• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Freezing the conductance of platinum(II) complexes by quantum interference effect

    2022-07-11 03:39:46SaiSaiYanJinYunWangZiYouPanDaShengZhengQianChongZhangZhongNingChen
    Chinese Chemical Letters 2022年6期

    Sai-Sai Yan,Jin-Yun Wang,Zi-You Pan,Da-Sheng Zheng,Qian-Chong Zhang,c,?,Zhong-Ning Chen,c,?

    a Fujian Normal University,Fuzhou 350007,China

    b State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China

    c Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350108,China

    Keywords:Platinum(II) complex Electronic effect Single-molecule conductance Quantum interference Magic ratio rule

    ABSTRACT Understanding the impact of substituents on the quantum interference effect at single molecule scale is of great importance for the design of molecular devices.In this work,three platinum(II) complexes with–H,–NH2 and –NO2 groups on conductive backbones were designed and synthesized.Single-molecule conductance,which was measured using scanning tunnelling microscope break junction (STM-BJ) technique,demonstrated a conductance freeze phenomenon under the variation of substituents.Theoretical study revealed that,despite the electronic effect of the substituents shifting the energy level of molecular orbital,the quantum interference effect vanished the influence of electronic effect on the conductance and eventually leaded to the conductance freeze.

    Quantum interference effect (QIE) is so important for charge transport at molecular scale that understanding the structural factor to manipulate QIE is of fundamental importance to the design of molecular devices [1–4].Although theσ-bond based QIE has been discovered [4],the relevant investigations on aromatic systems are still conducted vigorously,which limit the current QIE investigation to organic molecules.Metal-organic complex,which is a potential material for molecular device as important as the organic structures [5–7],in which the metal center (e.g.,Ru and Pt)participates in the conjugation system through dπ–pπconjugation and influences the energy levels of whole complex [5–7],offers a new candidate for understanding the QIE in nanoscale structures.Especially,the platinum complexes exhibit unique features by the Pt(II) taking part in the conjugation system with a restrained ratio [8].However,to our knowledge,the experimental investigation of quantum effect in metal-organic complexes has been rare conducted.

    ‘Magic ratio rule’(MRR) is a recent developed method to theoretically explain the QIE in aromatic systems [9–11].Compared with traditional graphic methods [12,13],MRR not only provides a quantitative ratio [10,14,15]to compare the conductance of corresponding molecules,but also provides the influence of electronic effect of substituents (called ‘pendant’group) on the interferometer group to the QIE on conductive backbone [14,15],from which the influence of electronic effect on the conductance could be enhanced or vanished by QIE.This implies a chance to investigate the QIE in metal-organic molecular devices by introducing electrondonating and electron-withdrawing substituents on the conductive backbone,of which the conductance is modulated by the combination of electronic effect and QIE.

    Here we report the design of three platinum(II) complexes(1,1-NH and 1-NO,Fig.1) with Pt(II) center bonded to 4-(methylthiol)phenylethynyl as the conductive backbone.Electrondonating-NH2(1-NH) or electron-withdrawing-NO2(1-NO) was introduced to act as the ‘pendant’group interacting with QIE [14].The single-molecule conductance was measured by scanning tunneling microscope break junction (STM-BJ) technique [16–20]and demonstrated a conductance freeze in all three complexes.Theoretical study revealed that the influence of electronic effect,which was introduced by ‘pendant’group,was validated by the varied energy level of molecular orbital.However,the QIE analysis according to the description of MRR confirmed the vanishing of the influence of electronic effect on conductance,eventually leading to the conductance freeze.

    Fig.1.Molecular structures of complexes 1,1-NH and 1-NO,of which the singlemolecular conductance was measured by STM-BJ technique.

    Fig.2.Conductance histogram for complexes 1,1-NH and 1-NO constructed from 3756,2185 and 2235 conductance-distance traces respectively.

    Platinum(II) complexes 1,1-NH and 1-NO were synthesizedviamodified procedures according to previous reports [8].The single-molecule conductance was measured by STM-BJ technique(Fig.1 and Supporting information) [16–20].Fig.2 shows the histograms of complexes 1,1-NH and 1-NO,which are compiled by 3756,2185 and 2235 conductance-distance traces,respectively.By employing multimodal simulation,two peaks are clearly demonstrated in the 1D histograms of all three complexes.For each complex,the high conductance presented by a small peak around 10?2G0(G0is the quantum conductance equaling to 77500 nS) is attributed to the junctions formed by the gold electrodes connecting to one methylthiol group and the Pt(II) center [8,21].For complex 1,the main peak centered at 10?4.4G0matches well with the reported conductance [22–24]and represents the conductivity of the whole conductive backbone (from one methylthiol to another).For complex 1-NO with electron-withdrawing nitro group on conductive backbone,the conductance is intuitively expected to be varied from that of complex 1.However,the conductance of 1-NO is surprisingly identical to that of complex 1.More unexpectedly,not only the electron-withdrawing group substituted complex 1-NO,but also the electron-donating amino group substituted complex 1-NH demonstrates the unchanged conductance as that of complex 1.The frozen conductance implies that the electronic effect of the ‘pendant’groups exerts negligible influence on the charge transport at single-molecule conductance.

    To validate the conductance and search the factor that the influence of electronic effect on conductance being vanished,the analyses of the junction length and 2D histogram were performed.

    Fig.3.2D histograms for complexes 1,1-NH and 1-NO with the inset showing the corresponding statistical junction length.

    As shown in Fig.3,the 2D histograms of the three complexes exhibit similar clouds around the conductance of 10?4.4G0.For complexes 1 and 1-NH,the clouds show flat plateaus indicating the stable formation of molecular junctions,whereas for complex 1-NO,the slightly oblique plateau implies that the steric hindrance of nitro group reduces the stability of molecular junctions.The snapback (0.5 nm) [25–27]corrected junction length of complex 1 is 1.7 nm,which matches perfectly with the optimized S-S distance of the complex.Probably caused by the steric hindrance,the statistical junction lengths of the substituted complexes 1-NH and 1-NO are slightly shorter than that of complex 1,where the snap-back(0.5 nm) corrected junction lengths are both 1.6 nm.Noticeably,according to the previous studies [26,28],the conductance would be more than one-order lower than that of complex 1 if the junctions formed through the connection of gold electrodes and the‘pendant’amino groups in complex 1-NH [28].The possibly low conductance is out of the effective detection range of our equipment,which makes it impossible to be observed in the conductance traces.Thus,the statistical junction length indicates that the three frozen conductance peaks at 10?4.4G0represent the real electron transport characteristics through the conductive backbones of complexes 1,1-NH and 1-NO,respectively.

    To get insight on the interesting conductance freeze in the structures with electron-donating and electron-withdrawing groups,theoretical simulation combining density functional theory(DFT) with the nonequilibrium Green’s function (NEGF) was employed [29–31].The transmission coefficient (T(E)) and molecular energy spectrum,which are commonly considered in the analysis of single-molecule conductance modulation,were computed in the QuantumATK program [20,22].The most striking feature of theT(E) curve is the sharp peak for molecule 1-NO at 0.36 eV.This peak probably indicates a Breit-Wigner type resonance caused by the electron-withdrawing effect of nitro group,in which the electron cloud is localized on the nitro group and the affiliated phenyl ring (Fig.S4 in Supporting information) [32].Although the peak manifesting a transmission coefficient peak with the similar height of a molecular orbital (e.g.,LUMO of molecule 1 at 1.26 eV),the resonance behavior does not support an orbital existing at this energy level.The reasons include: (1) the UV-vis spectra showing almost identical absorption peaks around 340 nm (Fig.4 inset) for all three complexes,which implies similar energy gaps between HOMO and LUMO for the three complexes;(2) the transmission peaks not only caused by the electron resonating with molecular orbital but also brought by the electron resonating with part of the structure (e.g.,Fano resonance,see Supporting information) [33].To further prove the resonance peak,aldehyde group,which also provides strongly electron-withdrawing effect,was employed as the ‘pendant’group to investigate the resonance of 1-CHO (one aldehyde group) and 1-diCHO (two aldehyde groups on each phenyl ring) by simulation (Supporting information).The simulatedT(E) plots of 1-CHO and 1-diCHO clearly demonstrate the Fano resonance near the energy level of LUMO (Fig.S3 in Supporting information).The electronic density distribution at the energy level of the resonance peak (dip) indicates the high localized clouds around the electronic-withdrawing group on one side of 1-CHO or on both sides of 1-diCHO,which shows almost the same distribution as complex 1-NO (Fig.S4).The localized distribution results in the Fano resonance in 1-CHO and 1-diCHO and a Breit-Wigner type resonance in 1-NO [32].Hence,the LUMO of 1-NO should be the orbital at the energy level of 1.16 eV.

    Fig.4.Transmission spectra for complexes 1,1-NH and 1-NO with the red dash line marking the possible EF and inset showing the UV-vis absorption spectrum.

    The Fermi energy (EF) of the gold electrode,which locates in the HOMO-LUMO gap,unfortunately,fails to be accurately predicted by DFT method [32].To this end,some methods have been employed to correct theEF[34],among which fitting theT(E) according to the experimental result is the most convenient way [8,14,35,36].Thus,according to the measured conductance,theEFhere should be corrected to the energy about 0.92 eV,where theT(E) of all of the three complexes including 1,1-NH and 1-NO converge to an identical value,indicating the equivalent conductance as measured by experiment.

    As shown in Fig.4,for complex 1 (green line),the peaks at-1.84,-1.74,1.26 and 1.42 eV indicate the orbital energy levels of HOMO-1,HOMO,LUMO and LUMO+1,respectively.Owing to electron-donating effect of the amino group,both HOMO and LUMO in complex 1-NH (blue line) shift to higher energy levels relative to those of complex 1.Opposite to 1-NH,the HOMO and LUMO for complex 1-NO (purple line) with electron-withdrawing nitro group,move to lower energy levels relative to those of molecule 1.The energy level shift of complexes 1-NH and 1-NO confirms the electronic effects of amino and nitro groups on the conductive backbones.According to the above correctedEF,all the three molecules exhibit LUMO dominated charge transport,of which the conductance should theoretically increase with the decrease of LUMO energy or decrease with the increase of LUMO energy.Thus,the conductance freeze of the three complexes implies that the energy effect of molecular orbital contributes little to the conductance.

    Finally,we turn to the effect of quantum interference in this conjugation system.Since the phenyl ring being a well-known interferometer,by which the destructive quantum interference and constructive quantum interference are characterized in metaconnected structures and para-/ortho-connected structures [1],the‘pendant’group substituted phenyl group of phenylethynyl ligand is considered the interferometer to analysis the MRR [14].On the phenyl group,the combined constructive/destructive QIE of the three sites connecting ethynyl group,methylthiol group and ‘pendant’group determines the finally resultant conductance.As the MRR description [14],amino (1-NH) or nitro (1-NO) group plays the role of the ‘pendant’group that changes theπ-orbital energy of the connecting site with the electronic effect by the quantitative parameter ofε.The expression of Green’s function (GF),which determines the transmission coefficient and conductance,is simplified as Eq.1 when the energy of transporting electron equals toEF:

    Whereiandjare the sites on phenyl ring connecting ethynyl and methylthiol,kis the site connecting the ‘pendant’group,Gij(0)is the GF of the molecule in the presence of ‘pendant’group,andgij(0) is the GF of the molecule without ‘pendant’group.Theg(0)is proportional to the magic number Mij.The magic number (M)equals to 0 when the two sites are the same or in meta-position to each other.Since ethynyl and ‘pendant’group are mutually located at the meta-position of phenyl ring,thegik(0) is zero for complexes 1-NH and 1-NO,respectively,which leads to the GF with the ‘pendant’group (1-NH and 1-NO) equaling to that without the‘pendant’group (1).This indicates that,for complexes 1-NH and 1-NO,the electronic effect of the amino and nitro group is vanished by the QIE and eventually results in the conductance freeze in the three complexes.

    In conclusion,three conductive Pt(II) complexes with the same conductive backbones but different ‘pendant’substituents at phenyl rings were elaborately designed.The single-molecule conductance measured by STM-BJ technique shows an interesting conductance freeze at 10?4.4G0under the varied electronic effect of ‘pendant’group.Although the theoretical study confirms the distinct influence of electronic effect on molecular orbital energy level,the QIE described by MRR eliminates the influence of the electronic effect and results in the conductance freeze.This study not only confirms the metal-organic complex to be a functioning structural base for the QIE described by MRR,but also provides a structural awareness for modulating the conductance of molecular devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for financial support from the National Natural Science Foundation of China (No.92061117),the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000) and Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China (No.2021ZR129).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.092.

    国产精品日韩av在线免费观看| 亚洲自拍偷在线| 老熟妇乱子伦视频在线观看| 熟女电影av网| 手机成人av网站| 窝窝影院91人妻| 级片在线观看| 亚洲第一电影网av| 欧美另类亚洲清纯唯美| 一卡2卡三卡四卡精品乱码亚洲| 国产激情久久老熟女| 国产国语露脸激情在线看| 可以免费在线观看a视频的电影网站| 麻豆成人午夜福利视频| 18禁裸乳无遮挡免费网站照片 | 99国产精品一区二区蜜桃av| 久久中文字幕人妻熟女| 亚洲无线在线观看| 国产午夜精品久久久久久| 久久99热这里只有精品18| 一区福利在线观看| 国产欧美日韩一区二区三| 久久久精品欧美日韩精品| 国产成人精品久久二区二区91| 一级片免费观看大全| 色播亚洲综合网| 女性生殖器流出的白浆| 国产又色又爽无遮挡免费看| 在线永久观看黄色视频| 日韩欧美一区视频在线观看| 精品久久久久久,| 日韩精品青青久久久久久| 日本成人三级电影网站| 一二三四在线观看免费中文在| 一区二区三区激情视频| 精品不卡国产一区二区三区| 不卡av一区二区三区| 精品国产亚洲在线| 亚洲精品一区av在线观看| 美女免费视频网站| 国产精品九九99| 国产一区二区激情短视频| 美女高潮喷水抽搐中文字幕| 国产精品一区二区三区四区久久 | 亚洲成av人片免费观看| 这个男人来自地球电影免费观看| cao死你这个sao货| 欧美日韩一级在线毛片| 亚洲人成伊人成综合网2020| 桃色一区二区三区在线观看| 婷婷丁香在线五月| xxx96com| 精品高清国产在线一区| 欧美乱码精品一区二区三区| 亚洲 欧美一区二区三区| 日日摸夜夜添夜夜添小说| 婷婷亚洲欧美| 久久香蕉精品热| 国产一级毛片七仙女欲春2 | 亚洲五月婷婷丁香| 久久精品成人免费网站| 99久久无色码亚洲精品果冻| 久久久久国内视频| a在线观看视频网站| 久久天躁狠狠躁夜夜2o2o| 深夜精品福利| 丝袜美腿诱惑在线| 狠狠狠狠99中文字幕| 色综合站精品国产| а√天堂www在线а√下载| 色播亚洲综合网| 日韩有码中文字幕| 成熟少妇高潮喷水视频| 日日摸夜夜添夜夜添小说| 又黄又爽又免费观看的视频| 日本黄色视频三级网站网址| 国产野战对白在线观看| 18禁观看日本| 自线自在国产av| 国产91精品成人一区二区三区| 女生性感内裤真人,穿戴方法视频| 欧美在线一区亚洲| 日韩大码丰满熟妇| 一级作爱视频免费观看| 人人妻人人澡人人看| 日本三级黄在线观看| 国产激情偷乱视频一区二区| av电影中文网址| 亚洲 欧美 日韩 在线 免费| 亚洲成人精品中文字幕电影| 男人舔女人下体高潮全视频| 国产精品一区二区三区四区久久 | 国产97色在线日韩免费| 正在播放国产对白刺激| 啦啦啦观看免费观看视频高清| 变态另类成人亚洲欧美熟女| 欧美+亚洲+日韩+国产| 少妇被粗大的猛进出69影院| 亚洲精品国产精品久久久不卡| av在线天堂中文字幕| 日韩av在线大香蕉| 免费搜索国产男女视频| 国产真实乱freesex| 亚洲成a人片在线一区二区| 熟女少妇亚洲综合色aaa.| 精品久久久久久久久久免费视频| 美国免费a级毛片| 国产精品99久久99久久久不卡| 欧美三级亚洲精品| 妹子高潮喷水视频| 亚洲熟女毛片儿| 色在线成人网| 免费av毛片视频| 午夜福利在线在线| 久久婷婷人人爽人人干人人爱| 黑人巨大精品欧美一区二区mp4| 成人特级黄色片久久久久久久| 美女免费视频网站| 天堂√8在线中文| 免费女性裸体啪啪无遮挡网站| 久久午夜亚洲精品久久| 国产精品影院久久| 精品电影一区二区在线| 美女大奶头视频| 男女下面进入的视频免费午夜 | cao死你这个sao货| 别揉我奶头~嗯~啊~动态视频| 国产v大片淫在线免费观看| 国产又黄又爽又无遮挡在线| 美国免费a级毛片| 国产一级毛片七仙女欲春2 | 欧美成人一区二区免费高清观看 | 人妻丰满熟妇av一区二区三区| 久久精品国产综合久久久| 女性被躁到高潮视频| 悠悠久久av| 韩国精品一区二区三区| 午夜福利高清视频| 国产三级在线视频| 午夜a级毛片| 免费电影在线观看免费观看| 午夜福利免费观看在线| 国产黄色小视频在线观看| 免费人成视频x8x8入口观看| 国产精华一区二区三区| 欧美日韩一级在线毛片| 国产单亲对白刺激| 两个人看的免费小视频| 可以在线观看毛片的网站| 久久国产精品人妻蜜桃| 性色av乱码一区二区三区2| 青草久久国产| 国产久久久一区二区三区| 免费在线观看视频国产中文字幕亚洲| 神马国产精品三级电影在线观看 | 日韩免费av在线播放| 国产精品二区激情视频| 丝袜人妻中文字幕| 女人被狂操c到高潮| 亚洲专区字幕在线| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 97超级碰碰碰精品色视频在线观看| 精品国产国语对白av| 欧美日本亚洲视频在线播放| 久久人妻福利社区极品人妻图片| 十分钟在线观看高清视频www| 亚洲一区二区三区不卡视频| 国产av在哪里看| 露出奶头的视频| 成年免费大片在线观看| 中文字幕精品免费在线观看视频| 男人舔奶头视频| 久久久久久久午夜电影| 国内精品久久久久久久电影| 亚洲国产日韩欧美精品在线观看 | or卡值多少钱| 国产97色在线日韩免费| 男男h啪啪无遮挡| 欧美又色又爽又黄视频| 天天添夜夜摸| 亚洲五月婷婷丁香| 九色国产91popny在线| 一本大道久久a久久精品| 亚洲成人久久爱视频| 老司机午夜十八禁免费视频| 久久精品国产综合久久久| 每晚都被弄得嗷嗷叫到高潮| 国产主播在线观看一区二区| 亚洲av熟女| 97超级碰碰碰精品色视频在线观看| 黑人欧美特级aaaaaa片| 激情在线观看视频在线高清| 嫩草影视91久久| 男人舔女人下体高潮全视频| 国产精品自产拍在线观看55亚洲| 制服诱惑二区| 国产在线精品亚洲第一网站| 国产精品亚洲一级av第二区| 日韩精品免费视频一区二区三区| 亚洲av第一区精品v没综合| 久久久国产成人精品二区| 中文资源天堂在线| 久久精品人妻少妇| 岛国视频午夜一区免费看| 欧美成人一区二区免费高清观看 | 国产真人三级小视频在线观看| 日本a在线网址| 午夜成年电影在线免费观看| 国产乱人伦免费视频| 亚洲国产看品久久| 香蕉丝袜av| 高清在线国产一区| 天天躁狠狠躁夜夜躁狠狠躁| 国产av又大| 欧美日本视频| 变态另类丝袜制服| 观看免费一级毛片| 欧美黑人精品巨大| 欧美中文日本在线观看视频| 午夜福利高清视频| 久久九九热精品免费| 真人做人爱边吃奶动态| 免费电影在线观看免费观看| 国产激情久久老熟女| 757午夜福利合集在线观看| 一区二区日韩欧美中文字幕| 精品一区二区三区四区五区乱码| 日韩国内少妇激情av| 国产av一区二区精品久久| 午夜激情福利司机影院| 在线观看www视频免费| 搡老妇女老女人老熟妇| 久久久久久久久中文| 国产91精品成人一区二区三区| 精品一区二区三区四区五区乱码| 免费在线观看影片大全网站| 亚洲精品国产精品久久久不卡| 国产亚洲欧美精品永久| 亚洲成人久久性| 欧美在线一区亚洲| 国产成+人综合+亚洲专区| 亚洲成av片中文字幕在线观看| 老司机福利观看| 黄色 视频免费看| 色播亚洲综合网| 成人精品一区二区免费| 精品国产美女av久久久久小说| 日本撒尿小便嘘嘘汇集6| 在线观看66精品国产| 听说在线观看完整版免费高清| 国内久久婷婷六月综合欲色啪| 久久久久亚洲av毛片大全| www.www免费av| 香蕉久久夜色| 色综合站精品国产| 脱女人内裤的视频| 深夜精品福利| 午夜久久久久精精品| 天天躁狠狠躁夜夜躁狠狠躁| 在线看三级毛片| 亚洲中文字幕一区二区三区有码在线看 | 91九色精品人成在线观看| 亚洲男人天堂网一区| 成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 亚洲成人久久爱视频| 女同久久另类99精品国产91| av超薄肉色丝袜交足视频| 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 成人亚洲精品av一区二区| 久久久久亚洲av毛片大全| 亚洲成av人片免费观看| 夜夜看夜夜爽夜夜摸| 最近最新中文字幕大全免费视频| 亚洲一区二区三区不卡视频| 亚洲av日韩精品久久久久久密| 久久热在线av| 免费av毛片视频| 久久草成人影院| 大型黄色视频在线免费观看| 成人手机av| 久久久久国产精品人妻aⅴ院| 欧美日韩中文字幕国产精品一区二区三区| 人人澡人人妻人| 国产主播在线观看一区二区| 成人亚洲精品av一区二区| av天堂在线播放| 最近在线观看免费完整版| 亚洲欧美精品综合一区二区三区| av视频在线观看入口| 亚洲av成人一区二区三| 亚洲精品美女久久久久99蜜臀| 在线播放国产精品三级| 女同久久另类99精品国产91| 欧美黑人精品巨大| 人成视频在线观看免费观看| 国产高清videossex| 嫩草影视91久久| 18禁美女被吸乳视频| 日韩欧美国产在线观看| 久久亚洲精品不卡| 色综合欧美亚洲国产小说| 男人舔奶头视频| 国产熟女午夜一区二区三区| 久久精品91蜜桃| 亚洲七黄色美女视频| 色综合婷婷激情| 啦啦啦 在线观看视频| 中文在线观看免费www的网站 | 满18在线观看网站| 欧美日韩瑟瑟在线播放| 两个人视频免费观看高清| 久久精品国产综合久久久| 亚洲精品粉嫩美女一区| 可以在线观看毛片的网站| 国产精品二区激情视频| 精品第一国产精品| 亚洲成人国产一区在线观看| 一本精品99久久精品77| 日韩精品免费视频一区二区三区| 精品久久久久久成人av| 一级a爱片免费观看的视频| av片东京热男人的天堂| 精品人妻1区二区| 免费在线观看黄色视频的| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片 | 亚洲九九香蕉| 精品国产国语对白av| 亚洲精品国产精品久久久不卡| 亚洲人成网站高清观看| 欧美黄色片欧美黄色片| 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看| 国产精品永久免费网站| 1024香蕉在线观看| 成人18禁高潮啪啪吃奶动态图| 午夜福利一区二区在线看| 欧美另类亚洲清纯唯美| 亚洲片人在线观看| 精品久久蜜臀av无| 村上凉子中文字幕在线| 中出人妻视频一区二区| 日韩 欧美 亚洲 中文字幕| 免费看日本二区| 欧美又色又爽又黄视频| 久久久久久亚洲精品国产蜜桃av| 亚洲国产精品999在线| 国产亚洲欧美98| 日本五十路高清| 午夜激情福利司机影院| 最好的美女福利视频网| 少妇的丰满在线观看| 2021天堂中文幕一二区在线观 | 欧美黑人精品巨大| 亚洲欧洲精品一区二区精品久久久| 日本 av在线| 亚洲精品国产一区二区精华液| 啦啦啦免费观看视频1| 成年女人毛片免费观看观看9| 亚洲成人精品中文字幕电影| 精品日产1卡2卡| 国产精品久久久av美女十八| 校园春色视频在线观看| 国产av一区二区精品久久| 色尼玛亚洲综合影院| 黄色女人牲交| 久久人妻av系列| 欧美黄色片欧美黄色片| 啦啦啦韩国在线观看视频| 免费高清视频大片| 男男h啪啪无遮挡| 成人亚洲精品一区在线观看| 91九色精品人成在线观看| 亚洲九九香蕉| 又黄又爽又免费观看的视频| 亚洲五月天丁香| av免费在线观看网站| 欧美成人一区二区免费高清观看 | 欧美不卡视频在线免费观看 | 正在播放国产对白刺激| 99精品欧美一区二区三区四区| 国产精品一区二区免费欧美| 19禁男女啪啪无遮挡网站| 国产激情偷乱视频一区二区| 亚洲性夜色夜夜综合| 亚洲午夜理论影院| 亚洲欧美一区二区三区黑人| 婷婷精品国产亚洲av| 中国美女看黄片| 中文亚洲av片在线观看爽| 禁无遮挡网站| ponron亚洲| 中文字幕精品亚洲无线码一区 | 后天国语完整版免费观看| 老司机靠b影院| 99精品久久久久人妻精品| 欧美一区二区精品小视频在线| bbb黄色大片| 久久欧美精品欧美久久欧美| 国产单亲对白刺激| 婷婷六月久久综合丁香| 91大片在线观看| 国产精品,欧美在线| xxx96com| videosex国产| 不卡av一区二区三区| 亚洲国产精品成人综合色| 在线观看66精品国产| 禁无遮挡网站| 男人舔女人的私密视频| 最新在线观看一区二区三区| 亚洲国产看品久久| 久久午夜综合久久蜜桃| 亚洲精品国产精品久久久不卡| 亚洲国产欧美网| 丝袜美腿诱惑在线| 国语自产精品视频在线第100页| 麻豆av在线久日| 精品国产超薄肉色丝袜足j| 国产真实乱freesex| 久久欧美精品欧美久久欧美| 精品午夜福利视频在线观看一区| 草草在线视频免费看| 久久国产精品人妻蜜桃| 久久久久久国产a免费观看| 中文资源天堂在线| 夜夜爽天天搞| 欧美三级亚洲精品| 久久久精品国产亚洲av高清涩受| 18禁黄网站禁片免费观看直播| 亚洲国产精品久久男人天堂| 免费高清视频大片| 女人爽到高潮嗷嗷叫在线视频| 搡老妇女老女人老熟妇| 精品少妇一区二区三区视频日本电影| 青草久久国产| 午夜福利在线在线| 老司机午夜福利在线观看视频| 亚洲成人精品中文字幕电影| 色尼玛亚洲综合影院| 99精品欧美一区二区三区四区| 免费一级毛片在线播放高清视频| 午夜亚洲福利在线播放| 女同久久另类99精品国产91| 国产亚洲精品av在线| 免费在线观看日本一区| 久久婷婷人人爽人人干人人爱| 婷婷丁香在线五月| 一级a爱片免费观看的视频| 国产区一区二久久| 精品久久久久久,| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久亚洲av鲁大| 一进一出抽搐动态| 男人舔女人的私密视频| 久久九九热精品免费| 精品少妇一区二区三区视频日本电影| 母亲3免费完整高清在线观看| 亚洲av五月六月丁香网| 欧美黑人巨大hd| 国产精品免费视频内射| 免费看十八禁软件| 欧美成人午夜精品| 男人的好看免费观看在线视频 | 欧美不卡视频在线免费观看 | 欧美乱妇无乱码| 侵犯人妻中文字幕一二三四区| 最近最新中文字幕大全免费视频| 香蕉久久夜色| 久久久精品欧美日韩精品| 国产精品野战在线观看| 欧美黄色片欧美黄色片| 色尼玛亚洲综合影院| 久久精品夜夜夜夜夜久久蜜豆 | 一本一本综合久久| 精品不卡国产一区二区三区| 性色av乱码一区二区三区2| 韩国av一区二区三区四区| 国产精品九九99| 国产激情欧美一区二区| 中文字幕人妻丝袜一区二区| 国产久久久一区二区三区| avwww免费| 老司机福利观看| 国产又爽黄色视频| 国产视频内射| 嫩草影视91久久| 女警被强在线播放| 国产精品综合久久久久久久免费| 禁无遮挡网站| 亚洲色图 男人天堂 中文字幕| 一个人免费在线观看的高清视频| 欧美成人午夜精品| 国产成人欧美在线观看| 91大片在线观看| 精品电影一区二区在线| 精品国产乱码久久久久久男人| 亚洲欧美精品综合久久99| 国产熟女xx| 日韩精品免费视频一区二区三区| 黄片大片在线免费观看| 亚洲中文日韩欧美视频| 久久亚洲精品不卡| 亚洲成人久久爱视频| 欧美精品啪啪一区二区三区| 90打野战视频偷拍视频| 亚洲第一欧美日韩一区二区三区| 成人av一区二区三区在线看| 国产成人精品久久二区二区91| 99久久99久久久精品蜜桃| 亚洲第一青青草原| 色综合欧美亚洲国产小说| 99久久久亚洲精品蜜臀av| cao死你这个sao货| 亚洲精品中文字幕在线视频| 亚洲五月婷婷丁香| 亚洲精品在线美女| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机靠b影院| 好男人在线观看高清免费视频 | 天堂影院成人在线观看| 99在线人妻在线中文字幕| 无限看片的www在线观看| 欧美成人一区二区免费高清观看 | www日本在线高清视频| 大香蕉久久成人网| 亚洲精品一区av在线观看| 久久久国产成人精品二区| 中文字幕人成人乱码亚洲影| 啦啦啦观看免费观看视频高清| 制服丝袜大香蕉在线| 久久香蕉精品热| 很黄的视频免费| 日本 av在线| 国产激情欧美一区二区| 亚洲一码二码三码区别大吗| 亚洲成人久久性| 免费看日本二区| 美女高潮喷水抽搐中文字幕| 久久精品亚洲精品国产色婷小说| 香蕉国产在线看| 日韩成人在线观看一区二区三区| 欧美久久黑人一区二区| 久久人妻福利社区极品人妻图片| 黄网站色视频无遮挡免费观看| 99久久精品国产亚洲精品| 国产精品久久久人人做人人爽| 真人做人爱边吃奶动态| 老鸭窝网址在线观看| 日本免费一区二区三区高清不卡| 国产单亲对白刺激| 中文字幕人妻丝袜一区二区| 99国产精品一区二区三区| 久久九九热精品免费| 色在线成人网| 中文字幕久久专区| 99国产精品一区二区蜜桃av| 欧美一区二区精品小视频在线| 人妻久久中文字幕网| 在线天堂中文资源库| 激情在线观看视频在线高清| 久99久视频精品免费| 亚洲片人在线观看| 中文字幕高清在线视频| 视频在线观看一区二区三区| 精品人妻1区二区| 亚洲天堂国产精品一区在线| 极品教师在线免费播放| 一区二区三区激情视频| 免费看日本二区| 国产一区二区在线av高清观看| 老熟妇乱子伦视频在线观看| 日本一区二区免费在线视频| 久久天堂一区二区三区四区| 美国免费a级毛片| 久久九九热精品免费| 中文字幕人成人乱码亚洲影| 热re99久久国产66热| 视频在线观看一区二区三区| 久久国产乱子伦精品免费另类| 久久人妻av系列| 免费女性裸体啪啪无遮挡网站| 身体一侧抽搐| 一卡2卡三卡四卡精品乱码亚洲| 国产三级黄色录像| 久热爱精品视频在线9| 欧美色欧美亚洲另类二区| 精品乱码久久久久久99久播| 不卡av一区二区三区| 国产真实乱freesex| 日韩欧美一区视频在线观看| 色综合婷婷激情| 一本久久中文字幕| 国产精品久久久av美女十八| 日日夜夜操网爽| 亚洲五月天丁香| 男女午夜视频在线观看| 精品国内亚洲2022精品成人| 最近最新中文字幕大全免费视频| 精品电影一区二区在线| 观看免费一级毛片| 亚洲七黄色美女视频| 亚洲专区中文字幕在线| 级片在线观看| 亚洲av熟女| 伊人久久大香线蕉亚洲五| 亚洲天堂国产精品一区在线| 最近最新中文字幕大全免费视频| 午夜福利在线在线| 最新美女视频免费是黄的| 51午夜福利影视在线观看| 日本免费一区二区三区高清不卡|