• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Matryoshka-type carbon-stabilized hollow Si spheres as an advanced anode material for lithium-ion batteries

    2022-07-11 03:39:42HuiminWuPeioGoJinglinMuZhichoMioPengfeiZhouTongZhouJinZhou
    Chinese Chemical Letters 2022年6期

    Huimin Wu,Peio Go,Jinglin Mu,Zhicho Mio,Pengfei Zhou,Tong Zhou,Jin Zhou,?

    a School of Chemistry and Chemical Engineering,Shandong University of Technology,Zibo 255049,China

    b School of Physics and Optoelectronic Engineering,Shandong University of Technology,Zibo 255049,China

    Keywords:Lithiun-ion battery Hollow Si Matryoshka structure Anode Molten salts

    ABSTRACT Silicon (Si) is regarded as the potential anode for lithium-ion batteries (LIBs),due to the remarkable theoretical specific capacity and low voltage plateau.However,the rapid capacity decay resulting from volume variation and slow electron/ion transportation of Si limit its practical application.Here,matryoshka-type carbon-stabilized hollow silicon spheres (Si/C/Si/C) are synthesized by an aluminothermic reduction and calcination process.The Si/C/Si/C anode materials prepared at 500 °C (Si/C/Si/C-500) exhibit unique structures,in which amorphous region and porous structure are preserved in the Si layers.The anode based on Si/C/Si/C-500 displays an initial specific capacity of 2792 mAh/g at a current density of 100 mA/g.At 1000 mA/g,this anode retains a reversible capacity of 1673 mAh/g,86.9% of the initial capacity after 200 cycles.Such synthetic strategy can be employed to fabricate other high-capacity anode materials with large volume variation during charge/discharge process

    With the rapid development of portable electrical devices and all-electric vehicles (EVs),lithium-ion batteries (LIBs) with high energy density and high capacity are strongly demanded.Si is regarded as one of the most promising anode materials for nextgeneration high-energy LIBs due to the extremely high theoretical capacity (~4200 mAh/g for Li22Si5) and rich abundance on earth[1–4].However,the commercial use is hindered by the following challenges: (i) Si experiences a large volume variation during the lithiation/delithiation process,which results in the crack of Si and contact loss with the current collector,leading to a rapid capacity decay [5,6];(ii) The continual formation of solid electrolyte interphase (SEI) film repeatedly consumes Li+,reducing the initial and later-cycle coulombic efficiencies of Si anode;(iii) Si-based anode exhibits poor rate performance because of the slow electron and Li+transport.

    Various strategies have been adopted to address the above obstacles.Firstly,nanostructured Si anode materials (e.g.,Si nanowires [7–9],Si nanotubes [10],Si nanosheets [11,12],porous Si [13–15]) have been synthesized and exhibited fast electron/ion transmission and good fracture-endurance.Secondly,silicon nanoparticles are embedded into active/inactive matrix to obtain a stable electrode [16].Thirdly,surface coating with free space around Si is an important strategy to accommodate the volume change [17,18].Carbon is considered as the desired coating layer due to the excellent conductivity and mechanical robustness.For example,Cuiet al.fabricate carbon coated Si nanoparticles with a yolk-shell structure,which realizes high capacities and long-term life of 1000 cycles [19].However,most of the carbon-coated silicon particles belong to “core-shell” structures.The carbon shell is coated on the exterior surface of Si and enough free volume needs to be generated around the Si core (or porous Si core).These structures indeed improve the cycle life and specific capacities.But new challenges are introduced to the practical application of Si-based anode batteries.On one hand,inner Si has low electrical conductivity,making it difficult to achieve excellent rate performance.Although nano-sized Si can effectively address this issue,these materials are sparsely packed,leading to poor connections between neighboring nanoparticles.In addition,the infiltrated carbon coating can also improve the rate performance of Si.But more carbon penetrates the composites,which not only decreases the specific capacity but also reduces the initial coulombic efficiency.On the other hand,most of the well-designed void space is introduced using a sacrificial template (e.g.,SiO2),followed by hydrofluoric acid(HF) etching.These procedures are not only unfriendly for environment but too complicated for large-scale use.

    Fig.1.Schematic illustration of the syntheses process of Si/C/Si/C anode materials.

    To address the above obstacles,a matryoshka-type carbonstabilized hollow Si (Si/C/Si/C) spheres are synthesized.The Si shell is a porous,polycrystalline products consisting of interconnected tiny nanoparticles and carbon shell is nested layer that ensures good electrical contact and encapsulate Si to restrict SEI formation on the outer surfaces.Such structures possess several attractive advantages: (i) Hollow void allows volume changes of Si nanoparticles inside of inner carbon shell;(ii) Inner carbon shell provides multipoint physical contacts with Si shells,significantly improving the conductivity of electrode;(iii) Outer carbon shell facilitates the formation of stable SEI film;(iv) Amorphous regions in the polycrystalline Si possess good tolerance to intrinsic strain/stress,benefiting for the structure stability.

    The syntheses of Si/C/Si/C samples can be divided into two steps (Fig.1).First,highly uniform SiO2nanospheres (Fig.S1 in Supporting information) prepared by hydrolysis of tetraethylorthosilicate (TEOS) [20]are coated with a polydopamine (pDA)through self-polymerization of dopamine in solution.After carbonized the pDA under inert atmosphere,the aluminothermic reaction is conducted between carbon-coated silica (SiO2@C,Fig.S2 in Supporting information) and aluminum powder in AlCl3/NaCl mixture.The hollow Si/C/Si nanospheres are obtained (Fig.S3 in Supporting information) after the removal of Al-bearing byproducts,leaving amounts of mesopores.The silicon hollow structures can be formed by a diffusion mechanism in the molten salts.In molten AlCl3/NaCl,a large amount of ion and solvated electrons are producedviaan ionization process [21],Al=Al3++3e?,which etches SiO2to break the Si-O bond to form SiOx.Then,the SiOxis reduced in the molten salts and grows on the surface of carbon layerviathe previously documented diffusion mechanism[20,22,23],leading to the formation of the Si/C/Si hollow structure.Herein,the NaCl is adopted as heat scavenges,which effectively prevents the hollow structure collapsing and avoids the aggregation of Si nanoparticles [24].Next,the hollow Si/C/Si nanospheres are encapsulated by another pDA shell,and then undergo an annealing process at 500 °C and 800 °C to form an outer carbon shell.For the sake of clarity,the annealed hollow Si samples at 500 °C and 800 °C are denoted as Si/C/Si/C-500 and Si/C/Si/C-800 from now on,respectively.

    The X-ray diffraction (XRD) patterns of the Si/C/Si/C-500 and Si/C/Si/C-800 are shown in Fig.2a.The 2θpeaks located at 28.5°,47.4°,56.2°,69.3° and 76.5° are indexed to the diffraction peaks of cubic Si (PDF#27–1402),confirming the successful conversion SiO2to Si [21].The Raman spectroscopy of two samples is shown in Fig.2b.The peak at 521 cm?1for Si/C/Si/C-800 is assigned to the transverse optical mode of crystalline silicon [17,25].Compared to the Raman absorption peak of crystalline Si,the peak of Si/C/Si/C-500 exhibits a blue-shift peak at around 518 cm?1,indicating the appearance of amorphous silicon (a-Si) phase [25–28].Our previous reports confirm that the appearance of a-Si is due to low synthesis temperature [29].The peaks at 1341 and 1582 cm?1,correspond to the D and G bands of carbon,respectively [30].The negligible signals of carbon indicate a very thin coating layer.

    To observe the effect of anneal temperature on the microstructure of Si products,the nitrogen gas sorption data of Si/C/Si/C-500 and Si/C/Si/C-800 are collected (Figs.2c and d).The specific surface area (SSA) of Si/C/Si/C-500 (Fig.2c) is 64.1 m2/g based on the Brunauer-Emmett-Teller theory,which is higher than that of Si/C/Si/C-800 sample (25.3 m2/g).This is probably due to the coarsening of pores and silicon phases in the high-temperature annealing process [29].The hypothesis is also supported by the increase of the average pore diameter by elevating the calcination temperature (10.9 nm for Si/C/Si/C-500vs.12.7 nm for Si/C/Si/C-800).The result means that the low-temperature is beneficial for the preservation of porous structure.

    Fig.2.(a) XRD and (b) Raman results of Si/C/Si/C-500 and Si/C/Si/C-800 nanospheres,respectively (Inset of b is the enlarged Raman adsorption peak of Si);Nitrogen adsorption and desorption isotherms of (c) Si/C/Si/C-500 and (d) Si/C/Si/C-800 samples,respectively (Insets are corresponding pore width distributions).

    Fig.3 shows the morphologies of Si/C/Si/C-500 and Si/C/Si/C-800 samples.SEM and TEM images demonstrate that two samples have a hollow spherical structure.However,the microstructure of shell layers changes after annealing at different temperature.As observed in Fig.3a,the Si/C/Si/C-800 exhibits a spherical shape with a smooth surface and without massive or agglomerated Si nanoparticles observed.TEM images (Fig.3b) show the detailed microstructure of the Si/C/Si/C-800.The shell layer becomes more compact.Inset image in Fig.3b exhibits that homogeneous element with same light intensity are concentrated in the shell.The linear distributions can reflect the content change of different elements,so it can be used as an indicator of structure.Fig.S4(Supporting information) exhibits the corresponding linear distributions of Si/C/Si/C-800 sample along with the hollow shell.It can be seen that the intensity of Si element (green line) only has one peak when the line scanning gets through the hollow shell.Besides,the intensity of carbon has no obvious change.These results reveal that the Si/C/Si/C sandwiched structure disappears.This is due to the reduction of defects (including pores and amorphous regions) after high-temperature annealing [31].It is also confirmed by the ordered lattice fringe in the high-resolution transmission electron microscopy (HRTEM) image (Fig.3c) and the selected area electron diffraction (SAED) result (inset image in Fig.3c) [24].The interplanar distances are measured to be 0.31 nm,which corresponds to the (111) crystal planes of the cubic Si [32].In comparison,the Si/C/Si/C-500 samples also have a typical spherical morphology (Fig.3d),but the outer surface becomes much rougher which is comprised of large amount of tiny Si nanoparticles (Fig.S5 in Supporting information).Significantly,TEM images in Fig.3e show the microstructure of Si/C/Si/C-500.Inset image in Fig.3e exhibits the clear Si-C interface with Si/C/Si/C multi shells.The thin Si shell can shorten the diffusion path of Li+during lithiation.Moreover,double carbon shell encapsulates Si nanoparticles and provides sufficient physical contact points,which can largely enhance the conductivity of the composites.The ambiguous lattice fringes of shell in the HRTEM image (Fig.3f) indicate the appearance of a-Si.SAED (the inset of Fig.3f) of Si/C/Si/C-500 is circular rings,also indicating the polycrystalline nature [33].The porous,amorphous regions can effectively buffer the volume variation during lithiation/delithiation,inhibiting the material pulverization and enhancing the structure stability.To confirm the constituents of the shell,the element mapping and the linear distribution are also conducted along the hollow shell (Fig.3g).The element mapping(Figs.3g1 and g2) confirms the existence of Si (Fig.3g1) and carbon (Fig.3g2).The corresponding linear distribution (Fig.3h) reflects the content change of silicon and carbon.The intensity of Si appears two peaks along the scanning line.It is worth noting that the intensity of carbon slightly increases between two peaks of Si.Both sides of shell,the signal intensity of carbon has no significant change.It indicates the outer carbon layer is a uniform coating.In brief,the above results demonstrate the matryoshka-type hollow structure of Si/C/Si/C-500,in which pores and amorphous phases are preserved in silicon layers.The formation of different Si structures is typically driven by chemical potential differences associated with curvature effects on the particle interfacial energies [34].At elevated temperature,the thermally activated processes (e.g.,crystallite rotation and alignment) become dominant.The rearrangement of atom contributes to the transformation from amorphous to crystalline Si.And pores tend to coalesce and disappear.However,at low temperature,the threshold for crystallite intergrowth or diffusional mass transport is severely limited.

    Fig.3.Microstructure of (a-c) Si/C/Si/C-800 and (d-g) Si/C/Si/C-500 nanospheres.(a) SEM,(b) TEM (Inset is the magnified region of the yellow rectangle in (b)) and (c)HRTEM images of the Si/C/Si/C-800 (Inset is the SAED of the hollow shell).(d-f) The corresponding structure characterization of Si/C/Si/C-500 as same as Si/C/Si/C-800.(g)STEM image and the corresponding element mapping of (g1) Si,(g2) C,(h) linear distributions of Si (green line),C (yellow line) and O (white line) elements of Si/C/Si/C-500.

    Fig.4.(a) The initial charging/discharging profiles of Si/C/Si/C-500 and Si/C/Si/C-800 at 0.1 A/g current density.(b) Plots of the differential capacity versus voltage.(c) Rate and (d) long-term cycling stability of Si/C/Si/C-500 and Si/C/Si/C-800 electrodes.Electrochemical impedance spectra of (e) Si/C/Si/C-500 and (f) Si/C/Si/C-800 before cycling and after 50 cycles.

    The electrochemical performances of the anode based on Si/C/Si/C-500 and Si/C/Si/C-800 are examined in half cells for LIBs.Fig.4a shows the galvanostatic discharge/charge voltage profiles of the first cycle at a current density of 0.1 A/g.The Si/C/Si/C-500 electrode delivers a high discharge capacity of 2797.4 mAh/g with an initial coulombic efficiency (ICE) of 83.1%,and the discharge profile exhibits two obvious platforms at 0.24 and 0.10 V.The lower platform derives from the alloying of crystalline Si,and the higher one from amorphous Si [35,36].However,there is no apparent platform observed at around 0.24 V for Si/C/Si/C-800 electrode,indicating that the high temperature destroys the newly formed amorphous Si during annealing.The Si/C/Si/C-800 electrode displays a lower ICE (80.1%) and discharge specific capacity (2136.1 mAh/g).This is due to that the Si/C/Si/C-800 cannot maintain good integrity owing to the insufficient inner voids and large strain/stress.The voltage hysteresis (ΔE) between the lithiation and delithiation platform for Si/C/Si/C-500 anode is 0.20 V,which is smaller than that with Si/C/Si/C-800 anode (0.36 V).This indicates that the cell has a better reversibility and less polarization [37,38].The above results are also evidenced by the differential capacityversusvoltage (dQ/dV) plots in Fig.4b.At first glance,the area arranged by Si/C/Si/C-500 is larger than that of Si/C/Si/C-800,which indicates the Si/C/Si/C-500 electrode delivers a higher specific capacity,consisting well with the result in Fig.4a.For Si/C/Si/C-500 electrode,there are two cathodic peaks at around 0.24 and 0.1 V in the first discharge process,which corresponds to the lithiation of amorphous Si and crystalline Si,respectively [35].Two anodic peaks at around 0.28 and 0.43 V are related to the de-alloying steps of LixSi [39,40].On the contrary,the Si/C/Si/C-800 displays only one cathodic peak (~0.13 V) and one anodic peak(~0.43 V),corresponding to the crystal property [41].When applied different current density,the Si/C/Si/C-500 electrode exhibits excellent rate capability (Fig.4c).It delivers reversible capacities of 2119.4,1929.6,1649.7,1398.5,1184.5,997.7 mAh/g at 0.5,1,2,3,4,5 A/g,respectively.Most notably,a high specific capacity of 1799.8 mAh/g is preserved when the current density reverses back to 1 A/g.This performance is superior to Si/C/Si/C-800 electrode.Compared to the Si/C/Si/C-800,the Si/C/Si/C-500 electrode exhibits an outstanding cycling performance,as shown in Fig.4d.After 200 cycles at 1 A/g,the Si/C/Si/C-500 displays a high capacity of 1673 mAh/g with a capacity retention of 86.9%.The capacity decay ratio is as low as 0.066% for each cycle.The electrochemical performance of Si/C/Si/C-500 in this work can be competitive to others nanostructured Si which are summarized in Table S1 (Supporting information).However,the Si/C/Si/C-800 electrode displays low retention of 68.3% and fast capacity decay.

    To further understand the mechanism for the superior electrochemical performance of Si/C/Si/C-500,electrochemical impedance spectra (EIS) data are collected to analyze the internal resistance and charge-transfer process of the pristine and cycled electrodes.Figs.4e and f display Nyquist plots of the Si/C/Si/C-500 and Si/C/Si/C-800 electrodes before and after 50 cycles.Before cycling,the two electrodes show similar Nyquist plots,involving a single semicircle at high-medium frequency region and an inclined line at low frequencies.Apparently,the radius of the semicircle for Si/C/Si/C-500 is smaller than that of Si/C/Si/C-800,which represents the lower charge transfer resistance (Rct) [42].This is ascribed to its unique matryoshka-type design to enhance the electrical conductivity.The equivalent circuit shown in Fig.S6 (Supporting information) is used to fit the Nyquist plots and the fitted data are summarized in Table S2 (Supporting information).Similar to the pristine electrode,the cycled electrodeRctof Si/C/Si/C-500 displays a smaller variation,indicating stable charge transfer and interface.In contrast,the Si/C/Si/C-800 shows dramatically decreasedRctvalue,demonstrating a progressive electrolyte infiltration and activation process [43].The excellent electrochemical performance of Si/C/Si/C-500 electrodes,on one hand,benefits from the porous and amorphous regions on mitigating the volume variation.On the other hand,carbon coated hollow shell provides multipoint contact with Si nanoparticles for good electronic conductivity,and accelerates the charge transfer and kinetics of Li+in the electrode.

    To evaluate its potential practical application,a full battery is fabricated with prelithiated Si/C/Si/C-500 anode and commercial Li(Ni1/3Co1/3Mn1/3)O2(NCM) cathode.The capacity ratio of N/P(negative/positive) was about 1.08:1 based on the capacity matching of the full cell.The prelithiation of Si/C/Si/C-500 was carried out through a discharge process in a half-cell and the cutoff voltage is 0.01 V.The cycling performance of the Si/C/Si/C-500//NCM full cell is shown in Fig.S7 (Supporting information) between 2.80 V and 4.25 V.The Si/C/Si/C-500//NCM full cell delivers a high initial capacity of 135.3 mAh/g at 100 mA/g.Moreover,the full battery exhibits a reversible capacity of 99.7 mAh/g with excellent retention.However,the ICE is only 49.6%,indicating that more times prelithiation are necessary to enhance the performance of the Si-based full cells.

    Fig.5.Morphology characterizations of Si anodes before and after 50 cycles.SEM images of top view and cross section based on (a) Si/C/Si/C-500 electrodes and(b) Si/C/Si/C-800 electrodes.TEM images of (c) Si/C/Si/C-500 nanospheres and (d)Si/C/Si/C-800 nanospheres after 50 cycles at 1 A/g.

    To further investigate the electrochemical stability of Si/C/Si/C-500,the morphology of electrodes is unveiled before and after 50 cycles (Fig.5).Fig.5a shows the top-view images of Si/C/Si/C-500 electrodes.After 50 cycles,the electrode maintains intact and active materials coalesce admirably,no obvious cracks are observed.This suggests Si/C/Si/C-500 retains structural integrity and stabilize the SEI on the surface.The morphology of the Si/C/Si/C-500 with and without SEI is examined by SEM (Fig.S8 in Supporting information).These nanospheres are covered by a thin and uniform SEI layer,and the morphologies are largely unchanged compared to those of the original Si/C/Si/C-500 nanospheres (Fig.S8a).SEM images of cross sections reveal that the thickness of 50thcycled electrode is very close to the pristine electrode (10.95vs.10.41 μm,respectively).This result is also confirmed by the morphology of Si/C/Si/C-500 hollow spheres after 50 cycles (Fig.5c).The spherical shape is still retained,revealing the superior mechanical property of carbon coating.As for Si/C/Si/C-800 electrodes,large amounts of agglomerations and cracks appear on the surface after 50 cycles(the arrow regions in Fig.5b).Moreover,the SEI damage on the surface is very serious (Fig.S8b).The electrode thickness increases from 9.62 μm to 11.11 μm,reflecting a huge volume variation.The hollow structures break down after 50 cycles as shown in Fig.5d.

    These above results prove that the Si/C/Si/C-500 sample gives excellent electrochemical performance which can be attributed to its hollow matryoshka-type strategy.First,the nested carbon shell provides both efficiently conductive paths and mechanical support,ensuring the stable surface charge transfer;Second,thin Si shell inside of carbon shell with multipoint physical contacts,considerably decreases diffusion length of Li+ions;Third,amorphous Si shows good tolerance to intrinsic strain/stress;Four,outer carbon shell facilitates the formation of stable SEI and improves the coulombic efficiency,rate capacity performance.Hence,some crucial issues of Si anodes can be resolved by using the synergy effect based on structure design.

    In summary,we demonstrate that through a low-temperature aluminothermic reaction and annealing process,matryoshka-type carbon stabilized hollow Si can be designed and synthesized successfully.The obtained Si/C/Si/C-500 anodes have significantly improved rate capacity and initial coulombic efficiency (83.1%).Impressively,the electrode can retain a reversible specific capacity of 997.7 mAh/g at 5 A/g current density.Such excellent electrochemical performance is ascribed to the good volume buffering effect,good mechanical stability and high conductivity during the charge/discharge process.This proposed approach can be widely employed to prepare porous hollow nanomaterials based on huge volume variation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Science Foundation of China programs (Nos.52007110,22078179,21901146),Key Research and Development Program of Shandong Province(No.2019GGX103027),and Taishan Scholar Foundation (No.tsqn201812063).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.039.

    三级国产精品片| 久久久久久久久久久久大奶| 亚洲,欧美,日韩| 久久久久久久久久成人| 少妇被粗大的猛进出69影院 | 全区人妻精品视频| 九色亚洲精品在线播放| 中国三级夫妇交换| 亚洲欧美精品自产自拍| 久久精品熟女亚洲av麻豆精品| 中文乱码字字幕精品一区二区三区| 五月玫瑰六月丁香| 高清不卡的av网站| 欧美成人精品欧美一级黄| 欧美变态另类bdsm刘玥| 2022亚洲国产成人精品| 久久综合国产亚洲精品| 免费看av在线观看网站| 女人久久www免费人成看片| 欧美精品一区二区免费开放| 日本爱情动作片www.在线观看| 人妻系列 视频| 99久久精品一区二区三区| 欧美xxⅹ黑人| 五月玫瑰六月丁香| 久久久久网色| 亚洲av在线观看美女高潮| 国产色爽女视频免费观看| 欧美日韩亚洲高清精品| 中文天堂在线官网| 性高湖久久久久久久久免费观看| 国产黄频视频在线观看| 美女xxoo啪啪120秒动态图| 少妇的逼好多水| 成年av动漫网址| 久久99热这里只频精品6学生| 亚洲欧美成人综合另类久久久| 精品国产露脸久久av麻豆| 午夜视频国产福利| 99久久人妻综合| 妹子高潮喷水视频| 999精品在线视频| 久久久久久久久久成人| 69精品国产乱码久久久| 久久 成人 亚洲| 欧美日韩亚洲高清精品| 99国产综合亚洲精品| 亚洲av成人精品一二三区| 国精品久久久久久国模美| 欧美 日韩 精品 国产| 亚洲久久久国产精品| 国产成人91sexporn| 午夜福利网站1000一区二区三区| 免费人成在线观看视频色| 亚洲精品乱码久久久v下载方式| 91精品伊人久久大香线蕉| 成人影院久久| 久久午夜综合久久蜜桃| 丝袜在线中文字幕| videosex国产| 爱豆传媒免费全集在线观看| 日韩 亚洲 欧美在线| 精品视频人人做人人爽| 一区二区三区精品91| 亚洲av电影在线观看一区二区三区| 亚洲精品成人av观看孕妇| 中文欧美无线码| 国产精品一区二区在线不卡| 午夜精品国产一区二区电影| 亚洲人成77777在线视频| 菩萨蛮人人尽说江南好唐韦庄| 91精品伊人久久大香线蕉| 久久精品国产a三级三级三级| 亚洲成色77777| 精品久久久久久久久亚洲| 久久人人爽人人爽人人片va| 18禁在线播放成人免费| 99九九线精品视频在线观看视频| 午夜av观看不卡| 天堂中文最新版在线下载| 午夜福利,免费看| 久久精品熟女亚洲av麻豆精品| av视频免费观看在线观看| 纵有疾风起免费观看全集完整版| 久久影院123| 国产乱来视频区| 亚洲精华国产精华液的使用体验| 亚洲色图 男人天堂 中文字幕 | 九色成人免费人妻av| 简卡轻食公司| 99国产精品免费福利视频| 日本午夜av视频| av国产精品久久久久影院| 女的被弄到高潮叫床怎么办| 少妇的逼水好多| 两个人的视频大全免费| 黄片无遮挡物在线观看| 久久久久精品久久久久真实原创| 精品国产一区二区久久| 免费高清在线观看视频在线观看| 美女脱内裤让男人舔精品视频| 国产在线免费精品| 国产精品一区二区在线观看99| 免费av不卡在线播放| 亚洲,欧美,日韩| 色94色欧美一区二区| 久久国产精品大桥未久av| 午夜av观看不卡| 黄色毛片三级朝国网站| 国产色婷婷99| 免费人妻精品一区二区三区视频| 欧美精品国产亚洲| 99九九在线精品视频| 亚洲精品日本国产第一区| 精品一区二区三区视频在线| 午夜91福利影院| 伦理电影免费视频| 丰满迷人的少妇在线观看| 9色porny在线观看| xxxhd国产人妻xxx| av女优亚洲男人天堂| 人妻系列 视频| 新久久久久国产一级毛片| 国产不卡av网站在线观看| 99视频精品全部免费 在线| 欧美日韩成人在线一区二区| 亚洲怡红院男人天堂| 欧美日韩视频高清一区二区三区二| 一本一本综合久久| 国产精品久久久久久精品电影小说| 午夜福利视频精品| 亚洲四区av| 高清欧美精品videossex| 亚洲av综合色区一区| 成年女人在线观看亚洲视频| 久久亚洲国产成人精品v| 久久久久久久久久久免费av| 国产av码专区亚洲av| 免费高清在线观看视频在线观看| 国产国语露脸激情在线看| 精品一区在线观看国产| 国产黄片视频在线免费观看| 色网站视频免费| 欧美三级亚洲精品| 人妻夜夜爽99麻豆av| av免费观看日本| 免费不卡的大黄色大毛片视频在线观看| 亚洲av电影在线观看一区二区三区| 久久精品久久久久久久性| 国产欧美亚洲国产| 国产欧美另类精品又又久久亚洲欧美| 韩国高清视频一区二区三区| 五月开心婷婷网| av免费在线看不卡| 国产亚洲一区二区精品| 亚洲成色77777| 亚洲内射少妇av| 免费看av在线观看网站| 精品熟女少妇av免费看| 国产综合精华液| 99久久人妻综合| 中文天堂在线官网| 美女内射精品一级片tv| 热99久久久久精品小说推荐| 亚洲综合色惰| 啦啦啦啦在线视频资源| 日本-黄色视频高清免费观看| 丰满乱子伦码专区| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品自产自拍| 少妇猛男粗大的猛烈进出视频| 丝袜喷水一区| 亚洲精品日韩av片在线观看| 亚洲国产精品成人久久小说| 国产探花极品一区二区| av又黄又爽大尺度在线免费看| 99热6这里只有精品| 女性生殖器流出的白浆| √禁漫天堂资源中文www| 久久久久久久大尺度免费视频| 免费观看在线日韩| 精品少妇久久久久久888优播| 97在线人人人人妻| 亚洲美女黄色视频免费看| 丝袜美足系列| 国产伦理片在线播放av一区| 日韩中文字幕视频在线看片| 国产精品蜜桃在线观看| 边亲边吃奶的免费视频| 美女内射精品一级片tv| 精品熟女少妇av免费看| 精品久久国产蜜桃| 伊人久久国产一区二区| 国产精品一国产av| 国产 精品1| 人妻制服诱惑在线中文字幕| 日韩强制内射视频| 亚洲av成人精品一区久久| 免费人妻精品一区二区三区视频| 国产精品熟女久久久久浪| 色5月婷婷丁香| 亚洲国产av新网站| 久久久精品区二区三区| 国产高清不卡午夜福利| 亚洲精品国产色婷婷电影| 黑人巨大精品欧美一区二区蜜桃 | 日韩一本色道免费dvd| 在线观看免费高清a一片| 青春草视频在线免费观看| 91国产中文字幕| 热re99久久国产66热| 一级毛片aaaaaa免费看小| 3wmmmm亚洲av在线观看| 99热全是精品| 三级国产精品欧美在线观看| 日本爱情动作片www.在线观看| 少妇精品久久久久久久| 亚洲欧洲国产日韩| 啦啦啦啦在线视频资源| 日韩一本色道免费dvd| 精品卡一卡二卡四卡免费| 久久精品熟女亚洲av麻豆精品| 3wmmmm亚洲av在线观看| 国产成人aa在线观看| 亚洲经典国产精华液单| 丰满迷人的少妇在线观看| 午夜福利视频在线观看免费| 国产极品天堂在线| 能在线免费看毛片的网站| 国产精品人妻久久久久久| 亚洲欧洲国产日韩| 香蕉精品网在线| 久久热精品热| 老司机亚洲免费影院| 欧美激情极品国产一区二区三区 | 一区二区三区乱码不卡18| 精品人妻在线不人妻| 一区在线观看完整版| 久久久久精品性色| 国产av码专区亚洲av| 天美传媒精品一区二区| 91精品一卡2卡3卡4卡| 97超视频在线观看视频| 亚洲美女搞黄在线观看| 欧美日韩在线观看h| 一本大道久久a久久精品| 亚洲久久久国产精品| 国产男女内射视频| 少妇精品久久久久久久| 99热国产这里只有精品6| 水蜜桃什么品种好| 国产有黄有色有爽视频| 91精品国产国语对白视频| 成人午夜精彩视频在线观看| 桃花免费在线播放| 亚洲人成网站在线播| 亚洲激情五月婷婷啪啪| 亚洲四区av| 久久久久久久久久久免费av| 久久青草综合色| 一级毛片aaaaaa免费看小| 3wmmmm亚洲av在线观看| 99热这里只有是精品在线观看| 永久网站在线| 能在线免费看毛片的网站| 91精品三级在线观看| 一边亲一边摸免费视频| 国产免费又黄又爽又色| 桃花免费在线播放| 纯流量卡能插随身wifi吗| 汤姆久久久久久久影院中文字幕| 亚洲人与动物交配视频| 母亲3免费完整高清在线观看 | 成人国产av品久久久| 18在线观看网站| 国内精品宾馆在线| 成人免费观看视频高清| 久久青草综合色| 国产精品人妻久久久久久| 亚洲av福利一区| 亚洲精品乱码久久久v下载方式| 在线观看免费日韩欧美大片 | 日本色播在线视频| 国产亚洲一区二区精品| 欧美日韩成人在线一区二区| 下体分泌物呈黄色| 午夜福利网站1000一区二区三区| 男男h啪啪无遮挡| 国产一区有黄有色的免费视频| 高清午夜精品一区二区三区| 五月伊人婷婷丁香| 观看美女的网站| 99热全是精品| 亚洲,欧美,日韩| 日本午夜av视频| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免| 伦理电影大哥的女人| 啦啦啦在线观看免费高清www| 高清毛片免费看| 国产精品偷伦视频观看了| a 毛片基地| 日本免费在线观看一区| 美女cb高潮喷水在线观看| 成人亚洲精品一区在线观看| 久久国产亚洲av麻豆专区| 人人妻人人爽人人添夜夜欢视频| 久久影院123| 成人午夜精彩视频在线观看| 丰满乱子伦码专区| av视频免费观看在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日日啪夜夜爽| 亚洲怡红院男人天堂| 国产精品久久久久久久久免| 中文欧美无线码| 最近的中文字幕免费完整| 人妻夜夜爽99麻豆av| 美女cb高潮喷水在线观看| 色94色欧美一区二区| 久久99热这里只频精品6学生| 80岁老熟妇乱子伦牲交| 一级毛片电影观看| kizo精华| 国产高清国产精品国产三级| a级片在线免费高清观看视频| 九色成人免费人妻av| 天天影视国产精品| 18禁裸乳无遮挡动漫免费视频| 999精品在线视频| 视频在线观看一区二区三区| 亚洲国产精品成人久久小说| 少妇高潮的动态图| 欧美性感艳星| 欧美老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 欧美 亚洲 国产 日韩一| 日韩熟女老妇一区二区性免费视频| 国产黄片视频在线免费观看| 欧美激情极品国产一区二区三区 | 婷婷色av中文字幕| 制服诱惑二区| 国产一级毛片在线| 欧美人与性动交α欧美精品济南到 | 国产精品麻豆人妻色哟哟久久| 日韩制服骚丝袜av| 乱码一卡2卡4卡精品| 日本wwww免费看| 天天躁夜夜躁狠狠久久av| av电影中文网址| 精品国产一区二区三区久久久樱花| 丝袜美足系列| 99国产综合亚洲精品| 国模一区二区三区四区视频| 夜夜看夜夜爽夜夜摸| 亚洲精品国产av成人精品| 99视频精品全部免费 在线| 午夜91福利影院| 夫妻性生交免费视频一级片| 日韩免费高清中文字幕av| 欧美日韩综合久久久久久| 欧美日韩国产mv在线观看视频| 国产精品不卡视频一区二区| 中文字幕最新亚洲高清| 人人妻人人爽人人添夜夜欢视频| 91在线精品国自产拍蜜月| 伊人久久精品亚洲午夜| 一二三四中文在线观看免费高清| 色94色欧美一区二区| 精品少妇内射三级| 精品国产一区二区三区久久久樱花| 久久午夜福利片| 大陆偷拍与自拍| 人妻人人澡人人爽人人| 大话2 男鬼变身卡| 国产精品一区www在线观看| 国产免费一级a男人的天堂| 五月天丁香电影| 亚洲精品aⅴ在线观看| 曰老女人黄片| 汤姆久久久久久久影院中文字幕| 亚洲精品中文字幕在线视频| 免费播放大片免费观看视频在线观看| 亚洲少妇的诱惑av| av又黄又爽大尺度在线免费看| 久久国产精品男人的天堂亚洲 | 日韩亚洲欧美综合| 男的添女的下面高潮视频| 欧美日韩av久久| 男女边摸边吃奶| 久久精品夜色国产| 大香蕉久久成人网| 国产精品蜜桃在线观看| 精品一区二区免费观看| 国产日韩欧美在线精品| 五月玫瑰六月丁香| 国产午夜精品一二区理论片| 久久综合国产亚洲精品| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 亚洲国产日韩一区二区| 精品国产国语对白av| 久久国产精品大桥未久av| 最近手机中文字幕大全| 美女大奶头黄色视频| 亚洲人与动物交配视频| 国产一区二区三区av在线| 久久久精品区二区三区| 久久久久精品久久久久真实原创| 在线观看人妻少妇| 精品久久国产蜜桃| 人妻 亚洲 视频| 亚洲国产欧美在线一区| 亚洲人与动物交配视频| 精品人妻熟女av久视频| 久久精品国产亚洲av涩爱| 亚洲精品色激情综合| 韩国高清视频一区二区三区| 欧美三级亚洲精品| 亚洲色图综合在线观看| 精品人妻一区二区三区麻豆| 欧美日韩成人在线一区二区| 18禁在线无遮挡免费观看视频| 一级爰片在线观看| 免费人妻精品一区二区三区视频| 亚洲国产最新在线播放| 久久久欧美国产精品| 日本vs欧美在线观看视频| 亚洲五月色婷婷综合| 五月开心婷婷网| av天堂久久9| 日日啪夜夜爽| 成人手机av| 欧美日韩国产mv在线观看视频| 在线播放无遮挡| 美女国产视频在线观看| 在线观看一区二区三区激情| 精品一区在线观看国产| 亚洲国产日韩一区二区| 一本久久精品| 一级,二级,三级黄色视频| 热re99久久精品国产66热6| 最黄视频免费看| 亚洲国产精品国产精品| 桃花免费在线播放| 黑人巨大精品欧美一区二区蜜桃 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人18禁高潮啪啪吃奶动态图 | 一个人看视频在线观看www免费| 草草在线视频免费看| 午夜福利影视在线免费观看| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 久久鲁丝午夜福利片| 91久久精品国产一区二区成人| 久久精品国产亚洲av天美| 久久国产精品男人的天堂亚洲 | 大话2 男鬼变身卡| 亚洲av男天堂| 最后的刺客免费高清国语| 国产乱人偷精品视频| 一区二区三区精品91| 午夜福利影视在线免费观看| 十八禁网站网址无遮挡| 又粗又硬又长又爽又黄的视频| 丝袜喷水一区| av天堂久久9| 久久精品熟女亚洲av麻豆精品| 精品一区二区免费观看| 亚洲精品中文字幕在线视频| 99视频精品全部免费 在线| 91久久精品国产一区二区三区| 啦啦啦啦在线视频资源| 岛国毛片在线播放| 久久久国产一区二区| 99热这里只有精品一区| 国产精品 国内视频| 欧美日韩视频高清一区二区三区二| 午夜福利视频在线观看免费| 777米奇影视久久| 91精品一卡2卡3卡4卡| 国精品久久久久久国模美| 国产精品一区二区在线观看99| 国精品久久久久久国模美| 欧美人与善性xxx| 色哟哟·www| 久久久久久久久久久丰满| 母亲3免费完整高清在线观看 | 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 免费人妻精品一区二区三区视频| 一区二区三区乱码不卡18| 久久久久久久久久久久大奶| 欧美 日韩 精品 国产| 爱豆传媒免费全集在线观看| tube8黄色片| 各种免费的搞黄视频| 99久久人妻综合| 久久精品久久久久久噜噜老黄| 国产成人aa在线观看| 精品国产露脸久久av麻豆| 国产黄片视频在线免费观看| 日韩在线高清观看一区二区三区| 美女福利国产在线| 亚洲国产精品999| 亚洲国产欧美在线一区| 97在线人人人人妻| 搡女人真爽免费视频火全软件| 国产欧美日韩一区二区三区在线 | 久久午夜福利片| 黄色一级大片看看| 午夜免费鲁丝| 插逼视频在线观看| 日韩一区二区三区影片| 久久久久久久久大av| 考比视频在线观看| 热re99久久国产66热| 久久人妻熟女aⅴ| 国产片特级美女逼逼视频| 国产免费一级a男人的天堂| 国产精品嫩草影院av在线观看| 色网站视频免费| av电影中文网址| 国产高清不卡午夜福利| 综合色丁香网| 18+在线观看网站| 日韩大片免费观看网站| 91成人精品电影| 人人妻人人澡人人看| 免费看av在线观看网站| 欧美人与性动交α欧美精品济南到 | a级毛色黄片| 亚洲av.av天堂| 欧美激情 高清一区二区三区| 午夜91福利影院| 国产精品国产三级专区第一集| 十八禁高潮呻吟视频| 黑人猛操日本美女一级片| 亚洲av二区三区四区| 简卡轻食公司| 视频区图区小说| 人妻 亚洲 视频| 一区二区三区四区激情视频| 久久鲁丝午夜福利片| 亚洲欧美日韩卡通动漫| 黄色一级大片看看| 最近中文字幕高清免费大全6| 久久鲁丝午夜福利片| 国产综合精华液| 午夜免费观看性视频| 日韩大片免费观看网站| 国产亚洲av片在线观看秒播厂| 精品国产一区二区久久| 久久精品国产鲁丝片午夜精品| 如日韩欧美国产精品一区二区三区 | 欧美日韩国产mv在线观看视频| 日韩av不卡免费在线播放| 99久久人妻综合| 青春草亚洲视频在线观看| 亚洲av二区三区四区| 中文字幕精品免费在线观看视频 | 久久久亚洲精品成人影院| 久久99热6这里只有精品| 欧美人与性动交α欧美精品济南到 | 少妇人妻精品综合一区二区| 久久99一区二区三区| 性色avwww在线观看| 欧美三级亚洲精品| 下体分泌物呈黄色| 日韩人妻高清精品专区| 天堂俺去俺来也www色官网| 欧美精品一区二区免费开放| 99热这里只有是精品在线观看| 超色免费av| 日本黄色片子视频| 国产一区二区在线观看av| 另类亚洲欧美激情| 婷婷色综合www| 哪个播放器可以免费观看大片| 免费人成在线观看视频色| 大片免费播放器 马上看| 免费人妻精品一区二区三区视频| 久久精品国产a三级三级三级| 黑人高潮一二区| kizo精华| 国产成人a∨麻豆精品| 狠狠婷婷综合久久久久久88av| 亚洲四区av| 视频在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 美女大奶头黄色视频| 丝袜脚勾引网站| 日韩一本色道免费dvd| 建设人人有责人人尽责人人享有的| 国产黄频视频在线观看| 亚洲精品456在线播放app| 日本wwww免费看| 一个人免费看片子| xxx大片免费视频| 成人午夜精彩视频在线观看| 免费大片18禁| 国产精品一区二区在线观看99| 青春草国产在线视频| 国产成人精品婷婷| 久久女婷五月综合色啪小说| 欧美丝袜亚洲另类| 精品久久久久久久久av| 99精国产麻豆久久婷婷| 美女视频免费永久观看网站| 18禁裸乳无遮挡动漫免费视频| 另类亚洲欧美激情| 高清不卡的av网站| 你懂的网址亚洲精品在线观看| 最近的中文字幕免费完整| 亚洲一区二区三区欧美精品|