• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Freezing the conductance of platinum(II) complexes by quantum interference effect

    2022-07-11 03:39:46SaiSaiYanJinYunWangZiYouPanDaShengZhengQianChongZhangZhongNingChen
    Chinese Chemical Letters 2022年6期

    Sai-Sai Yan,Jin-Yun Wang,Zi-You Pan,Da-Sheng Zheng,Qian-Chong Zhang,c,?,Zhong-Ning Chen,c,?

    a Fujian Normal University,Fuzhou 350007,China

    b State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China

    c Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350108,China

    Keywords:Platinum(II) complex Electronic effect Single-molecule conductance Quantum interference Magic ratio rule

    ABSTRACT Understanding the impact of substituents on the quantum interference effect at single molecule scale is of great importance for the design of molecular devices.In this work,three platinum(II) complexes with–H,–NH2 and –NO2 groups on conductive backbones were designed and synthesized.Single-molecule conductance,which was measured using scanning tunnelling microscope break junction (STM-BJ) technique,demonstrated a conductance freeze phenomenon under the variation of substituents.Theoretical study revealed that,despite the electronic effect of the substituents shifting the energy level of molecular orbital,the quantum interference effect vanished the influence of electronic effect on the conductance and eventually leaded to the conductance freeze.

    Quantum interference effect (QIE) is so important for charge transport at molecular scale that understanding the structural factor to manipulate QIE is of fundamental importance to the design of molecular devices [1–4].Although theσ-bond based QIE has been discovered [4],the relevant investigations on aromatic systems are still conducted vigorously,which limit the current QIE investigation to organic molecules.Metal-organic complex,which is a potential material for molecular device as important as the organic structures [5–7],in which the metal center (e.g.,Ru and Pt)participates in the conjugation system through dπ–pπconjugation and influences the energy levels of whole complex [5–7],offers a new candidate for understanding the QIE in nanoscale structures.Especially,the platinum complexes exhibit unique features by the Pt(II) taking part in the conjugation system with a restrained ratio [8].However,to our knowledge,the experimental investigation of quantum effect in metal-organic complexes has been rare conducted.

    ‘Magic ratio rule’(MRR) is a recent developed method to theoretically explain the QIE in aromatic systems [9–11].Compared with traditional graphic methods [12,13],MRR not only provides a quantitative ratio [10,14,15]to compare the conductance of corresponding molecules,but also provides the influence of electronic effect of substituents (called ‘pendant’group) on the interferometer group to the QIE on conductive backbone [14,15],from which the influence of electronic effect on the conductance could be enhanced or vanished by QIE.This implies a chance to investigate the QIE in metal-organic molecular devices by introducing electrondonating and electron-withdrawing substituents on the conductive backbone,of which the conductance is modulated by the combination of electronic effect and QIE.

    Here we report the design of three platinum(II) complexes(1,1-NH and 1-NO,Fig.1) with Pt(II) center bonded to 4-(methylthiol)phenylethynyl as the conductive backbone.Electrondonating-NH2(1-NH) or electron-withdrawing-NO2(1-NO) was introduced to act as the ‘pendant’group interacting with QIE [14].The single-molecule conductance was measured by scanning tunneling microscope break junction (STM-BJ) technique [16–20]and demonstrated a conductance freeze in all three complexes.Theoretical study revealed that the influence of electronic effect,which was introduced by ‘pendant’group,was validated by the varied energy level of molecular orbital.However,the QIE analysis according to the description of MRR confirmed the vanishing of the influence of electronic effect on conductance,eventually leading to the conductance freeze.

    Fig.1.Molecular structures of complexes 1,1-NH and 1-NO,of which the singlemolecular conductance was measured by STM-BJ technique.

    Fig.2.Conductance histogram for complexes 1,1-NH and 1-NO constructed from 3756,2185 and 2235 conductance-distance traces respectively.

    Platinum(II) complexes 1,1-NH and 1-NO were synthesizedviamodified procedures according to previous reports [8].The single-molecule conductance was measured by STM-BJ technique(Fig.1 and Supporting information) [16–20].Fig.2 shows the histograms of complexes 1,1-NH and 1-NO,which are compiled by 3756,2185 and 2235 conductance-distance traces,respectively.By employing multimodal simulation,two peaks are clearly demonstrated in the 1D histograms of all three complexes.For each complex,the high conductance presented by a small peak around 10?2G0(G0is the quantum conductance equaling to 77500 nS) is attributed to the junctions formed by the gold electrodes connecting to one methylthiol group and the Pt(II) center [8,21].For complex 1,the main peak centered at 10?4.4G0matches well with the reported conductance [22–24]and represents the conductivity of the whole conductive backbone (from one methylthiol to another).For complex 1-NO with electron-withdrawing nitro group on conductive backbone,the conductance is intuitively expected to be varied from that of complex 1.However,the conductance of 1-NO is surprisingly identical to that of complex 1.More unexpectedly,not only the electron-withdrawing group substituted complex 1-NO,but also the electron-donating amino group substituted complex 1-NH demonstrates the unchanged conductance as that of complex 1.The frozen conductance implies that the electronic effect of the ‘pendant’groups exerts negligible influence on the charge transport at single-molecule conductance.

    To validate the conductance and search the factor that the influence of electronic effect on conductance being vanished,the analyses of the junction length and 2D histogram were performed.

    Fig.3.2D histograms for complexes 1,1-NH and 1-NO with the inset showing the corresponding statistical junction length.

    As shown in Fig.3,the 2D histograms of the three complexes exhibit similar clouds around the conductance of 10?4.4G0.For complexes 1 and 1-NH,the clouds show flat plateaus indicating the stable formation of molecular junctions,whereas for complex 1-NO,the slightly oblique plateau implies that the steric hindrance of nitro group reduces the stability of molecular junctions.The snapback (0.5 nm) [25–27]corrected junction length of complex 1 is 1.7 nm,which matches perfectly with the optimized S-S distance of the complex.Probably caused by the steric hindrance,the statistical junction lengths of the substituted complexes 1-NH and 1-NO are slightly shorter than that of complex 1,where the snap-back(0.5 nm) corrected junction lengths are both 1.6 nm.Noticeably,according to the previous studies [26,28],the conductance would be more than one-order lower than that of complex 1 if the junctions formed through the connection of gold electrodes and the‘pendant’amino groups in complex 1-NH [28].The possibly low conductance is out of the effective detection range of our equipment,which makes it impossible to be observed in the conductance traces.Thus,the statistical junction length indicates that the three frozen conductance peaks at 10?4.4G0represent the real electron transport characteristics through the conductive backbones of complexes 1,1-NH and 1-NO,respectively.

    To get insight on the interesting conductance freeze in the structures with electron-donating and electron-withdrawing groups,theoretical simulation combining density functional theory(DFT) with the nonequilibrium Green’s function (NEGF) was employed [29–31].The transmission coefficient (T(E)) and molecular energy spectrum,which are commonly considered in the analysis of single-molecule conductance modulation,were computed in the QuantumATK program [20,22].The most striking feature of theT(E) curve is the sharp peak for molecule 1-NO at 0.36 eV.This peak probably indicates a Breit-Wigner type resonance caused by the electron-withdrawing effect of nitro group,in which the electron cloud is localized on the nitro group and the affiliated phenyl ring (Fig.S4 in Supporting information) [32].Although the peak manifesting a transmission coefficient peak with the similar height of a molecular orbital (e.g.,LUMO of molecule 1 at 1.26 eV),the resonance behavior does not support an orbital existing at this energy level.The reasons include: (1) the UV-vis spectra showing almost identical absorption peaks around 340 nm (Fig.4 inset) for all three complexes,which implies similar energy gaps between HOMO and LUMO for the three complexes;(2) the transmission peaks not only caused by the electron resonating with molecular orbital but also brought by the electron resonating with part of the structure (e.g.,Fano resonance,see Supporting information) [33].To further prove the resonance peak,aldehyde group,which also provides strongly electron-withdrawing effect,was employed as the ‘pendant’group to investigate the resonance of 1-CHO (one aldehyde group) and 1-diCHO (two aldehyde groups on each phenyl ring) by simulation (Supporting information).The simulatedT(E) plots of 1-CHO and 1-diCHO clearly demonstrate the Fano resonance near the energy level of LUMO (Fig.S3 in Supporting information).The electronic density distribution at the energy level of the resonance peak (dip) indicates the high localized clouds around the electronic-withdrawing group on one side of 1-CHO or on both sides of 1-diCHO,which shows almost the same distribution as complex 1-NO (Fig.S4).The localized distribution results in the Fano resonance in 1-CHO and 1-diCHO and a Breit-Wigner type resonance in 1-NO [32].Hence,the LUMO of 1-NO should be the orbital at the energy level of 1.16 eV.

    Fig.4.Transmission spectra for complexes 1,1-NH and 1-NO with the red dash line marking the possible EF and inset showing the UV-vis absorption spectrum.

    The Fermi energy (EF) of the gold electrode,which locates in the HOMO-LUMO gap,unfortunately,fails to be accurately predicted by DFT method [32].To this end,some methods have been employed to correct theEF[34],among which fitting theT(E) according to the experimental result is the most convenient way [8,14,35,36].Thus,according to the measured conductance,theEFhere should be corrected to the energy about 0.92 eV,where theT(E) of all of the three complexes including 1,1-NH and 1-NO converge to an identical value,indicating the equivalent conductance as measured by experiment.

    As shown in Fig.4,for complex 1 (green line),the peaks at-1.84,-1.74,1.26 and 1.42 eV indicate the orbital energy levels of HOMO-1,HOMO,LUMO and LUMO+1,respectively.Owing to electron-donating effect of the amino group,both HOMO and LUMO in complex 1-NH (blue line) shift to higher energy levels relative to those of complex 1.Opposite to 1-NH,the HOMO and LUMO for complex 1-NO (purple line) with electron-withdrawing nitro group,move to lower energy levels relative to those of molecule 1.The energy level shift of complexes 1-NH and 1-NO confirms the electronic effects of amino and nitro groups on the conductive backbones.According to the above correctedEF,all the three molecules exhibit LUMO dominated charge transport,of which the conductance should theoretically increase with the decrease of LUMO energy or decrease with the increase of LUMO energy.Thus,the conductance freeze of the three complexes implies that the energy effect of molecular orbital contributes little to the conductance.

    Finally,we turn to the effect of quantum interference in this conjugation system.Since the phenyl ring being a well-known interferometer,by which the destructive quantum interference and constructive quantum interference are characterized in metaconnected structures and para-/ortho-connected structures [1],the‘pendant’group substituted phenyl group of phenylethynyl ligand is considered the interferometer to analysis the MRR [14].On the phenyl group,the combined constructive/destructive QIE of the three sites connecting ethynyl group,methylthiol group and ‘pendant’group determines the finally resultant conductance.As the MRR description [14],amino (1-NH) or nitro (1-NO) group plays the role of the ‘pendant’group that changes theπ-orbital energy of the connecting site with the electronic effect by the quantitative parameter ofε.The expression of Green’s function (GF),which determines the transmission coefficient and conductance,is simplified as Eq.1 when the energy of transporting electron equals toEF:

    Whereiandjare the sites on phenyl ring connecting ethynyl and methylthiol,kis the site connecting the ‘pendant’group,Gij(0)is the GF of the molecule in the presence of ‘pendant’group,andgij(0) is the GF of the molecule without ‘pendant’group.Theg(0)is proportional to the magic number Mij.The magic number (M)equals to 0 when the two sites are the same or in meta-position to each other.Since ethynyl and ‘pendant’group are mutually located at the meta-position of phenyl ring,thegik(0) is zero for complexes 1-NH and 1-NO,respectively,which leads to the GF with the ‘pendant’group (1-NH and 1-NO) equaling to that without the‘pendant’group (1).This indicates that,for complexes 1-NH and 1-NO,the electronic effect of the amino and nitro group is vanished by the QIE and eventually results in the conductance freeze in the three complexes.

    In conclusion,three conductive Pt(II) complexes with the same conductive backbones but different ‘pendant’substituents at phenyl rings were elaborately designed.The single-molecule conductance measured by STM-BJ technique shows an interesting conductance freeze at 10?4.4G0under the varied electronic effect of ‘pendant’group.Although the theoretical study confirms the distinct influence of electronic effect on molecular orbital energy level,the QIE described by MRR eliminates the influence of the electronic effect and results in the conductance freeze.This study not only confirms the metal-organic complex to be a functioning structural base for the QIE described by MRR,but also provides a structural awareness for modulating the conductance of molecular devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for financial support from the National Natural Science Foundation of China (No.92061117),the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000) and Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China (No.2021ZR129).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.092.

    亚洲综合色惰| 国产精品一区二区三区四区久久| 国产单亲对白刺激| 久久99热这里只有精品18| 日本在线视频免费播放| 欧美日韩精品成人综合77777| 蜜桃亚洲精品一区二区三区| 欧美日韩精品成人综合77777| 国产伦一二天堂av在线观看| 亚洲av成人精品一区久久| a级毛片a级免费在线| a级一级毛片免费在线观看| 久久久久久伊人网av| 国产午夜精品论理片| 精品一区二区三区视频在线| 午夜福利高清视频| 日韩成人av中文字幕在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 日本爱情动作片www.在线观看 | 婷婷色综合大香蕉| 精品国内亚洲2022精品成人| 少妇裸体淫交视频免费看高清| 亚洲第一区二区三区不卡| 少妇人妻一区二区三区视频| 成人特级av手机在线观看| 亚洲经典国产精华液单| 九九爱精品视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产高清激情床上av| 中文亚洲av片在线观看爽| 人妻丰满熟妇av一区二区三区| 插阴视频在线观看视频| 变态另类丝袜制服| 神马国产精品三级电影在线观看| 精品久久久久久久人妻蜜臀av| 国产精品嫩草影院av在线观看| 久久久久久久久久黄片| 亚洲精品在线观看二区| 亚洲国产精品合色在线| 国内精品一区二区在线观看| 麻豆av噜噜一区二区三区| av在线播放精品| 美女大奶头视频| 精品少妇黑人巨大在线播放 | 波多野结衣巨乳人妻| 国产淫片久久久久久久久| 亚洲熟妇熟女久久| 久久精品人妻少妇| 亚洲色图av天堂| 国产69精品久久久久777片| 久久人人爽人人爽人人片va| 人妻制服诱惑在线中文字幕| 美女 人体艺术 gogo| 久久久久久久午夜电影| 国产高清不卡午夜福利| 欧美高清性xxxxhd video| 免费人成视频x8x8入口观看| 蜜臀久久99精品久久宅男| 黄色欧美视频在线观看| 99国产精品一区二区蜜桃av| 亚洲精品日韩av片在线观看| 伊人久久精品亚洲午夜| 久久久久九九精品影院| 亚洲成人中文字幕在线播放| 亚洲,欧美,日韩| 好男人在线观看高清免费视频| 国产av在哪里看| 国产精品永久免费网站| 综合色av麻豆| 亚洲国产高清在线一区二区三| 欧美一级a爱片免费观看看| 国产 一区精品| 黄色欧美视频在线观看| 午夜精品在线福利| 日韩欧美一区二区三区在线观看| 少妇高潮的动态图| 国产在线精品亚洲第一网站| 麻豆成人午夜福利视频| 国产精品一区二区三区四区久久| 亚洲中文字幕日韩| 又爽又黄无遮挡网站| 国产视频内射| 精品久久久久久成人av| 国产成人a区在线观看| 国产精品久久久久久久久免| 激情 狠狠 欧美| 熟妇人妻久久中文字幕3abv| 偷拍熟女少妇极品色| 少妇丰满av| 99视频精品全部免费 在线| av黄色大香蕉| 久久韩国三级中文字幕| 黑人高潮一二区| 老熟妇仑乱视频hdxx| 色5月婷婷丁香| 国产精品久久电影中文字幕| 亚洲av熟女| 亚洲精品色激情综合| 久久欧美精品欧美久久欧美| 成人一区二区视频在线观看| 欧美成人精品欧美一级黄| 精品久久久久久久久av| 人人妻人人澡欧美一区二区| 网址你懂的国产日韩在线| 啦啦啦韩国在线观看视频| 成人性生交大片免费视频hd| 亚洲av一区综合| 久久久成人免费电影| 日产精品乱码卡一卡2卡三| 亚洲人成网站在线观看播放| 中出人妻视频一区二区| 美女内射精品一级片tv| 中国美女看黄片| 午夜影院日韩av| .国产精品久久| 国产色爽女视频免费观看| 国产视频内射| 69人妻影院| 丰满乱子伦码专区| 久久久久久久久久黄片| 少妇人妻一区二区三区视频| 国产精品人妻久久久久久| 真实男女啪啪啪动态图| 国产av在哪里看| 国产精品三级大全| 啦啦啦韩国在线观看视频| 亚洲不卡免费看| 精品日产1卡2卡| 久99久视频精品免费| 欧美成人一区二区免费高清观看| 男女之事视频高清在线观看| 色综合站精品国产| 男女下面进入的视频免费午夜| 国产精品久久久久久亚洲av鲁大| 欧美日韩综合久久久久久| 欧美高清成人免费视频www| 精品久久久噜噜| 国产大屁股一区二区在线视频| 99在线视频只有这里精品首页| 国模一区二区三区四区视频| 日本爱情动作片www.在线观看 | 一级毛片我不卡| 狠狠狠狠99中文字幕| 成年女人永久免费观看视频| 久久精品国产清高在天天线| 午夜a级毛片| 久久精品人妻少妇| 少妇熟女aⅴ在线视频| 欧美高清成人免费视频www| 老女人水多毛片| 色尼玛亚洲综合影院| 亚洲国产精品国产精品| 晚上一个人看的免费电影| 美女 人体艺术 gogo| av女优亚洲男人天堂| 国内精品宾馆在线| 国模一区二区三区四区视频| 毛片一级片免费看久久久久| 岛国在线免费视频观看| 国产精品精品国产色婷婷| 一夜夜www| 99riav亚洲国产免费| 国产高清有码在线观看视频| 久久6这里有精品| 深爱激情五月婷婷| 久久久久久国产a免费观看| 波多野结衣高清作品| 亚洲熟妇中文字幕五十中出| 国产黄a三级三级三级人| 精品久久国产蜜桃| 国产精品三级大全| 亚洲精品粉嫩美女一区| 国产高清视频在线观看网站| 国产成年人精品一区二区| 国产精品国产三级国产av玫瑰| 草草在线视频免费看| 亚洲精品日韩av片在线观看| 看非洲黑人一级黄片| 少妇丰满av| 亚洲欧美成人综合另类久久久 | 久久国内精品自在自线图片| 欧美xxxx黑人xx丫x性爽| 男插女下体视频免费在线播放| 搡老妇女老女人老熟妇| 中国国产av一级| 十八禁网站免费在线| 国产一区亚洲一区在线观看| 色哟哟·www| 亚洲av成人av| 国产成人福利小说| 亚洲无线在线观看| 国产精品一区二区三区四区久久| 久久久久久久久大av| 亚洲美女黄片视频| 美女免费视频网站| 黄片wwwwww| 一a级毛片在线观看| 日本五十路高清| av在线观看视频网站免费| 日本五十路高清| 3wmmmm亚洲av在线观看| 亚洲成人中文字幕在线播放| 亚洲,欧美,日韩| 成人一区二区视频在线观看| 欧美潮喷喷水| 美女被艹到高潮喷水动态| 一级毛片aaaaaa免费看小| 久久久久久久久久成人| 91狼人影院| 日韩,欧美,国产一区二区三区 | 国产 一区精品| 亚洲乱码一区二区免费版| 22中文网久久字幕| 国产三级在线视频| 国产午夜精品久久久久久一区二区三区 | 人妻少妇偷人精品九色| 亚洲国产精品成人久久小说 | 国产高清有码在线观看视频| 日本免费a在线| 免费看美女性在线毛片视频| 校园人妻丝袜中文字幕| 深爱激情五月婷婷| 免费搜索国产男女视频| 岛国在线免费视频观看| 亚洲av第一区精品v没综合| 成人特级av手机在线观看| 欧美精品国产亚洲| 久久人人爽人人爽人人片va| 精品午夜福利在线看| 黑人高潮一二区| 亚洲18禁久久av| 久久精品国产清高在天天线| 国产蜜桃级精品一区二区三区| 精品久久国产蜜桃| 亚洲最大成人av| av福利片在线观看| 中文字幕久久专区| 国产av麻豆久久久久久久| 亚洲精华国产精华液的使用体验 | 51国产日韩欧美| 男人狂女人下面高潮的视频| 在线播放国产精品三级| 久久人妻av系列| 亚洲av中文字字幕乱码综合| 国产伦在线观看视频一区| 婷婷亚洲欧美| 国产精品亚洲一级av第二区| av.在线天堂| 此物有八面人人有两片| 最好的美女福利视频网| 国内揄拍国产精品人妻在线| 天美传媒精品一区二区| 午夜福利视频1000在线观看| 99在线视频只有这里精品首页| 成人av在线播放网站| 麻豆成人午夜福利视频| 三级毛片av免费| 99热6这里只有精品| 国产精品久久电影中文字幕| 一本精品99久久精品77| 十八禁国产超污无遮挡网站| 精品久久久久久久久久免费视频| 真人做人爱边吃奶动态| 午夜日韩欧美国产| 亚洲性久久影院| 小说图片视频综合网站| 又粗又爽又猛毛片免费看| 久久精品国产自在天天线| 亚洲av美国av| 我要看日韩黄色一级片| 久久天躁狠狠躁夜夜2o2o| 国产亚洲av嫩草精品影院| 国产亚洲av嫩草精品影院| 人妻少妇偷人精品九色| 成熟少妇高潮喷水视频| 可以在线观看毛片的网站| 欧美日韩国产亚洲二区| 国产精品一区二区三区四区免费观看 | 观看免费一级毛片| 久久久欧美国产精品| 变态另类成人亚洲欧美熟女| 亚洲精品日韩在线中文字幕 | 少妇高潮的动态图| 变态另类成人亚洲欧美熟女| 波多野结衣高清无吗| 国产一区二区在线av高清观看| 亚洲av一区综合| 精品免费久久久久久久清纯| 毛片一级片免费看久久久久| 97热精品久久久久久| 精品人妻熟女av久视频| 九九爱精品视频在线观看| 99精品在免费线老司机午夜| 少妇高潮的动态图| 久久欧美精品欧美久久欧美| 无遮挡黄片免费观看| 少妇的逼好多水| or卡值多少钱| av在线播放精品| 精品欧美国产一区二区三| 欧美丝袜亚洲另类| 日本撒尿小便嘘嘘汇集6| 内地一区二区视频在线| 在线观看一区二区三区激情| 亚洲国产精品999| 全区人妻精品视频| 日本与韩国留学比较| 国产精品秋霞免费鲁丝片| 一边亲一边摸免费视频| 亚洲色图综合在线观看| 日韩亚洲欧美综合| 晚上一个人看的免费电影| 日韩电影二区| 人人妻人人爽人人添夜夜欢视频 | 你懂的网址亚洲精品在线观看| 婷婷色综合大香蕉| 国产视频首页在线观看| 91精品伊人久久大香线蕉| 麻豆精品久久久久久蜜桃| 又黄又爽又刺激的免费视频.| 国产精品.久久久| 免费人妻精品一区二区三区视频| av免费在线看不卡| 久久 成人 亚洲| 久久精品久久久久久久性| 少妇被粗大的猛进出69影院 | 黄片无遮挡物在线观看| 亚洲av福利一区| 好男人视频免费观看在线| 国产日韩欧美视频二区| 精品久久久噜噜| 黄色日韩在线| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 欧美日韩av久久| 久久国产精品男人的天堂亚洲 | 日韩三级伦理在线观看| 国产免费视频播放在线视频| 久久99热6这里只有精品| 久久精品熟女亚洲av麻豆精品| 九九在线视频观看精品| 少妇被粗大猛烈的视频| 99九九线精品视频在线观看视频| 国产美女午夜福利| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 日韩大片免费观看网站| 99九九在线精品视频 | 麻豆乱淫一区二区| 桃花免费在线播放| 成人无遮挡网站| 好男人视频免费观看在线| 国产伦理片在线播放av一区| 精品国产一区二区三区久久久樱花| 欧美日韩精品成人综合77777| 有码 亚洲区| 久久午夜福利片| 国产精品一二三区在线看| 日韩精品免费视频一区二区三区 | 一级毛片黄色毛片免费观看视频| 这个男人来自地球电影免费观看 | 51国产日韩欧美| 老女人水多毛片| 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 国产精品一区二区在线不卡| 春色校园在线视频观看| 久久精品国产亚洲av天美| 黄色配什么色好看| 精华霜和精华液先用哪个| 在线观看国产h片| 久久久久国产精品人妻一区二区| 国产一区有黄有色的免费视频| 性高湖久久久久久久久免费观看| 免费观看a级毛片全部| 美女xxoo啪啪120秒动态图| 亚洲精品第二区| 亚洲人成网站在线观看播放| 亚洲精品亚洲一区二区| av一本久久久久| 亚洲欧美日韩另类电影网站| 成人午夜精彩视频在线观看| 亚洲精品乱码久久久久久按摩| 久久久国产一区二区| 日本欧美国产在线视频| 久久久久久久久久久丰满| 九九在线视频观看精品| 免费播放大片免费观看视频在线观看| 校园人妻丝袜中文字幕| 免费看av在线观看网站| 人妻一区二区av| 亚洲精品,欧美精品| 免费av中文字幕在线| 免费黄色在线免费观看| 精品一品国产午夜福利视频| 伊人亚洲综合成人网| 久久久精品94久久精品| 97精品久久久久久久久久精品| 少妇的逼水好多| 国产黄色免费在线视频| 在线观看国产h片| 久久精品久久久久久久性| 国产精品国产av在线观看| 黑人高潮一二区| 2021少妇久久久久久久久久久| tube8黄色片| 国产永久视频网站| 91久久精品国产一区二区三区| 免费在线观看成人毛片| 国产精品人妻久久久久久| 蜜臀久久99精品久久宅男| 亚洲欧洲精品一区二区精品久久久 | 亚洲综合色惰| 国模一区二区三区四区视频| 亚洲av在线观看美女高潮| 久久女婷五月综合色啪小说| 九九久久精品国产亚洲av麻豆| 亚洲色图综合在线观看| 欧美 日韩 精品 国产| 免费看不卡的av| 国产一区二区三区av在线| 久久久精品94久久精品| 高清不卡的av网站| 如何舔出高潮| 国产精品一区二区三区四区免费观看| 亚洲精品日韩av片在线观看| 国产成人免费观看mmmm| av国产久精品久网站免费入址| 国产一级毛片在线| 人体艺术视频欧美日本| 9色porny在线观看| 又黄又爽又刺激的免费视频.| 欧美日韩精品成人综合77777| 热re99久久国产66热| 国产深夜福利视频在线观看| 性高湖久久久久久久久免费观看| 看非洲黑人一级黄片| 国产精品人妻久久久久久| 日本黄色日本黄色录像| 精品人妻偷拍中文字幕| 国产精品一区二区在线不卡| 香蕉精品网在线| 亚洲av二区三区四区| 亚洲av福利一区| 97精品久久久久久久久久精品| 成人免费观看视频高清| 美女国产视频在线观看| 国产精品久久久久成人av| 久久这里有精品视频免费| 日本与韩国留学比较| av国产精品久久久久影院| 国产深夜福利视频在线观看| av福利片在线观看| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区国产| 日韩成人伦理影院| 少妇人妻一区二区三区视频| 美女福利国产在线| 欧美一级a爱片免费观看看| av免费观看日本| 免费观看性生交大片5| 国产欧美日韩精品一区二区| 桃花免费在线播放| 久久久久精品性色| 日韩成人伦理影院| 中文欧美无线码| 卡戴珊不雅视频在线播放| 91成人精品电影| 91久久精品电影网| 国产日韩一区二区三区精品不卡 | 久久综合国产亚洲精品| 欧美3d第一页| 成年人免费黄色播放视频 | 大码成人一级视频| 曰老女人黄片| 尾随美女入室| 搡女人真爽免费视频火全软件| 最近手机中文字幕大全| 少妇的逼水好多| 欧美日韩精品成人综合77777| 亚洲四区av| 两个人免费观看高清视频 | 一本大道久久a久久精品| 亚洲人成网站在线观看播放| 九九在线视频观看精品| 国产精品免费大片| 国产69精品久久久久777片| 插逼视频在线观看| 亚洲av电影在线观看一区二区三区| 国产91av在线免费观看| 在线看a的网站| 久久综合国产亚洲精品| 99久久人妻综合| 国产黄色免费在线视频| 啦啦啦中文免费视频观看日本| 丝袜喷水一区| 国产精品成人在线| 最近手机中文字幕大全| 久热这里只有精品99| 国产一区二区在线观看日韩| 久久国内精品自在自线图片| 亚洲性久久影院| 18禁裸乳无遮挡动漫免费视频| 简卡轻食公司| 精品人妻熟女毛片av久久网站| 丰满人妻一区二区三区视频av| 国产淫片久久久久久久久| 国产一区二区三区综合在线观看 | 国产精品一区www在线观看| 国产成人freesex在线| 亚洲自偷自拍三级| 热re99久久国产66热| 欧美成人精品欧美一级黄| 色5月婷婷丁香| 色婷婷久久久亚洲欧美| 国产91av在线免费观看| 免费看光身美女| 亚洲真实伦在线观看| 丰满乱子伦码专区| 在现免费观看毛片| 国产精品麻豆人妻色哟哟久久| 亚洲成色77777| 七月丁香在线播放| 日本欧美国产在线视频| 黄色欧美视频在线观看| 精品国产露脸久久av麻豆| 最近最新中文字幕免费大全7| 亚洲欧美清纯卡通| 少妇精品久久久久久久| 午夜福利网站1000一区二区三区| 免费久久久久久久精品成人欧美视频 | 菩萨蛮人人尽说江南好唐韦庄| 丰满饥渴人妻一区二区三| 伊人亚洲综合成人网| 一级毛片我不卡| 国产成人freesex在线| 国产亚洲最大av| 精品一品国产午夜福利视频| 七月丁香在线播放| 国产深夜福利视频在线观看| 久久99蜜桃精品久久| 精品人妻熟女av久视频| 久久人妻熟女aⅴ| 成人无遮挡网站| 少妇高潮的动态图| 人人妻人人添人人爽欧美一区卜| 国产伦精品一区二区三区四那| 丰满人妻一区二区三区视频av| 成年av动漫网址| 午夜av观看不卡| 99热全是精品| 久久免费观看电影| av不卡在线播放| 国产精品久久久久久久电影| 18禁在线无遮挡免费观看视频| 99国产精品免费福利视频| 狂野欧美激情性xxxx在线观看| 日韩精品免费视频一区二区三区 | 久久97久久精品| 伦精品一区二区三区| 国产视频首页在线观看| 欧美精品高潮呻吟av久久| 色婷婷av一区二区三区视频| av线在线观看网站| 国产熟女午夜一区二区三区 | 一区二区三区免费毛片| 国产一区二区三区综合在线观看 | 免费黄频网站在线观看国产| 国产一区二区在线观看日韩| 热re99久久精品国产66热6| 91午夜精品亚洲一区二区三区| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花| av在线播放精品| 麻豆成人av视频| 亚洲情色 制服丝袜| 另类亚洲欧美激情| 国产精品欧美亚洲77777| 国产日韩欧美在线精品| 日韩大片免费观看网站| 久久精品国产亚洲av天美| 久久精品国产自在天天线| 婷婷色av中文字幕| 亚洲精品久久久久久婷婷小说| 欧美日韩av久久| 制服丝袜香蕉在线| 春色校园在线视频观看| 高清午夜精品一区二区三区| 午夜老司机福利剧场| 久久久久久久久久久免费av| 日日爽夜夜爽网站| 黄色一级大片看看| 啦啦啦视频在线资源免费观看| 免费看光身美女| 观看美女的网站| 十八禁网站网址无遮挡 | 成年av动漫网址| 日韩制服骚丝袜av| 国产一区有黄有色的免费视频| 精品午夜福利在线看| 久久精品熟女亚洲av麻豆精品| 国产一区亚洲一区在线观看| 少妇精品久久久久久久| 国产精品人妻久久久影院| 精品久久久噜噜| xxx大片免费视频| 亚洲三级黄色毛片| 国产男女内射视频| 中文字幕久久专区| 少妇的逼好多水| 亚洲丝袜综合中文字幕| √禁漫天堂资源中文www| 久久婷婷青草| 我要看日韩黄色一级片| 中国美白少妇内射xxxbb|