• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Matryoshka-type carbon-stabilized hollow Si spheres as an advanced anode material for lithium-ion batteries

    2022-07-11 03:39:42HuiminWuPeioGoJinglinMuZhichoMioPengfeiZhouTongZhouJinZhou
    Chinese Chemical Letters 2022年6期

    Huimin Wu,Peio Go,Jinglin Mu,Zhicho Mio,Pengfei Zhou,Tong Zhou,Jin Zhou,?

    a School of Chemistry and Chemical Engineering,Shandong University of Technology,Zibo 255049,China

    b School of Physics and Optoelectronic Engineering,Shandong University of Technology,Zibo 255049,China

    Keywords:Lithiun-ion battery Hollow Si Matryoshka structure Anode Molten salts

    ABSTRACT Silicon (Si) is regarded as the potential anode for lithium-ion batteries (LIBs),due to the remarkable theoretical specific capacity and low voltage plateau.However,the rapid capacity decay resulting from volume variation and slow electron/ion transportation of Si limit its practical application.Here,matryoshka-type carbon-stabilized hollow silicon spheres (Si/C/Si/C) are synthesized by an aluminothermic reduction and calcination process.The Si/C/Si/C anode materials prepared at 500 °C (Si/C/Si/C-500) exhibit unique structures,in which amorphous region and porous structure are preserved in the Si layers.The anode based on Si/C/Si/C-500 displays an initial specific capacity of 2792 mAh/g at a current density of 100 mA/g.At 1000 mA/g,this anode retains a reversible capacity of 1673 mAh/g,86.9% of the initial capacity after 200 cycles.Such synthetic strategy can be employed to fabricate other high-capacity anode materials with large volume variation during charge/discharge process

    With the rapid development of portable electrical devices and all-electric vehicles (EVs),lithium-ion batteries (LIBs) with high energy density and high capacity are strongly demanded.Si is regarded as one of the most promising anode materials for nextgeneration high-energy LIBs due to the extremely high theoretical capacity (~4200 mAh/g for Li22Si5) and rich abundance on earth[1–4].However,the commercial use is hindered by the following challenges: (i) Si experiences a large volume variation during the lithiation/delithiation process,which results in the crack of Si and contact loss with the current collector,leading to a rapid capacity decay [5,6];(ii) The continual formation of solid electrolyte interphase (SEI) film repeatedly consumes Li+,reducing the initial and later-cycle coulombic efficiencies of Si anode;(iii) Si-based anode exhibits poor rate performance because of the slow electron and Li+transport.

    Various strategies have been adopted to address the above obstacles.Firstly,nanostructured Si anode materials (e.g.,Si nanowires [7–9],Si nanotubes [10],Si nanosheets [11,12],porous Si [13–15]) have been synthesized and exhibited fast electron/ion transmission and good fracture-endurance.Secondly,silicon nanoparticles are embedded into active/inactive matrix to obtain a stable electrode [16].Thirdly,surface coating with free space around Si is an important strategy to accommodate the volume change [17,18].Carbon is considered as the desired coating layer due to the excellent conductivity and mechanical robustness.For example,Cuiet al.fabricate carbon coated Si nanoparticles with a yolk-shell structure,which realizes high capacities and long-term life of 1000 cycles [19].However,most of the carbon-coated silicon particles belong to “core-shell” structures.The carbon shell is coated on the exterior surface of Si and enough free volume needs to be generated around the Si core (or porous Si core).These structures indeed improve the cycle life and specific capacities.But new challenges are introduced to the practical application of Si-based anode batteries.On one hand,inner Si has low electrical conductivity,making it difficult to achieve excellent rate performance.Although nano-sized Si can effectively address this issue,these materials are sparsely packed,leading to poor connections between neighboring nanoparticles.In addition,the infiltrated carbon coating can also improve the rate performance of Si.But more carbon penetrates the composites,which not only decreases the specific capacity but also reduces the initial coulombic efficiency.On the other hand,most of the well-designed void space is introduced using a sacrificial template (e.g.,SiO2),followed by hydrofluoric acid(HF) etching.These procedures are not only unfriendly for environment but too complicated for large-scale use.

    Fig.1.Schematic illustration of the syntheses process of Si/C/Si/C anode materials.

    To address the above obstacles,a matryoshka-type carbonstabilized hollow Si (Si/C/Si/C) spheres are synthesized.The Si shell is a porous,polycrystalline products consisting of interconnected tiny nanoparticles and carbon shell is nested layer that ensures good electrical contact and encapsulate Si to restrict SEI formation on the outer surfaces.Such structures possess several attractive advantages: (i) Hollow void allows volume changes of Si nanoparticles inside of inner carbon shell;(ii) Inner carbon shell provides multipoint physical contacts with Si shells,significantly improving the conductivity of electrode;(iii) Outer carbon shell facilitates the formation of stable SEI film;(iv) Amorphous regions in the polycrystalline Si possess good tolerance to intrinsic strain/stress,benefiting for the structure stability.

    The syntheses of Si/C/Si/C samples can be divided into two steps (Fig.1).First,highly uniform SiO2nanospheres (Fig.S1 in Supporting information) prepared by hydrolysis of tetraethylorthosilicate (TEOS) [20]are coated with a polydopamine (pDA)through self-polymerization of dopamine in solution.After carbonized the pDA under inert atmosphere,the aluminothermic reaction is conducted between carbon-coated silica (SiO2@C,Fig.S2 in Supporting information) and aluminum powder in AlCl3/NaCl mixture.The hollow Si/C/Si nanospheres are obtained (Fig.S3 in Supporting information) after the removal of Al-bearing byproducts,leaving amounts of mesopores.The silicon hollow structures can be formed by a diffusion mechanism in the molten salts.In molten AlCl3/NaCl,a large amount of ion and solvated electrons are producedviaan ionization process [21],Al=Al3++3e?,which etches SiO2to break the Si-O bond to form SiOx.Then,the SiOxis reduced in the molten salts and grows on the surface of carbon layerviathe previously documented diffusion mechanism[20,22,23],leading to the formation of the Si/C/Si hollow structure.Herein,the NaCl is adopted as heat scavenges,which effectively prevents the hollow structure collapsing and avoids the aggregation of Si nanoparticles [24].Next,the hollow Si/C/Si nanospheres are encapsulated by another pDA shell,and then undergo an annealing process at 500 °C and 800 °C to form an outer carbon shell.For the sake of clarity,the annealed hollow Si samples at 500 °C and 800 °C are denoted as Si/C/Si/C-500 and Si/C/Si/C-800 from now on,respectively.

    The X-ray diffraction (XRD) patterns of the Si/C/Si/C-500 and Si/C/Si/C-800 are shown in Fig.2a.The 2θpeaks located at 28.5°,47.4°,56.2°,69.3° and 76.5° are indexed to the diffraction peaks of cubic Si (PDF#27–1402),confirming the successful conversion SiO2to Si [21].The Raman spectroscopy of two samples is shown in Fig.2b.The peak at 521 cm?1for Si/C/Si/C-800 is assigned to the transverse optical mode of crystalline silicon [17,25].Compared to the Raman absorption peak of crystalline Si,the peak of Si/C/Si/C-500 exhibits a blue-shift peak at around 518 cm?1,indicating the appearance of amorphous silicon (a-Si) phase [25–28].Our previous reports confirm that the appearance of a-Si is due to low synthesis temperature [29].The peaks at 1341 and 1582 cm?1,correspond to the D and G bands of carbon,respectively [30].The negligible signals of carbon indicate a very thin coating layer.

    To observe the effect of anneal temperature on the microstructure of Si products,the nitrogen gas sorption data of Si/C/Si/C-500 and Si/C/Si/C-800 are collected (Figs.2c and d).The specific surface area (SSA) of Si/C/Si/C-500 (Fig.2c) is 64.1 m2/g based on the Brunauer-Emmett-Teller theory,which is higher than that of Si/C/Si/C-800 sample (25.3 m2/g).This is probably due to the coarsening of pores and silicon phases in the high-temperature annealing process [29].The hypothesis is also supported by the increase of the average pore diameter by elevating the calcination temperature (10.9 nm for Si/C/Si/C-500vs.12.7 nm for Si/C/Si/C-800).The result means that the low-temperature is beneficial for the preservation of porous structure.

    Fig.2.(a) XRD and (b) Raman results of Si/C/Si/C-500 and Si/C/Si/C-800 nanospheres,respectively (Inset of b is the enlarged Raman adsorption peak of Si);Nitrogen adsorption and desorption isotherms of (c) Si/C/Si/C-500 and (d) Si/C/Si/C-800 samples,respectively (Insets are corresponding pore width distributions).

    Fig.3 shows the morphologies of Si/C/Si/C-500 and Si/C/Si/C-800 samples.SEM and TEM images demonstrate that two samples have a hollow spherical structure.However,the microstructure of shell layers changes after annealing at different temperature.As observed in Fig.3a,the Si/C/Si/C-800 exhibits a spherical shape with a smooth surface and without massive or agglomerated Si nanoparticles observed.TEM images (Fig.3b) show the detailed microstructure of the Si/C/Si/C-800.The shell layer becomes more compact.Inset image in Fig.3b exhibits that homogeneous element with same light intensity are concentrated in the shell.The linear distributions can reflect the content change of different elements,so it can be used as an indicator of structure.Fig.S4(Supporting information) exhibits the corresponding linear distributions of Si/C/Si/C-800 sample along with the hollow shell.It can be seen that the intensity of Si element (green line) only has one peak when the line scanning gets through the hollow shell.Besides,the intensity of carbon has no obvious change.These results reveal that the Si/C/Si/C sandwiched structure disappears.This is due to the reduction of defects (including pores and amorphous regions) after high-temperature annealing [31].It is also confirmed by the ordered lattice fringe in the high-resolution transmission electron microscopy (HRTEM) image (Fig.3c) and the selected area electron diffraction (SAED) result (inset image in Fig.3c) [24].The interplanar distances are measured to be 0.31 nm,which corresponds to the (111) crystal planes of the cubic Si [32].In comparison,the Si/C/Si/C-500 samples also have a typical spherical morphology (Fig.3d),but the outer surface becomes much rougher which is comprised of large amount of tiny Si nanoparticles (Fig.S5 in Supporting information).Significantly,TEM images in Fig.3e show the microstructure of Si/C/Si/C-500.Inset image in Fig.3e exhibits the clear Si-C interface with Si/C/Si/C multi shells.The thin Si shell can shorten the diffusion path of Li+during lithiation.Moreover,double carbon shell encapsulates Si nanoparticles and provides sufficient physical contact points,which can largely enhance the conductivity of the composites.The ambiguous lattice fringes of shell in the HRTEM image (Fig.3f) indicate the appearance of a-Si.SAED (the inset of Fig.3f) of Si/C/Si/C-500 is circular rings,also indicating the polycrystalline nature [33].The porous,amorphous regions can effectively buffer the volume variation during lithiation/delithiation,inhibiting the material pulverization and enhancing the structure stability.To confirm the constituents of the shell,the element mapping and the linear distribution are also conducted along the hollow shell (Fig.3g).The element mapping(Figs.3g1 and g2) confirms the existence of Si (Fig.3g1) and carbon (Fig.3g2).The corresponding linear distribution (Fig.3h) reflects the content change of silicon and carbon.The intensity of Si appears two peaks along the scanning line.It is worth noting that the intensity of carbon slightly increases between two peaks of Si.Both sides of shell,the signal intensity of carbon has no significant change.It indicates the outer carbon layer is a uniform coating.In brief,the above results demonstrate the matryoshka-type hollow structure of Si/C/Si/C-500,in which pores and amorphous phases are preserved in silicon layers.The formation of different Si structures is typically driven by chemical potential differences associated with curvature effects on the particle interfacial energies [34].At elevated temperature,the thermally activated processes (e.g.,crystallite rotation and alignment) become dominant.The rearrangement of atom contributes to the transformation from amorphous to crystalline Si.And pores tend to coalesce and disappear.However,at low temperature,the threshold for crystallite intergrowth or diffusional mass transport is severely limited.

    Fig.3.Microstructure of (a-c) Si/C/Si/C-800 and (d-g) Si/C/Si/C-500 nanospheres.(a) SEM,(b) TEM (Inset is the magnified region of the yellow rectangle in (b)) and (c)HRTEM images of the Si/C/Si/C-800 (Inset is the SAED of the hollow shell).(d-f) The corresponding structure characterization of Si/C/Si/C-500 as same as Si/C/Si/C-800.(g)STEM image and the corresponding element mapping of (g1) Si,(g2) C,(h) linear distributions of Si (green line),C (yellow line) and O (white line) elements of Si/C/Si/C-500.

    Fig.4.(a) The initial charging/discharging profiles of Si/C/Si/C-500 and Si/C/Si/C-800 at 0.1 A/g current density.(b) Plots of the differential capacity versus voltage.(c) Rate and (d) long-term cycling stability of Si/C/Si/C-500 and Si/C/Si/C-800 electrodes.Electrochemical impedance spectra of (e) Si/C/Si/C-500 and (f) Si/C/Si/C-800 before cycling and after 50 cycles.

    The electrochemical performances of the anode based on Si/C/Si/C-500 and Si/C/Si/C-800 are examined in half cells for LIBs.Fig.4a shows the galvanostatic discharge/charge voltage profiles of the first cycle at a current density of 0.1 A/g.The Si/C/Si/C-500 electrode delivers a high discharge capacity of 2797.4 mAh/g with an initial coulombic efficiency (ICE) of 83.1%,and the discharge profile exhibits two obvious platforms at 0.24 and 0.10 V.The lower platform derives from the alloying of crystalline Si,and the higher one from amorphous Si [35,36].However,there is no apparent platform observed at around 0.24 V for Si/C/Si/C-800 electrode,indicating that the high temperature destroys the newly formed amorphous Si during annealing.The Si/C/Si/C-800 electrode displays a lower ICE (80.1%) and discharge specific capacity (2136.1 mAh/g).This is due to that the Si/C/Si/C-800 cannot maintain good integrity owing to the insufficient inner voids and large strain/stress.The voltage hysteresis (ΔE) between the lithiation and delithiation platform for Si/C/Si/C-500 anode is 0.20 V,which is smaller than that with Si/C/Si/C-800 anode (0.36 V).This indicates that the cell has a better reversibility and less polarization [37,38].The above results are also evidenced by the differential capacityversusvoltage (dQ/dV) plots in Fig.4b.At first glance,the area arranged by Si/C/Si/C-500 is larger than that of Si/C/Si/C-800,which indicates the Si/C/Si/C-500 electrode delivers a higher specific capacity,consisting well with the result in Fig.4a.For Si/C/Si/C-500 electrode,there are two cathodic peaks at around 0.24 and 0.1 V in the first discharge process,which corresponds to the lithiation of amorphous Si and crystalline Si,respectively [35].Two anodic peaks at around 0.28 and 0.43 V are related to the de-alloying steps of LixSi [39,40].On the contrary,the Si/C/Si/C-800 displays only one cathodic peak (~0.13 V) and one anodic peak(~0.43 V),corresponding to the crystal property [41].When applied different current density,the Si/C/Si/C-500 electrode exhibits excellent rate capability (Fig.4c).It delivers reversible capacities of 2119.4,1929.6,1649.7,1398.5,1184.5,997.7 mAh/g at 0.5,1,2,3,4,5 A/g,respectively.Most notably,a high specific capacity of 1799.8 mAh/g is preserved when the current density reverses back to 1 A/g.This performance is superior to Si/C/Si/C-800 electrode.Compared to the Si/C/Si/C-800,the Si/C/Si/C-500 electrode exhibits an outstanding cycling performance,as shown in Fig.4d.After 200 cycles at 1 A/g,the Si/C/Si/C-500 displays a high capacity of 1673 mAh/g with a capacity retention of 86.9%.The capacity decay ratio is as low as 0.066% for each cycle.The electrochemical performance of Si/C/Si/C-500 in this work can be competitive to others nanostructured Si which are summarized in Table S1 (Supporting information).However,the Si/C/Si/C-800 electrode displays low retention of 68.3% and fast capacity decay.

    To further understand the mechanism for the superior electrochemical performance of Si/C/Si/C-500,electrochemical impedance spectra (EIS) data are collected to analyze the internal resistance and charge-transfer process of the pristine and cycled electrodes.Figs.4e and f display Nyquist plots of the Si/C/Si/C-500 and Si/C/Si/C-800 electrodes before and after 50 cycles.Before cycling,the two electrodes show similar Nyquist plots,involving a single semicircle at high-medium frequency region and an inclined line at low frequencies.Apparently,the radius of the semicircle for Si/C/Si/C-500 is smaller than that of Si/C/Si/C-800,which represents the lower charge transfer resistance (Rct) [42].This is ascribed to its unique matryoshka-type design to enhance the electrical conductivity.The equivalent circuit shown in Fig.S6 (Supporting information) is used to fit the Nyquist plots and the fitted data are summarized in Table S2 (Supporting information).Similar to the pristine electrode,the cycled electrodeRctof Si/C/Si/C-500 displays a smaller variation,indicating stable charge transfer and interface.In contrast,the Si/C/Si/C-800 shows dramatically decreasedRctvalue,demonstrating a progressive electrolyte infiltration and activation process [43].The excellent electrochemical performance of Si/C/Si/C-500 electrodes,on one hand,benefits from the porous and amorphous regions on mitigating the volume variation.On the other hand,carbon coated hollow shell provides multipoint contact with Si nanoparticles for good electronic conductivity,and accelerates the charge transfer and kinetics of Li+in the electrode.

    To evaluate its potential practical application,a full battery is fabricated with prelithiated Si/C/Si/C-500 anode and commercial Li(Ni1/3Co1/3Mn1/3)O2(NCM) cathode.The capacity ratio of N/P(negative/positive) was about 1.08:1 based on the capacity matching of the full cell.The prelithiation of Si/C/Si/C-500 was carried out through a discharge process in a half-cell and the cutoff voltage is 0.01 V.The cycling performance of the Si/C/Si/C-500//NCM full cell is shown in Fig.S7 (Supporting information) between 2.80 V and 4.25 V.The Si/C/Si/C-500//NCM full cell delivers a high initial capacity of 135.3 mAh/g at 100 mA/g.Moreover,the full battery exhibits a reversible capacity of 99.7 mAh/g with excellent retention.However,the ICE is only 49.6%,indicating that more times prelithiation are necessary to enhance the performance of the Si-based full cells.

    Fig.5.Morphology characterizations of Si anodes before and after 50 cycles.SEM images of top view and cross section based on (a) Si/C/Si/C-500 electrodes and(b) Si/C/Si/C-800 electrodes.TEM images of (c) Si/C/Si/C-500 nanospheres and (d)Si/C/Si/C-800 nanospheres after 50 cycles at 1 A/g.

    To further investigate the electrochemical stability of Si/C/Si/C-500,the morphology of electrodes is unveiled before and after 50 cycles (Fig.5).Fig.5a shows the top-view images of Si/C/Si/C-500 electrodes.After 50 cycles,the electrode maintains intact and active materials coalesce admirably,no obvious cracks are observed.This suggests Si/C/Si/C-500 retains structural integrity and stabilize the SEI on the surface.The morphology of the Si/C/Si/C-500 with and without SEI is examined by SEM (Fig.S8 in Supporting information).These nanospheres are covered by a thin and uniform SEI layer,and the morphologies are largely unchanged compared to those of the original Si/C/Si/C-500 nanospheres (Fig.S8a).SEM images of cross sections reveal that the thickness of 50thcycled electrode is very close to the pristine electrode (10.95vs.10.41 μm,respectively).This result is also confirmed by the morphology of Si/C/Si/C-500 hollow spheres after 50 cycles (Fig.5c).The spherical shape is still retained,revealing the superior mechanical property of carbon coating.As for Si/C/Si/C-800 electrodes,large amounts of agglomerations and cracks appear on the surface after 50 cycles(the arrow regions in Fig.5b).Moreover,the SEI damage on the surface is very serious (Fig.S8b).The electrode thickness increases from 9.62 μm to 11.11 μm,reflecting a huge volume variation.The hollow structures break down after 50 cycles as shown in Fig.5d.

    These above results prove that the Si/C/Si/C-500 sample gives excellent electrochemical performance which can be attributed to its hollow matryoshka-type strategy.First,the nested carbon shell provides both efficiently conductive paths and mechanical support,ensuring the stable surface charge transfer;Second,thin Si shell inside of carbon shell with multipoint physical contacts,considerably decreases diffusion length of Li+ions;Third,amorphous Si shows good tolerance to intrinsic strain/stress;Four,outer carbon shell facilitates the formation of stable SEI and improves the coulombic efficiency,rate capacity performance.Hence,some crucial issues of Si anodes can be resolved by using the synergy effect based on structure design.

    In summary,we demonstrate that through a low-temperature aluminothermic reaction and annealing process,matryoshka-type carbon stabilized hollow Si can be designed and synthesized successfully.The obtained Si/C/Si/C-500 anodes have significantly improved rate capacity and initial coulombic efficiency (83.1%).Impressively,the electrode can retain a reversible specific capacity of 997.7 mAh/g at 5 A/g current density.Such excellent electrochemical performance is ascribed to the good volume buffering effect,good mechanical stability and high conductivity during the charge/discharge process.This proposed approach can be widely employed to prepare porous hollow nanomaterials based on huge volume variation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Science Foundation of China programs (Nos.52007110,22078179,21901146),Key Research and Development Program of Shandong Province(No.2019GGX103027),and Taishan Scholar Foundation (No.tsqn201812063).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.039.

    两性午夜刺激爽爽歪歪视频在线观看 | 汤姆久久久久久久影院中文字幕| 91麻豆av在线| 日日摸夜夜添夜夜添小说| 亚洲三区欧美一区| 亚洲国产看品久久| 交换朋友夫妻互换小说| 人妻久久中文字幕网| 亚洲情色 制服丝袜| 日本撒尿小便嘘嘘汇集6| 一区二区av电影网| 欧美黄色淫秽网站| a级毛片在线看网站| 欧美午夜高清在线| 欧美av亚洲av综合av国产av| av天堂在线播放| 动漫黄色视频在线观看| 国产精品久久久久久精品电影小说| 欧美精品啪啪一区二区三区| a级毛片黄视频| 久久国产精品人妻蜜桃| 50天的宝宝边吃奶边哭怎么回事| 精品午夜福利视频在线观看一区 | av电影中文网址| www日本在线高清视频| 两性午夜刺激爽爽歪歪视频在线观看 | 精品人妻熟女毛片av久久网站| 在线看a的网站| 老司机午夜十八禁免费视频| 久久国产亚洲av麻豆专区| 欧美精品啪啪一区二区三区| 国产精品一区二区免费欧美| 法律面前人人平等表现在哪些方面| 午夜成年电影在线免费观看| 熟女少妇亚洲综合色aaa.| www.熟女人妻精品国产| 一级毛片电影观看| 黄色a级毛片大全视频| 黑人欧美特级aaaaaa片| 美女福利国产在线| 亚洲精品av麻豆狂野| 三级毛片av免费| 青草久久国产| 国产精品美女特级片免费视频播放器 | 成年人免费黄色播放视频| 桃红色精品国产亚洲av| 欧美+亚洲+日韩+国产| 在线 av 中文字幕| 国产精品99久久99久久久不卡| av天堂在线播放| 色在线成人网| 亚洲精品国产精品久久久不卡| 亚洲七黄色美女视频| 大香蕉久久成人网| 亚洲人成伊人成综合网2020| 国产男女内射视频| 亚洲 欧美一区二区三区| 亚洲中文字幕日韩| 悠悠久久av| 久久毛片免费看一区二区三区| 欧美黄色片欧美黄色片| 亚洲性夜色夜夜综合| 中文字幕另类日韩欧美亚洲嫩草| 欧美成狂野欧美在线观看| 性少妇av在线| 久久久精品94久久精品| 久久ye,这里只有精品| 亚洲欧美日韩高清在线视频 | 亚洲专区国产一区二区| 在线十欧美十亚洲十日本专区| 精品一区二区三区视频在线观看免费 | 老司机靠b影院| 久久久久久久国产电影| 丝袜喷水一区| 亚洲美女黄片视频| 考比视频在线观看| 大香蕉久久网| 午夜免费成人在线视频| 亚洲欧美色中文字幕在线| 另类亚洲欧美激情| 一进一出好大好爽视频| 亚洲久久久国产精品| 日韩熟女老妇一区二区性免费视频| av线在线观看网站| 99精品欧美一区二区三区四区| 国产精品av久久久久免费| 国产精品美女特级片免费视频播放器 | 日韩欧美国产一区二区入口| 久久婷婷成人综合色麻豆| 成人av一区二区三区在线看| 黄色 视频免费看| 王馨瑶露胸无遮挡在线观看| 亚洲中文日韩欧美视频| 国产精品国产高清国产av | 999久久久国产精品视频| 亚洲,欧美精品.| 欧美亚洲 丝袜 人妻 在线| 久久热在线av| 亚洲精品中文字幕在线视频| 捣出白浆h1v1| 久久久久久久久久久久大奶| 久久精品国产亚洲av高清一级| 亚洲情色 制服丝袜| 亚洲情色 制服丝袜| 五月天丁香电影| 国产无遮挡羞羞视频在线观看| 欧美在线黄色| 亚洲av美国av| 日韩欧美免费精品| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩亚洲国产一区二区在线观看 | 一边摸一边做爽爽视频免费| 日韩制服丝袜自拍偷拍| 丝袜喷水一区| 99在线人妻在线中文字幕 | 亚洲精品自拍成人| 99热网站在线观看| 青青草视频在线视频观看| 欧美激情久久久久久爽电影 | 久久av网站| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 亚洲五月色婷婷综合| 老汉色av国产亚洲站长工具| 国产成人av教育| 王馨瑶露胸无遮挡在线观看| 欧美av亚洲av综合av国产av| 国产三级黄色录像| 久久午夜亚洲精品久久| 99久久99久久久精品蜜桃| 日本五十路高清| 一夜夜www| 欧美成人免费av一区二区三区 | 国产亚洲av高清不卡| 国产一卡二卡三卡精品| 纵有疾风起免费观看全集完整版| 91大片在线观看| 亚洲欧美日韩另类电影网站| videosex国产| 一级片'在线观看视频| 亚洲色图av天堂| 国产精品免费一区二区三区在线 | 精品一区二区三区四区五区乱码| 国产老妇伦熟女老妇高清| 久久亚洲精品不卡| 国产熟女午夜一区二区三区| 大片免费播放器 马上看| 天天躁狠狠躁夜夜躁狠狠躁| 99riav亚洲国产免费| 亚洲情色 制服丝袜| 黑人巨大精品欧美一区二区蜜桃| 天天操日日干夜夜撸| 免费久久久久久久精品成人欧美视频| 成人特级黄色片久久久久久久 | 国产精品 欧美亚洲| 在线观看免费视频日本深夜| 老司机影院毛片| 桃花免费在线播放| 少妇 在线观看| 91麻豆精品激情在线观看国产 | 一级,二级,三级黄色视频| 美女扒开内裤让男人捅视频| 另类精品久久| 大陆偷拍与自拍| 美女扒开内裤让男人捅视频| 日韩免费av在线播放| 51午夜福利影视在线观看| 高清在线国产一区| 老熟妇仑乱视频hdxx| 亚洲av日韩精品久久久久久密| 精品久久久久久电影网| 成年版毛片免费区| 亚洲精品粉嫩美女一区| av网站在线播放免费| 侵犯人妻中文字幕一二三四区| 日韩欧美三级三区| 国产97色在线日韩免费| 黄色 视频免费看| 黄片小视频在线播放| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 99在线人妻在线中文字幕 | 老司机亚洲免费影院| 久久久精品免费免费高清| 久久精品亚洲av国产电影网| 亚洲专区字幕在线| 欧美激情 高清一区二区三区| 午夜精品久久久久久毛片777| 亚洲午夜理论影院| 黄片小视频在线播放| 亚洲国产av影院在线观看| 99国产精品一区二区三区| 国产又爽黄色视频| 视频在线观看一区二区三区| 丝袜美足系列| 在线永久观看黄色视频| 久久久久视频综合| 亚洲精品国产区一区二| 黄频高清免费视频| 亚洲精品久久午夜乱码| 在线观看免费视频网站a站| 嫁个100分男人电影在线观看| 国产av国产精品国产| 国产野战对白在线观看| 青草久久国产| 国产精品99久久99久久久不卡| 日本黄色日本黄色录像| 熟女少妇亚洲综合色aaa.| 亚洲精品中文字幕在线视频| 亚洲国产欧美一区二区综合| 亚洲欧美一区二区三区久久| 亚洲精品一二三| bbb黄色大片| 欧美国产精品va在线观看不卡| 日韩欧美三级三区| 国产亚洲欧美精品永久| 三上悠亚av全集在线观看| 国产免费福利视频在线观看| 真人做人爱边吃奶动态| av视频免费观看在线观看| 国产精品 国内视频| xxxhd国产人妻xxx| 精品亚洲成国产av| 青草久久国产| 国产精品久久久久久精品电影小说| 高清视频免费观看一区二区| 色综合欧美亚洲国产小说| 9热在线视频观看99| 亚洲精品一二三| 在线观看免费日韩欧美大片| 不卡av一区二区三区| 国产精品免费一区二区三区在线 | 亚洲精品国产一区二区精华液| 又紧又爽又黄一区二区| 国产精品自产拍在线观看55亚洲 | 精品卡一卡二卡四卡免费| 午夜福利一区二区在线看| 久9热在线精品视频| 搡老熟女国产l中国老女人| 他把我摸到了高潮在线观看 | avwww免费| 成人黄色视频免费在线看| 黄色a级毛片大全视频| 成人特级黄色片久久久久久久 | 国产人伦9x9x在线观看| 嫩草影视91久久| 狠狠婷婷综合久久久久久88av| 国产精品欧美亚洲77777| 久久久久久免费高清国产稀缺| 亚洲中文av在线| 一本色道久久久久久精品综合| 美女国产高潮福利片在线看| www.999成人在线观看| 一进一出抽搐动态| 亚洲三区欧美一区| 国产精品一区二区在线观看99| 国产成人啪精品午夜网站| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 黑人操中国人逼视频| 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 欧美激情久久久久久爽电影 | 伊人久久大香线蕉亚洲五| 国产亚洲精品久久久久5区| 欧美久久黑人一区二区| 久热这里只有精品99| 桃花免费在线播放| 国产在线一区二区三区精| 这个男人来自地球电影免费观看| 欧美激情久久久久久爽电影 | av电影中文网址| 久久久欧美国产精品| 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 亚洲性夜色夜夜综合| 久久人人爽av亚洲精品天堂| 国产主播在线观看一区二区| 色婷婷av一区二区三区视频| 欧美日韩精品网址| 亚洲成人国产一区在线观看| 首页视频小说图片口味搜索| 美女视频免费永久观看网站| 成在线人永久免费视频| 国产日韩一区二区三区精品不卡| 一区二区日韩欧美中文字幕| 中文字幕色久视频| 久久久久久久国产电影| 青草久久国产| 欧美成人午夜精品| 又大又爽又粗| 曰老女人黄片| 99国产综合亚洲精品| 制服人妻中文乱码| 搡老岳熟女国产| 视频区图区小说| 蜜桃国产av成人99| 夜夜爽天天搞| 一本久久精品| 大香蕉久久网| 亚洲欧美日韩高清在线视频 | 久久 成人 亚洲| 日韩欧美一区视频在线观看| 成人国产av品久久久| 一级,二级,三级黄色视频| 久久久久精品国产欧美久久久| 久久久久网色| 丰满人妻熟妇乱又伦精品不卡| 少妇猛男粗大的猛烈进出视频| av天堂在线播放| 久久天躁狠狠躁夜夜2o2o| 人人妻人人添人人爽欧美一区卜| 韩国精品一区二区三区| 亚洲国产精品一区二区三区在线| 亚洲欧洲日产国产| 黄色 视频免费看| 亚洲av日韩精品久久久久久密| 国产男女内射视频| 老司机靠b影院| 亚洲中文av在线| 亚洲国产av新网站| 女同久久另类99精品国产91| 女性生殖器流出的白浆| 久久精品国产99精品国产亚洲性色 | 极品人妻少妇av视频| www日本在线高清视频| 日韩精品免费视频一区二区三区| 免费看十八禁软件| 人人澡人人妻人| 亚洲欧美激情在线| 久久久欧美国产精品| 久久这里只有精品19| 美国免费a级毛片| 国产野战对白在线观看| 午夜福利在线免费观看网站| 美女主播在线视频| 我要看黄色一级片免费的| 国产高清激情床上av| 中文字幕人妻丝袜制服| 国产精品秋霞免费鲁丝片| 亚洲午夜理论影院| 亚洲第一av免费看| 老司机午夜福利在线观看视频 | a在线观看视频网站| 欧美激情久久久久久爽电影 | 欧美日韩av久久| 丝袜美腿诱惑在线| 丰满少妇做爰视频| 亚洲成av片中文字幕在线观看| 法律面前人人平等表现在哪些方面| 亚洲美女黄片视频| 夜夜爽天天搞| 桃花免费在线播放| 91av网站免费观看| 成人手机av| 精品国产乱子伦一区二区三区| 欧美av亚洲av综合av国产av| 这个男人来自地球电影免费观看| 欧美成人免费av一区二区三区 | 国产成人av教育| 无限看片的www在线观看| 国产精品香港三级国产av潘金莲| 久久中文字幕人妻熟女| 视频区图区小说| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠躁躁| 男女之事视频高清在线观看| 午夜激情久久久久久久| 在线十欧美十亚洲十日本专区| 午夜精品国产一区二区电影| 人妻一区二区av| 操出白浆在线播放| 亚洲精品久久午夜乱码| 激情视频va一区二区三区| 欧美黄色片欧美黄色片| 精品久久久久久电影网| 精品高清国产在线一区| 国产精品久久久人人做人人爽| 午夜精品久久久久久毛片777| 黄片播放在线免费| 国产精品1区2区在线观看. | 久久久久久免费高清国产稀缺| 久久久国产精品麻豆| 夫妻午夜视频| 成人国产一区最新在线观看| 蜜桃在线观看..| 欧美精品人与动牲交sv欧美| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 精品乱码久久久久久99久播| 国产熟女午夜一区二区三区| xxxhd国产人妻xxx| 日韩欧美国产一区二区入口| 国产伦理片在线播放av一区| 国产成人精品无人区| av网站在线播放免费| 一二三四在线观看免费中文在| av有码第一页| 桃花免费在线播放| av线在线观看网站| 1024香蕉在线观看| 欧美一级毛片孕妇| 成人精品一区二区免费| 精品人妻1区二区| 日本精品一区二区三区蜜桃| 1024视频免费在线观看| 成人国语在线视频| 精品国内亚洲2022精品成人 | 多毛熟女@视频| 午夜精品国产一区二区电影| 亚洲中文av在线| 欧美成狂野欧美在线观看| 天堂8中文在线网| 久久国产精品影院| 岛国毛片在线播放| 成人黄色视频免费在线看| 国产精品一区二区免费欧美| 久久久久久免费高清国产稀缺| 久久精品aⅴ一区二区三区四区| 桃红色精品国产亚洲av| 50天的宝宝边吃奶边哭怎么回事| 女人高潮潮喷娇喘18禁视频| 91av网站免费观看| 久久影院123| 老熟妇乱子伦视频在线观看| 80岁老熟妇乱子伦牲交| 母亲3免费完整高清在线观看| 久久人妻av系列| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久毛片微露脸| 99久久国产精品久久久| 国产高清国产精品国产三级| 久久久久久久大尺度免费视频| 51午夜福利影视在线观看| 老司机深夜福利视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲专区字幕在线| 亚洲av日韩在线播放| 久久久久网色| 男女边摸边吃奶| 天堂俺去俺来也www色官网| 日本av免费视频播放| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频 | 下体分泌物呈黄色| 久久精品成人免费网站| 中文字幕制服av| 日本vs欧美在线观看视频| 一个人免费看片子| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院| 高潮久久久久久久久久久不卡| 国产免费现黄频在线看| 黑人操中国人逼视频| 天堂中文最新版在线下载| 亚洲色图av天堂| 国产色视频综合| 午夜精品国产一区二区电影| 首页视频小说图片口味搜索| 国产精品国产av在线观看| 色视频在线一区二区三区| 成人免费观看视频高清| 99国产精品一区二区三区| 国产精品 国内视频| 女同久久另类99精品国产91| 后天国语完整版免费观看| 久久久久久人人人人人| 日本一区二区免费在线视频| 亚洲全国av大片| 成人国产av品久久久| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 国产精品一区二区在线不卡| 国产精品九九99| 黑人操中国人逼视频| 一夜夜www| 午夜激情av网站| 汤姆久久久久久久影院中文字幕| 国产欧美日韩一区二区三区在线| 一本色道久久久久久精品综合| 日韩 欧美 亚洲 中文字幕| 成人18禁在线播放| 日韩三级视频一区二区三区| 91九色精品人成在线观看| 亚洲七黄色美女视频| 在线观看66精品国产| 麻豆国产av国片精品| 精品亚洲成国产av| www.熟女人妻精品国产| 国产精品九九99| 亚洲国产欧美网| 欧美日韩亚洲综合一区二区三区_| 亚洲va日本ⅴa欧美va伊人久久| 高清黄色对白视频在线免费看| 在线观看66精品国产| 女警被强在线播放| 涩涩av久久男人的天堂| 欧美成人免费av一区二区三区 | kizo精华| 一级毛片精品| 俄罗斯特黄特色一大片| 在线观看66精品国产| 99精品久久久久人妻精品| 搡老岳熟女国产| 制服人妻中文乱码| 91成年电影在线观看| 美国免费a级毛片| 亚洲av欧美aⅴ国产| 不卡一级毛片| 操美女的视频在线观看| 在线永久观看黄色视频| 国产av国产精品国产| 中文字幕人妻丝袜制服| 久久国产精品影院| 国产熟女午夜一区二区三区| 女人高潮潮喷娇喘18禁视频| www.熟女人妻精品国产| 国产免费现黄频在线看| 精品福利观看| 欧美精品一区二区免费开放| av天堂在线播放| 高清av免费在线| 考比视频在线观看| 脱女人内裤的视频| 久久精品国产亚洲av高清一级| 国产一区二区三区视频了| 亚洲人成伊人成综合网2020| av在线播放免费不卡| 国产精品一区二区在线不卡| 美女高潮到喷水免费观看| 757午夜福利合集在线观看| 青草久久国产| 人人妻,人人澡人人爽秒播| 国产亚洲午夜精品一区二区久久| 国产在线视频一区二区| 咕卡用的链子| 久久免费观看电影| 久久人人97超碰香蕉20202| 亚洲国产中文字幕在线视频| 十八禁网站网址无遮挡| 夜夜骑夜夜射夜夜干| 国产精品 国内视频| 每晚都被弄得嗷嗷叫到高潮| 欧美成人免费av一区二区三区 | 国产精品av久久久久免费| 侵犯人妻中文字幕一二三四区| 亚洲国产av影院在线观看| 久久精品熟女亚洲av麻豆精品| 精品一区二区三区av网在线观看 | 99精品在免费线老司机午夜| 免费观看av网站的网址| 动漫黄色视频在线观看| 性少妇av在线| 国产主播在线观看一区二区| 国产免费视频播放在线视频| 1024视频免费在线观看| 嫩草影视91久久| 午夜久久久在线观看| 美女高潮到喷水免费观看| 热99国产精品久久久久久7| 香蕉国产在线看| 亚洲欧美色中文字幕在线| 黄色a级毛片大全视频| 久久人妻福利社区极品人妻图片| 黄色成人免费大全| 制服诱惑二区| 国产高清videossex| 欧美日韩中文字幕国产精品一区二区三区 | 黑人巨大精品欧美一区二区mp4| 国产麻豆69| 国产淫语在线视频| 国产成人av激情在线播放| videosex国产| 九色亚洲精品在线播放| 又大又爽又粗| 精品一区二区三区视频在线观看免费 | 后天国语完整版免费观看| 亚洲精品成人av观看孕妇| 母亲3免费完整高清在线观看| 女性被躁到高潮视频| 久久中文字幕人妻熟女| 欧美日韩国产mv在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 一本久久精品| 51午夜福利影视在线观看| 亚洲自偷自拍图片 自拍| 国产免费福利视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 操出白浆在线播放| 午夜福利一区二区在线看| av电影中文网址| tocl精华| 国产真人三级小视频在线观看| xxxhd国产人妻xxx| 高清黄色对白视频在线免费看| 悠悠久久av| 亚洲国产中文字幕在线视频| 国产av精品麻豆| 国产精品久久久久久精品古装| 最新在线观看一区二区三区| 国产伦理片在线播放av一区| 99国产精品一区二区三区| 69精品国产乱码久久久| 久久毛片免费看一区二区三区| 一区二区三区乱码不卡18| 大香蕉久久成人网| 少妇精品久久久久久久| 黄色a级毛片大全视频| 欧美在线一区亚洲| 女人高潮潮喷娇喘18禁视频| 最新美女视频免费是黄的| 免费观看人在逋| 亚洲精品中文字幕在线视频| 午夜久久久在线观看| 90打野战视频偷拍视频|