• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Freezing the conductance of platinum(II) complexes by quantum interference effect

    2022-07-11 03:39:46SaiSaiYanJinYunWangZiYouPanDaShengZhengQianChongZhangZhongNingChen
    Chinese Chemical Letters 2022年6期

    Sai-Sai Yan,Jin-Yun Wang,Zi-You Pan,Da-Sheng Zheng,Qian-Chong Zhang,c,?,Zhong-Ning Chen,c,?

    a Fujian Normal University,Fuzhou 350007,China

    b State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China

    c Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350108,China

    Keywords:Platinum(II) complex Electronic effect Single-molecule conductance Quantum interference Magic ratio rule

    ABSTRACT Understanding the impact of substituents on the quantum interference effect at single molecule scale is of great importance for the design of molecular devices.In this work,three platinum(II) complexes with–H,–NH2 and –NO2 groups on conductive backbones were designed and synthesized.Single-molecule conductance,which was measured using scanning tunnelling microscope break junction (STM-BJ) technique,demonstrated a conductance freeze phenomenon under the variation of substituents.Theoretical study revealed that,despite the electronic effect of the substituents shifting the energy level of molecular orbital,the quantum interference effect vanished the influence of electronic effect on the conductance and eventually leaded to the conductance freeze.

    Quantum interference effect (QIE) is so important for charge transport at molecular scale that understanding the structural factor to manipulate QIE is of fundamental importance to the design of molecular devices [1–4].Although theσ-bond based QIE has been discovered [4],the relevant investigations on aromatic systems are still conducted vigorously,which limit the current QIE investigation to organic molecules.Metal-organic complex,which is a potential material for molecular device as important as the organic structures [5–7],in which the metal center (e.g.,Ru and Pt)participates in the conjugation system through dπ–pπconjugation and influences the energy levels of whole complex [5–7],offers a new candidate for understanding the QIE in nanoscale structures.Especially,the platinum complexes exhibit unique features by the Pt(II) taking part in the conjugation system with a restrained ratio [8].However,to our knowledge,the experimental investigation of quantum effect in metal-organic complexes has been rare conducted.

    ‘Magic ratio rule’(MRR) is a recent developed method to theoretically explain the QIE in aromatic systems [9–11].Compared with traditional graphic methods [12,13],MRR not only provides a quantitative ratio [10,14,15]to compare the conductance of corresponding molecules,but also provides the influence of electronic effect of substituents (called ‘pendant’group) on the interferometer group to the QIE on conductive backbone [14,15],from which the influence of electronic effect on the conductance could be enhanced or vanished by QIE.This implies a chance to investigate the QIE in metal-organic molecular devices by introducing electrondonating and electron-withdrawing substituents on the conductive backbone,of which the conductance is modulated by the combination of electronic effect and QIE.

    Here we report the design of three platinum(II) complexes(1,1-NH and 1-NO,Fig.1) with Pt(II) center bonded to 4-(methylthiol)phenylethynyl as the conductive backbone.Electrondonating-NH2(1-NH) or electron-withdrawing-NO2(1-NO) was introduced to act as the ‘pendant’group interacting with QIE [14].The single-molecule conductance was measured by scanning tunneling microscope break junction (STM-BJ) technique [16–20]and demonstrated a conductance freeze in all three complexes.Theoretical study revealed that the influence of electronic effect,which was introduced by ‘pendant’group,was validated by the varied energy level of molecular orbital.However,the QIE analysis according to the description of MRR confirmed the vanishing of the influence of electronic effect on conductance,eventually leading to the conductance freeze.

    Fig.1.Molecular structures of complexes 1,1-NH and 1-NO,of which the singlemolecular conductance was measured by STM-BJ technique.

    Fig.2.Conductance histogram for complexes 1,1-NH and 1-NO constructed from 3756,2185 and 2235 conductance-distance traces respectively.

    Platinum(II) complexes 1,1-NH and 1-NO were synthesizedviamodified procedures according to previous reports [8].The single-molecule conductance was measured by STM-BJ technique(Fig.1 and Supporting information) [16–20].Fig.2 shows the histograms of complexes 1,1-NH and 1-NO,which are compiled by 3756,2185 and 2235 conductance-distance traces,respectively.By employing multimodal simulation,two peaks are clearly demonstrated in the 1D histograms of all three complexes.For each complex,the high conductance presented by a small peak around 10?2G0(G0is the quantum conductance equaling to 77500 nS) is attributed to the junctions formed by the gold electrodes connecting to one methylthiol group and the Pt(II) center [8,21].For complex 1,the main peak centered at 10?4.4G0matches well with the reported conductance [22–24]and represents the conductivity of the whole conductive backbone (from one methylthiol to another).For complex 1-NO with electron-withdrawing nitro group on conductive backbone,the conductance is intuitively expected to be varied from that of complex 1.However,the conductance of 1-NO is surprisingly identical to that of complex 1.More unexpectedly,not only the electron-withdrawing group substituted complex 1-NO,but also the electron-donating amino group substituted complex 1-NH demonstrates the unchanged conductance as that of complex 1.The frozen conductance implies that the electronic effect of the ‘pendant’groups exerts negligible influence on the charge transport at single-molecule conductance.

    To validate the conductance and search the factor that the influence of electronic effect on conductance being vanished,the analyses of the junction length and 2D histogram were performed.

    Fig.3.2D histograms for complexes 1,1-NH and 1-NO with the inset showing the corresponding statistical junction length.

    As shown in Fig.3,the 2D histograms of the three complexes exhibit similar clouds around the conductance of 10?4.4G0.For complexes 1 and 1-NH,the clouds show flat plateaus indicating the stable formation of molecular junctions,whereas for complex 1-NO,the slightly oblique plateau implies that the steric hindrance of nitro group reduces the stability of molecular junctions.The snapback (0.5 nm) [25–27]corrected junction length of complex 1 is 1.7 nm,which matches perfectly with the optimized S-S distance of the complex.Probably caused by the steric hindrance,the statistical junction lengths of the substituted complexes 1-NH and 1-NO are slightly shorter than that of complex 1,where the snap-back(0.5 nm) corrected junction lengths are both 1.6 nm.Noticeably,according to the previous studies [26,28],the conductance would be more than one-order lower than that of complex 1 if the junctions formed through the connection of gold electrodes and the‘pendant’amino groups in complex 1-NH [28].The possibly low conductance is out of the effective detection range of our equipment,which makes it impossible to be observed in the conductance traces.Thus,the statistical junction length indicates that the three frozen conductance peaks at 10?4.4G0represent the real electron transport characteristics through the conductive backbones of complexes 1,1-NH and 1-NO,respectively.

    To get insight on the interesting conductance freeze in the structures with electron-donating and electron-withdrawing groups,theoretical simulation combining density functional theory(DFT) with the nonequilibrium Green’s function (NEGF) was employed [29–31].The transmission coefficient (T(E)) and molecular energy spectrum,which are commonly considered in the analysis of single-molecule conductance modulation,were computed in the QuantumATK program [20,22].The most striking feature of theT(E) curve is the sharp peak for molecule 1-NO at 0.36 eV.This peak probably indicates a Breit-Wigner type resonance caused by the electron-withdrawing effect of nitro group,in which the electron cloud is localized on the nitro group and the affiliated phenyl ring (Fig.S4 in Supporting information) [32].Although the peak manifesting a transmission coefficient peak with the similar height of a molecular orbital (e.g.,LUMO of molecule 1 at 1.26 eV),the resonance behavior does not support an orbital existing at this energy level.The reasons include: (1) the UV-vis spectra showing almost identical absorption peaks around 340 nm (Fig.4 inset) for all three complexes,which implies similar energy gaps between HOMO and LUMO for the three complexes;(2) the transmission peaks not only caused by the electron resonating with molecular orbital but also brought by the electron resonating with part of the structure (e.g.,Fano resonance,see Supporting information) [33].To further prove the resonance peak,aldehyde group,which also provides strongly electron-withdrawing effect,was employed as the ‘pendant’group to investigate the resonance of 1-CHO (one aldehyde group) and 1-diCHO (two aldehyde groups on each phenyl ring) by simulation (Supporting information).The simulatedT(E) plots of 1-CHO and 1-diCHO clearly demonstrate the Fano resonance near the energy level of LUMO (Fig.S3 in Supporting information).The electronic density distribution at the energy level of the resonance peak (dip) indicates the high localized clouds around the electronic-withdrawing group on one side of 1-CHO or on both sides of 1-diCHO,which shows almost the same distribution as complex 1-NO (Fig.S4).The localized distribution results in the Fano resonance in 1-CHO and 1-diCHO and a Breit-Wigner type resonance in 1-NO [32].Hence,the LUMO of 1-NO should be the orbital at the energy level of 1.16 eV.

    Fig.4.Transmission spectra for complexes 1,1-NH and 1-NO with the red dash line marking the possible EF and inset showing the UV-vis absorption spectrum.

    The Fermi energy (EF) of the gold electrode,which locates in the HOMO-LUMO gap,unfortunately,fails to be accurately predicted by DFT method [32].To this end,some methods have been employed to correct theEF[34],among which fitting theT(E) according to the experimental result is the most convenient way [8,14,35,36].Thus,according to the measured conductance,theEFhere should be corrected to the energy about 0.92 eV,where theT(E) of all of the three complexes including 1,1-NH and 1-NO converge to an identical value,indicating the equivalent conductance as measured by experiment.

    As shown in Fig.4,for complex 1 (green line),the peaks at-1.84,-1.74,1.26 and 1.42 eV indicate the orbital energy levels of HOMO-1,HOMO,LUMO and LUMO+1,respectively.Owing to electron-donating effect of the amino group,both HOMO and LUMO in complex 1-NH (blue line) shift to higher energy levels relative to those of complex 1.Opposite to 1-NH,the HOMO and LUMO for complex 1-NO (purple line) with electron-withdrawing nitro group,move to lower energy levels relative to those of molecule 1.The energy level shift of complexes 1-NH and 1-NO confirms the electronic effects of amino and nitro groups on the conductive backbones.According to the above correctedEF,all the three molecules exhibit LUMO dominated charge transport,of which the conductance should theoretically increase with the decrease of LUMO energy or decrease with the increase of LUMO energy.Thus,the conductance freeze of the three complexes implies that the energy effect of molecular orbital contributes little to the conductance.

    Finally,we turn to the effect of quantum interference in this conjugation system.Since the phenyl ring being a well-known interferometer,by which the destructive quantum interference and constructive quantum interference are characterized in metaconnected structures and para-/ortho-connected structures [1],the‘pendant’group substituted phenyl group of phenylethynyl ligand is considered the interferometer to analysis the MRR [14].On the phenyl group,the combined constructive/destructive QIE of the three sites connecting ethynyl group,methylthiol group and ‘pendant’group determines the finally resultant conductance.As the MRR description [14],amino (1-NH) or nitro (1-NO) group plays the role of the ‘pendant’group that changes theπ-orbital energy of the connecting site with the electronic effect by the quantitative parameter ofε.The expression of Green’s function (GF),which determines the transmission coefficient and conductance,is simplified as Eq.1 when the energy of transporting electron equals toEF:

    Whereiandjare the sites on phenyl ring connecting ethynyl and methylthiol,kis the site connecting the ‘pendant’group,Gij(0)is the GF of the molecule in the presence of ‘pendant’group,andgij(0) is the GF of the molecule without ‘pendant’group.Theg(0)is proportional to the magic number Mij.The magic number (M)equals to 0 when the two sites are the same or in meta-position to each other.Since ethynyl and ‘pendant’group are mutually located at the meta-position of phenyl ring,thegik(0) is zero for complexes 1-NH and 1-NO,respectively,which leads to the GF with the ‘pendant’group (1-NH and 1-NO) equaling to that without the‘pendant’group (1).This indicates that,for complexes 1-NH and 1-NO,the electronic effect of the amino and nitro group is vanished by the QIE and eventually results in the conductance freeze in the three complexes.

    In conclusion,three conductive Pt(II) complexes with the same conductive backbones but different ‘pendant’substituents at phenyl rings were elaborately designed.The single-molecule conductance measured by STM-BJ technique shows an interesting conductance freeze at 10?4.4G0under the varied electronic effect of ‘pendant’group.Although the theoretical study confirms the distinct influence of electronic effect on molecular orbital energy level,the QIE described by MRR eliminates the influence of the electronic effect and results in the conductance freeze.This study not only confirms the metal-organic complex to be a functioning structural base for the QIE described by MRR,but also provides a structural awareness for modulating the conductance of molecular devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for financial support from the National Natural Science Foundation of China (No.92061117),the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000) and Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China (No.2021ZR129).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.092.

    日韩一区二区三区影片| av.在线天堂| 久久99蜜桃精品久久| av免费在线看不卡| av卡一久久| 少妇 在线观看| 国产一区有黄有色的免费视频| 看免费成人av毛片| 欧美精品一区二区大全| 在线观看一区二区三区| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品电影小说 | 高清欧美精品videossex| 欧美日韩亚洲高清精品| 日韩,欧美,国产一区二区三区| 2022亚洲国产成人精品| 一级a做视频免费观看| 国语对白做爰xxxⅹ性视频网站| 晚上一个人看的免费电影| 另类亚洲欧美激情| 亚洲精品日韩在线中文字幕| 久久人人爽人人爽人人片va| 高清欧美精品videossex| 亚洲图色成人| 网址你懂的国产日韩在线| 亚洲自拍偷在线| 有码 亚洲区| 免费观看的影片在线观看| 成年av动漫网址| 欧美人与善性xxx| 永久免费av网站大全| 亚洲美女视频黄频| 嫩草影院入口| 亚洲国产精品国产精品| 岛国毛片在线播放| 日韩制服骚丝袜av| 亚洲欧美日韩卡通动漫| 亚洲成人一二三区av| 精品久久久久久久人妻蜜臀av| 天堂中文最新版在线下载 | 国产亚洲一区二区精品| 免费看光身美女| 国产精品福利在线免费观看| 久久人人爽av亚洲精品天堂 | 大又大粗又爽又黄少妇毛片口| 99精国产麻豆久久婷婷| 国产精品国产三级国产av玫瑰| 欧美成人a在线观看| 如何舔出高潮| 亚洲色图av天堂| 欧美日韩精品成人综合77777| 少妇裸体淫交视频免费看高清| 亚洲国产色片| 午夜精品一区二区三区免费看| 最近中文字幕2019免费版| 草草在线视频免费看| 亚洲色图综合在线观看| 成人亚洲精品av一区二区| 欧美人与善性xxx| 国产精品偷伦视频观看了| av一本久久久久| 简卡轻食公司| 亚洲精华国产精华液的使用体验| 亚洲成人精品中文字幕电影| 视频中文字幕在线观看| 在线亚洲精品国产二区图片欧美 | 嫩草影院新地址| 日本黄色片子视频| 五月开心婷婷网| 哪个播放器可以免费观看大片| 深爱激情五月婷婷| 18禁动态无遮挡网站| 欧美人与善性xxx| 黄片无遮挡物在线观看| 免费观看无遮挡的男女| 免费看日本二区| 欧美+日韩+精品| 亚洲真实伦在线观看| 国产亚洲最大av| 少妇 在线观看| 久久久欧美国产精品| 在线观看av片永久免费下载| av在线天堂中文字幕| 精品人妻熟女av久视频| 国产精品国产av在线观看| av网站免费在线观看视频| 又粗又硬又长又爽又黄的视频| 热99国产精品久久久久久7| av在线老鸭窝| 制服丝袜香蕉在线| 亚洲国产欧美人成| 免费在线观看成人毛片| 欧美激情久久久久久爽电影| 久久久久久久久大av| 一区二区三区免费毛片| 国产淫语在线视频| av播播在线观看一区| 18禁在线播放成人免费| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩国内少妇激情av| 欧美日韩在线观看h| 日韩成人av中文字幕在线观看| 香蕉精品网在线| 日韩,欧美,国产一区二区三区| 日韩伦理黄色片| 国产免费视频播放在线视频| 中文字幕久久专区| 2022亚洲国产成人精品| av卡一久久| 中文字幕人妻熟人妻熟丝袜美| 美女脱内裤让男人舔精品视频| 最近最新中文字幕免费大全7| 禁无遮挡网站| 另类亚洲欧美激情| 日韩中字成人| 国内精品宾馆在线| 国产伦在线观看视频一区| 国产 一区精品| 啦啦啦中文免费视频观看日本| 狠狠精品人妻久久久久久综合| 成人免费观看视频高清| 国产精品人妻久久久影院| 在现免费观看毛片| 99re6热这里在线精品视频| 婷婷色综合大香蕉| 99久久精品国产国产毛片| 免费人成在线观看视频色| 22中文网久久字幕| 免费观看性生交大片5| 亚洲人成网站在线播| 亚洲成色77777| 亚洲av.av天堂| 大香蕉97超碰在线| 久久久久久久久久久丰满| 免费av观看视频| 欧美三级亚洲精品| 美女主播在线视频| 久久久精品欧美日韩精品| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 一本色道久久久久久精品综合| 在线观看免费高清a一片| 亚洲人与动物交配视频| 久久精品国产亚洲av天美| 18+在线观看网站| 三级国产精品欧美在线观看| 亚洲av一区综合| 久久久久久久大尺度免费视频| 亚洲欧美日韩东京热| 精品国产三级普通话版| 久久久久精品性色| 日本熟妇午夜| 99久久精品热视频| 99热6这里只有精品| 久久久久久久久久成人| 少妇人妻 视频| 国产在视频线精品| av专区在线播放| 汤姆久久久久久久影院中文字幕| 欧美日韩国产mv在线观看视频 | 永久网站在线| 舔av片在线| 香蕉精品网在线| 免费av不卡在线播放| 亚洲av中文av极速乱| 亚洲最大成人av| 国产一级毛片在线| 亚洲欧美精品自产自拍| 18禁在线播放成人免费| tube8黄色片| 久久热精品热| 久久午夜福利片| 免费人成在线观看视频色| 国产精品福利在线免费观看| 亚洲va在线va天堂va国产| 成人一区二区视频在线观看| 少妇人妻一区二区三区视频| 国产亚洲精品久久久com| a级一级毛片免费在线观看| 亚洲精品日韩av片在线观看| 美女cb高潮喷水在线观看| 久久久精品免费免费高清| 国产真实伦视频高清在线观看| 国产精品久久久久久av不卡| 人人妻人人看人人澡| 哪个播放器可以免费观看大片| 一级毛片我不卡| 欧美潮喷喷水| 成人国产麻豆网| 男人爽女人下面视频在线观看| 亚洲无线观看免费| 少妇人妻久久综合中文| 一本久久精品| 久久99热6这里只有精品| 国产高清国产精品国产三级 | 免费电影在线观看免费观看| 五月玫瑰六月丁香| 国产精品久久久久久av不卡| 久热久热在线精品观看| 熟女av电影| 久久热精品热| 爱豆传媒免费全集在线观看| 男男h啪啪无遮挡| 如何舔出高潮| 特级一级黄色大片| 免费高清在线观看视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲va在线va天堂va国产| 亚洲人成网站在线播| 女人久久www免费人成看片| 国产精品秋霞免费鲁丝片| 亚洲婷婷狠狠爱综合网| 乱码一卡2卡4卡精品| 精品国产露脸久久av麻豆| 亚洲av男天堂| 偷拍熟女少妇极品色| 97超视频在线观看视频| 99久久精品国产国产毛片| 亚洲av中文字字幕乱码综合| 亚洲精品视频女| 亚洲精品国产色婷婷电影| 色婷婷久久久亚洲欧美| 极品教师在线视频| 国产黄片美女视频| 久久99热这里只有精品18| 男插女下体视频免费在线播放| 男女无遮挡免费网站观看| 男女啪啪激烈高潮av片| 我要看日韩黄色一级片| 干丝袜人妻中文字幕| 日韩国内少妇激情av| 婷婷色综合大香蕉| 别揉我奶头 嗯啊视频| 精品酒店卫生间| 成人国产av品久久久| 在线观看三级黄色| 卡戴珊不雅视频在线播放| 啦啦啦啦在线视频资源| 亚洲精品一二三| 男的添女的下面高潮视频| 亚洲内射少妇av| 免费黄色在线免费观看| 80岁老熟妇乱子伦牲交| 欧美精品人与动牲交sv欧美| 亚洲国产欧美人成| 狂野欧美激情性bbbbbb| 亚洲丝袜综合中文字幕| 中文天堂在线官网| 2018国产大陆天天弄谢| 午夜激情福利司机影院| 看黄色毛片网站| 街头女战士在线观看网站| 天美传媒精品一区二区| 中文字幕亚洲精品专区| 在线a可以看的网站| 日韩不卡一区二区三区视频在线| 欧美成人一区二区免费高清观看| 真实男女啪啪啪动态图| 我的老师免费观看完整版| av专区在线播放| 只有这里有精品99| 美女xxoo啪啪120秒动态图| 中文字幕亚洲精品专区| 欧美区成人在线视频| 国产成人福利小说| 亚洲欧美日韩另类电影网站 | 亚洲精品456在线播放app| 亚洲经典国产精华液单| 色哟哟·www| 蜜桃亚洲精品一区二区三区| 十八禁网站网址无遮挡 | 亚洲三级黄色毛片| 中文天堂在线官网| 狂野欧美激情性xxxx在线观看| 人妻少妇偷人精品九色| 亚洲欧美成人精品一区二区| 免费高清在线观看视频在线观看| 校园人妻丝袜中文字幕| 欧美 日韩 精品 国产| kizo精华| 久久久亚洲精品成人影院| 最近最新中文字幕免费大全7| 久久国内精品自在自线图片| 国产高清三级在线| 我的老师免费观看完整版| 久久久久久久午夜电影| 亚洲精品第二区| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| 国产高清有码在线观看视频| 欧美成人午夜免费资源| 欧美区成人在线视频| 五月玫瑰六月丁香| 51国产日韩欧美| 在线播放无遮挡| 免费观看a级毛片全部| 99九九线精品视频在线观看视频| 蜜桃亚洲精品一区二区三区| 成人免费观看视频高清| 日日撸夜夜添| 久久国内精品自在自线图片| 亚洲av成人精品一区久久| 中文天堂在线官网| 国产高清国产精品国产三级 | 在线亚洲精品国产二区图片欧美 | 一区二区三区精品91| 免费观看无遮挡的男女| 观看免费一级毛片| 国产免费一级a男人的天堂| 综合色av麻豆| 一级av片app| 人体艺术视频欧美日本| 久久久国产一区二区| 久久久久性生活片| 精品酒店卫生间| 亚洲av免费在线观看| 亚洲精品乱码久久久v下载方式| 日韩欧美精品v在线| 国产中年淑女户外野战色| 人妻夜夜爽99麻豆av| av国产久精品久网站免费入址| 人妻制服诱惑在线中文字幕| 午夜免费鲁丝| 不卡视频在线观看欧美| 午夜免费鲁丝| 天天一区二区日本电影三级| 久久精品久久精品一区二区三区| av在线亚洲专区| 久久久久久久午夜电影| 欧美变态另类bdsm刘玥| 国产一区二区亚洲精品在线观看| 免费人成在线观看视频色| 爱豆传媒免费全集在线观看| 在线观看一区二区三区激情| 黑人高潮一二区| 国产日韩欧美亚洲二区| 色吧在线观看| 老师上课跳d突然被开到最大视频| 日韩精品有码人妻一区| 91精品国产九色| 亚洲自拍偷在线| 久久久久性生活片| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 男女边摸边吃奶| 亚洲国产色片| 中文字幕av成人在线电影| 国产淫片久久久久久久久| 亚洲欧美一区二区三区黑人 | 超碰av人人做人人爽久久| 久久久欧美国产精品| 夫妻午夜视频| 99久久人妻综合| 亚洲av中文av极速乱| 18禁裸乳无遮挡免费网站照片| 偷拍熟女少妇极品色| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 特级一级黄色大片| 有码 亚洲区| 少妇高潮的动态图| 搡女人真爽免费视频火全软件| 熟女人妻精品中文字幕| 黄色一级大片看看| 各种免费的搞黄视频| 久久久久久久大尺度免费视频| 婷婷色麻豆天堂久久| 插阴视频在线观看视频| 伦精品一区二区三区| 国产极品天堂在线| 日韩免费高清中文字幕av| 91狼人影院| 国产欧美另类精品又又久久亚洲欧美| 国产精品伦人一区二区| 欧美精品人与动牲交sv欧美| 综合色丁香网| 欧美潮喷喷水| 搡女人真爽免费视频火全软件| 99热全是精品| 制服丝袜香蕉在线| 少妇猛男粗大的猛烈进出视频 | 久久久亚洲精品成人影院| 永久免费av网站大全| 中国美白少妇内射xxxbb| 久久热精品热| 国产在视频线精品| 久久久精品免费免费高清| 久久99热这里只有精品18| 好男人视频免费观看在线| 少妇的逼水好多| 男女边摸边吃奶| 嫩草影院入口| 日韩在线高清观看一区二区三区| 我的女老师完整版在线观看| 色视频www国产| 网址你懂的国产日韩在线| 欧美国产精品一级二级三级 | 在线观看三级黄色| 国产91av在线免费观看| 天天躁夜夜躁狠狠久久av| 成人无遮挡网站| 国产伦理片在线播放av一区| 大码成人一级视频| 国产精品蜜桃在线观看| 永久免费av网站大全| 久久ye,这里只有精品| 久久人人爽人人爽人人片va| 国产中年淑女户外野战色| 成人亚洲精品一区在线观看 | 国产精品国产av在线观看| 亚洲熟女精品中文字幕| 国产精品嫩草影院av在线观看| 特级一级黄色大片| 国产精品三级大全| 亚洲国产精品国产精品| 中文欧美无线码| 国产人妻一区二区三区在| 老司机影院毛片| 在线观看美女被高潮喷水网站| 午夜精品一区二区三区免费看| 精品久久久久久久久亚洲| 国产人妻一区二区三区在| 亚洲成人av在线免费| 一级毛片久久久久久久久女| 午夜精品一区二区三区免费看| 搡女人真爽免费视频火全软件| 国产视频内射| 成人毛片60女人毛片免费| 国模一区二区三区四区视频| 人人妻人人爽人人添夜夜欢视频 | 国产伦在线观看视频一区| 久久久久久久精品精品| 一个人看的www免费观看视频| 亚洲va在线va天堂va国产| 日本黄大片高清| 丝袜脚勾引网站| 亚洲精品自拍成人| 亚洲国产色片| 一级毛片黄色毛片免费观看视频| 亚洲精品国产av成人精品| 插逼视频在线观看| 熟女人妻精品中文字幕| 亚洲欧美日韩无卡精品| 高清在线视频一区二区三区| 久久久成人免费电影| 美女视频免费永久观看网站| 国产 一区精品| 高清毛片免费看| 久久国产乱子免费精品| 一级黄片播放器| 只有这里有精品99| 高清毛片免费看| 各种免费的搞黄视频| 日韩欧美一区视频在线观看 | 一级片'在线观看视频| 人人妻人人看人人澡| 黄色怎么调成土黄色| 白带黄色成豆腐渣| 亚洲最大成人手机在线| 久久久午夜欧美精品| 一级av片app| 国产精品av视频在线免费观看| 777米奇影视久久| 国产淫语在线视频| 在线观看美女被高潮喷水网站| 岛国毛片在线播放| 亚洲四区av| 亚洲精品视频女| 亚洲精品456在线播放app| 精品久久久久久久久亚洲| 亚洲天堂国产精品一区在线| 国产成人福利小说| 十八禁网站网址无遮挡 | 亚洲av一区综合| 国产黄片美女视频| 麻豆成人午夜福利视频| 日韩欧美精品v在线| av线在线观看网站| 少妇的逼好多水| 麻豆成人av视频| 18禁在线无遮挡免费观看视频| 在线看a的网站| 青春草国产在线视频| 久久精品国产自在天天线| tube8黄色片| 综合色av麻豆| 看十八女毛片水多多多| 老司机影院成人| 一区二区三区精品91| 九九爱精品视频在线观看| xxx大片免费视频| 中国美白少妇内射xxxbb| 久久韩国三级中文字幕| 日韩欧美 国产精品| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 国产亚洲av片在线观看秒播厂| 久久久久久久久大av| 高清在线视频一区二区三区| 色吧在线观看| av黄色大香蕉| 一级毛片 在线播放| 国产综合懂色| 爱豆传媒免费全集在线观看| 国产大屁股一区二区在线视频| 国内揄拍国产精品人妻在线| 中文字幕亚洲精品专区| 久久99蜜桃精品久久| 午夜激情福利司机影院| 日韩一本色道免费dvd| 日韩 亚洲 欧美在线| 国产精品一区二区性色av| 好男人在线观看高清免费视频| 美女脱内裤让男人舔精品视频| 国模一区二区三区四区视频| 免费av不卡在线播放| 好男人视频免费观看在线| 在线a可以看的网站| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 国产在线男女| 精品久久国产蜜桃| 国产伦精品一区二区三区四那| 国产黄a三级三级三级人| 日韩一区二区视频免费看| 久久久国产一区二区| av专区在线播放| 久久久久久久午夜电影| 伦精品一区二区三区| 欧美zozozo另类| 看免费成人av毛片| 欧美成人a在线观看| 人体艺术视频欧美日本| 王馨瑶露胸无遮挡在线观看| .国产精品久久| 丰满少妇做爰视频| 国产有黄有色有爽视频| 精品久久久精品久久久| 久久精品人妻少妇| 欧美成人午夜免费资源| 男女国产视频网站| 欧美最新免费一区二区三区| 亚洲精品第二区| 菩萨蛮人人尽说江南好唐韦庄| 少妇的逼水好多| 好男人视频免费观看在线| 亚洲精品视频女| 亚洲国产精品国产精品| 激情 狠狠 欧美| 老司机影院毛片| 亚洲欧美日韩另类电影网站 | 777米奇影视久久| 伊人久久精品亚洲午夜| 日韩亚洲欧美综合| 黄片wwwwww| 久久精品熟女亚洲av麻豆精品| 女人十人毛片免费观看3o分钟| 91久久精品电影网| 欧美高清性xxxxhd video| 丰满乱子伦码专区| 大陆偷拍与自拍| 99热这里只有是精品在线观看| av免费在线看不卡| 99re6热这里在线精品视频| 国产精品嫩草影院av在线观看| 亚洲成人中文字幕在线播放| 欧美97在线视频| 亚洲,一卡二卡三卡| 久久热精品热| 久久精品国产鲁丝片午夜精品| 搡老乐熟女国产| 99精国产麻豆久久婷婷| 热re99久久精品国产66热6| 日韩三级伦理在线观看| 看免费成人av毛片| 最近2019中文字幕mv第一页| 亚洲美女视频黄频| 欧美老熟妇乱子伦牲交| 久久国内精品自在自线图片| 美女主播在线视频| 亚洲丝袜综合中文字幕| 精品久久久久久久末码| 亚洲真实伦在线观看| 亚洲av成人精品一区久久| 日本爱情动作片www.在线观看| 边亲边吃奶的免费视频| 欧美日韩亚洲高清精品| 亚洲av男天堂| 久久这里有精品视频免费| 一级二级三级毛片免费看| 九草在线视频观看| 禁无遮挡网站| 22中文网久久字幕| 欧美3d第一页| 亚洲精品成人久久久久久| 欧美 日韩 精品 国产| 亚洲av男天堂| 别揉我奶头 嗯啊视频| 午夜激情久久久久久久| 国产毛片在线视频| 亚州av有码| 人人妻人人爽人人添夜夜欢视频 | 在线看a的网站| 国产精品久久久久久精品古装| 最新中文字幕久久久久| 日韩视频在线欧美| 校园人妻丝袜中文字幕| 日本免费在线观看一区| 欧美xxxx性猛交bbbb| av免费观看日本| 国产一区有黄有色的免费视频| 精品一区在线观看国产| 亚洲经典国产精华液单|