• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ thermal-induced generation of {Ag0AgI} dimer within Co-Ag phosphonates

    2022-07-11 03:39:46QingqingGuoNanzhuLiQianZouJiageJiaYifanWeiSongsongBaoLiminZheng
    Chinese Chemical Letters 2022年6期

    Qingqing Guo,Nanzhu Li,Qian Zou,Jiage Jia,Yifan Wei,Songsong Bao,Limin Zheng

    State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210023,China

    Keywords:Metallic silver Thermal decomposition Metal phosphonate Atomic dispersion Magnetism

    ABSTRACT The thermal decomposition of AgNO3 is known to produce metallic Ag,but single-atomic dispersion is hard to achieve instead of the aggregation state of nanoparticles.Herein,we develop an efficient approach to thermally generate and stabilize single Ag atoms via the coordination effect.Two desired Co-Ag phosphonates [AgI2CoIII2(notpH3)2(NO3)]X [X=NO3?(1) or ClO4?(2)]were synthesized by solid-phase grinding method or solution crystallization.Both crystal structures reveal slightly different packing arrangements of various lattice anions and identical one-dimensional (1-D) coordination chains,formed in each case by the coordination of Ag(I) to the metalloligand Co(notpH3) and NO3?anion.The number of Ag(I) ions connected to each NO3?anion reduces from 5 in bulk AgNO3 to 2 in compounds 1 and 2,leading to the AgNO3 component stepwise decomposition at a lower temperature (<300 °C).During the thermal decomposition,the changes of supermolecular structures and Ag oxidation states were monitored by PXRD,IR and XAFS measurements.The most interesting finding is that 1 and 2 can retain chain structures and harvest Ag(0) atoms in the chain by controlling decomposition temperatures (220 °C for 1 and 254 °C for 2).

    Coordination polymers (CPs) or metal-organic frameworks(MOFs) are periodic structures containing metal entities linked by organic ligands [1–3].Due to the nature of metal centers’monodisperse and volatile metal oxidation state tuned by ligand coordination,CPs or MOFs provide a promising platform for designing single-atom materials (SAMs),applying in such as catalyst [4–11],battery [12]and solar cell [13].The active metal sites can be introduced in pristine CPs or MOFs during a synthetic process or be in-situ produced in their derived materials under suitable thermal or chemical conversion processes [5,14,15].In addition,isolated monometallic active sites can be constructed and further immobilized through the post-modification of metal nodes [4,16],organic ligands [17],or guest spaces [8].However,it is still challenging to anchor single zero-valent metal atoms in CPs/MOFs and their derivatives,concerning the aggregation of metal atoms to nanoparticles and the optimal coordination geometry.

    Metallic Ag nanoparticles (NPs) loaded materials have promising catalytic activities for photocatalytic water reduction and threephase alkyne hydrogenation [18].To promote photocatalytic performance,downsizing Ag NPs to Ag clusters or single-atom dispersion is expected to be a good strategy [10].Recently,a few works were reported to anchor single Ag atoms in inorganic supports such as carbon nitride and MnOxby coordination and achieving high stabilities and catalytic activities [18–23].While the CPs/MOFs support can immobilize Ag NPs in a few cases [15,17],the observation of isolated single atoms of metallic silver in them is still rare.

    The thermal decomposition of silver nitrate is well known to obtain metallic Ag,NO2,and O2.The resulting Ag(0) atoms usually aggregate and can be a precursor to synthesize the Ag NPs.We conjecture that Ag(0) atoms would be trapped in coordination spheres and atomically dispersed when AgNO3thermally decomposes in CPs/MOFs.To obtain such a compound is trouble in the combination of NO3?and a ligand within the same coordination sphere of Ag(I).In our previous work,the neutral mononuclear complex Co(notpH3) [notpH6=1,4,7-triazacyclononane-1,4,7-triyl-tris(methylene-phosphonic acid)]can serve as a bi-,trior tetra-dentate metalloligand to ligate various metal cations [24–28].Herein,we report two new Co(notpH3) based one-dimensional Co-Ag coordination polymers [AgI2CoIII2(notpH3)2(NO3)](NO3) (1)and [AgI2CoIII2(notpH3)2(NO3)](ClO4) (2).Compound 1 can be synthesized by simply grinding the mixture of Co(notpH3) and AgNO3solid (Fig.1a).Each coordinated NO3?anion bridges two Ag(I) ions within the chains in bothη2-andη1-forms.

    Interestingly,the thermal decomposition of AgNO3occurs in both compounds under lower temperatures compared to bulk AgNO3.Moreover,the stepwise mass losses agree with the successive release of O2and NO2.After heating at 220 °C for 1 and 254°C for 2,the intermediates exhibit invariable PXRD patterns and change from diamagnetism to two spin-1/2 paramagnetism.It indicates that the generating Ag(0) atoms (spin-1/2) and NO2(spin-1/2) molecules anchor in the coordination chains.

    Fig.1.(a) The synthetic route and decomposition of Co-Ag phosphonates.The diagrams show the asymmetric unit (b) and the coordination chain (c) of compound 1.The disordered lattice NO3?anion and all H atoms except bonding to O3,O6 and O9 atoms are omitted for clarity.Symmetric operation: A ?x,1?y,?z;B 1?x,1?y,?z;C?1+ y,y,z.

    Single crystal X-ray structural analyses revealed that 1 crystallizes in the monoclinicP21/nspace group.The asymmetric unit consists of one Co(III),one Ag(I),one notpH33?,a half coordination NO3?,and a half lattice NO3?.As shown in Fig.1b,the Co(III) ion in the Co(notpH3) adopts octahedral geometry,with three donor N atoms and three donor O atoms [Co-O: 1.921(2)?1.939(2) ?A,Co-N: 1.933(3)?1.947(3) ?A].Each Ag(I) ion is coordinated by four O atoms (O1,O7,O2A,and O4A) from two Co(notpH3) and one or two O atoms (O12B or O10 and O11) from disordered NO3?anions [Ag-O: 2.375(2)?2.859(3) ?A].The Ag1-O4A and Ag1-O7 bonds show long distances of 2.770(3) and 2.859(3) ?A [29],but shorter than the sum of the van der Waals radii of ~3.7 ?A [30].Three O atoms (O3,O6,and O9) are protonated in Co(notpH3),which serves as a tetra-dentate neutral metalloligand binding two equivalent Ag(I) ions [Ag1…Ag1A,3.2384(7) ?A](Fig.1c).The {Co2Ag2}units are fused by NO3?through its three O atoms [Ag1…Ag1B,6.0822(9) ?A],forming a one-dimensional (1-D) infinite chain alonga-axis.Such an alternative chain structure bridged by two kinds of ligands is also observed in some 1-D metal chains [31–33].Furthermore,the 1-D chain is stabilized through intrachain hydrogenbonding interactions [34,35].Each Co(notpH3) servers as not only a hydrogen bond donor but also a hydrogen bond acceptor to connect the other three Co(notpH3) within the chain [O6-H…O2A and O6A-H…O2: 2.613(3) ?A;O9-H…O5C and O9B-H…O5: 2.541(3) ?A].The 1-D chains are packed into a 3-D supramolecular network through strong interchain hydrogen bonding [O3-H…O8D: 2.484(3)?A (symmetric code D,x,0.5?y,?0.5+z)](Fig.S2a in Supporting information).The positive network is balanced by heavily disordered lattice NO3?anions.

    Fig.2.Thermal stability of 1 and 2 under Ar atmosphere.

    Like 1,compound 2 also crystallizes in the monoclinicP21/nspace group and has a similar asymmetric unit except that a half lattice ClO4?anion replaces a half lattice NO3?anion.ClO4?anions in the lattice have minimal impact on the coordination sphere,the chain’s structure,and the H-bonding interactions between chains (Table S2,Figs.S2b and S3 in Supporting information).The smaller Ag…Ag distances of 3.189(3) ?A within {Co2Ag2}units and of 6.062(4) ?A between {Co2Ag2} units are observed in 2 probably due to the data collection at 173 K.The ClO4?anion in the lattice has a different shape from the NO3?anion,slightly changing the placement of coordination chains alongbandcdirections [β-angle: 96.196(3)° in 1 and 94.743(11)° in 2].

    As expected,the AgNO3component homogeneously dispersed in hydrogen-bonded networks consist of cobalt phosphonates.The thermal stability of compounds 1 and 2 was determined by thermogravimetric (TG) analysis (Fig.2).1 was pre-dried under 120 °C to remove the absorbed water molecules in agglomerated particles of the wet-grinding synthesized sample.Both 1 and 2 have similar coordination chain structures and hydrogen-bonded networks.However,various lattice anions (NO3?in 1 and ClO4?in 2) significantly affect thermal stability showing the different decomposition temperatures (Td).We speculate that the size and geometry differences between NO3?and ClO4?could affect the thermal stability of 1 and 2.The thermochemical radii of NO3?and ClO4?are 179 and 240 pm [36],respectively.The large ClO4?anions can occupy more lattice space to make the framework denser,exhibiting higher tolerance toward lattice collapse [37].In addition,compared to planar NO3?,the tetrahedral ClO4?can involve more C–H…O hydrogen bonds (Table S3 in Supporting information) with the chains,enhancing the chain-chain interactions.1 undergoes a two-step mass loss by heating to 500 °C.Two mass losses of 12.1%and 8.0% come up at the ranges of 120–270 °C and 270–430 °C,attributed to the nitrate anions or organic moieties’degradation.There is no evident plateau in between,and the decomposition continues above 430 °C.Compound 2 shows a stable mass up to 150 °C in agreement with the absence of lattice solvents.The decomposition starts at 150 °C and follows a three-step process.A slight mass loss of 1.1% occurs between 150 °C and 254 °C,followed by two sharply declining mass losses of 3.8% and 12.9% at 254–295 °C and 295–350 °C.The first two mass losses (1.1% and 3.8%) correspond with the stepwise releases of O2(calcd.1.2%)and NO2(calcd.3.5%) from the decomposition of the AgNO3component.Furthermore,the generation of NO2(m/z=46) was confirmed by the thermogravimetric and mass spectrometric (TG-MS)analyses for 1 and 2 (Fig.S5 in Supporting information).The similar total weight loss (~22.3%) at 500 °C for both 1 and 2 indicates the homologous residual components.

    Fig.3.PXRD diffractograms of 1,2 and the related thermal treatment samples.

    TG analyses of bulk AgNO3and the mononuclear complex Co(notpH3)·3H2O were also performed in the Ar atmosphere as a comparison (Fig.S4 in Supporting information).The decomposition of AgNO3(Eq.1) becomes appreciable around 330 °C and entirely at 470 °C.The ligand decomposition in Co(notpH3)·3H2O occurs at around 287 °C and tends to be stable at 430 °C.The results of TG analyses indicate that (1) the dispersion can reduce the thermal stability of the AgNO3component;(2) lattice ClO4?anions compared to NO3?anions can promote the organic moieties’thermal stability.

    Insights into the structural transformation during decomposition are provided by powder XRD measurements for selected samples annealing at different temperatures (220 and 270 °C for 1;254 and 295 °C for 2) shown in Fig.3.The PXRD patterns of 2–254 remain almost when heating 2 to 254 °C,indicating that the assembly of Co(notpH3) units does not change and Ag atoms are still embedding in the chains structures.The fitted cell parameters of 2–254 are similar to those of 2 (Fig.S7 and Table S4 in Supporting information).When the annealing temperature reaches 295°C,2 undergoes the secondary weight loss,and the resulting solid 2–295 becomes a crystalline-amorphous composite.All observed diffraction peaks at 2θ=38.2°,44.4° and 64.5° can be assigned to crystalline Ag with cubic (Fm-3m) lattice (Fig.S6 and Table S1 in Supporting information).For 1,the diffraction peaks caused by the crystalline H-bonded assembly are still evident after annealing at 220 °C.Furthermore,the PXRD pattern of 1–270 confirms the generation of crystalline Ag.

    The above results indicate that the thermal decomposition reaction of AgNO3can occur in 1D Co-Ag coordination chains at a temperature belowTdof bulk AgNO3.Also,the decomposition consists of two stages,which are proposed in Fig.1a.First,the product O2releases,and the product NO2retains in the coordination chain to bridge two adjacent {Co2Ag2} units.Next,the bridged NO2releases and the collapse of H-bonded networks accompanies the formation of crystalline Ag.It is worth noting that Ag(0) atoms appear in the{Co2Ag2} units at the first stage.The further magnetic and X-ray absorption fine-structure (XAFS) studies reveal the valence change of Ag atoms during the decomposition.

    Magnetic susceptibilities,measured in the temperature range 1.8–300 K under an external field of 1 kOe,reveal a diamagnetic nature for compounds 1 and 2,in agreement with the presence of a low spin d6Co(III) and d10Ag(I) (Fig.S6 in Supporting information).After heating,the resulting samples 1–220,1–270,2–254 and 2–295 become paramagnetic.TheχMTvalues (per Co2Ag2unit) at 300 K are 1.17 cm3K/mol for 1–220,7.18 cm3K/mol for 1–270,0.84 cm3K/mol for 2–254,and 7.41 cm3K/mol for 2–295.TheχMTvalue for 2–254 is compatible with the spin-only value(0.75 cm3K/mol) for the 1/2 (Ag0)–1/2 (NO2) spin system.Furthermore,theχMTvalue for 2–295 agrees well with the presence of two high spin octahedral Co(II) with a significant orbital contribution.It indicates NO2within the chain releases while an undefined Co(II) species produces.X-ray photoelectron spectroscopy (XPS) is applied to analyze the Co(II)/Co(III) on the particle’s surface of 2,2–254 and 2–295 (Fig.S8 in Supporting information).The spectra of 2 and 2–254 are almost the same,with two peaks at 780.7 and 795.7 eV.While the spectrum of 2–295 shows the observable satellite features at around 784.1 and 802.2 eV (~3.4 and 6.5 eV above the main peak),indicating the oxidation state of Co(II) [38].On account of no obvious turning point between the releases of O2and NO2for 1,theχMTvalue for 1–220 is larger than the spin-only value (0.75 cm3K/mol) for the two separated spin-1/2 system.After the release of NO2,theχMTvalues for 1–270 and 2–295 are almost identical.

    Theex-situAg K-edge XANES spectra of 1 and the samples heated at 100,150,180,200,220,240 and 280 °C are given in Fig.4a,which also shows the spectra of Ag-foil and AgNO3standards.Edge energy obtained at half-height of the normalized edgejump could be used to monitor changes in the oxidation state for Ag qualitatively.The edge position of 1 is 25,514.0 eV,identical to that of the AgNO3standard (25,513.5) and 2 eV lower than that of the Ag-foil standard (25,516.0 eV).For the thermally treated samples of 1,the edge positions of 1–100,1–150,1–180 and 1–200 are almost the same at 25,514.3 eV,suggesting the Ag oxidation state of+1.Furthermore,the edge positions of 1–240 and 1–280 are almost identical at 25,515.6 eV,suggesting the metallic form of Ag.The edge position of 1–220 is at 25,514.8 eV between the positions of AgNO3and Ag-foil standards,indicating the mixed-valence(0 and+1) Ag centers.

    The EXAFS data of those samples were also analyzed to realize the changes in the coordination sphere of Ag centers after thermal treatment.Shown in Fig.S8 and Fig.4b are the Ag K-edgek3-weightχ(k) data and their Fourier-transformed (FT) data,respectively.It is found that 1,1–100,1–150,1–180 and 1–200 present an FT peak located at the identical position of around 1.7 ?A,corresponding to the nearest Ag-O coordination.While for 1–220,two FT peaks at 1.7 and 2.0 ?A appear on the Ag-O region,indicating two kinds of local atomic arrangements around the Ag centers.This structural change might arise from the reducing half Ag(I) ions to Ag(0) atoms in the chain.The additional structural parameters fitting for two kinds of Ag coordination spheres are unsuccessful due to too many variables.The FT peak at 2.5 ?A with significantly increased intensity is observed for 1–240,1–280 and the Ag-foil,corresponding to the agglomeration of Ag atomsviaAg-Ag bonds.

    In conclusion,we synthesized two 1-D Co-Ag phosphonates containing the AgNO3component.Under optimal temperature,as expected,not only the thermal decomposition of AgNO3can produce metallic Ag in CPs,but the single Ag atoms are stabilized in the chainviaphosphonate-Ag coordination.However,the atomically dispersed metallic Ag is embedded in a dense structure and inactive.Further work is trying to disperse single atoms of metallic silver in porous CPs or CP nanosheets using this method.

    Fig.4.(a) Ag K-edge XANES spectra and (b) Fourier transformed space (R space) at Ag K-edge of 1 and its thermally treated samples.The spectra of Ag-foil and AgNO3 were recorded as a comparison.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    Financial support by the National Natural Science Foundation of China (Nos.21671098,21731003) and the Fundamental Research Funds for the Central Universities (Nos.14380151,14380206) is acknowledged.We thank Professor Xizhang Wang at Nanjing University for the valuable discussion.Beam time at Shanghai Synchrotron Radiation Facility (SSRF) is acknowledged.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.091.

    乱人伦中国视频| av在线app专区| 99热这里只有精品一区| 久久久久久久大尺度免费视频| 一级av片app| 亚洲av不卡在线观看| 久久久久久人妻| 内地一区二区视频在线| 九九爱精品视频在线观看| 国产在线一区二区三区精| 亚洲久久久国产精品| 日韩人妻高清精品专区| 国产精品一区二区在线不卡| 韩国av在线不卡| 亚洲丝袜综合中文字幕| 纵有疾风起免费观看全集完整版| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| 国产高清三级在线| 国产精品久久久久久久电影| 欧美精品国产亚洲| 亚洲国产色片| 久久这里有精品视频免费| av.在线天堂| 少妇人妻久久综合中文| 插阴视频在线观看视频| 又黄又爽又刺激的免费视频.| 久久久久久久久久人人人人人人| 久久久久久久久大av| 热re99久久国产66热| 三上悠亚av全集在线观看 | 天美传媒精品一区二区| 久久精品国产亚洲网站| 欧美人与善性xxx| 2022亚洲国产成人精品| 校园人妻丝袜中文字幕| 特大巨黑吊av在线直播| 性高湖久久久久久久久免费观看| 亚洲精品日韩av片在线观看| 嫩草影院入口| tube8黄色片| 日本免费在线观看一区| 黑人高潮一二区| 精品久久久精品久久久| 老熟女久久久| 自线自在国产av| 黄色视频不卡| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频| 久久精品aⅴ一区二区三区四区| 男女免费视频国产| 国产精品 欧美亚洲| 一边摸一边抽搐一进一出视频| 啦啦啦免费观看视频1| 中文字幕另类日韩欧美亚洲嫩草| 18禁裸乳无遮挡动漫免费视频| 91九色精品人成在线观看| 99久久人妻综合| 久久精品人人爽人人爽视色| 亚洲av男天堂| 亚洲精品国产av成人精品| 国产在线一区二区三区精| 色94色欧美一区二区| 日本一区二区免费在线视频| 精品久久久精品久久久| 丁香六月天网| 免费观看人在逋| 操美女的视频在线观看| 国产精品熟女久久久久浪| 少妇精品久久久久久久| 一级,二级,三级黄色视频| √禁漫天堂资源中文www| 欧美激情久久久久久爽电影 | 欧美xxⅹ黑人| 男女高潮啪啪啪动态图| 999精品在线视频| 啦啦啦 在线观看视频| 亚洲人成电影免费在线| 美国免费a级毛片| 在线观看一区二区三区激情| 久久免费观看电影| 日本av手机在线免费观看| 国产精品久久久久久精品古装| 人人妻人人爽人人添夜夜欢视频| 女警被强在线播放| 亚洲av成人一区二区三| 啦啦啦免费观看视频1| 交换朋友夫妻互换小说| 国产成人啪精品午夜网站| 黄色视频在线播放观看不卡| 美女高潮喷水抽搐中文字幕| 一区在线观看完整版| 啦啦啦视频在线资源免费观看| 伊人久久大香线蕉亚洲五| 黄色视频,在线免费观看| 成人国产av品久久久| 亚洲精品国产区一区二| 天天添夜夜摸| 国产男女内射视频| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 男女高潮啪啪啪动态图| 91字幕亚洲| 俄罗斯特黄特色一大片| 国产亚洲午夜精品一区二区久久| 国产无遮挡羞羞视频在线观看| 在线精品无人区一区二区三| 欧美黄色淫秽网站| 岛国在线观看网站| 宅男免费午夜| 国产极品粉嫩免费观看在线| 不卡av一区二区三区| 亚洲国产看品久久| 香蕉国产在线看| 久久青草综合色| 伊人久久大香线蕉亚洲五| 精品国产一区二区三区久久久樱花| 女人精品久久久久毛片| www日本在线高清视频| 久久精品国产亚洲av香蕉五月 | 高清黄色对白视频在线免费看| 2018国产大陆天天弄谢| 丝袜在线中文字幕| 免费女性裸体啪啪无遮挡网站| av网站在线播放免费| 亚洲欧美精品综合一区二区三区| www.av在线官网国产| 国产一区二区在线观看av| 亚洲精品国产av成人精品| 成年动漫av网址| 电影成人av| 我的亚洲天堂| 少妇精品久久久久久久| 香蕉国产在线看| 国精品久久久久久国模美| 亚洲欧美日韩另类电影网站| www.自偷自拍.com| 在线观看一区二区三区激情| 国产欧美日韩一区二区三 | 久久精品久久久久久噜噜老黄| 高清在线国产一区| 一级毛片精品| 欧美 日韩 精品 国产| 嫩草影视91久久| 蜜桃在线观看..| 一级,二级,三级黄色视频| 操美女的视频在线观看| 窝窝影院91人妻| 亚洲成人免费电影在线观看| av在线app专区| 国产伦理片在线播放av一区| 99国产精品一区二区蜜桃av | 美女视频免费永久观看网站| 亚洲欧美色中文字幕在线| a级片在线免费高清观看视频| 99国产综合亚洲精品| 亚洲国产av影院在线观看| 精品国内亚洲2022精品成人 | 亚洲中文av在线| 亚洲美女黄色视频免费看| 首页视频小说图片口味搜索| 成人影院久久| 国产精品久久久久成人av| 亚洲国产成人一精品久久久| www.999成人在线观看| 久久久久久久久久久久大奶| 99热网站在线观看| 人妻人人澡人人爽人人| 欧美日韩亚洲高清精品| 日本91视频免费播放| 国产区一区二久久| 狂野欧美激情性xxxx| 50天的宝宝边吃奶边哭怎么回事| 一级a爱视频在线免费观看| 免费少妇av软件| 黄片小视频在线播放| 美女大奶头黄色视频| 日韩有码中文字幕| 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区| 久久精品国产a三级三级三级| 亚洲,欧美精品.| 肉色欧美久久久久久久蜜桃| 一级,二级,三级黄色视频| 操出白浆在线播放| 男女高潮啪啪啪动态图| 黄色视频在线播放观看不卡| 日韩视频在线欧美| 久久人妻熟女aⅴ| 99久久精品国产亚洲精品| 亚洲中文日韩欧美视频| 嫩草影视91久久| 女性生殖器流出的白浆| 中文欧美无线码| 午夜成年电影在线免费观看| av不卡在线播放| 日本五十路高清| 免费高清在线观看日韩| 成人国产av品久久久| 97在线人人人人妻| 亚洲美女黄色视频免费看| 夜夜骑夜夜射夜夜干| 久久天堂一区二区三区四区| 欧美一级毛片孕妇| 纯流量卡能插随身wifi吗| 欧美xxⅹ黑人| 男男h啪啪无遮挡| 午夜免费观看性视频| 18禁黄网站禁片午夜丰满| 久久久久网色| 亚洲九九香蕉| 免费在线观看日本一区| av视频免费观看在线观看| 久久久精品国产亚洲av高清涩受| 国产精品国产三级国产专区5o| 国产一区二区三区在线臀色熟女 | 黄色视频不卡| 久久午夜综合久久蜜桃| 国产又爽黄色视频| 色婷婷av一区二区三区视频| 12—13女人毛片做爰片一| 久久精品国产亚洲av高清一级| 黄色怎么调成土黄色| 美女午夜性视频免费| 成人黄色视频免费在线看| 欧美精品啪啪一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人色综图| 桃红色精品国产亚洲av| 欧美激情久久久久久爽电影 | 免费不卡黄色视频| 欧美日韩亚洲高清精品| 在线观看免费日韩欧美大片| 色婷婷久久久亚洲欧美| 国产av精品麻豆| av天堂久久9| 国产日韩欧美亚洲二区| 欧美日韩福利视频一区二区| 日韩一区二区三区影片| 一级片免费观看大全| 亚洲av成人一区二区三| 捣出白浆h1v1| 夫妻午夜视频| 久久久国产欧美日韩av| 欧美人与性动交α欧美精品济南到| 欧美 亚洲 国产 日韩一| 99re6热这里在线精品视频| 精品久久蜜臀av无| 伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 美女福利国产在线| 欧美日本中文国产一区发布| 国产高清videossex| 丝袜在线中文字幕| 中国美女看黄片| 女人爽到高潮嗷嗷叫在线视频| 99精品欧美一区二区三区四区| 日韩中文字幕视频在线看片| av天堂在线播放| 丝袜人妻中文字幕| 曰老女人黄片| 黄频高清免费视频| 精品国产国语对白av| 精品乱码久久久久久99久播| 夫妻午夜视频| 男女无遮挡免费网站观看| 日本wwww免费看| 午夜两性在线视频| 亚洲一区二区三区欧美精品| 老司机影院成人| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 久久狼人影院| 日韩中文字幕视频在线看片| 伊人久久大香线蕉亚洲五| 久久精品亚洲av国产电影网| 国产视频一区二区在线看| 狠狠狠狠99中文字幕| 亚洲av成人一区二区三| 国产精品.久久久| 搡老乐熟女国产| 午夜影院在线不卡| 欧美黄色淫秽网站| 新久久久久国产一级毛片| 欧美成狂野欧美在线观看| 手机成人av网站| 国产有黄有色有爽视频| 91九色精品人成在线观看| 国产一区二区三区综合在线观看| 久久国产精品人妻蜜桃| 久久久精品免费免费高清| 各种免费的搞黄视频| 欧美+亚洲+日韩+国产| 汤姆久久久久久久影院中文字幕| 精品福利观看| 69av精品久久久久久 | 久久久国产欧美日韩av| 亚洲伊人久久精品综合| 亚洲伊人色综图| 99精品久久久久人妻精品| 国产精品国产三级国产专区5o| 精品福利永久在线观看| 国产精品熟女久久久久浪| 日韩视频一区二区在线观看| 精品国产国语对白av| 亚洲精品粉嫩美女一区| 国产av国产精品国产| 欧美午夜高清在线| 成人影院久久| 宅男免费午夜| 国产日韩一区二区三区精品不卡| 考比视频在线观看| 亚洲国产中文字幕在线视频| 精品国产一区二区三区四区第35| 日韩中文字幕视频在线看片| 免费少妇av软件| 国产区一区二久久| 午夜福利视频在线观看免费| 精品国产一区二区久久| 狠狠精品人妻久久久久久综合| tocl精华| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 性色av一级| 久久天躁狠狠躁夜夜2o2o| 欧美激情久久久久久爽电影 | 男女下面插进去视频免费观看| 99久久99久久久精品蜜桃| 在线天堂中文资源库| 久久人人爽av亚洲精品天堂| 人妻一区二区av| 欧美日韩亚洲国产一区二区在线观看 | 欧美一级毛片孕妇| 欧美在线黄色| av网站在线播放免费| 国产精品麻豆人妻色哟哟久久| 免费不卡黄色视频| 无遮挡黄片免费观看| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 成人国产一区最新在线观看| 亚洲伊人久久精品综合| 久久久国产欧美日韩av| 桃花免费在线播放| 精品亚洲成国产av| 国产区一区二久久| 亚洲第一av免费看| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲精品第一综合不卡| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 久久这里只有精品19| 老熟妇仑乱视频hdxx| 欧美日韩一级在线毛片| 午夜精品国产一区二区电影| bbb黄色大片| 每晚都被弄得嗷嗷叫到高潮| 视频区图区小说| 悠悠久久av| 成年人黄色毛片网站| 久久久久久免费高清国产稀缺| 又大又爽又粗| 999久久久精品免费观看国产| 汤姆久久久久久久影院中文字幕| 热re99久久精品国产66热6| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 国产日韩欧美亚洲二区| 丝袜喷水一区| 久久久精品免费免费高清| 中文字幕色久视频| a级毛片黄视频| 精品免费久久久久久久清纯 | 在线精品无人区一区二区三| 老司机福利观看| 午夜视频精品福利| 制服诱惑二区| 韩国高清视频一区二区三区| 天天操日日干夜夜撸| 99九九在线精品视频| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 嫩草影视91久久| 亚洲一区二区三区欧美精品| 亚洲av片天天在线观看| 国产91精品成人一区二区三区 | 久久久国产一区二区| 久久久久久免费高清国产稀缺| 久久精品国产亚洲av高清一级| 一级毛片女人18水好多| 亚洲第一青青草原| 亚洲综合色网址| 亚洲精品一区蜜桃| 男人操女人黄网站| 亚洲精品成人av观看孕妇| 狠狠婷婷综合久久久久久88av| 久久影院123| 1024香蕉在线观看| 国产成人免费观看mmmm| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 五月天丁香电影| 国产精品一区二区在线观看99| 亚洲情色 制服丝袜| 一区二区日韩欧美中文字幕| 丝袜人妻中文字幕| 一本大道久久a久久精品| 国产91精品成人一区二区三区 | 午夜老司机福利片| 国产精品熟女久久久久浪| 人妻一区二区av| 777米奇影视久久| 日韩中文字幕欧美一区二区| 欧美激情高清一区二区三区| 亚洲av电影在线观看一区二区三区| 极品少妇高潮喷水抽搐| 男女边摸边吃奶| 亚洲中文日韩欧美视频| 免费在线观看完整版高清| 一本—道久久a久久精品蜜桃钙片| 亚洲三区欧美一区| 叶爱在线成人免费视频播放| 搡老乐熟女国产| 国产日韩欧美亚洲二区| 免费看十八禁软件| 欧美日韩国产mv在线观看视频| 日本欧美视频一区| 三级毛片av免费| 99久久99久久久精品蜜桃| 国产伦理片在线播放av一区| 99久久国产精品久久久| 国产精品99久久99久久久不卡| 久久精品人人爽人人爽视色| 国产男人的电影天堂91| 狂野欧美激情性bbbbbb| 大香蕉久久网| 欧美另类一区| 成人国产一区最新在线观看| 久久人妻熟女aⅴ| 国产一区二区 视频在线| 欧美+亚洲+日韩+国产| 香蕉国产在线看| 亚洲欧美一区二区三区久久| 日本精品一区二区三区蜜桃| 中文精品一卡2卡3卡4更新| 成人av一区二区三区在线看 | 精品国产国语对白av| 欧美变态另类bdsm刘玥| 国产成人一区二区三区免费视频网站| 亚洲专区国产一区二区| 国产精品一区二区在线观看99| 久久九九热精品免费| 日日爽夜夜爽网站| 丝袜喷水一区| 久久性视频一级片| 曰老女人黄片| 最近中文字幕2019免费版| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产一区二区入口| 免费高清在线观看视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 一二三四社区在线视频社区8| 老司机午夜福利在线观看视频 | 免费在线观看日本一区| 日韩欧美一区视频在线观看| 18禁黄网站禁片午夜丰满| 国产视频一区二区在线看| 亚洲欧美精品自产自拍| 男男h啪啪无遮挡| 亚洲视频免费观看视频| 午夜老司机福利片| 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清 | 水蜜桃什么品种好| 91av网站免费观看| 黄色毛片三级朝国网站| 国产真人三级小视频在线观看| 亚洲人成电影免费在线| 亚洲五月色婷婷综合| 少妇裸体淫交视频免费看高清 | 久久精品国产亚洲av高清一级| 在线观看免费高清a一片| 欧美激情 高清一区二区三区| 中国国产av一级| tube8黄色片| 一本色道久久久久久精品综合| 婷婷成人精品国产| 日本av免费视频播放| 亚洲国产精品成人久久小说| 少妇裸体淫交视频免费看高清 | 国产男人的电影天堂91| 国产一区有黄有色的免费视频| 大码成人一级视频| 国产又爽黄色视频| 亚洲成国产人片在线观看| 精品人妻1区二区| 99热国产这里只有精品6| 久久久久久久大尺度免费视频| 一区二区av电影网| 日本91视频免费播放| 桃花免费在线播放| 少妇精品久久久久久久| 国产成人av教育| av在线app专区| 老司机午夜福利在线观看视频 | 精品人妻1区二区| 99热网站在线观看| 国产深夜福利视频在线观看| 精品熟女少妇八av免费久了| 成人国产一区最新在线观看| 久久久精品国产亚洲av高清涩受| 天天躁夜夜躁狠狠躁躁| 国产色视频综合| 国产老妇伦熟女老妇高清| 日韩视频一区二区在线观看| 91精品国产国语对白视频| 高清视频免费观看一区二区| 国产成人av激情在线播放| 成年人免费黄色播放视频| 男男h啪啪无遮挡| 亚洲av电影在线进入| 99国产精品一区二区三区| 久久99一区二区三区| 97精品久久久久久久久久精品| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美| 国产成人av教育| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 精品人妻1区二区| 中文字幕色久视频| 久久精品国产亚洲av香蕉五月 | 国产伦人伦偷精品视频| 亚洲欧美清纯卡通| 成年美女黄网站色视频大全免费| 欧美精品啪啪一区二区三区 | 午夜久久久在线观看| 午夜福利乱码中文字幕| 久久久久精品国产欧美久久久 | 在线看a的网站| 热99国产精品久久久久久7| 免费观看av网站的网址| 女人爽到高潮嗷嗷叫在线视频| 欧美激情高清一区二区三区| 不卡av一区二区三区| 久久人妻熟女aⅴ| 99国产精品一区二区三区| 精品免费久久久久久久清纯 | 国产一区二区在线观看av| 少妇精品久久久久久久| www.精华液| 国产精品二区激情视频| av天堂久久9| 99re6热这里在线精品视频| 青青草视频在线视频观看| 精品乱码久久久久久99久播| 国产高清videossex| 80岁老熟妇乱子伦牲交| 91大片在线观看| 另类亚洲欧美激情| 丰满人妻熟妇乱又伦精品不卡| 国产又爽黄色视频| 日韩一卡2卡3卡4卡2021年| 自线自在国产av| 18禁黄网站禁片午夜丰满| 国产高清视频在线播放一区 | 老熟妇乱子伦视频在线观看 | 欧美精品一区二区免费开放| 天堂俺去俺来也www色官网| 欧美xxⅹ黑人| 狂野欧美激情性bbbbbb| 精品福利永久在线观看| 国产精品久久久久久精品电影小说| 精品国产乱码久久久久久男人| 亚洲欧美一区二区三区久久| 亚洲精品国产精品久久久不卡| 久久影院123| 欧美黄色片欧美黄色片| 男女高潮啪啪啪动态图| 国产xxxxx性猛交| 国产精品亚洲av一区麻豆| 久久国产精品男人的天堂亚洲| bbb黄色大片| 亚洲精品国产av蜜桃| av福利片在线| 黄色 视频免费看| 国产黄频视频在线观看| 手机成人av网站| 一级片免费观看大全| 欧美精品亚洲一区二区| 国产免费福利视频在线观看| 亚洲一区中文字幕在线| 91av网站免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产又色又爽无遮挡免| 一级毛片电影观看| 久久久欧美国产精品| 黑人猛操日本美女一级片| 亚洲成人国产一区在线观看| 亚洲欧洲精品一区二区精品久久久| 国产av一区二区精品久久| 人妻久久中文字幕网| 啦啦啦免费观看视频1| 亚洲国产欧美在线一区| 无遮挡黄片免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美97在线视频| av又黄又爽大尺度在线免费看| 搡老岳熟女国产| svipshipincom国产片| 91麻豆精品激情在线观看国产 | 桃花免费在线播放| 涩涩av久久男人的天堂| 爱豆传媒免费全集在线观看|