• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biomass-derived dynamic covalent epoxy thermoset with robust mechanical properties and facile malleability

    2022-07-11 03:39:44XiaoMinDingLiChenXiLuoFengMingHeYanFangXiaoYuZhongWang
    Chinese Chemical Letters 2022年6期

    Xiao-Min Ding,Li Chen,Xi Luo,Feng-Ming He,Yan-Fang Xiao,Yu-Zhong Wang

    The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering,College of Chemistry,Sichuan University, Chengdu 610064,China

    Keywords:Epoxy resin Dynamic covalent thermoset Protocatechualdehyde Imine chemistry High-performance

    ABSTRACT Biomass-derived dynamic covalent thermoset has been considered as a promising solution to the high dependence on fossil resources and the difficulty in recyclability after curing of conventional bisphenol A epoxy resins.However,the design and preparation of a dynamic covalent biobased epoxy thermoset with both comparable thermal and mechanical performances to bisphenol A epoxy resins and reprocessibility remains a significant challenge.Herein,based on imine chemistry,a novel Schiff base-containing dynamic covalent epoxy thermoset was facilely fabricated from biobased protocatechualdehyde and synthetic siloxane diamine.Due to the more reactive epoxides in the epoxy monomer than in bisphenol A epoxy oligomer,the thermoset exhibited a high cross-linking density,resulting in high thermal stability and glass transition temperature.The rigid aromatic Schiff base moieties endowed the thermoset with excellent mechanical properties: Thanks to the plasticization of the flexible siloxane,the thermoset displayed high impact strength.Meanwhile,owing to the high segmental mobility,the fast exchange of imine bonds was guaranteed;and the thermoset was able to be recycled through reprocessing.Taking these features,this work provided great potential for designing and preparing sustainable substitutes for bisphenol A epoxy resins in the high-performance applications.

    Epoxy resins (EPs) have become one of the most widely used thermosetting resins and are indispensable in the fields of composite and structural materials,electronics and electricity,coatings and adhesives due to their excellent dimensional stability,adhesive properties,electrical insulation,mechanical properties and corrosion resistance [1–4].However,about 90% of the EPs currently used are provided from diglycidylether of bisphenol A (DGEBA),which main synthetic raw material bisphenol A (BPA) still largely depends on fossil resources [5].Meanwhile,BPA is confirmed as hormone disruptor and may pose several threats to the health of life and the ecosystem [6,7].Moreover,once completely cured,the permanent cross-linking structures of conventional EPs make them difficult to be reprocessed or reused,which results in the waste of resources;and the castoff items from EPs and their fiber reinforced composites that reached their servicing life also cause environmental pollution [8,9].These problems have become a bottleneck restricting the further development and application of EPs in diverse applications.Therefore,based on renewable resources,the development of malleable and re-processible EPs with comparable comprehensive properties as conventional DGEBA resins is not only resource conservation and environmental protection,but also of practical significance.

    Recently,covalent adaptable networks (CANs) have been proposed as an attractive strategy for introducing plasticity into thermosetting resins by introducing reversible bonds [8,10,11],such as non-covalent interactions [12,13]and dynamic covalent bonds (e.g.,bonds formed by Diels-Alder reaction [14–16],ester bonds [17–19],boronic ester bonds [20,21],disulfide bonds [22,23],imine bonds[24–26]and coordination bonds [27–29]).The current researches on epoxy CANs show that,due to the reversible dynamic reactions above the transition temperatures,EPs possess excellent selfhealing,reshaping,remodeling and recycling capabilities [30–32].However,in view of the low designability of biobased structures,there are few studies focused on the use of renewable resources to prepare epoxy CANs.Among them,the main two types are Schiff base-containing epoxy CANs based on vanillin [33–35]and anhydride or carboxylic acid cured epoxy CANs based on epoxidized soybean oil [36,37]or other biobased glycidyl ethers [38–41].Unfortunately,these CANs either have favourable dynamic properties but the comprehensive performances could not meet the requirements of many application fields [24,34,42,43];or the CANs designed based on rigid renewable structures have the thermal and mechanical properties comparable to the conventional DGEBA resins,but network topology rearrangements are restricted by the stiff network and crosslinks,resulting in unsatisfactory malleability[35,44–46].

    Herein,we synthesized a novel four-functional Schiff basecontaining epoxy monomer (PTMSi) based on the natural aromatic protocatechualdehyde and synthetic siloxane amine.After curing with 4,4′-diaminodiphenylmethane (DDM),a dynamic covalent epoxy thermoset was obtained.Due to the high permanent cross-linking density from the quadruple reactive epoxides,the thermal and mechanical properties of PTMSi/DDM were comprehensively evaluated,and the relevant results were compared with those of conventional DGEBA/DDM.Besides,the dynamic imine bonds were located far from the flexible siloxane units,and the segmental mobility was less hindered by the crosslinks.The malleability of the obtained epoxy thermoset was then carried out.

    In order to prevent the formation of benzodioxane derivatives between phenolic compounds with ortho hydroxyl groups and epichlorohydrin [47],the synthesis of PTMSi started from the glycidylation of protocatechualdehyde (PCA).Then the epoxy monomer was obtained through a common aldehyde-amine condensation reaction,as shown in Scheme 1.The relevant structural characterization is shown in Figs.S1–S5 (Supporting information);and the good processability of the liquid epoxy monomer was proved by rheological analysis (Fig.S6 in Supporting information).

    The non-isothermal curing behaviors of the two formulations are displayed in Fig.1,where they reveal similar curing behaviors.All the heating curves were only observed a single curing exothermic peak,which was corresponded to the curing reaction between epoxides and amines.Compared to DGEBA/DDM,the curing exothermic peak shapes of PTMSi/DDM were slightly flat.This was because the curing reaction process with amines became more complicated after the increase of reactive epoxides.As the curing progressed,a large number of permanent crosslinks hindered the probability of effective collisions between secondary amine and epoxides.According to the curing exothermic peak temperature at each heating rate,PTMSi was able to cure with DDM under milder conditions than DGEBA did.Similarly,the curing reaction activation energy (Ea) calculated by Kissinger and Ozawa methods also indicated the high reactivity of PTMSi,and the curing reaction was more likely to occur than conventional epoxy formulation (Fig.1c).Furthermore,the cured network of PTMSi/DDM was highly complete as its gel content reached more than 99 wt%(Fig.1d).

    Fig.1.Evaluation on the curing activity and cured network of epoxy formulation.Non-isothermal DSC thermograms of (a) PTMSi/DDM and (b) DGEBA/DDM with heating rates of 5,10,15 and 20°C/min.(c) Linear fitting plots of ln(β/Tp2) and lnβ against 1/Tp based on Kissinger’s equation and Ozawa’s equation,respectively.(d) The gel fractions of epoxy thermosets.

    Fig.2.Thermal properties of PTMSi/DDM and DGEBA/DDM as a comparison.(a) TG and DTG thermographs and (b) DSC curves at a heating rate of 10°C/min.(c) DMA spectra for the storage modulus (G’) and tanδ against temperature at a heating rate of 5°C/min.

    Although the temperature of 5 wt% weight loss (T5%) of PTMSi/DDM was slightly lower than that of DGEBA/DDM (Fig.2a and Table S1 in Supporting information),it was still higher than that of the Schiff base-containing EPs reported in the literature[44,45].The low bonding energy of C=N increased the dissociation tendency at elevated temperatures,resulting in poorT5%of the thermosets containing imine bonds.As the temperature rose,the decomposition rate of PTMSi/DDM was slow,and finally showed a high residue,which was the result of inert siloxane and crosslinkable aromatic Schiff base that effectively inhibited the decomposition of the substrate and formed a dense char at elevated temperatures.The glass transition temperature (Tg) of thermosetting resin is mainly determined by the chemical structure of formulations and the cross-linking density of the network.Thanks to the introduction of more rigid curing agent DDM and network with complete and higher cross-linking density,which compensated for the negative effects of flexible siloxane,theTgof PTMSi/DDM was slightly lower than that of DGEBA/DDM (Fig.2b).Similarly,theαtransition temperature (Tα) of PTMSi/DDM was consistent with the aforementionedTgresults.From the half-width of tanδ,the uniformity of PTMSi/DDM network was slightly worse than that of DGEBA/DDM.Due to steric hindrance,the uncertainty of the ringopening curing reaction between reactive epoxide and active hydrogen increased,leading to enhanced fragments participated in the process ofαtransition in PTMSi/DDM,and increased coordinated movements of the segments in the entire network.In addition,as the temperature continued to rise,a new phase transition appeared in the tanδcurve,which was attributed to the reconstruction of reversible imine bonds,implying the potential reprocessability of PTMSi/DDM (Fig.2c).A markedly higher storage modulus (G’) was discovered in PTMSi/DDM than DGEBA/DDM at room temperature,and its high rigidity was attributed to the aromatic structure and high cross-linking density (νe) in the network.TheG’curve of PTMSi/DDM in the rubbery platform was significantly higher than that of DGEBA/DDM.The calculatedνefrom the rubbery modulus (Er) was 3387 mol/m3,which confirmed its highly cross-linked network (Table S2 in Supporting information).

    Fig.3.Mechanical properties of PTMSi/DDM and DGEBA/DDM as a comparison.(a) Stress-strain curves and (b) tensile strength and modulus.(c) Strength-displacement curves and (d) flexural strength and modulus.(e) Unnotched Izod impact strength.SEM images of different morphologies of (f) DGEBA/DDM and (g,h) PTMSi/DDM impact fracture surface,respectively.

    PTMSi/DDM and DGEBA/DDM showed consistent tensile behaviors (Fig.3a) and strengths (Fig.3b).During the test,the specimen fractured directly after reaching the maximum tensile strength.Due to the presence of a great many rigid components and permanent crosslinks in the epoxy networks,only a small amount of deformation occurred before the specimen fracture.The difference was that under a large external force,the frozen segments in PTMSi/DDM network that was plasticized by the flexible siloxane could start to move and stretch,which showed a small inflection point on the stress-strain curve (Fig.3a).PTMSi/DDM had outstanding and much higher flexural strength and modulus (consistent with the above-mentioned DMA results) than those of DGEBA/DDM (Fig.3d),indicating that it was a high rigidity and strength epoxy material at room temperature,which benefited from its highly cross-linked network and robust aromatic Schiff base moiety.Since the intermolecular interactions,such as hydrogen bonding that need to be overcome in the direction of flexural test were much higher than those in the direction of tensile test,based on the reference system,the enhancement percentage of the flexural properties was considerably higher than that of the tensile properties (Table S3 in Supporting information).Although the two thermosets exhibited brittle fracture behavior during flexural process,the flexural fracture displacement of PTMSi/DDM was significantly higher than that of DGEBA/DDM (Fig.3c),implying the fact that the segments in PTMSi/DDM network had a stronger mobility obviously brought from the plasticization of the flexible siloxane.In view of the plastic deformation behavior of PTMSi/DDM found in tensile and flexural tests,which was quite different from that of DGEBA/DDM,the unnotched Izod impact strength was performed to evaluate their impact resistance.Fig.3e displayed that PTMSi/DDM possessed excellent impact strength,which was significantly higher than that of conventional BPA EPs,and could reach the current level of impact strength of some toughened DGEBA systems[48,49].

    The high impact resistance of PTMSi/DDM could be explained by micro morphology of the fracture surface of the specimen after impact test.Different from the smooth and flat fracture surface morphology of DGEBA/DDM (Fig.3f),the impact fracture surface of PTMSi/DDM exhibited obvious ductile fracture characteristics.A large number of rugged and rough cracks were observed.The directions of the first-level crack and the second-level crack were perpendicular to each other.The second-level crack had a high fold density and "fibrous" fragments were also generated near the fracture section (Figs.3g and h).All these indicated that the dissipation of fracture energy was promoted through path deflections during the propagation process of impact cracks.Due to the introduction of siloxane significantly improved the flexibility of the network,the mobility of segments enhanced,and so did the toughness of PTMSi/DDM.

    As previously discussed,the novel Schiff base-containing EP PTMSi/DDM exhibited excellent comprehensive properties,especially with both high mechanical strengths and toughness,showing obvious advantages over conventional DGEBA resins.In order to specifically evaluate the effect of the rigid and highly cross-linked network on the malleability of the thermoset,the stress relaxation behavior of PTMSi/DDM was analyzed.As shown in Fig.4a,at a temperature higher thanTg,the relaxation modulusG(t)/G(0) gradually decreased with time and reached a plateau value at 600 s.From the fitting results of relaxation time at different temperatures,the relaxation activation energy (Ea) of PTMSi/DDM was at a low level among that of present Schiff base-containing biobased epoxy CANs(Figs.4b and d) [24,34,35,50].Meanwhile,the PTMSi/DDM fragments were able to be reprocessed by hot pressing under certain conditions (Fig.4c).It showed that the dynamic imine bonds at the film interfaces had a fair contact and diffusion rates,which was mainly because the flexible siloxane increased the mobility of the segments,leading to few restrictions on network topology rearrangements by the stiff network and crosslinks.As can be seen intuitively from the radar map Fig.4d,PTMSi/DDM did not lose any performances.It not only had comparable or better thermal properties,mechanical strengths and toughness than those of DGEBA/DDM,but also maintained the plasticity of the thermoset,which was relatively rare among Schiff base-containing biobased CANs.

    Fig.4.Malleability of PTMSi/DDM.(a) Normalized relaxation modulus versus time curves at different temperatures.(b) Fitting of the relaxation times to the Arrhenius’equation.(c) Reprocessing experiment.(d) Radar map probing optimal α transition temperature (Tα),mechanical strengths and relaxation activation energy (Ea) of different Schiff base-containing biobased and conventional epoxy resins.

    Herein,a novel Schiff base-containing dynamic covalent epoxy thermoset was obtained through a facile aldehyde-amine condensation reaction between biobased protocatechualdehyde and synthetic siloxane-containing amine.Since there were more reactive epoxides in the epoxy monomer than in DGEBA,the cured thermosets possessed high cross-linking density;and the introduction of rigid aromatic Schiff base moieties endowed it with excellent thermal properties,mechanical strength and modulus.On the one hand,the flexible siloxane units improved the impact resistance of the cured product through increasing the chain mobility;on the other hand,it ensured the network topology rearrangements were performed smoothly,and the cured thermosets were malleable.These features provided great potential of the epoxy CAN as an ideal sustainable substitute for bisphenol A epoxy resin for versatile applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    Financial supports by the National Science Foundation of China(Nos.51822304,51773137),the 111 Project (No.B20001) and Fundamental Research Funds for the Central Universities are sincerely acknowledged.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.079.

    午夜福利视频精品| 又黄又粗又硬又大视频| 日韩中文字幕欧美一区二区| 午夜两性在线视频| 无限看片的www在线观看| 淫妇啪啪啪对白视频| 久久ye,这里只有精品| 国产高清国产精品国产三级| 大香蕉久久成人网| av片东京热男人的天堂| 三级毛片av免费| 黄色片一级片一级黄色片| 青草久久国产| videosex国产| 欧美日本中文国产一区发布| 99国产精品免费福利视频| 精品少妇黑人巨大在线播放| 日本黄色日本黄色录像| 一二三四社区在线视频社区8| 久久久精品免费免费高清| 亚洲第一青青草原| 免费看a级黄色片| 成人特级黄色片久久久久久久 | 曰老女人黄片| 飞空精品影院首页| 日韩精品免费视频一区二区三区| 在线观看一区二区三区激情| 777久久人妻少妇嫩草av网站| 国产一区二区三区视频了| 色在线成人网| 久久精品国产亚洲av香蕉五月 | 午夜福利欧美成人| 人人妻人人爽人人添夜夜欢视频| 在线观看免费视频网站a站| 黑人巨大精品欧美一区二区蜜桃| 日韩制服丝袜自拍偷拍| 999久久久国产精品视频| 国产日韩欧美亚洲二区| 亚洲欧美色中文字幕在线| 精品一品国产午夜福利视频| 国产欧美日韩一区二区三| 蜜桃在线观看..| 十八禁网站免费在线| 女性生殖器流出的白浆| 免费在线观看影片大全网站| 国产精品久久久av美女十八| 男女边摸边吃奶| 欧美国产精品一级二级三级| 一级a爱视频在线免费观看| 久久狼人影院| 亚洲精华国产精华精| 欧美中文综合在线视频| 日本黄色视频三级网站网址 | 亚洲精华国产精华精| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 视频区图区小说| 精品少妇内射三级| www.自偷自拍.com| 国产精品一区二区在线观看99| 18禁黄网站禁片午夜丰满| 国精品久久久久久国模美| 三上悠亚av全集在线观看| 高清视频免费观看一区二区| 18禁美女被吸乳视频| 精品福利永久在线观看| 一级片免费观看大全| 久久精品91无色码中文字幕| 成人黄色视频免费在线看| 老司机午夜福利在线观看视频 | 丰满少妇做爰视频| 国产av国产精品国产| 啦啦啦在线免费观看视频4| 国产1区2区3区精品| 黄色毛片三级朝国网站| 少妇猛男粗大的猛烈进出视频| 男男h啪啪无遮挡| 国产精品1区2区在线观看. | 亚洲欧洲精品一区二区精品久久久| 多毛熟女@视频| 国产av国产精品国产| a级毛片黄视频| 一二三四在线观看免费中文在| 欧美成人午夜精品| 999精品在线视频| 91字幕亚洲| 国产男靠女视频免费网站| 久久狼人影院| 国产欧美日韩一区二区三| 亚洲精品美女久久久久99蜜臀| 成人免费观看视频高清| 丝袜美腿诱惑在线| 亚洲性夜色夜夜综合| 免费在线观看完整版高清| 成年人免费黄色播放视频| 丝袜美腿诱惑在线| 99国产精品一区二区蜜桃av | 午夜老司机福利片| 国产精品久久电影中文字幕 | 欧美国产精品一级二级三级| 欧美久久黑人一区二区| 在线观看免费高清a一片| 国产精品久久久久久精品电影小说| 亚洲国产看品久久| 一区在线观看完整版| 国产免费视频播放在线视频| 午夜福利欧美成人| 后天国语完整版免费观看| 国精品久久久久久国模美| av天堂在线播放| 国产伦人伦偷精品视频| 最近最新中文字幕大全电影3 | 亚洲成人免费av在线播放| 18禁美女被吸乳视频| 亚洲欧洲日产国产| 纯流量卡能插随身wifi吗| 天天添夜夜摸| www.精华液| 亚洲成人免费电影在线观看| 亚洲av电影在线进入| 成人国语在线视频| 不卡一级毛片| 99国产综合亚洲精品| 欧美一级毛片孕妇| 日本黄色视频三级网站网址 | 一区二区av电影网| 下体分泌物呈黄色| 性高湖久久久久久久久免费观看| 国产男女内射视频| 老汉色∧v一级毛片| 露出奶头的视频| 中文字幕色久视频| 一级a爱视频在线免费观看| 亚洲久久久国产精品| bbb黄色大片| 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 欧美一级毛片孕妇| 国产亚洲一区二区精品| 亚洲人成77777在线视频| 777米奇影视久久| 777久久人妻少妇嫩草av网站| 男女床上黄色一级片免费看| 色婷婷av一区二区三区视频| 国产亚洲av高清不卡| 黄色视频不卡| 欧美国产精品一级二级三级| 国产在线一区二区三区精| 免费观看人在逋| 老鸭窝网址在线观看| 免费日韩欧美在线观看| 999精品在线视频| 国产精品香港三级国产av潘金莲| 99精品欧美一区二区三区四区| 久久亚洲真实| 最新在线观看一区二区三区| 在线观看免费高清a一片| 热re99久久精品国产66热6| 久久av网站| 久久精品人人爽人人爽视色| 国产男女超爽视频在线观看| 人人妻人人澡人人看| 欧美久久黑人一区二区| 久久精品亚洲精品国产色婷小说| 日韩视频在线欧美| 中文字幕人妻丝袜制服| 精品国产乱码久久久久久小说| 老司机午夜福利在线观看视频 | 老汉色∧v一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品熟女亚洲av麻豆精品| 18禁美女被吸乳视频| av片东京热男人的天堂| 国产1区2区3区精品| 韩国精品一区二区三区| 五月开心婷婷网| 高清黄色对白视频在线免费看| 国产色视频综合| 黑人猛操日本美女一级片| 色播在线永久视频| 飞空精品影院首页| 性高湖久久久久久久久免费观看| 欧美黄色淫秽网站| 欧美久久黑人一区二区| 777久久人妻少妇嫩草av网站| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 亚洲午夜理论影院| 国产真人三级小视频在线观看| 免费看十八禁软件| 欧美中文综合在线视频| 亚洲专区字幕在线| 久久婷婷成人综合色麻豆| 在线永久观看黄色视频| 狠狠狠狠99中文字幕| 少妇的丰满在线观看| 一级毛片精品| 欧美亚洲日本最大视频资源| 另类亚洲欧美激情| 亚洲黑人精品在线| 国产区一区二久久| av国产精品久久久久影院| 亚洲成人免费电影在线观看| avwww免费| 狠狠狠狠99中文字幕| 欧美国产精品一级二级三级| 天天躁夜夜躁狠狠躁躁| 久久精品成人免费网站| 超碰成人久久| 免费高清在线观看日韩| 黑人欧美特级aaaaaa片| 国产淫语在线视频| 日本撒尿小便嘘嘘汇集6| 黄色成人免费大全| 亚洲欧美一区二区三区黑人| 成人精品一区二区免费| 人妻一区二区av| 成人av一区二区三区在线看| 日韩视频一区二区在线观看| 午夜免费鲁丝| 久久精品国产亚洲av香蕉五月 | 日日夜夜操网爽| 久久久国产欧美日韩av| 亚洲人成电影免费在线| 日韩中文字幕欧美一区二区| 欧美精品人与动牲交sv欧美| 日韩免费高清中文字幕av| 欧美老熟妇乱子伦牲交| 美女扒开内裤让男人捅视频| 91成人精品电影| 国产精品偷伦视频观看了| 欧美乱码精品一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲avbb在线观看| videos熟女内射| 亚洲五月婷婷丁香| 亚洲欧美精品综合一区二区三区| 国产免费福利视频在线观看| 男男h啪啪无遮挡| 久久精品国产亚洲av香蕉五月 | 夜夜骑夜夜射夜夜干| 一二三四社区在线视频社区8| 午夜激情久久久久久久| 国产亚洲精品第一综合不卡| 热99re8久久精品国产| 在线观看66精品国产| 久久人妻福利社区极品人妻图片| 啦啦啦视频在线资源免费观看| avwww免费| 老司机午夜十八禁免费视频| 免费在线观看影片大全网站| 国产精品偷伦视频观看了| 国产精品熟女久久久久浪| 欧美激情极品国产一区二区三区| 视频区图区小说| 国产精品久久久久成人av| 成人特级黄色片久久久久久久 | 国产精品一区二区免费欧美| 国产老妇伦熟女老妇高清| 亚洲美女黄片视频| 中亚洲国语对白在线视频| 久久国产精品人妻蜜桃| 一区二区三区乱码不卡18| 97在线人人人人妻| 国产伦人伦偷精品视频| 国产区一区二久久| 一本大道久久a久久精品| 女人高潮潮喷娇喘18禁视频| 成在线人永久免费视频| 首页视频小说图片口味搜索| 国产精品熟女久久久久浪| 久久狼人影院| 99riav亚洲国产免费| 黄色a级毛片大全视频| 12—13女人毛片做爰片一| 亚洲精品粉嫩美女一区| 国产麻豆69| 欧美精品啪啪一区二区三区| av在线播放免费不卡| 最新的欧美精品一区二区| 丝袜美足系列| 国产一区二区激情短视频| 久久影院123| 巨乳人妻的诱惑在线观看| 午夜老司机福利片| 男人舔女人的私密视频| 国产熟女午夜一区二区三区| 999久久久精品免费观看国产| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 亚洲性夜色夜夜综合| av国产精品久久久久影院| 18禁国产床啪视频网站| 亚洲精品国产色婷婷电影| 国产真人三级小视频在线观看| 日本vs欧美在线观看视频| 悠悠久久av| 超色免费av| 欧美日韩av久久| 久久人妻熟女aⅴ| 热re99久久国产66热| 考比视频在线观看| 女警被强在线播放| 99国产精品99久久久久| 国产黄频视频在线观看| 精品国产乱子伦一区二区三区| 丁香欧美五月| 欧美乱妇无乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 国产三级黄色录像| 少妇的丰满在线观看| 天堂俺去俺来也www色官网| 99精国产麻豆久久婷婷| 久久久久精品国产欧美久久久| 大型黄色视频在线免费观看| 亚洲黑人精品在线| 亚洲av成人一区二区三| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 黄色视频在线播放观看不卡| 精品久久久久久久毛片微露脸| 久久午夜综合久久蜜桃| 亚洲 国产 在线| 69av精品久久久久久 | 国产精品香港三级国产av潘金莲| 一级片免费观看大全| 黄色a级毛片大全视频| 成人国产一区最新在线观看| 久久人妻福利社区极品人妻图片| 法律面前人人平等表现在哪些方面| 超碰97精品在线观看| 亚洲人成77777在线视频| 午夜激情久久久久久久| 国产亚洲一区二区精品| 国产免费现黄频在线看| av网站在线播放免费| 国产亚洲一区二区精品| 国产亚洲欧美在线一区二区| av网站在线播放免费| 精品国产超薄肉色丝袜足j| 中国美女看黄片| 国产精品98久久久久久宅男小说| 亚洲精品自拍成人| 国产亚洲av高清不卡| 麻豆av在线久日| 亚洲色图av天堂| 久久99一区二区三区| 757午夜福利合集在线观看| 少妇裸体淫交视频免费看高清 | 亚洲第一欧美日韩一区二区三区 | 欧美日韩一级在线毛片| 男人舔女人的私密视频| 日本撒尿小便嘘嘘汇集6| 老熟女久久久| 亚洲免费av在线视频| av天堂在线播放| 极品人妻少妇av视频| 老熟妇仑乱视频hdxx| 最黄视频免费看| 悠悠久久av| 美女主播在线视频| av线在线观看网站| e午夜精品久久久久久久| 精品亚洲成a人片在线观看| 免费不卡黄色视频| 男女下面插进去视频免费观看| av不卡在线播放| 狠狠狠狠99中文字幕| 色婷婷久久久亚洲欧美| 久久免费观看电影| 麻豆乱淫一区二区| 国产色视频综合| 蜜桃国产av成人99| 女警被强在线播放| 免费看a级黄色片| 国产97色在线日韩免费| 精品一区二区三卡| 黄色丝袜av网址大全| 国产欧美日韩一区二区三| 精品久久蜜臀av无| 成年动漫av网址| www.精华液| 久久久精品免费免费高清| 法律面前人人平等表现在哪些方面| 日韩欧美一区视频在线观看| 亚洲欧洲精品一区二区精品久久久| 蜜桃在线观看..| 丰满迷人的少妇在线观看| 人妻一区二区av| xxxhd国产人妻xxx| 国产精品一区二区在线观看99| 丰满少妇做爰视频| 男女免费视频国产| 国产精品亚洲一级av第二区| 欧美日韩视频精品一区| 亚洲专区中文字幕在线| 免费不卡黄色视频| 久久狼人影院| 国产日韩一区二区三区精品不卡| 日韩三级视频一区二区三区| 欧美日韩国产mv在线观看视频| 国产精品av久久久久免费| 香蕉久久夜色| 交换朋友夫妻互换小说| 精品少妇一区二区三区视频日本电影| tocl精华| 日韩制服丝袜自拍偷拍| 亚洲第一欧美日韩一区二区三区 | 国产区一区二久久| 日韩精品免费视频一区二区三区| 亚洲精品国产色婷婷电影| 精品乱码久久久久久99久播| 日日爽夜夜爽网站| 日韩欧美免费精品| 9热在线视频观看99| 午夜福利在线观看吧| 久久久精品区二区三区| 18禁黄网站禁片午夜丰满| 国产男靠女视频免费网站| 狂野欧美激情性xxxx| 午夜福利欧美成人| 国产一区二区 视频在线| 亚洲精品美女久久av网站| 国产免费视频播放在线视频| 中文字幕另类日韩欧美亚洲嫩草| 老司机在亚洲福利影院| 两性夫妻黄色片| 亚洲全国av大片| 亚洲伊人久久精品综合| 国产精品香港三级国产av潘金莲| 欧美久久黑人一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 好男人电影高清在线观看| 极品人妻少妇av视频| 欧美精品高潮呻吟av久久| 老司机福利观看| 91麻豆精品激情在线观看国产 | 亚洲欧洲精品一区二区精品久久久| 男女床上黄色一级片免费看| 亚洲午夜理论影院| 亚洲黑人精品在线| 欧美亚洲日本最大视频资源| 国产区一区二久久| avwww免费| 国产一区二区 视频在线| 大香蕉久久网| 超碰成人久久| 一区二区三区精品91| 久久久久久久国产电影| 国产成人欧美在线观看 | 亚洲一区二区三区欧美精品| 黄色 视频免费看| 国产精品秋霞免费鲁丝片| 亚洲少妇的诱惑av| 亚洲国产中文字幕在线视频| 国产欧美日韩精品亚洲av| 王馨瑶露胸无遮挡在线观看| 亚洲黑人精品在线| 免费在线观看影片大全网站| 日韩大片免费观看网站| 欧美午夜高清在线| 一级毛片精品| 亚洲欧美精品综合一区二区三区| 一边摸一边抽搐一进一小说 | 欧美激情极品国产一区二区三区| 免费在线观看视频国产中文字幕亚洲| 又大又爽又粗| www.自偷自拍.com| 亚洲国产中文字幕在线视频| 国产一区二区三区综合在线观看| 国产在视频线精品| 国产成人影院久久av| 纯流量卡能插随身wifi吗| 亚洲成国产人片在线观看| 热99久久久久精品小说推荐| 午夜福利视频精品| 69av精品久久久久久 | 国产区一区二久久| 另类亚洲欧美激情| 丁香六月欧美| 国产免费福利视频在线观看| 国产无遮挡羞羞视频在线观看| 极品人妻少妇av视频| 成年动漫av网址| 精品少妇久久久久久888优播| 亚洲性夜色夜夜综合| 水蜜桃什么品种好| 最黄视频免费看| 在线观看一区二区三区激情| 久久久久久久久免费视频了| 国产精品av久久久久免费| 亚洲欧美精品综合一区二区三区| 国产精品美女特级片免费视频播放器 | 免费在线观看黄色视频的| 国产在线观看jvid| 丰满迷人的少妇在线观看| 亚洲人成77777在线视频| 老司机在亚洲福利影院| 操出白浆在线播放| 国产又色又爽无遮挡免费看| 精品少妇久久久久久888优播| 香蕉丝袜av| 亚洲欧美日韩另类电影网站| 久久这里只有精品19| 欧美黑人精品巨大| 国精品久久久久久国模美| 亚洲av日韩在线播放| 另类精品久久| 18禁裸乳无遮挡动漫免费视频| a级片在线免费高清观看视频| 精品少妇内射三级| 欧美精品人与动牲交sv欧美| 久久久久久久国产电影| www.精华液| 国产精品九九99| 午夜福利影视在线免费观看| 国产男女超爽视频在线观看| 黑人操中国人逼视频| 国产xxxxx性猛交| 老鸭窝网址在线观看| 免费日韩欧美在线观看| 极品教师在线免费播放| 午夜久久久在线观看| 日韩欧美一区视频在线观看| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看| 人人澡人人妻人| 亚洲精品粉嫩美女一区| 国产av国产精品国产| 日本精品一区二区三区蜜桃| 国产免费视频播放在线视频| 人人妻人人澡人人爽人人夜夜| 欧美人与性动交α欧美软件| 少妇裸体淫交视频免费看高清 | 99国产精品一区二区三区| 满18在线观看网站| 麻豆成人av在线观看| 青草久久国产| 午夜精品国产一区二区电影| bbb黄色大片| 国产日韩欧美亚洲二区| 在线av久久热| 啦啦啦免费观看视频1| 人妻久久中文字幕网| 成年动漫av网址| 黄色丝袜av网址大全| 黄片小视频在线播放| 日本av手机在线免费观看| 亚洲熟妇熟女久久| 丝袜美足系列| 狠狠婷婷综合久久久久久88av| 另类亚洲欧美激情| 91老司机精品| 欧美日韩中文字幕国产精品一区二区三区 | 精品一区二区三区四区五区乱码| 丁香六月天网| 精品午夜福利视频在线观看一区 | 少妇裸体淫交视频免费看高清 | av一本久久久久| 黑丝袜美女国产一区| 一区二区三区激情视频| 日韩中文字幕视频在线看片| 国产欧美亚洲国产| 欧美日韩av久久| 亚洲人成伊人成综合网2020| 亚洲成人国产一区在线观看| 欧美人与性动交α欧美软件| 美女主播在线视频| 少妇被粗大的猛进出69影院| 一本综合久久免费| 男人操女人黄网站| av在线播放免费不卡| 亚洲成人手机| 99riav亚洲国产免费| 国产精品麻豆人妻色哟哟久久| 国产精品电影一区二区三区 | 国产人伦9x9x在线观看| 少妇裸体淫交视频免费看高清 | netflix在线观看网站| 丝袜人妻中文字幕| 天天躁夜夜躁狠狠躁躁| 日韩中文字幕视频在线看片| 久热这里只有精品99| av天堂久久9| videosex国产| 老司机亚洲免费影院| 十八禁人妻一区二区| 男女午夜视频在线观看| 天堂8中文在线网| 精品福利永久在线观看| 丝瓜视频免费看黄片| 黑人欧美特级aaaaaa片| 欧美在线一区亚洲| 午夜免费成人在线视频| 高潮久久久久久久久久久不卡| 久久亚洲真实| 男女午夜视频在线观看| 精品国内亚洲2022精品成人 | 18禁黄网站禁片午夜丰满| 1024香蕉在线观看| www日本在线高清视频| 国产极品粉嫩免费观看在线| 1024香蕉在线观看| 757午夜福利合集在线观看| 久久久精品国产亚洲av高清涩受| 宅男免费午夜| 亚洲一区中文字幕在线| 免费不卡黄色视频| 国产在线视频一区二区| 亚洲专区国产一区二区| 日韩大片免费观看网站| 五月开心婷婷网| 在线观看www视频免费| 国产激情久久老熟女|