• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual-metal zeolite imidazolate framework for efficient lithium storage boosted by synergistic effects and self-assembly 2D nanosheets

    2022-07-11 03:39:52MingYueYjingFuCnpingZhngJunxioFuShiqunWngJinwenLiu
    Chinese Chemical Letters 2022年6期

    Ming Yue,Yjing Fu,Cnping Zhng,Junxio Fu,Shiqun Wng,?,Jinwen Liu,b,?

    a College of Chemistry and Chemical Engineering &Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry &Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules,Hubei University,Wuhan 430062,China

    b Jiangsu Pylon Battery Co.,Ltd.,Yangzhou 211400,China

    Keywords:Lithium ion batteries Metal-organic frameworks CoCu-ZIF nanosheets Synergistic effect Self-assembly

    ABSTRACT Metal-organic framework materials (MOFs),such as zeolitic imidazolate framework (ZIF),have been widely used in energy storage due to their advantages such as high structural stability,large specific surface,more active sites and skeleton structures.Herein,a novel two-dimensional (2D) CoCu-ZIF was synthesized by a facile solvothermal method.The as-prepared CoCu-ZIF nanosheets exhibit an ultrahigh reversible capacity of 2287.4 mAh/g and remains at 1172.1 mAh/g after 300 cycles at a current density of 100 mA/g,far better than that of the single Co-ZIF and Cu-ZIF.Additionally,the specific discharge capacity of CoCu-ZIF nanosheets can maintain at about 590 mAh/g after 1000 cycles at the current density of 2 A/g.Owing to the synergistic effect of two metals,function of nitrogen in the molecular and selfassembly 2D nanosheets,our research can provide strong support for the practical application of CoCu-ZIF materials in lithium ion batteries.

    Lithium ion batteries (LIBs) have attracted extensive attention as a most useful battery system for portable devices in recent years,owing to the relatively high theoretical specific capacity and excellent cycling performance [1–4].However in order to solve the problem of large volume variation and poor electrical conductivity of high energy density electrode materials,it is imminent to search suitable anode materials [5–7].For example,graphene [8,9],Mxenes [10,11],black phosphorus [12,13],two-dimensional transition metal sulfide (TMDs) and other traditional 2D materials [14–16]gradually show structural advantages.Especially,due to the significant advantages of light weight,good electron and ion conductivity,rich pores and uniform distribution of active sites,metalorganic frameworks (MOFs) have been considered as superior anode materials [17–28].In Li’s review,transition-metal (Zn,Mn,Cu)-based MOFs as anode materials and their strategies for further enhancing performance in LIBs were proposed [29].Wanget al.reported four polyoxometalate-based metal-organic frameworks (POMOFs) with various architectures employed in anode materials of LIBs [30].Jinet al.designed a 2D few layer black phosphorous/NiCo(BP/NiCo) MOF structure with high reversible capacity,long cycle life and excellent rate capability [31].The bimetallic zeolite imidazolate framework CoZn-ZIF delivered a high reversible capacity of 605.8 mAh/g at a current density of 100 mA/g,far beyond the performance of the corresponding monometallic Co-ZIF-67 and Zn-ZIF-8 [32].

    In our work,CoCu-ZIF composites were prepared through layer-by-layer stacking of 2D nanosheets by a facile solvothermal method.These nanosheets are stacked together in an orderly way,which effectively inhibits the volume change and accelerates the transport of lithium ions.Additionally,the synergistic effect of dual-metals can significantly improve the electrochemical performance of the electrode material with practical value.As a consequence,CoCu-ZIF nanaosheets with multilayer structure display excellent electrochemical properties in LIBs,which is superior to the MOFs materials previously reported.

    In a one-step solvothermal reaction as illustrated in Fig.S1 (Supporting information),0.46 g Cu(NO3)2·3H2O and 0.96 g Co(NO3)2·6H2O (nCo:nCu=1.2:1) were dissolved in 44 mL 75%ethanol for stirring to obtain solution A and B,respectively.Then the solution A was poured into the solution B for magnetic stirring for 10 h to obtain mixed solution.1.0 g 2-methylimidazole (2-Im) was dissolved in 88 mL 75% ethanol to obtain mixed solution with the above solution.Subsequently,this mixed solution was transferred into a 100 mL teflon-lined stainless steel autoclave and heated for 12 h at 100 °C in the oven.After the reaction,it was naturally cooled to room temperature,and the yellow product was obtained by centrifugation,washing with deionized water for three times.Finally,the yellow product CoCu-ZIF was dried overnight in a vacuum oven at 60 °C.For comparison,the same procedures were carried out to synthesize Co-ZIF and Cu-ZIF without using Cu(NO3)2·3H2O or Co(NO3)2·6H2O,respectively.

    Fig 1.(a) XRD patterns and (b) N 1s high-resolution XPS spectrum of CoCu-ZIF sample.(c) FTIR spectra of CoCu-ZIF,Co-ZIF or Cu-ZIF samples.(d) FE-SEM images,(e) TEM images,(f) electronic diffraction (ED) and (g) elemental mapping of CoCu-ZIF sample (The insets are the local enlargement figures).(h) Nitrogen adsorption/desorption isotherms and pore-size distribution of CuCo-ZIF sample and (i) its comparison with Co-ZIF and Cu-ZIF samples.

    Fourier transform-infrared spectroscopy (FTIR,SHIMADZU)measurements were performed within the wavenumber range of 4000~400 cm?1.The X-ray diffractometer (XRD,Bruker D8 Advance) with Cu Kαradiation source was used to analyze the crystal phase of the as-prepared materials in the 2θrange of 5°?50°The chemical status of elements were determined by X-ray photoelectron spectroscopy (XPS,Thermo escalab 250Xi systerm).The field-emission scanning electron microscopy (FE-SEM) images were observed by a JSM-7800F &TEAM Octane Plus (Japan).Transmission electron microscopy (TEM) and high resolution TEM (HRTEM)images were tested on a TecnaiF20 device.The Brunauer-Emmett-Teller (BET) tests were carried out on a Micromeritics ASAP 2020 porosimetry system.For assembling the batteries,active material,conductive additive (super-P carbon black) and the binder(polyvinylidene tetrafluoroethylene,PVDF) with the weight ratio of 7:2:1 were mixed inN-methyl-2-pyrrolidone (NMP,solvent) to form a homogeneous slurry.All the working electrode,diaphragm,electrolyte (1.0 mol/L LiPF6in ethylene carbonate (EC) and diethyl carbonate (DEC) with a volume ratio of 1:1) and lithium foil were used to manufacture CR2035 coin cells in an Ar glove box.The galvanostatic charge and discharge cycles were tested using automatic battery testing system (Neware,China) within the voltage range from 0.01 V to 3.0 V (vs.Li+/Li).Cyclic voltammetry (CV) curves were recorded from 0.01 V to 3.0 V at a scanning rate of 0.2 mV/s using an electrochemical workstation (CHI660E).Electrochemical impedance spectroscopies (EIS) were tested applying an AC voltage of 0.1 mV within a frequency range of 0.01 Hz to 100 kHz.

    Fig.1a and Fig.S2 (Supporting information) display the XRD patterns of CoCu-ZIF,Co-ZIF and Cu-ZIF samples.Owing to the approximate ionic radius of Co2+(0.73 ?A) and Cu2+(0.72 ?A),Co2+and Cu2+ions can be simutaneously coordinated with 2-methylimidazole to form isostructure CoCu-ZIF composites [32–34].To be specific,the strong and sharp peaks observed at 7.46°,10.35° and 12.69° in Fig.S2,which are consistent with the simulated ZIF-67 (CCDC No.671,073),confirm a high degree of crystallinity of Co-ZIF samples [29,35-39].Additionally,the strong peaks recorded at 7.43°,10.38° and 12.72° for CoCu-ZIF perfectly match well with (011),(112) and (222) lattice plane in Fig.1a,proving that CoCu-ZIF composite is successfully synthesized via the coordination of Co2+and Cu2+ions with 2-Im.It must be pointed out here that the angular shifts in XRD patterns of bimetallic complex are mainly due to the introduction of Cu metal.

    In the high-resolution XPS spectra of CoCu-ZIF shown in Fig.1b and Fig S3 (Supporting information),the typical characteristic peaks of N 1s,C 1s,O 1s,Co 2p and Cu 2p can be all observed.First,the N 1s spectra exhibit significant peaks at 397.4,399.6,405.4 and 406 eV corresponding to pyridine nitrogen,pyrrole nitrogen,Co-N,and Cu-N bonds respectively,which confirms the successful coordination of Cu and Co onto ZIF skeleton [33].In C 1s spectra,there are four strong peaks located around 283.9,284.3,285.2 and 288.1 eV belonging to C–C,C–N,C=O and O–C=O bonds,respectively.The C=O and O-C=O bonds could be caused by the partial oxidation of material surface or the adsorption of water [29].The Co 2p spectra are divided into four peaks at 780 and 785.5 eV from Co3+and Co2+respectively,and followed by 796.6 and 802.7 eV as their corresponding satellite peaks.Similarily,the Cu 2p spectra display two strong peaks at 934.2 and 935.4 eV corresponding to Cu+and Cu2+,respectively,and their satellite peaks at the binding energy of 939.8 and 943 eV.

    In the FTIR spectra of Co-ZIF,Cu-ZIF and CoCu-ZIF samples displayed in Fig.1c,the characteristic bands of 2-methylimidazole are not observed at 1846 cm?1(the resonance betweenγN–H···NandυN–Hproton tensile vibration out of plane) and at 2300–3300 cm?1(the establishment of N–H···N hydrogen bond between two 2-methylimidazoles),revealing the deprotontion of 2-methylimidazole with metals after successful coordination [32,40].It is worthy noted that the N atoms in the molecular have been all participated in the coordination with Co or Cu metalviadeprotontion of 2-methylimidazole,thus resulting in no appearance of N–H groups.Therefore,we confirm that the very strong and wide peak at 3440 cm?1corresponds to the stretching vibration of O–H groups [32,33,40,41].Additionally,owing to the coordination of Co2+and Cu2+with all N atoms in 2-methylimidazoles,the wide peak of CoCu-ZIF moves towards high wavenumbers around 3531 cm?1[30].

    In the SEM images shown in Fig.1d,the as-prepared CoCu-ZIF is mainly composed of scattered nanosheets assembled by a large number of thin sheets layer by layer.The particle surface presents very flat and smooth,which can greatly slow down volume expansion during charge and discharge process.By comparison,the SEM images of Co-ZIF and Cu-ZIF in Fig.S4 (Supporting information)display embroidered globular and blocky morphology,respectively.The TEM images of CoCu-ZIF observed in Fig.1e also show the characteristics of thick accumulation and thin sheets in the edge.This unique structure can improve the specific surface area,which promotes electron transfer and enhances the electrochemical performance of CoCu-ZIF electrode.Moreover,the electronic diffraction (ED) shown in Fig.1f exhibits (011),(112),(222) lattice plane,which results are consistent with the XRD patterns.As depicted in Fig.1g,the corresponding element mapping proves that Co,Cu,C and N are uniformly distributed in whole CoCu-ZIF nanosheets.

    For evaluating the physical property of the as-prepared samples,the BET test was perfomed as shown in Figs.1h and i and Fig.S5 (Supporting information).The specific surface areas of CoCu-ZIF,Co-ZIF and Cu-ZIF samples are 107.86,95.315 and 5.195 m2/g,respectively.The CoCu-ZIF has the largest specific surface area because it is composed of thin nanosheets.According to the pore size distributions of 32.68 nm,it implies that the as-prepared CoCu-ZIF in our work is a typical mesoporous material with the advantages of regular pore structure and good structural stability.

    Fig 2.(a) CV curves,(b) selected charge-discharge profiles and (c) cycling performance at 0.1 A/g of CoCu-ZIF samples.(d) Rate capability of CoCu-ZIF,Co-ZIF and Cu-ZIF samples.Long cycling performance of CoCu-ZIF samples at the current densities of (e) 2 A/g and (f) 8 A/g.(g) Comparison of our work with other MOFs materials reported previously.

    In order to investigate the electrochemical properties of CoCu-ZIF,Co-ZIF and Cu-ZIF electrodes,the cyclic voltammetry (CV)curves are displayed in Fig.2a and Fig.S6 (Supporting information).In the lithiation process of first cycle,there is a typical peak at 1.53 V which could be attributed to the Li+insertion into Co(2-Im)2and Cu(2-Im)2to form Cu(2-Im)Li and Co(2-Im)Li (as illustrated in Eqs.1 and 2) [31].The weak reduction peaks located at 1.10 and 0.78 V might be originated from the formation of solid electrolyte interphase (SEI) and the reduction of CoxCu(1-x)(2-Im)2to CoxCu(1-x)(2-Im)2Li4(Eq.3) [32].In the cathode scanning of first circle,the two main oxidation peaks around 1.33 and 2.07/2.47 V are mainly derived from the oxidation reaction of Co and Cu to form Co2+and Cu2+,respectively.It is can be obviously observed that from the fourth cycle on the CV curves overlap well,proving that the CoCu-ZIF nanosheets exhibit better stability.The reaction mechanism of CoCu-ZIF nanosheets during charge and discharge process can be explained as the following equations.

    The battery performances of CoCu-ZIF,Co-ZIF and Cu-ZIF samples in the voltage range of 0.01~3.0 V are displayed in Fig.2 and Fig.S7 (Supporting information).These three electrodes deliver very satisfactory initial discharge specific capacities of 2287.4,1882.9 and 1924.3 mAh/g,respectively.For most MOFs electrode materials,the discharge specific capacity of second cycle is obviously reduced due to irreversible side reactions,SEI formation and electrolyte decomposition [42].Obviously,the Co-ZIF and Cu-ZIF electrodes appear significant capacity decline and maintain the low capacity cyclings.By contrast,the capacity of CoCu-ZIF nanaosheet displays a trend of decreasing first and rising then,and maintains a very stable state after dozens of cycles.For example,the specific capacity of CoCu-ZIF nanosheet remains at 1172.1 mAh/g after 300 cycles at the current density of 100 mA/g.Additionally,the specific discharge capacities of CoCu-ZIF nanosheets can still maintain at about 590 and 290 mAh/g after 1000 cycles at the current densities of 2 and 8 A/g,respectively.For the rate capability,the CoCu-ZIF nanosheet presents the reversible capacities of 1365.1,1138,887.1,777.1,595.7,401.9 and 238.6 mAh/g at the current densities of 100,200,500,1000,2000,4000 and 8000 mA/g,respectively.When the current density returns to 100 mA/g,the capacity still recover and remain at about 1005.9 mAh/g.Therefore,these results reveal that the CoCu-ZIF nanosheets has better cyclic performance and rate stability than Co-ZIF and Cu-ZIF samples.Owing to the synergistic effect of bimetallic ZIF,the CoCu-ZIF nanosheets in this work behave the excellent electrochemical performance,which much better than those in many previous reports shown in Fig.2g and Table S1 (Supporting information) [32,41,43-45].

    To understand the reaction kinetics of electrode materials,the EIS impedance profiles of CoCu-ZIF,Co-ZIF and Cu-ZIF samples are shown in Figs.3a and b.Firstly,theRctvalues of CoCu-ZIF,Co-ZIF and Cu-ZIF electrodes are 45.19,64.99 and 128.60Ωrespectively,which confirms that the bimetallic electrode material has the best conductive performance.Secondly,the slopes of impedanceZ’(Ohm) against the angular frequencyω?1/2of these three electrodes display 22.07,33.49 and 70.14,respectively.Using the following Eqs.4 and 5,the lithium ion diffusion coefficient (DLi+) are calculated as 7.01×10?11,3.04×10?11and 6.94×10?12cm/s,respectively.It is proved that CoCu-ZIF nanosheet behaves the fastest reaction kinetics and excellent lithium ion transport and diffusion ability [46–48].

    Fig 3.(a) Nyquist plots and (b) liner fitting of Z’vs.ω?1/2 in all-frequency region of the CoCu-ZIF nanosheets.(c) CV curves of the CoCu-ZIF nanosheets at different scan rate of 0.4–5.0 mV/s.(d) Calculation of b values by plotting logi versus logυ.(e) Contribution of diffusion and pseudocapacitive-controlled capacity at the scan rate of 2 mV/s.(f)Contribution percentage of pseudocapacitive-controlled capacity at different scan rates of 0.4~5.0 mV/s.

    In order to further explore the electrochemical properties and charge-discharge storage mechanism of CoCu-ZIF nanosheets,CV curves were measured at different scanning rates to evaluate the electrochemical dynamics and capacitive capacity.The CV curves of CoCu-ZIF nanosheets at different scanning rates of 0.4,0.6,0.8,1,2 and 5 mV/s over the potential 0.01–3.0 V (vs.Li/Li+) are displayed in Fig.3c.For the electrode material,the value ofbcan be calculated by Eq.6 (irepresents peak current value;υrepresents different scanning rates) to determine whether there is pseudocapacitance behavior in the process of charge and discharge.Generally,if the value ofbis within the range of 0.5–1,the electrode material exhibits both battery and pseudocapacitance properties;if the value ofbis greater than or equal to 1,the electrode material exhibits pseudocapacitance properties [49,50].By linear fitting of logiand logυfrom Eq.7,the value ofb(slope) can be obtained.As presented in the Fig.3d,the calculated and fitted values ofb1,b2andb3are 0.796,0.748 and 0.619 respectively,which reveals that the capacitance of CoCu-ZIF nanosheets is composed of pseudocapacitance contribution and diffusion control contribution [49,50].When the CV scanning rate of CoCu-ZIF nanosheets reaches 2 mV/s,the contribution rate of the pseudocapacitance reaches 60.48% in Fig.3e through calculation of Eq.8.Moreover,as the CV scanning rate gradually increases,the proportion of pseudocapacitive behavior also increases in Fig.3f.The highest pseudocapacitance contribution (83.35%) can be obtained when the scanning rate of CV reaches 5.0 mV/s.This result indicates that the CoCu-ZIF material has high pseudocapacitive behavior and exhibits excellent electrochemical capability [51].

    Fig 4.Illustration of mechanism of CoCu-ZIF nanosheets for enhanced electrochemical performance.

    Based on the above results and related analysis,the mechanism of CoCu-ZIF nanosheets for enhanced electrochemical performance can be illustrated as Fig.4.First,the better electrochemical performance of dual-metal MOFs than mono-metal MOFs could be mainly attributed to lithiation and delithiation of nitrogen atoms,accompanied by the breakage and recoordination of metal nitrogen bond.Morever,a few metal nitrogen bonds without recoordination could lead to the amorphization of CoCu-ZIF and the generation of few nitrogen radicals [16,18,19].Second,Co and Cu metals both have multiple valence states,and with the similar metal activity.Cu(II) has an electron configuration of d9 and can form stable coordination compounds from common ligands with coordination number of 2,4 and 6,such as [Cu(NH3)4]2+,[Cu(NH3)4(H2O)2]2+.Meanwhile,Co(II) can also form stable complexes with common ligands,such as [Co(H2O)6]2+,[Co(NH3)6]2+,[Co(CN)6]4?,[Co(NCS)4]2?.Additionally,Co2+(0.73 ?A) and Cu2+(0.72 ?A) have the very close ion radius.Therefore,the two metals with similar properties (Co and Cu) are more likely to play a synergistic role,which is more beneficial to battery performance[22,23].As for the function of nitrogen element,it can directly participate in the redox reactions and the formation of dense SEI film on the electrode in the process of battery charge and discharge[31,32,42].Besides,the as-synthesized unique CoCu-ZIF nanosheets in our work can provide more active sites,fast electron and ion transport channels,which can greatly improve the performance of battery.Therefore as shown in the figure,the surface of electrode after 300 cycles still presents an integrated and stable structure.

    In summary,a novel 2D CoCu-ZIF nanosheet was synthesized by a facile solvothermal method.When applied as anode material for LIBs,the CoCu-ZIF nanosheets display better electrochemical performance including cycling stability and rate performance,compared with the single Co-ZIF and Cu-ZIF.For example,the asprepared CoCu-ZIF nanosheets exhibit an ultrahigh reversible capacity of 2287.4 mAh/g and remain at 1172.1 mAh/g after 300 cycles at a current density of 100 mA/g.Additionally,the specific discharge capacity of CoCu-ZIF nanosheets can maintain at about 590 and 290 mAh/g after 1000 cycles at the current densities of 2 and 8 A/g,respectively.Until now,the battery performance in our work is superior to other bimetallic materials reported previously.These excellent electrochemical properties can be attributed to the synergistic effect of two metals,function of nitrogen in the molecular and self-assembly 2D nanosheets.This research in our study will provide support for the practical application of anode materials for lithium ion batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are very grateful for the finacial support from the National Natural Science Foundation of China (Nos.21978073 and U1903217) and the Project of Hubei Provincial Science &Technology Department (No.2018ACA147).The authors would also like to thank the Analytical and Testing Center of Hubei University for providing the facilities to fulfill the experimental measurements.The technical supports from Jiangsu Pylon Battery Co.,Ltd.are also gratefully acknowledged.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.015.

    亚洲中文日韩欧美视频| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 大片电影免费在线观看免费| 欧美激情久久久久久爽电影 | 国产成人影院久久av| 国产熟女午夜一区二区三区| 午夜久久久在线观看| 久久国产亚洲av麻豆专区| 热99国产精品久久久久久7| 悠悠久久av| 中文亚洲av片在线观看爽 | 成人免费观看视频高清| 久久精品亚洲av国产电影网| 夫妻午夜视频| 又紧又爽又黄一区二区| 精品视频人人做人人爽| 国产精品 国内视频| 大香蕉久久成人网| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区国产一区二区| 精品国产一区二区三区四区第35| 纵有疾风起免费观看全集完整版| 国产精品久久电影中文字幕 | 777久久人妻少妇嫩草av网站| 在线观看66精品国产| 亚洲欧美激情在线| 欧美黑人精品巨大| 国产伦人伦偷精品视频| aaaaa片日本免费| 啦啦啦在线免费观看视频4| 黑人巨大精品欧美一区二区mp4| avwww免费| 成人亚洲精品一区在线观看| 国产熟女午夜一区二区三区| 高潮久久久久久久久久久不卡| 欧美激情久久久久久爽电影 | 一本大道久久a久久精品| 精品久久久精品久久久| 午夜91福利影院| 久久精品亚洲精品国产色婷小说| 亚洲精品在线观看二区| 国产精品九九99| 亚洲一区二区三区欧美精品| 2018国产大陆天天弄谢| 亚洲专区字幕在线| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美一区视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产熟女午夜一区二区三区| 亚洲 欧美一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产精品影院久久| 人妻一区二区av| 亚洲av第一区精品v没综合| 女警被强在线播放| 黄色毛片三级朝国网站| 乱人伦中国视频| 亚洲第一青青草原| a在线观看视频网站| 一本—道久久a久久精品蜜桃钙片| 窝窝影院91人妻| 婷婷成人精品国产| 宅男免费午夜| 高清毛片免费观看视频网站 | 天天影视国产精品| 免费高清在线观看日韩| 精品少妇内射三级| 国产精品熟女久久久久浪| 中文亚洲av片在线观看爽 | 亚洲av欧美aⅴ国产| 欧美另类亚洲清纯唯美| 日韩一区二区三区影片| 国产一区二区三区综合在线观看| 亚洲国产av影院在线观看| 午夜福利视频精品| 老汉色∧v一级毛片| h视频一区二区三区| 亚洲av美国av| 欧美日韩成人在线一区二区| 久久人妻av系列| 精品少妇一区二区三区视频日本电影| 久久久国产欧美日韩av| 国产一区二区激情短视频| 欧美日韩成人在线一区二区| 真人做人爱边吃奶动态| 少妇粗大呻吟视频| 日韩熟女老妇一区二区性免费视频| 亚洲精品中文字幕一二三四区 | 另类精品久久| av有码第一页| 老司机午夜十八禁免费视频| 亚洲午夜理论影院| 啦啦啦免费观看视频1| 亚洲一码二码三码区别大吗| 色尼玛亚洲综合影院| 亚洲欧美日韩另类电影网站| 亚洲熟妇熟女久久| 一区在线观看完整版| 久久国产精品人妻蜜桃| 成人特级黄色片久久久久久久 | 久久久久国产一级毛片高清牌| 少妇猛男粗大的猛烈进出视频| 亚洲专区中文字幕在线| 99国产精品免费福利视频| 汤姆久久久久久久影院中文字幕| 国产aⅴ精品一区二区三区波| 亚洲五月色婷婷综合| 国产精品久久久久久精品古装| 激情视频va一区二区三区| 天天躁夜夜躁狠狠躁躁| 欧美午夜高清在线| 国产又色又爽无遮挡免费看| 一级片'在线观看视频| 99热国产这里只有精品6| 精品国产一区二区久久| 大片电影免费在线观看免费| 精品国内亚洲2022精品成人 | 国产又色又爽无遮挡免费看| 亚洲精品粉嫩美女一区| 日韩人妻精品一区2区三区| 国产欧美日韩综合在线一区二区| tocl精华| 桃花免费在线播放| 黄色a级毛片大全视频| 日韩免费av在线播放| 日韩视频一区二区在线观看| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲av国产av综合av卡| 亚洲 欧美一区二区三区| 女人高潮潮喷娇喘18禁视频| 成年动漫av网址| 老鸭窝网址在线观看| 亚洲国产av影院在线观看| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 欧美亚洲 丝袜 人妻 在线| 夫妻午夜视频| 久久婷婷成人综合色麻豆| 国产在线免费精品| 最新在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| 国产av一区二区精品久久| 啪啪无遮挡十八禁网站| 免费在线观看日本一区| 欧美精品高潮呻吟av久久| 亚洲精品粉嫩美女一区| 女人精品久久久久毛片| 亚洲自偷自拍图片 自拍| 91成人精品电影| 久久中文字幕一级| 成人18禁在线播放| 午夜视频精品福利| 大陆偷拍与自拍| 老司机午夜福利在线观看视频 | 韩国精品一区二区三区| 日韩熟女老妇一区二区性免费视频| 三级毛片av免费| 99国产精品99久久久久| 91成人精品电影| 中文字幕人妻丝袜制服| www.精华液| 一二三四在线观看免费中文在| 99精品欧美一区二区三区四区| 成人手机av| 天堂8中文在线网| 美女视频免费永久观看网站| 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 国产精品一区二区免费欧美| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| av网站在线播放免费| 搡老熟女国产l中国老女人| 国产亚洲精品第一综合不卡| 久久精品成人免费网站| 成人影院久久| 丰满饥渴人妻一区二区三| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器 | 90打野战视频偷拍视频| av片东京热男人的天堂| 热99国产精品久久久久久7| 啦啦啦免费观看视频1| 精品福利永久在线观看| 国产精品一区二区免费欧美| 999久久久国产精品视频| 女人久久www免费人成看片| 久久精品成人免费网站| 99国产精品99久久久久| 宅男免费午夜| 精品久久久久久电影网| 欧美性长视频在线观看| 国产伦理片在线播放av一区| 国产精品美女特级片免费视频播放器 | 高潮久久久久久久久久久不卡| 久久久久久久大尺度免费视频| 91成年电影在线观看| 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区| 久久狼人影院| 亚洲国产欧美一区二区综合| 黄色怎么调成土黄色| 99久久人妻综合| 人人妻人人澡人人爽人人夜夜| 女人精品久久久久毛片| 午夜两性在线视频| 日韩熟女老妇一区二区性免费视频| 久9热在线精品视频| 精品高清国产在线一区| 狠狠精品人妻久久久久久综合| 久久久国产精品麻豆| 久久久久国产一级毛片高清牌| 水蜜桃什么品种好| 亚洲av日韩精品久久久久久密| 国产成人免费观看mmmm| www日本在线高清视频| 精品人妻1区二区| 51午夜福利影视在线观看| 成人18禁在线播放| 美女视频免费永久观看网站| 亚洲七黄色美女视频| svipshipincom国产片| 在线观看www视频免费| 成人免费观看视频高清| 高清av免费在线| 成人永久免费在线观看视频 | 2018国产大陆天天弄谢| 黄网站色视频无遮挡免费观看| 国产一区二区三区综合在线观看| 亚洲第一欧美日韩一区二区三区 | 国产精品二区激情视频| 日本wwww免费看| 一边摸一边抽搐一进一出视频| 亚洲视频免费观看视频| 国产麻豆69| 欧美精品啪啪一区二区三区| 国产精品.久久久| 久久久精品94久久精品| 免费少妇av软件| 免费观看a级毛片全部| 久久久久网色| 免费观看av网站的网址| 中文字幕高清在线视频| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 国产精品影院久久| 夜夜爽天天搞| 国产男女内射视频| 久久人人爽av亚洲精品天堂| 两人在一起打扑克的视频| 99热国产这里只有精品6| 亚洲精品国产色婷婷电影| 狠狠精品人妻久久久久久综合| 天天添夜夜摸| 窝窝影院91人妻| 欧美午夜高清在线| av片东京热男人的天堂| 久久久久久久大尺度免费视频| 亚洲精华国产精华精| 黄色毛片三级朝国网站| 久久中文看片网| 精品一区二区三区四区五区乱码| 国产精品久久久久成人av| 日本五十路高清| 天天躁日日躁夜夜躁夜夜| 国产亚洲精品一区二区www | 欧美人与性动交α欧美精品济南到| 啦啦啦免费观看视频1| 久久久久精品人妻al黑| 亚洲人成电影观看| 最近最新中文字幕大全电影3 | 欧美日韩视频精品一区| 国产男女内射视频| 亚洲欧美激情在线| 大香蕉久久网| 亚洲第一欧美日韩一区二区三区 | 久久毛片免费看一区二区三区| 男女免费视频国产| 人妻久久中文字幕网| 精品国产国语对白av| 国产不卡一卡二| 丝袜人妻中文字幕| 国产99久久九九免费精品| 自线自在国产av| 亚洲欧美一区二区三区黑人| 法律面前人人平等表现在哪些方面| 捣出白浆h1v1| 久久精品aⅴ一区二区三区四区| 最近最新免费中文字幕在线| av国产精品久久久久影院| 99re在线观看精品视频| 波多野结衣一区麻豆| 亚洲专区字幕在线| 亚洲av美国av| 欧美成人免费av一区二区三区 | 亚洲精品在线观看二区| 久久精品成人免费网站| 欧美日韩国产mv在线观看视频| 精品一区二区三卡| 午夜精品久久久久久毛片777| 成人精品一区二区免费| 两个人免费观看高清视频| 18禁黄网站禁片午夜丰满| 久久久久网色| 91精品三级在线观看| 国产精品秋霞免费鲁丝片| 激情在线观看视频在线高清 | 亚洲精品美女久久av网站| 亚洲国产欧美在线一区| 飞空精品影院首页| 男女下面插进去视频免费观看| 国产精品一区二区在线不卡| 免费在线观看影片大全网站| 亚洲九九香蕉| 人妻久久中文字幕网| 97人妻天天添夜夜摸| 国产主播在线观看一区二区| 国产黄频视频在线观看| 9191精品国产免费久久| 在线观看免费视频网站a站| 91国产中文字幕| 天堂8中文在线网| 超碰97精品在线观看| 午夜福利在线免费观看网站| 国产高清国产精品国产三级| 亚洲全国av大片| 亚洲九九香蕉| 老司机午夜福利在线观看视频 | 女性生殖器流出的白浆| 亚洲综合色网址| 在线观看www视频免费| 99在线人妻在线中文字幕 | 男女高潮啪啪啪动态图| 欧美精品高潮呻吟av久久| 国产精品 国内视频| 王馨瑶露胸无遮挡在线观看| 国产在线观看jvid| 久久精品国产亚洲av高清一级| 真人做人爱边吃奶动态| 久久av网站| 日本vs欧美在线观看视频| 热99国产精品久久久久久7| 国产日韩欧美亚洲二区| 国产精品久久久久久人妻精品电影 | 国产麻豆69| 欧美日韩精品网址| 亚洲国产看品久久| 99香蕉大伊视频| 精品少妇内射三级| 天天躁狠狠躁夜夜躁狠狠躁| 视频区图区小说| 18禁裸乳无遮挡动漫免费视频| 超碰97精品在线观看| 黄频高清免费视频| 国产一区二区 视频在线| 久久天堂一区二区三区四区| 男女免费视频国产| 人人澡人人妻人| 国产一卡二卡三卡精品| 91老司机精品| 午夜福利视频在线观看免费| 亚洲综合色网址| 美女午夜性视频免费| 成年女人毛片免费观看观看9 | 极品人妻少妇av视频| 亚洲专区字幕在线| 日韩视频在线欧美| 日韩欧美免费精品| 免费在线观看视频国产中文字幕亚洲| 一二三四在线观看免费中文在| 亚洲国产看品久久| 精品人妻熟女毛片av久久网站| 一边摸一边抽搐一进一小说 | 午夜福利,免费看| 欧美中文综合在线视频| 亚洲视频免费观看视频| 青青草视频在线视频观看| 深夜精品福利| 欧美一级毛片孕妇| 免费日韩欧美在线观看| 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| 亚洲欧美色中文字幕在线| 成人国语在线视频| 精品国产一区二区三区四区第35| 午夜老司机福利片| 国产精品免费视频内射| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 高清毛片免费观看视频网站 | 少妇的丰满在线观看| 国产在线观看jvid| 欧美日韩亚洲国产一区二区在线观看 | 一边摸一边抽搐一进一出视频| 狠狠婷婷综合久久久久久88av| 亚洲第一欧美日韩一区二区三区 | 黄片小视频在线播放| 免费高清在线观看日韩| 婷婷丁香在线五月| 老司机深夜福利视频在线观看| 新久久久久国产一级毛片| 亚洲熟妇熟女久久| 欧美激情高清一区二区三区| 成人精品一区二区免费| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 日韩欧美一区二区三区在线观看 | 十八禁网站免费在线| 老司机午夜福利在线观看视频 | 国产欧美日韩一区二区三| 精品人妻熟女毛片av久久网站| 桃花免费在线播放| www日本在线高清视频| h视频一区二区三区| 国产aⅴ精品一区二区三区波| 亚洲精品在线美女| 亚洲黑人精品在线| 又黄又粗又硬又大视频| 19禁男女啪啪无遮挡网站| 天堂8中文在线网| 蜜桃国产av成人99| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线观看99| 免费不卡黄色视频| 黑人猛操日本美女一级片| 9191精品国产免费久久| 精品乱码久久久久久99久播| 久久久久国产一级毛片高清牌| 18禁观看日本| 电影成人av| 精品少妇久久久久久888优播| 一个人免费看片子| 成人手机av| 午夜91福利影院| avwww免费| 精品久久久久久电影网| 建设人人有责人人尽责人人享有的| 精品一品国产午夜福利视频| 久久天躁狠狠躁夜夜2o2o| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 久久久久视频综合| 韩国精品一区二区三区| 国产精品偷伦视频观看了| 亚洲成人手机| 在线观看免费视频网站a站| 久久免费观看电影| 午夜91福利影院| 国产精品二区激情视频| 成人三级做爰电影| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| 正在播放国产对白刺激| 国产又色又爽无遮挡免费看| 久久久精品国产亚洲av高清涩受| 久久久精品区二区三区| 性色av乱码一区二区三区2| 黄色丝袜av网址大全| 丝瓜视频免费看黄片| 又大又爽又粗| 精品高清国产在线一区| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 91字幕亚洲| 91国产中文字幕| 欧美日韩av久久| 国产一区二区三区在线臀色熟女 | 宅男免费午夜| 国产成人免费观看mmmm| 建设人人有责人人尽责人人享有的| 露出奶头的视频| √禁漫天堂资源中文www| 99久久人妻综合| 一区在线观看完整版| 麻豆乱淫一区二区| 久久久久久久精品吃奶| 香蕉久久夜色| 久久av网站| 亚洲avbb在线观看| 国产不卡一卡二| 91麻豆av在线| 丁香六月天网| 色婷婷av一区二区三区视频| 夜夜骑夜夜射夜夜干| 高清视频免费观看一区二区| 久久精品国产99精品国产亚洲性色 | 精品国产一区二区三区久久久樱花| 18禁裸乳无遮挡动漫免费视频| 一级a爱视频在线免费观看| 久久中文字幕人妻熟女| 大片免费播放器 马上看| 露出奶头的视频| 国产成人啪精品午夜网站| 日本欧美视频一区| 男人操女人黄网站| 麻豆成人av在线观看| 亚洲av日韩在线播放| 久久精品亚洲熟妇少妇任你| 少妇裸体淫交视频免费看高清 | 久久精品亚洲熟妇少妇任你| 人妻一区二区av| 成人国产av品久久久| 亚洲精品在线美女| 满18在线观看网站| 国产亚洲精品一区二区www | 亚洲av日韩精品久久久久久密| 亚洲精品国产色婷婷电影| 国产av一区二区精品久久| 国产男女内射视频| 国产野战对白在线观看| 99精品久久久久人妻精品| 亚洲精品国产区一区二| 大香蕉久久成人网| 中文亚洲av片在线观看爽 | 国产成人影院久久av| 久久国产精品影院| 高清毛片免费观看视频网站 | 国产男靠女视频免费网站| 久9热在线精品视频| 超碰97精品在线观看| 一区二区三区精品91| av不卡在线播放| 精品少妇黑人巨大在线播放| 777米奇影视久久| 久久久久久久大尺度免费视频| 国产亚洲精品第一综合不卡| 丝袜人妻中文字幕| 亚洲三区欧美一区| 一夜夜www| 精品卡一卡二卡四卡免费| 欧美老熟妇乱子伦牲交| 高清av免费在线| 国产淫语在线视频| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 精品国产乱码久久久久久小说| 天天躁夜夜躁狠狠躁躁| 亚洲伊人久久精品综合| 欧美av亚洲av综合av国产av| 国产欧美日韩一区二区精品| 日韩制服丝袜自拍偷拍| 国产成人影院久久av| 免费在线观看视频国产中文字幕亚洲| 51午夜福利影视在线观看| 精品福利观看| 男女边摸边吃奶| 久久久久网色| 男女下面插进去视频免费观看| 国产成人免费无遮挡视频| 亚洲第一欧美日韩一区二区三区 | 日韩欧美三级三区| 久久久久精品国产欧美久久久| 欧美黑人精品巨大| 熟女少妇亚洲综合色aaa.| av天堂在线播放| 亚洲国产av影院在线观看| 国产精品影院久久| 久久这里只有精品19| 免费在线观看影片大全网站| 电影成人av| 国产成人精品无人区| 老司机午夜十八禁免费视频| 天天躁夜夜躁狠狠躁躁| 国产麻豆69| 色在线成人网| 色婷婷av一区二区三区视频| 国产视频一区二区在线看| 一区二区三区精品91| 女同久久另类99精品国产91| 精品福利永久在线观看| 国产日韩欧美视频二区| 亚洲七黄色美女视频| 国产精品99久久99久久久不卡| 亚洲av国产av综合av卡| 成年版毛片免费区| 久久免费观看电影| 国产精品久久久久久精品电影小说| 欧美精品人与动牲交sv欧美| 精品少妇一区二区三区视频日本电影| 日本av免费视频播放| 丝瓜视频免费看黄片| 婷婷丁香在线五月| 亚洲视频免费观看视频| 一级毛片女人18水好多| 亚洲精品美女久久av网站| 9191精品国产免费久久| 国产av精品麻豆| 国产精品1区2区在线观看. | 国产精品 国内视频| 欧美日韩黄片免| 国产亚洲欧美精品永久| 欧美黑人欧美精品刺激| 在线十欧美十亚洲十日本专区| 一区二区三区精品91| 精品国产一区二区三区四区第35| 久久国产精品人妻蜜桃| 国产精品自产拍在线观看55亚洲 | 最黄视频免费看| 真人做人爱边吃奶动态| 久热爱精品视频在线9| 夜夜爽天天搞| 999久久久精品免费观看国产| 国产欧美日韩综合在线一区二区| 男女午夜视频在线观看| 亚洲欧洲日产国产| 亚洲精品美女久久久久99蜜臀| 99国产精品99久久久久| 国产高清视频在线播放一区| 国产精品 国内视频| 动漫黄色视频在线观看| 十八禁人妻一区二区| 成人国产一区最新在线观看|