• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Freezing the conductance of platinum(II) complexes by quantum interference effect

    2022-07-11 03:39:46SaiSaiYanJinYunWangZiYouPanDaShengZhengQianChongZhangZhongNingChen
    Chinese Chemical Letters 2022年6期

    Sai-Sai Yan,Jin-Yun Wang,Zi-You Pan,Da-Sheng Zheng,Qian-Chong Zhang,c,?,Zhong-Ning Chen,c,?

    a Fujian Normal University,Fuzhou 350007,China

    b State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China

    c Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350108,China

    Keywords:Platinum(II) complex Electronic effect Single-molecule conductance Quantum interference Magic ratio rule

    ABSTRACT Understanding the impact of substituents on the quantum interference effect at single molecule scale is of great importance for the design of molecular devices.In this work,three platinum(II) complexes with–H,–NH2 and –NO2 groups on conductive backbones were designed and synthesized.Single-molecule conductance,which was measured using scanning tunnelling microscope break junction (STM-BJ) technique,demonstrated a conductance freeze phenomenon under the variation of substituents.Theoretical study revealed that,despite the electronic effect of the substituents shifting the energy level of molecular orbital,the quantum interference effect vanished the influence of electronic effect on the conductance and eventually leaded to the conductance freeze.

    Quantum interference effect (QIE) is so important for charge transport at molecular scale that understanding the structural factor to manipulate QIE is of fundamental importance to the design of molecular devices [1–4].Although theσ-bond based QIE has been discovered [4],the relevant investigations on aromatic systems are still conducted vigorously,which limit the current QIE investigation to organic molecules.Metal-organic complex,which is a potential material for molecular device as important as the organic structures [5–7],in which the metal center (e.g.,Ru and Pt)participates in the conjugation system through dπ–pπconjugation and influences the energy levels of whole complex [5–7],offers a new candidate for understanding the QIE in nanoscale structures.Especially,the platinum complexes exhibit unique features by the Pt(II) taking part in the conjugation system with a restrained ratio [8].However,to our knowledge,the experimental investigation of quantum effect in metal-organic complexes has been rare conducted.

    ‘Magic ratio rule’(MRR) is a recent developed method to theoretically explain the QIE in aromatic systems [9–11].Compared with traditional graphic methods [12,13],MRR not only provides a quantitative ratio [10,14,15]to compare the conductance of corresponding molecules,but also provides the influence of electronic effect of substituents (called ‘pendant’group) on the interferometer group to the QIE on conductive backbone [14,15],from which the influence of electronic effect on the conductance could be enhanced or vanished by QIE.This implies a chance to investigate the QIE in metal-organic molecular devices by introducing electrondonating and electron-withdrawing substituents on the conductive backbone,of which the conductance is modulated by the combination of electronic effect and QIE.

    Here we report the design of three platinum(II) complexes(1,1-NH and 1-NO,Fig.1) with Pt(II) center bonded to 4-(methylthiol)phenylethynyl as the conductive backbone.Electrondonating-NH2(1-NH) or electron-withdrawing-NO2(1-NO) was introduced to act as the ‘pendant’group interacting with QIE [14].The single-molecule conductance was measured by scanning tunneling microscope break junction (STM-BJ) technique [16–20]and demonstrated a conductance freeze in all three complexes.Theoretical study revealed that the influence of electronic effect,which was introduced by ‘pendant’group,was validated by the varied energy level of molecular orbital.However,the QIE analysis according to the description of MRR confirmed the vanishing of the influence of electronic effect on conductance,eventually leading to the conductance freeze.

    Fig.1.Molecular structures of complexes 1,1-NH and 1-NO,of which the singlemolecular conductance was measured by STM-BJ technique.

    Fig.2.Conductance histogram for complexes 1,1-NH and 1-NO constructed from 3756,2185 and 2235 conductance-distance traces respectively.

    Platinum(II) complexes 1,1-NH and 1-NO were synthesizedviamodified procedures according to previous reports [8].The single-molecule conductance was measured by STM-BJ technique(Fig.1 and Supporting information) [16–20].Fig.2 shows the histograms of complexes 1,1-NH and 1-NO,which are compiled by 3756,2185 and 2235 conductance-distance traces,respectively.By employing multimodal simulation,two peaks are clearly demonstrated in the 1D histograms of all three complexes.For each complex,the high conductance presented by a small peak around 10?2G0(G0is the quantum conductance equaling to 77500 nS) is attributed to the junctions formed by the gold electrodes connecting to one methylthiol group and the Pt(II) center [8,21].For complex 1,the main peak centered at 10?4.4G0matches well with the reported conductance [22–24]and represents the conductivity of the whole conductive backbone (from one methylthiol to another).For complex 1-NO with electron-withdrawing nitro group on conductive backbone,the conductance is intuitively expected to be varied from that of complex 1.However,the conductance of 1-NO is surprisingly identical to that of complex 1.More unexpectedly,not only the electron-withdrawing group substituted complex 1-NO,but also the electron-donating amino group substituted complex 1-NH demonstrates the unchanged conductance as that of complex 1.The frozen conductance implies that the electronic effect of the ‘pendant’groups exerts negligible influence on the charge transport at single-molecule conductance.

    To validate the conductance and search the factor that the influence of electronic effect on conductance being vanished,the analyses of the junction length and 2D histogram were performed.

    Fig.3.2D histograms for complexes 1,1-NH and 1-NO with the inset showing the corresponding statistical junction length.

    As shown in Fig.3,the 2D histograms of the three complexes exhibit similar clouds around the conductance of 10?4.4G0.For complexes 1 and 1-NH,the clouds show flat plateaus indicating the stable formation of molecular junctions,whereas for complex 1-NO,the slightly oblique plateau implies that the steric hindrance of nitro group reduces the stability of molecular junctions.The snapback (0.5 nm) [25–27]corrected junction length of complex 1 is 1.7 nm,which matches perfectly with the optimized S-S distance of the complex.Probably caused by the steric hindrance,the statistical junction lengths of the substituted complexes 1-NH and 1-NO are slightly shorter than that of complex 1,where the snap-back(0.5 nm) corrected junction lengths are both 1.6 nm.Noticeably,according to the previous studies [26,28],the conductance would be more than one-order lower than that of complex 1 if the junctions formed through the connection of gold electrodes and the‘pendant’amino groups in complex 1-NH [28].The possibly low conductance is out of the effective detection range of our equipment,which makes it impossible to be observed in the conductance traces.Thus,the statistical junction length indicates that the three frozen conductance peaks at 10?4.4G0represent the real electron transport characteristics through the conductive backbones of complexes 1,1-NH and 1-NO,respectively.

    To get insight on the interesting conductance freeze in the structures with electron-donating and electron-withdrawing groups,theoretical simulation combining density functional theory(DFT) with the nonequilibrium Green’s function (NEGF) was employed [29–31].The transmission coefficient (T(E)) and molecular energy spectrum,which are commonly considered in the analysis of single-molecule conductance modulation,were computed in the QuantumATK program [20,22].The most striking feature of theT(E) curve is the sharp peak for molecule 1-NO at 0.36 eV.This peak probably indicates a Breit-Wigner type resonance caused by the electron-withdrawing effect of nitro group,in which the electron cloud is localized on the nitro group and the affiliated phenyl ring (Fig.S4 in Supporting information) [32].Although the peak manifesting a transmission coefficient peak with the similar height of a molecular orbital (e.g.,LUMO of molecule 1 at 1.26 eV),the resonance behavior does not support an orbital existing at this energy level.The reasons include: (1) the UV-vis spectra showing almost identical absorption peaks around 340 nm (Fig.4 inset) for all three complexes,which implies similar energy gaps between HOMO and LUMO for the three complexes;(2) the transmission peaks not only caused by the electron resonating with molecular orbital but also brought by the electron resonating with part of the structure (e.g.,Fano resonance,see Supporting information) [33].To further prove the resonance peak,aldehyde group,which also provides strongly electron-withdrawing effect,was employed as the ‘pendant’group to investigate the resonance of 1-CHO (one aldehyde group) and 1-diCHO (two aldehyde groups on each phenyl ring) by simulation (Supporting information).The simulatedT(E) plots of 1-CHO and 1-diCHO clearly demonstrate the Fano resonance near the energy level of LUMO (Fig.S3 in Supporting information).The electronic density distribution at the energy level of the resonance peak (dip) indicates the high localized clouds around the electronic-withdrawing group on one side of 1-CHO or on both sides of 1-diCHO,which shows almost the same distribution as complex 1-NO (Fig.S4).The localized distribution results in the Fano resonance in 1-CHO and 1-diCHO and a Breit-Wigner type resonance in 1-NO [32].Hence,the LUMO of 1-NO should be the orbital at the energy level of 1.16 eV.

    Fig.4.Transmission spectra for complexes 1,1-NH and 1-NO with the red dash line marking the possible EF and inset showing the UV-vis absorption spectrum.

    The Fermi energy (EF) of the gold electrode,which locates in the HOMO-LUMO gap,unfortunately,fails to be accurately predicted by DFT method [32].To this end,some methods have been employed to correct theEF[34],among which fitting theT(E) according to the experimental result is the most convenient way [8,14,35,36].Thus,according to the measured conductance,theEFhere should be corrected to the energy about 0.92 eV,where theT(E) of all of the three complexes including 1,1-NH and 1-NO converge to an identical value,indicating the equivalent conductance as measured by experiment.

    As shown in Fig.4,for complex 1 (green line),the peaks at-1.84,-1.74,1.26 and 1.42 eV indicate the orbital energy levels of HOMO-1,HOMO,LUMO and LUMO+1,respectively.Owing to electron-donating effect of the amino group,both HOMO and LUMO in complex 1-NH (blue line) shift to higher energy levels relative to those of complex 1.Opposite to 1-NH,the HOMO and LUMO for complex 1-NO (purple line) with electron-withdrawing nitro group,move to lower energy levels relative to those of molecule 1.The energy level shift of complexes 1-NH and 1-NO confirms the electronic effects of amino and nitro groups on the conductive backbones.According to the above correctedEF,all the three molecules exhibit LUMO dominated charge transport,of which the conductance should theoretically increase with the decrease of LUMO energy or decrease with the increase of LUMO energy.Thus,the conductance freeze of the three complexes implies that the energy effect of molecular orbital contributes little to the conductance.

    Finally,we turn to the effect of quantum interference in this conjugation system.Since the phenyl ring being a well-known interferometer,by which the destructive quantum interference and constructive quantum interference are characterized in metaconnected structures and para-/ortho-connected structures [1],the‘pendant’group substituted phenyl group of phenylethynyl ligand is considered the interferometer to analysis the MRR [14].On the phenyl group,the combined constructive/destructive QIE of the three sites connecting ethynyl group,methylthiol group and ‘pendant’group determines the finally resultant conductance.As the MRR description [14],amino (1-NH) or nitro (1-NO) group plays the role of the ‘pendant’group that changes theπ-orbital energy of the connecting site with the electronic effect by the quantitative parameter ofε.The expression of Green’s function (GF),which determines the transmission coefficient and conductance,is simplified as Eq.1 when the energy of transporting electron equals toEF:

    Whereiandjare the sites on phenyl ring connecting ethynyl and methylthiol,kis the site connecting the ‘pendant’group,Gij(0)is the GF of the molecule in the presence of ‘pendant’group,andgij(0) is the GF of the molecule without ‘pendant’group.Theg(0)is proportional to the magic number Mij.The magic number (M)equals to 0 when the two sites are the same or in meta-position to each other.Since ethynyl and ‘pendant’group are mutually located at the meta-position of phenyl ring,thegik(0) is zero for complexes 1-NH and 1-NO,respectively,which leads to the GF with the ‘pendant’group (1-NH and 1-NO) equaling to that without the‘pendant’group (1).This indicates that,for complexes 1-NH and 1-NO,the electronic effect of the amino and nitro group is vanished by the QIE and eventually results in the conductance freeze in the three complexes.

    In conclusion,three conductive Pt(II) complexes with the same conductive backbones but different ‘pendant’substituents at phenyl rings were elaborately designed.The single-molecule conductance measured by STM-BJ technique shows an interesting conductance freeze at 10?4.4G0under the varied electronic effect of ‘pendant’group.Although the theoretical study confirms the distinct influence of electronic effect on molecular orbital energy level,the QIE described by MRR eliminates the influence of the electronic effect and results in the conductance freeze.This study not only confirms the metal-organic complex to be a functioning structural base for the QIE described by MRR,but also provides a structural awareness for modulating the conductance of molecular devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for financial support from the National Natural Science Foundation of China (No.92061117),the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000) and Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China (No.2021ZR129).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.092.

    国产男人的电影天堂91| 午夜日本视频在线| 特大巨黑吊av在线直播| 色哟哟·www| 国产有黄有色有爽视频| 成年免费大片在线观看| 97在线视频观看| 免费av不卡在线播放| 性色av一级| 国产视频首页在线观看| 日韩人妻高清精品专区| 在线观看一区二区三区激情| 91精品伊人久久大香线蕉| 一区二区三区精品91| 免费看不卡的av| 黄色视频在线播放观看不卡| 国产成人91sexporn| 亚洲国产日韩一区二区| 蜜桃亚洲精品一区二区三区| 综合色av麻豆| 精品国产露脸久久av麻豆| 精品99又大又爽又粗少妇毛片| 中国国产av一级| 少妇的逼水好多| 校园人妻丝袜中文字幕| 你懂的网址亚洲精品在线观看| 久久这里有精品视频免费| 亚洲欧美清纯卡通| 国产精品秋霞免费鲁丝片| www.av在线官网国产| 亚洲人成网站在线播| 久久97久久精品| 亚洲成人精品中文字幕电影| 免费av观看视频| 51国产日韩欧美| 欧美另类一区| 22中文网久久字幕| a级一级毛片免费在线观看| 一本一本综合久久| 亚洲精品色激情综合| 熟女电影av网| 亚洲精华国产精华液的使用体验| 可以在线观看毛片的网站| 亚洲精华国产精华液的使用体验| 熟女av电影| 白带黄色成豆腐渣| 国产免费一级a男人的天堂| 中文天堂在线官网| 成人毛片60女人毛片免费| 永久免费av网站大全| 欧美xxⅹ黑人| 免费观看av网站的网址| 国产日韩欧美在线精品| 亚洲人成网站高清观看| 人妻少妇偷人精品九色| 日韩不卡一区二区三区视频在线| 国产一区有黄有色的免费视频| 成年av动漫网址| av线在线观看网站| av在线老鸭窝| 新久久久久国产一级毛片| 人妻系列 视频| 亚洲av在线观看美女高潮| 欧美少妇被猛烈插入视频| 久久99蜜桃精品久久| 在线看a的网站| 美女脱内裤让男人舔精品视频| 国产精品蜜桃在线观看| 性插视频无遮挡在线免费观看| 少妇人妻 视频| 男的添女的下面高潮视频| 欧美一级a爱片免费观看看| 亚洲精品第二区| 国产精品久久久久久久久免| 亚洲国产欧美在线一区| 两个人的视频大全免费| 伊人久久国产一区二区| 毛片一级片免费看久久久久| 免费av毛片视频| 永久网站在线| 精品国产一区二区三区久久久樱花 | 国产黄片视频在线免费观看| 日本与韩国留学比较| 高清视频免费观看一区二区| 晚上一个人看的免费电影| 国产免费视频播放在线视频| 亚洲国产精品专区欧美| 亚洲激情五月婷婷啪啪| 国产探花极品一区二区| 九九爱精品视频在线观看| 18禁裸乳无遮挡免费网站照片| 精品午夜福利在线看| 22中文网久久字幕| 国产精品99久久久久久久久| 九九爱精品视频在线观看| 大香蕉97超碰在线| 深爱激情五月婷婷| 久久99热这里只有精品18| 国产精品久久久久久久电影| 久久这里有精品视频免费| 99热这里只有精品一区| 禁无遮挡网站| 国产亚洲最大av| 五月伊人婷婷丁香| av.在线天堂| av福利片在线观看| 九九在线视频观看精品| 亚洲国产精品国产精品| 人妻少妇偷人精品九色| 久久99热这里只频精品6学生| 久久久成人免费电影| 2021天堂中文幕一二区在线观| 久久久久久久久久久免费av| 又黄又爽又刺激的免费视频.| 国产成人aa在线观看| 综合色丁香网| 大片电影免费在线观看免费| 亚洲自拍偷在线| 久久久久久久久久人人人人人人| 大又大粗又爽又黄少妇毛片口| 美女视频免费永久观看网站| 王馨瑶露胸无遮挡在线观看| 夫妻午夜视频| 看非洲黑人一级黄片| 国产免费一级a男人的天堂| 成人亚洲精品一区在线观看 | 一本色道久久久久久精品综合| 欧美精品人与动牲交sv欧美| 国产老妇女一区| 久久久欧美国产精品| 欧美高清性xxxxhd video| 国产精品一区www在线观看| 久久精品久久精品一区二区三区| 国产男人的电影天堂91| 亚洲欧美精品专区久久| 亚洲综合精品二区| 亚洲国产欧美在线一区| 成人黄色视频免费在线看| 看非洲黑人一级黄片| 黄色怎么调成土黄色| 高清日韩中文字幕在线| 亚洲av中文av极速乱| 欧美最新免费一区二区三区| 赤兔流量卡办理| 久久久久久久久久久丰满| 秋霞在线观看毛片| 好男人视频免费观看在线| 在线观看国产h片| 有码 亚洲区| 高清日韩中文字幕在线| 一区二区三区精品91| 亚洲欧美精品自产自拍| 亚洲国产日韩一区二区| 国产又色又爽无遮挡免| 日本三级黄在线观看| 国产乱来视频区| 99久久精品国产国产毛片| 国产高清有码在线观看视频| 视频中文字幕在线观看| 在线观看三级黄色| 99热国产这里只有精品6| 亚洲激情五月婷婷啪啪| 夜夜看夜夜爽夜夜摸| 精品国产一区二区三区久久久樱花 | 久久国产乱子免费精品| 日韩三级伦理在线观看| 精华霜和精华液先用哪个| 边亲边吃奶的免费视频| 国产精品久久久久久久电影| 看免费成人av毛片| 欧美高清成人免费视频www| 中文字幕人妻熟人妻熟丝袜美| 免费看日本二区| 人妻系列 视频| 麻豆成人午夜福利视频| 美女内射精品一级片tv| 一级毛片久久久久久久久女| 少妇的逼好多水| 亚洲精品国产成人久久av| 国产成人免费观看mmmm| 黄片wwwwww| 国产精品国产三级专区第一集| 国产熟女欧美一区二区| 中文天堂在线官网| 肉色欧美久久久久久久蜜桃 | 丰满乱子伦码专区| 国产男人的电影天堂91| 亚洲综合色惰| 亚洲av成人精品一二三区| 国产午夜精品久久久久久一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久亚洲中文字幕| 国产久久久一区二区三区| 日本黄色片子视频| 国产欧美日韩精品一区二区| 你懂的网址亚洲精品在线观看| 菩萨蛮人人尽说江南好唐韦庄| av在线播放精品| 欧美丝袜亚洲另类| 亚洲精品中文字幕在线视频 | 91精品国产九色| 国产精品一二三区在线看| 在线免费十八禁| 男人和女人高潮做爰伦理| 王馨瑶露胸无遮挡在线观看| 久久人人爽人人片av| 国产 精品1| 亚洲国产精品成人久久小说| 亚洲欧美清纯卡通| 欧美日韩国产mv在线观看视频 | 激情五月婷婷亚洲| 日本猛色少妇xxxxx猛交久久| 97超视频在线观看视频| 久久久久久伊人网av| 国产精品秋霞免费鲁丝片| 少妇人妻久久综合中文| 最新中文字幕久久久久| 国产一区二区三区av在线| 亚洲精品,欧美精品| 蜜臀久久99精品久久宅男| 亚洲国产av新网站| 日韩伦理黄色片| 久久国产乱子免费精品| 国产精品无大码| 91aial.com中文字幕在线观看| 欧美日韩精品成人综合77777| 国产精品一区二区在线观看99| 一个人看视频在线观看www免费| 久久久欧美国产精品| 国产精品国产av在线观看| 日日摸夜夜添夜夜添av毛片| av在线亚洲专区| 国产午夜精品一二区理论片| 久久久精品免费免费高清| 联通29元200g的流量卡| 欧美潮喷喷水| 欧美高清成人免费视频www| 国产精品国产av在线观看| 国产精品国产av在线观看| 在线播放无遮挡| 亚洲,欧美,日韩| 免费观看av网站的网址| 欧美xxⅹ黑人| 人妻夜夜爽99麻豆av| av网站免费在线观看视频| 久久热精品热| 神马国产精品三级电影在线观看| 精品久久久久久电影网| 日韩制服骚丝袜av| 国产精品一及| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久精品电影| 日韩三级伦理在线观看| 高清av免费在线| 亚洲精品国产色婷婷电影| 精品一区在线观看国产| 国产视频首页在线观看| 国产综合精华液| 毛片女人毛片| 人妻少妇偷人精品九色| 少妇人妻精品综合一区二区| 在线免费观看不下载黄p国产| 久久精品夜色国产| a级毛色黄片| 国产久久久一区二区三区| 久久久久久久久久久丰满| 国产亚洲av片在线观看秒播厂| 成人美女网站在线观看视频| 国产欧美日韩精品一区二区| 国产黄片美女视频| 你懂的网址亚洲精品在线观看| 午夜福利网站1000一区二区三区| 午夜福利高清视频| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩无卡精品| 18禁裸乳无遮挡动漫免费视频 | 女人被狂操c到高潮| 久热久热在线精品观看| 国产91av在线免费观看| 最近最新中文字幕大全电影3| 午夜免费观看性视频| 亚洲无线观看免费| 成人免费观看视频高清| 欧美日韩一区二区视频在线观看视频在线 | 亚洲最大成人中文| 99视频精品全部免费 在线| 身体一侧抽搐| 亚洲一区二区三区欧美精品 | 免费观看的影片在线观看| 欧美3d第一页| 亚洲美女搞黄在线观看| 午夜精品一区二区三区免费看| 人人妻人人看人人澡| 久久鲁丝午夜福利片| 你懂的网址亚洲精品在线观看| www.色视频.com| 国产精品三级大全| 日本av手机在线免费观看| 国产免费一区二区三区四区乱码| 久久久久网色| 免费看av在线观看网站| 久久久精品免费免费高清| 不卡视频在线观看欧美| 精品国产露脸久久av麻豆| 男女边摸边吃奶| 视频区图区小说| 在线观看三级黄色| 18禁在线无遮挡免费观看视频| 婷婷色综合www| 青春草国产在线视频| 欧美成人午夜免费资源| 成年女人在线观看亚洲视频 | 大片电影免费在线观看免费| 日本爱情动作片www.在线观看| 春色校园在线视频观看| 人妻系列 视频| 又爽又黄a免费视频| 国产成人午夜福利电影在线观看| 五月开心婷婷网| 91久久精品电影网| 少妇被粗大猛烈的视频| 少妇的逼好多水| 一二三四中文在线观看免费高清| 亚洲精品日本国产第一区| 性色av一级| 中文字幕久久专区| 亚洲国产日韩一区二区| 国产高潮美女av| 免费播放大片免费观看视频在线观看| 久久久国产一区二区| 成人国产麻豆网| 自拍欧美九色日韩亚洲蝌蚪91 | 日本三级黄在线观看| 国产在线男女| 老司机影院毛片| 亚洲天堂av无毛| 国产国拍精品亚洲av在线观看| av国产精品久久久久影院| 一本一本综合久久| 特大巨黑吊av在线直播| 一级毛片aaaaaa免费看小| 亚洲精品视频女| 一级毛片 在线播放| 少妇裸体淫交视频免费看高清| 99久国产av精品国产电影| 极品教师在线视频| 成人综合一区亚洲| 色网站视频免费| 国产精品福利在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 视频中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 国产精品蜜桃在线观看| 国产在线男女| 永久免费av网站大全| 草草在线视频免费看| 18禁在线播放成人免费| 色婷婷久久久亚洲欧美| 蜜桃久久精品国产亚洲av| 欧美日本视频| 国产亚洲5aaaaa淫片| 各种免费的搞黄视频| 日日摸夜夜添夜夜爱| 99热全是精品| 亚洲三级黄色毛片| 国产男女超爽视频在线观看| 亚洲成人精品中文字幕电影| 国产精品女同一区二区软件| 久久久久网色| 极品少妇高潮喷水抽搐| 亚洲最大成人中文| 久久久午夜欧美精品| 一本色道久久久久久精品综合| 一区二区三区免费毛片| 久热久热在线精品观看| 国产精品国产av在线观看| 制服丝袜香蕉在线| 亚洲怡红院男人天堂| 欧美一区二区亚洲| 狂野欧美白嫩少妇大欣赏| 国产精品人妻久久久久久| 亚洲欧美一区二区三区黑人 | .国产精品久久| 亚洲成人精品中文字幕电影| 久久久久久久午夜电影| 禁无遮挡网站| 亚洲国产精品国产精品| 国产毛片a区久久久久| 2021天堂中文幕一二区在线观| 少妇猛男粗大的猛烈进出视频 | 国产熟女欧美一区二区| 又大又黄又爽视频免费| 亚洲av一区综合| 免费在线观看成人毛片| 99久久精品一区二区三区| 欧美日韩视频精品一区| 成人特级av手机在线观看| 国产精品嫩草影院av在线观看| 极品少妇高潮喷水抽搐| 白带黄色成豆腐渣| 日本午夜av视频| 午夜免费鲁丝| 在线观看一区二区三区激情| 国产黄片美女视频| 欧美bdsm另类| 久久久久久久精品精品| 成年免费大片在线观看| 在线播放无遮挡| 2022亚洲国产成人精品| 亚洲色图综合在线观看| 亚洲成人一二三区av| 亚洲,欧美,日韩| 中文欧美无线码| av在线天堂中文字幕| 麻豆乱淫一区二区| 免费av观看视频| 黄片wwwwww| 一二三四中文在线观看免费高清| 香蕉精品网在线| 成人高潮视频无遮挡免费网站| 深夜a级毛片| 久久久久久久精品精品| 婷婷色av中文字幕| 伊人久久精品亚洲午夜| 国内揄拍国产精品人妻在线| 欧美激情在线99| 免费黄网站久久成人精品| 白带黄色成豆腐渣| 日韩不卡一区二区三区视频在线| 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 亚洲av二区三区四区| 99久久精品热视频| 丰满少妇做爰视频| 观看免费一级毛片| 午夜福利在线观看免费完整高清在| 97超视频在线观看视频| 毛片女人毛片| 久热这里只有精品99| 日韩av在线免费看完整版不卡| 激情五月婷婷亚洲| 少妇熟女欧美另类| 欧美+日韩+精品| 美女主播在线视频| 色播亚洲综合网| 亚洲三级黄色毛片| 日韩一本色道免费dvd| 国产高清国产精品国产三级 | 丰满少妇做爰视频| 老师上课跳d突然被开到最大视频| 高清午夜精品一区二区三区| 一边亲一边摸免费视频| 熟女人妻精品中文字幕| 午夜视频国产福利| 免费看a级黄色片| 91在线精品国自产拍蜜月| 亚洲久久久久久中文字幕| av福利片在线观看| 我要看日韩黄色一级片| 婷婷色av中文字幕| 在线免费观看不下载黄p国产| 黄色欧美视频在线观看| 在线观看av片永久免费下载| 中国国产av一级| 男人狂女人下面高潮的视频| 国产精品久久久久久久久免| 看十八女毛片水多多多| 99久久中文字幕三级久久日本| 久久人人爽人人片av| 亚洲在久久综合| 2022亚洲国产成人精品| av国产精品久久久久影院| 别揉我奶头 嗯啊视频| 精品熟女少妇av免费看| 国产亚洲午夜精品一区二区久久 | 岛国毛片在线播放| 久久久久久久久大av| 亚洲精品日本国产第一区| 久久久欧美国产精品| av免费观看日本| 18禁裸乳无遮挡免费网站照片| 久久精品熟女亚洲av麻豆精品| 亚洲天堂av无毛| 欧美成人一区二区免费高清观看| 夜夜爽夜夜爽视频| 一区二区三区精品91| 天天躁日日操中文字幕| 国产免费又黄又爽又色| 国产精品国产三级专区第一集| av国产精品久久久久影院| 成人美女网站在线观看视频| 亚洲av中文av极速乱| 国产成人a∨麻豆精品| 大香蕉久久网| 久久99热这里只频精品6学生| 在线播放无遮挡| 色视频在线一区二区三区| 国产成人一区二区在线| 一级毛片久久久久久久久女| 欧美日本视频| 搡老乐熟女国产| 在线亚洲精品国产二区图片欧美 | 日韩电影二区| 美女主播在线视频| 国产亚洲av嫩草精品影院| 国产成人午夜福利电影在线观看| 亚洲精品成人久久久久久| 日韩欧美精品免费久久| 小蜜桃在线观看免费完整版高清| 欧美bdsm另类| 中文乱码字字幕精品一区二区三区| 欧美人与善性xxx| 色吧在线观看| 国产精品一二三区在线看| av福利片在线观看| 成人特级av手机在线观看| 国产爽快片一区二区三区| 三级国产精品欧美在线观看| 超碰av人人做人人爽久久| 国产精品麻豆人妻色哟哟久久| av在线观看视频网站免费| 六月丁香七月| 国产午夜精品一二区理论片| 又大又黄又爽视频免费| 人妻少妇偷人精品九色| 国产精品.久久久| 国产精品三级大全| 涩涩av久久男人的天堂| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久久末码| 国产成人午夜福利电影在线观看| 久久久久精品久久久久真实原创| av女优亚洲男人天堂| 国产精品一区二区三区四区免费观看| 大片电影免费在线观看免费| 国产乱人偷精品视频| 亚洲精品视频女| 插阴视频在线观看视频| 麻豆成人av视频| 久久人人爽人人爽人人片va| 欧美极品一区二区三区四区| 国产乱人视频| 最后的刺客免费高清国语| 尾随美女入室| 国产亚洲91精品色在线| 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| 日韩av免费高清视频| 久久精品国产鲁丝片午夜精品| 精品午夜福利在线看| 亚洲人成网站在线观看播放| 黄色怎么调成土黄色| .国产精品久久| 久久久久网色| 亚洲真实伦在线观看| 午夜精品国产一区二区电影 | 最近2019中文字幕mv第一页| 亚洲自拍偷在线| 九九爱精品视频在线观看| 爱豆传媒免费全集在线观看| 精品久久久久久久人妻蜜臀av| 综合色丁香网| 亚洲成色77777| 热99国产精品久久久久久7| 国产精品一区二区性色av| 国产视频首页在线观看| 成人综合一区亚洲| 国产精品久久久久久精品电影| 干丝袜人妻中文字幕| 在线观看av片永久免费下载| 性色avwww在线观看| 老司机影院毛片| 亚洲精品久久午夜乱码| 国产午夜精品一二区理论片| 各种免费的搞黄视频| 熟妇人妻不卡中文字幕| 中文欧美无线码| 午夜激情福利司机影院| av在线蜜桃| 插阴视频在线观看视频| 国产av码专区亚洲av| 毛片一级片免费看久久久久| 麻豆成人av视频| 国产亚洲最大av| 成人综合一区亚洲| 亚洲国产精品专区欧美| 国产v大片淫在线免费观看| 午夜福利在线在线| 午夜爱爱视频在线播放| 夜夜看夜夜爽夜夜摸| 婷婷色综合www| 夫妻性生交免费视频一级片| 91在线精品国自产拍蜜月| av在线亚洲专区| av一本久久久久| 国产探花在线观看一区二区| 色吧在线观看| 97在线人人人人妻| 国产精品av视频在线免费观看| 如何舔出高潮| 精华霜和精华液先用哪个| 国产69精品久久久久777片| 亚洲激情五月婷婷啪啪| 在线 av 中文字幕| 寂寞人妻少妇视频99o| 一本久久精品| 成年版毛片免费区| 国精品久久久久久国模美| 一个人看视频在线观看www免费| 噜噜噜噜噜久久久久久91| 波多野结衣巨乳人妻| av又黄又爽大尺度在线免费看| 在线观看人妻少妇| 国产精品av视频在线免费观看| 久久久久久久大尺度免费视频|