洲| 久久久国产一区二区| 国产免费一区二区三区四区乱码| 在线亚洲精品国产二区图片欧美| 十八禁网站免费在线| 一级,二级,三级黄色视频| 国产成人欧美在线观看 | 国产男女内射视频| 五月天丁香电影| 极品少妇高潮喷水抽搐| 亚洲av电影在线进入| 亚洲熟女精品中文字幕| 精品国内亚洲2022精品成人 | 高清在线国产一区| 一级a爱视频在线免费观看| 亚洲国产毛片av蜜桃av| 国产一区二区三区在线臀色熟女 | 亚洲伊人色综图| 久久久水蜜桃国产精品网| 亚洲精品久久久久久婷婷小说| 法律面前人人平等表现在哪些方面 | 欧美午夜高清在线| 男女边摸边吃奶| 婷婷丁香在线五月| 老熟妇乱子伦视频在线观看 | 一进一出抽搐动态| 美女福利国产在线| 国产成人欧美| 精品人妻熟女毛片av久久网站| 欧美精品一区二区大全| 国产男女内射视频| 秋霞在线观看毛片| kizo精华| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 性色av一级| 国产精品香港三级国产av潘金莲| 丝袜美腿诱惑在线| 国产成人欧美在线观看 | 成人国产av品久久久| 国产成+人综合+亚洲专区| 飞空精品影院首页| 在线天堂中文资源库| 国产色视频综合| 欧美精品av麻豆av| 国产精品一二三区在线看| 人妻 亚洲 视频| 久久99一区二区三区| 日韩大片免费观看网站| 一本综合久久免费| 欧美av亚洲av综合av国产av| 最近最新中文字幕大全免费视频| 首页视频小说图片口味搜索| 国产精品久久久久成人av| 精品人妻1区二区| 美女高潮到喷水免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 色播在线永久视频| 欧美精品高潮呻吟av久久| 国产伦人伦偷精品视频| 日本猛色少妇xxxxx猛交久久| 99国产精品一区二区三区| 涩涩av久久男人的天堂| 欧美精品一区二区大全| 精品第一国产精品| 每晚都被弄得嗷嗷叫到高潮| 午夜福利免费观看在线| 老司机午夜十八禁免费视频| 高清在线国产一区| 青草久久国产| 黄网站色视频无遮挡免费观看| 手机成人av网站| 中文字幕制服av| 国产精品香港三级国产av潘金莲| 亚洲视频免费观看视频| av有码第一页| 日本a在线网址| 菩萨蛮人人尽说江南好唐韦庄| 国产麻豆69| 成年女人毛片免费观看观看9 | 黑人猛操日本美女一级片| 日韩制服骚丝袜av| 久久99一区二区三区| 美女高潮喷水抽搐中文字幕| 免费黄频网站在线观看国产| 秋霞在线观看毛片| 黑人巨大精品欧美一区二区mp4| 欧美日韩国产mv在线观看视频| av网站在线播放免费| 18禁黄网站禁片午夜丰满| 男女免费视频国产| 美女高潮到喷水免费观看| 少妇精品久久久久久久| 一级黄色大片毛片| 久久人人97超碰香蕉20202| 国产欧美日韩一区二区三 | 亚洲欧美一区二区三区黑人| 久9热在线精品视频| 亚洲色图 男人天堂 中文字幕| 精品熟女少妇八av免费久了| 一级片'在线观看视频| 一级毛片女人18水好多| 女性被躁到高潮视频| 久久人人爽人人片av| 国产亚洲av片在线观看秒播厂| 国产av一区二区精品久久| 国产精品自产拍在线观看55亚洲 | 亚洲国产中文字幕在线视频| 欧美国产精品一级二级三级| 一级毛片精品| 97人妻天天添夜夜摸| 秋霞在线观看毛片| 天天影视国产精品| 欧美黑人欧美精品刺激| 亚洲久久久国产精品| 一个人免费在线观看的高清视频 | 国产欧美日韩综合在线一区二区| 国产97色在线日韩免费| 看免费av毛片| 亚洲欧美日韩另类电影网站| 人人妻,人人澡人人爽秒播| 久久av网站| 亚洲一码二码三码区别大吗| 欧美日韩福利视频一区二区| √禁漫天堂资源中文www| netflix在线观看网站| 999久久久精品免费观看国产| 考比视频在线观看| 后天国语完整版免费观看| 中文字幕高清在线视频| 无遮挡黄片免费观看| 永久免费av网站大全| 欧美大码av| 激情视频va一区二区三区| 99国产精品免费福利视频| 人人妻人人澡人人看| 精品国内亚洲2022精品成人 | 成人亚洲精品一区在线观看| 在线观看免费日韩欧美大片| 男女国产视频网站| 欧美久久黑人一区二区| 欧美另类一区| 女人精品久久久久毛片| 国产熟女午夜一区二区三区| 欧美亚洲 丝袜 人妻 在线| cao死你这个sao货| 一二三四社区在线视频社区8| 国产精品国产av在线观看| 国产精品久久久av美女十八| 97在线人人人人妻| 在线亚洲精品国产二区图片欧美| 丰满饥渴人妻一区二区三| 侵犯人妻中文字幕一二三四区| 岛国在线观看网站| 国产老妇伦熟女老妇高清| 久久精品亚洲熟妇少妇任你| 国产亚洲精品一区二区www | 69精品国产乱码久久久| 免费在线观看视频国产中文字幕亚洲 | 色精品久久人妻99蜜桃| 精品少妇内射三级| 久久天堂一区二区三区四区| 精品一区二区三区四区五区乱码| 国产视频一区二区在线看| 深夜精品福利| 成人三级做爰电影| 亚洲全国av大片| 久久精品国产亚洲av高清一级| 法律面前人人平等表现在哪些方面 | 欧美激情极品国产一区二区三区| 欧美一级毛片孕妇| 三上悠亚av全集在线观看| 少妇裸体淫交视频免费看高清 | 超碰97精品在线观看| 精品视频人人做人人爽| 黄色视频不卡| 欧美日韩视频精品一区| 一级毛片电影观看| 12—13女人毛片做爰片一| 国产亚洲精品久久久久5区| svipshipincom国产片| 亚洲国产欧美日韩在线播放| 大型av网站在线播放| 欧美大码av| 黑人巨大精品欧美一区二区蜜桃| 久久久久国内视频| 又黄又粗又硬又大视频| 成年人免费黄色播放视频| 夜夜夜夜夜久久久久| av免费在线观看网站| www.av在线官网国产| 国产成人欧美在线观看 | 一本综合久久免费| 国产一区二区三区综合在线观看| 久久精品国产综合久久久| 亚洲激情五月婷婷啪啪| svipshipincom国产片| av不卡在线播放| 日本五十路高清| 深夜精品福利| 色精品久久人妻99蜜桃| 在线av久久热| 国产1区2区3区精品| 女人被躁到高潮嗷嗷叫费观| 精品人妻熟女毛片av久久网站| 久久九九热精品免费| 国产区一区二久久| 啦啦啦在线免费观看视频4| 精品福利观看| 国产成人系列免费观看| 国产免费现黄频在线看| 日本a在线网址| 欧美另类亚洲清纯唯美| 一本久久精品| 国产精品影院久久| 久久天堂一区二区三区四区| 日韩视频在线欧美| 丝袜喷水一区| 午夜福利视频在线观看免费| 在线观看人妻少妇| 一个人免费看片子| 老汉色∧v一级毛片| 中文字幕精品免费在线观看视频| 精品少妇内射三级| 老司机亚洲免费影院| 亚洲专区国产一区二区| 啦啦啦啦在线视频资源| 日韩制服丝袜自拍偷拍| 搡老岳熟女国产| 他把我摸到了高潮在线观看 | 亚洲国产精品成人久久小说| 在线观看www视频免费| av线在线观看网站| 亚洲天堂av无毛| 亚洲国产精品成人久久小说| 狠狠婷婷综合久久久久久88av| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 久久av网站| tocl精华| 午夜免费鲁丝| 蜜桃在线观看..| av片东京热男人的天堂| 婷婷成人精品国产| 亚洲精品日韩在线中文字幕| 下体分泌物呈黄色| 亚洲国产精品一区二区三区在线| 国产亚洲精品一区二区www | 一区二区日韩欧美中文字幕| 亚洲第一欧美日韩一区二区三区 | 乱人伦中国视频| 久久精品成人免费网站| 无限看片的www在线观看| 国产精品二区激情视频| 久久午夜综合久久蜜桃| 日韩视频在线欧美| 成人国产av品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 精品国内亚洲2022精品成人 | 国产一区二区激情短视频 | 国产高清视频在线播放一区 | 免费一级毛片在线播放高清视频 | 王馨瑶露胸无遮挡在线观看| av天堂在线播放| 美女脱内裤让男人舔精品视频| 各种免费的搞黄视频| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 一本综合久久免费| 国产av精品麻豆| 久久青草综合色| 少妇被粗大的猛进出69影院| 日韩大片免费观看网站| 97在线人人人人妻| 亚洲伊人久久精品综合| 好男人电影高清在线观看| 成人手机av| 国产精品一区二区精品视频观看| 欧美日韩亚洲综合一区二区三区_| 国产av国产精品国产| 午夜免费观看性视频| 亚洲色图 男人天堂 中文字幕| 美国免费a级毛片| 亚洲伊人色综图| 美女脱内裤让男人舔精品视频| 亚洲欧洲日产国产| 曰老女人黄片| 亚洲成人国产一区在线观看| 久久香蕉激情| 丰满少妇做爰视频| 欧美黑人精品巨大| 久久九九热精品免费| 亚洲成人手机| 亚洲欧美色中文字幕在线| 久久精品成人免费网站| 看免费av毛片| 丝瓜视频免费看黄片| 天堂中文最新版在线下载| 亚洲精品国产色婷婷电影| 免费在线观看影片大全网站| 99国产综合亚洲精品| 精品一区在线观看国产| 久久久久久久国产电影| 国产精品av久久久久免费| 日韩大片免费观看网站| 免费在线观看视频国产中文字幕亚洲 | 国产高清视频在线播放一区 | 精品国产国语对白av| 久久精品熟女亚洲av麻豆精品| 十八禁人妻一区二区| 啦啦啦视频在线资源免费观看| av在线老鸭窝| 午夜福利在线观看吧| 久久久久久久精品精品| av在线老鸭窝| 嫁个100分男人电影在线观看| 搡老乐熟女国产| 十八禁高潮呻吟视频| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区mp4| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 亚洲黑人精品在线| 人妻人人澡人人爽人人| 黄频高清免费视频| 国产精品熟女久久久久浪| 香蕉丝袜av| 丰满少妇做爰视频| 久久人妻福利社区极品人妻图片| 一本大道久久a久久精品| 大陆偷拍与自拍| 精品少妇内射三级| 黄色视频,在线免费观看| 日日夜夜操网爽| 国产伦理片在线播放av一区| 人人澡人人妻人| 亚洲国产精品999| 亚洲av电影在线观看一区二区三区| 国产主播在线观看一区二区| 久久久精品94久久精品| kizo精华| av天堂久久9| 国产91精品成人一区二区三区 | 久热爱精品视频在线9| 美女大奶头黄色视频| 欧美日韩av久久| 欧美在线一区亚洲| 国产精品1区2区在线观看. | 久久亚洲国产成人精品v| 伦理电影免费视频| 国产伦理片在线播放av一区| 久久久久久久精品精品| www.av在线官网国产| 日日摸夜夜添夜夜添小说| 美女高潮到喷水免费观看| 啦啦啦在线免费观看视频4| 黄色视频不卡| 精品国产国语对白av| 国产一区二区三区在线臀色熟女 | 欧美精品一区二区大全| 一边摸一边抽搐一进一出视频| 亚洲一码二码三码区别大吗| 日韩 亚洲 欧美在线| 在线看a的网站| 国产男女内射视频| 亚洲精品一卡2卡三卡4卡5卡 | 免费高清在线观看视频在线观看| 丰满迷人的少妇在线观看| 欧美 日韩 精品 国产| cao死你这个sao货| av国产精品久久久久影院| 97在线人人人人妻| 亚洲激情五月婷婷啪啪| 亚洲 欧美一区二区三区| 国产真人三级小视频在线观看| 国产精品偷伦视频观看了| 亚洲第一欧美日韩一区二区三区 | 免费观看a级毛片全部| 淫妇啪啪啪对白视频 | 永久免费av网站大全| 一区二区三区四区激情视频| 丁香六月天网| 欧美日韩福利视频一区二区| 国产精品99久久99久久久不卡| 亚洲成人国产一区在线观看| 国产精品偷伦视频观看了| 一级毛片女人18水好多| 在线亚洲精品国产二区图片欧美| 美女高潮到喷水免费观看| 操美女的视频在线观看| 久久精品亚洲熟妇少妇任你| 亚洲精品美女久久av网站| 亚洲av男天堂| 9191精品国产免费久久| 婷婷色av中文字幕| 国产精品久久久人人做人人爽| 免费高清在线观看日韩| 国产色视频综合| 午夜久久久在线观看| 99久久99久久久精品蜜桃| 动漫黄色视频在线观看| 男人添女人高潮全过程视频| 日韩熟女老妇一区二区性免费视频| 视频在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区 | 视频区欧美日本亚洲| 国产欧美日韩一区二区三 | 国产男女超爽视频在线观看| 超色免费av| 欧美另类亚洲清纯唯美| 久久精品国产综合久久久| 飞空精品影院首页| kizo精华| 精品福利永久在线观看| 两人在一起打扑克的视频| 亚洲精品av麻豆狂野| 亚洲专区国产一区二区| 国产精品久久久av美女十八| 日韩视频一区二区在线观看| 麻豆国产av国片精品| 成人18禁高潮啪啪吃奶动态图| 成年人午夜在线观看视频| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 国产成人av激情在线播放| 久久久久国产精品人妻一区二区| 国产在线观看jvid| 国产有黄有色有爽视频| 国产成人av教育| 国产99久久九九免费精品| 一区二区三区激情视频| 国产av一区二区精品久久| 在线看a的网站| 久久久久国产一级毛片高清牌| 午夜91福利影院| 国产欧美日韩一区二区三区在线| 久久亚洲国产成人精品v| 久久天躁狠狠躁夜夜2o2o| 久久久久国产一级毛片高清牌| 久久精品国产综合久久久| 国产深夜福利视频在线观看| 日韩,欧美,国产一区二区三区| 丝袜人妻中文字幕| 欧美精品av麻豆av| 亚洲精品一卡2卡三卡4卡5卡 | 人妻一区二区av| 免费人妻精品一区二区三区视频| 国产精品欧美亚洲77777| 老熟妇乱子伦视频在线观看 | 亚洲第一青青草原| 免费看十八禁软件| 男女高潮啪啪啪动态图| 久热爱精品视频在线9| 精品人妻在线不人妻| 国产精品 国内视频| 午夜成年电影在线免费观看| av免费在线观看网站| 日韩欧美一区二区三区在线观看 | 精品福利永久在线观看| 夫妻午夜视频| 亚洲欧美日韩另类电影网站| 日韩欧美一区二区三区在线观看 | 久久久久久久久久久久大奶| 国产男女内射视频| 狂野欧美激情性bbbbbb| 精品人妻在线不人妻| 日韩大码丰满熟妇| 国产精品一区二区免费欧美 | 欧美激情高清一区二区三区| 欧美一级毛片孕妇| 下体分泌物呈黄色| 少妇被粗大的猛进出69影院| 视频在线观看一区二区三区| 久久热在线av| 欧美日韩黄片免| 啦啦啦 在线观看视频| 亚洲国产av新网站| 精品国产国语对白av| 少妇精品久久久久久久| 在线看a的网站| 男女高潮啪啪啪动态图| 999久久久精品免费观看国产| 亚洲国产日韩一区二区| 国产精品秋霞免费鲁丝片| 又黄又粗又硬又大视频| 亚洲国产看品久久| 亚洲精品日韩在线中文字幕| 国产成人av激情在线播放| 亚洲精品国产av蜜桃| 99精国产麻豆久久婷婷| 成人国产av品久久久| 久久精品久久久久久噜噜老黄| 一本久久精品| 一区二区日韩欧美中文字幕| 一区二区三区精品91| 亚洲精品久久午夜乱码| 自线自在国产av| 欧美激情高清一区二区三区| 一级毛片电影观看| 每晚都被弄得嗷嗷叫到高潮| 免费高清在线观看日韩| 成人三级做爰电影| 国产亚洲一区二区精品| 性高湖久久久久久久久免费观看| 国产97色在线日韩免费| 久热爱精品视频在线9| 日韩,欧美,国产一区二区三区| 色婷婷av一区二区三区视频| 水蜜桃什么品种好| 男女边摸边吃奶| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕| 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频 | 美女国产高潮福利片在线看| 99精国产麻豆久久婷婷| 黄色毛片三级朝国网站| 在线精品无人区一区二区三| 黑人欧美特级aaaaaa片| 午夜免费观看性视频| 免费在线观看黄色视频的| 国产老妇伦熟女老妇高清| 国产一区二区三区综合在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲成人免费电影在线观看| 亚洲性夜色夜夜综合| 成人影院久久| 亚洲少妇的诱惑av| 两性夫妻黄色片| 免费在线观看视频国产中文字幕亚洲 | 另类亚洲欧美激情| 女警被强在线播放| 少妇 在线观看| 亚洲性夜色夜夜综合| 久久综合国产亚洲精品| 国产亚洲av片在线观看秒播厂| a在线观看视频网站| 高清欧美精品videossex| 深夜精品福利| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 亚洲欧洲日产国产| 国产一卡二卡三卡精品| 高清在线国产一区| 久久久欧美国产精品| www.精华液| 日韩视频在线欧美| 可以免费在线观看a视频的电影网站| 精品亚洲乱码少妇综合久久| 免费在线观看黄色视频的| 少妇粗大呻吟视频| 免费人妻精品一区二区三区视频| 一边摸一边做爽爽视频免费| 香蕉国产在线看| 丝袜在线中文字幕| 亚洲美女黄色视频免费看| 欧美性长视频在线观看| 精品国产一区二区三区久久久樱花| 1024视频免费在线观看| 日韩免费高清中文字幕av| 国产一区二区三区综合在线观看| 亚洲国产中文字幕在线视频| 91成人精品电影| 日本一区二区免费在线视频| 国产精品国产三级国产专区5o| 亚洲精品中文字幕一二三四区 | 最新在线观看一区二区三区| 久久久久久人人人人人| 超色免费av| 国产精品99久久99久久久不卡| 黄色视频,在线免费观看| av国产精品久久久久影院| 另类亚洲欧美激情| 亚洲avbb在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 99热国产这里只有精品6| 亚洲成人免费电影在线观看| a级毛片在线看网站|