• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Matryoshka-type carbon-stabilized hollow Si spheres as an advanced anode material for lithium-ion batteries

    2022-07-11 03:39:42HuiminWuPeioGoJinglinMuZhichoMioPengfeiZhouTongZhouJinZhou
    Chinese Chemical Letters 2022年6期

    Huimin Wu,Peio Go,Jinglin Mu,Zhicho Mio,Pengfei Zhou,Tong Zhou,Jin Zhou,?

    a School of Chemistry and Chemical Engineering,Shandong University of Technology,Zibo 255049,China

    b School of Physics and Optoelectronic Engineering,Shandong University of Technology,Zibo 255049,China

    Keywords:Lithiun-ion battery Hollow Si Matryoshka structure Anode Molten salts

    ABSTRACT Silicon (Si) is regarded as the potential anode for lithium-ion batteries (LIBs),due to the remarkable theoretical specific capacity and low voltage plateau.However,the rapid capacity decay resulting from volume variation and slow electron/ion transportation of Si limit its practical application.Here,matryoshka-type carbon-stabilized hollow silicon spheres (Si/C/Si/C) are synthesized by an aluminothermic reduction and calcination process.The Si/C/Si/C anode materials prepared at 500 °C (Si/C/Si/C-500) exhibit unique structures,in which amorphous region and porous structure are preserved in the Si layers.The anode based on Si/C/Si/C-500 displays an initial specific capacity of 2792 mAh/g at a current density of 100 mA/g.At 1000 mA/g,this anode retains a reversible capacity of 1673 mAh/g,86.9% of the initial capacity after 200 cycles.Such synthetic strategy can be employed to fabricate other high-capacity anode materials with large volume variation during charge/discharge process

    With the rapid development of portable electrical devices and all-electric vehicles (EVs),lithium-ion batteries (LIBs) with high energy density and high capacity are strongly demanded.Si is regarded as one of the most promising anode materials for nextgeneration high-energy LIBs due to the extremely high theoretical capacity (~4200 mAh/g for Li22Si5) and rich abundance on earth[1–4].However,the commercial use is hindered by the following challenges: (i) Si experiences a large volume variation during the lithiation/delithiation process,which results in the crack of Si and contact loss with the current collector,leading to a rapid capacity decay [5,6];(ii) The continual formation of solid electrolyte interphase (SEI) film repeatedly consumes Li+,reducing the initial and later-cycle coulombic efficiencies of Si anode;(iii) Si-based anode exhibits poor rate performance because of the slow electron and Li+transport.

    Various strategies have been adopted to address the above obstacles.Firstly,nanostructured Si anode materials (e.g.,Si nanowires [7–9],Si nanotubes [10],Si nanosheets [11,12],porous Si [13–15]) have been synthesized and exhibited fast electron/ion transmission and good fracture-endurance.Secondly,silicon nanoparticles are embedded into active/inactive matrix to obtain a stable electrode [16].Thirdly,surface coating with free space around Si is an important strategy to accommodate the volume change [17,18].Carbon is considered as the desired coating layer due to the excellent conductivity and mechanical robustness.For example,Cuiet al.fabricate carbon coated Si nanoparticles with a yolk-shell structure,which realizes high capacities and long-term life of 1000 cycles [19].However,most of the carbon-coated silicon particles belong to “core-shell” structures.The carbon shell is coated on the exterior surface of Si and enough free volume needs to be generated around the Si core (or porous Si core).These structures indeed improve the cycle life and specific capacities.But new challenges are introduced to the practical application of Si-based anode batteries.On one hand,inner Si has low electrical conductivity,making it difficult to achieve excellent rate performance.Although nano-sized Si can effectively address this issue,these materials are sparsely packed,leading to poor connections between neighboring nanoparticles.In addition,the infiltrated carbon coating can also improve the rate performance of Si.But more carbon penetrates the composites,which not only decreases the specific capacity but also reduces the initial coulombic efficiency.On the other hand,most of the well-designed void space is introduced using a sacrificial template (e.g.,SiO2),followed by hydrofluoric acid(HF) etching.These procedures are not only unfriendly for environment but too complicated for large-scale use.

    Fig.1.Schematic illustration of the syntheses process of Si/C/Si/C anode materials.

    To address the above obstacles,a matryoshka-type carbonstabilized hollow Si (Si/C/Si/C) spheres are synthesized.The Si shell is a porous,polycrystalline products consisting of interconnected tiny nanoparticles and carbon shell is nested layer that ensures good electrical contact and encapsulate Si to restrict SEI formation on the outer surfaces.Such structures possess several attractive advantages: (i) Hollow void allows volume changes of Si nanoparticles inside of inner carbon shell;(ii) Inner carbon shell provides multipoint physical contacts with Si shells,significantly improving the conductivity of electrode;(iii) Outer carbon shell facilitates the formation of stable SEI film;(iv) Amorphous regions in the polycrystalline Si possess good tolerance to intrinsic strain/stress,benefiting for the structure stability.

    The syntheses of Si/C/Si/C samples can be divided into two steps (Fig.1).First,highly uniform SiO2nanospheres (Fig.S1 in Supporting information) prepared by hydrolysis of tetraethylorthosilicate (TEOS) [20]are coated with a polydopamine (pDA)through self-polymerization of dopamine in solution.After carbonized the pDA under inert atmosphere,the aluminothermic reaction is conducted between carbon-coated silica (SiO2@C,Fig.S2 in Supporting information) and aluminum powder in AlCl3/NaCl mixture.The hollow Si/C/Si nanospheres are obtained (Fig.S3 in Supporting information) after the removal of Al-bearing byproducts,leaving amounts of mesopores.The silicon hollow structures can be formed by a diffusion mechanism in the molten salts.In molten AlCl3/NaCl,a large amount of ion and solvated electrons are producedviaan ionization process [21],Al=Al3++3e?,which etches SiO2to break the Si-O bond to form SiOx.Then,the SiOxis reduced in the molten salts and grows on the surface of carbon layerviathe previously documented diffusion mechanism[20,22,23],leading to the formation of the Si/C/Si hollow structure.Herein,the NaCl is adopted as heat scavenges,which effectively prevents the hollow structure collapsing and avoids the aggregation of Si nanoparticles [24].Next,the hollow Si/C/Si nanospheres are encapsulated by another pDA shell,and then undergo an annealing process at 500 °C and 800 °C to form an outer carbon shell.For the sake of clarity,the annealed hollow Si samples at 500 °C and 800 °C are denoted as Si/C/Si/C-500 and Si/C/Si/C-800 from now on,respectively.

    The X-ray diffraction (XRD) patterns of the Si/C/Si/C-500 and Si/C/Si/C-800 are shown in Fig.2a.The 2θpeaks located at 28.5°,47.4°,56.2°,69.3° and 76.5° are indexed to the diffraction peaks of cubic Si (PDF#27–1402),confirming the successful conversion SiO2to Si [21].The Raman spectroscopy of two samples is shown in Fig.2b.The peak at 521 cm?1for Si/C/Si/C-800 is assigned to the transverse optical mode of crystalline silicon [17,25].Compared to the Raman absorption peak of crystalline Si,the peak of Si/C/Si/C-500 exhibits a blue-shift peak at around 518 cm?1,indicating the appearance of amorphous silicon (a-Si) phase [25–28].Our previous reports confirm that the appearance of a-Si is due to low synthesis temperature [29].The peaks at 1341 and 1582 cm?1,correspond to the D and G bands of carbon,respectively [30].The negligible signals of carbon indicate a very thin coating layer.

    To observe the effect of anneal temperature on the microstructure of Si products,the nitrogen gas sorption data of Si/C/Si/C-500 and Si/C/Si/C-800 are collected (Figs.2c and d).The specific surface area (SSA) of Si/C/Si/C-500 (Fig.2c) is 64.1 m2/g based on the Brunauer-Emmett-Teller theory,which is higher than that of Si/C/Si/C-800 sample (25.3 m2/g).This is probably due to the coarsening of pores and silicon phases in the high-temperature annealing process [29].The hypothesis is also supported by the increase of the average pore diameter by elevating the calcination temperature (10.9 nm for Si/C/Si/C-500vs.12.7 nm for Si/C/Si/C-800).The result means that the low-temperature is beneficial for the preservation of porous structure.

    Fig.2.(a) XRD and (b) Raman results of Si/C/Si/C-500 and Si/C/Si/C-800 nanospheres,respectively (Inset of b is the enlarged Raman adsorption peak of Si);Nitrogen adsorption and desorption isotherms of (c) Si/C/Si/C-500 and (d) Si/C/Si/C-800 samples,respectively (Insets are corresponding pore width distributions).

    Fig.3 shows the morphologies of Si/C/Si/C-500 and Si/C/Si/C-800 samples.SEM and TEM images demonstrate that two samples have a hollow spherical structure.However,the microstructure of shell layers changes after annealing at different temperature.As observed in Fig.3a,the Si/C/Si/C-800 exhibits a spherical shape with a smooth surface and without massive or agglomerated Si nanoparticles observed.TEM images (Fig.3b) show the detailed microstructure of the Si/C/Si/C-800.The shell layer becomes more compact.Inset image in Fig.3b exhibits that homogeneous element with same light intensity are concentrated in the shell.The linear distributions can reflect the content change of different elements,so it can be used as an indicator of structure.Fig.S4(Supporting information) exhibits the corresponding linear distributions of Si/C/Si/C-800 sample along with the hollow shell.It can be seen that the intensity of Si element (green line) only has one peak when the line scanning gets through the hollow shell.Besides,the intensity of carbon has no obvious change.These results reveal that the Si/C/Si/C sandwiched structure disappears.This is due to the reduction of defects (including pores and amorphous regions) after high-temperature annealing [31].It is also confirmed by the ordered lattice fringe in the high-resolution transmission electron microscopy (HRTEM) image (Fig.3c) and the selected area electron diffraction (SAED) result (inset image in Fig.3c) [24].The interplanar distances are measured to be 0.31 nm,which corresponds to the (111) crystal planes of the cubic Si [32].In comparison,the Si/C/Si/C-500 samples also have a typical spherical morphology (Fig.3d),but the outer surface becomes much rougher which is comprised of large amount of tiny Si nanoparticles (Fig.S5 in Supporting information).Significantly,TEM images in Fig.3e show the microstructure of Si/C/Si/C-500.Inset image in Fig.3e exhibits the clear Si-C interface with Si/C/Si/C multi shells.The thin Si shell can shorten the diffusion path of Li+during lithiation.Moreover,double carbon shell encapsulates Si nanoparticles and provides sufficient physical contact points,which can largely enhance the conductivity of the composites.The ambiguous lattice fringes of shell in the HRTEM image (Fig.3f) indicate the appearance of a-Si.SAED (the inset of Fig.3f) of Si/C/Si/C-500 is circular rings,also indicating the polycrystalline nature [33].The porous,amorphous regions can effectively buffer the volume variation during lithiation/delithiation,inhibiting the material pulverization and enhancing the structure stability.To confirm the constituents of the shell,the element mapping and the linear distribution are also conducted along the hollow shell (Fig.3g).The element mapping(Figs.3g1 and g2) confirms the existence of Si (Fig.3g1) and carbon (Fig.3g2).The corresponding linear distribution (Fig.3h) reflects the content change of silicon and carbon.The intensity of Si appears two peaks along the scanning line.It is worth noting that the intensity of carbon slightly increases between two peaks of Si.Both sides of shell,the signal intensity of carbon has no significant change.It indicates the outer carbon layer is a uniform coating.In brief,the above results demonstrate the matryoshka-type hollow structure of Si/C/Si/C-500,in which pores and amorphous phases are preserved in silicon layers.The formation of different Si structures is typically driven by chemical potential differences associated with curvature effects on the particle interfacial energies [34].At elevated temperature,the thermally activated processes (e.g.,crystallite rotation and alignment) become dominant.The rearrangement of atom contributes to the transformation from amorphous to crystalline Si.And pores tend to coalesce and disappear.However,at low temperature,the threshold for crystallite intergrowth or diffusional mass transport is severely limited.

    Fig.3.Microstructure of (a-c) Si/C/Si/C-800 and (d-g) Si/C/Si/C-500 nanospheres.(a) SEM,(b) TEM (Inset is the magnified region of the yellow rectangle in (b)) and (c)HRTEM images of the Si/C/Si/C-800 (Inset is the SAED of the hollow shell).(d-f) The corresponding structure characterization of Si/C/Si/C-500 as same as Si/C/Si/C-800.(g)STEM image and the corresponding element mapping of (g1) Si,(g2) C,(h) linear distributions of Si (green line),C (yellow line) and O (white line) elements of Si/C/Si/C-500.

    Fig.4.(a) The initial charging/discharging profiles of Si/C/Si/C-500 and Si/C/Si/C-800 at 0.1 A/g current density.(b) Plots of the differential capacity versus voltage.(c) Rate and (d) long-term cycling stability of Si/C/Si/C-500 and Si/C/Si/C-800 electrodes.Electrochemical impedance spectra of (e) Si/C/Si/C-500 and (f) Si/C/Si/C-800 before cycling and after 50 cycles.

    The electrochemical performances of the anode based on Si/C/Si/C-500 and Si/C/Si/C-800 are examined in half cells for LIBs.Fig.4a shows the galvanostatic discharge/charge voltage profiles of the first cycle at a current density of 0.1 A/g.The Si/C/Si/C-500 electrode delivers a high discharge capacity of 2797.4 mAh/g with an initial coulombic efficiency (ICE) of 83.1%,and the discharge profile exhibits two obvious platforms at 0.24 and 0.10 V.The lower platform derives from the alloying of crystalline Si,and the higher one from amorphous Si [35,36].However,there is no apparent platform observed at around 0.24 V for Si/C/Si/C-800 electrode,indicating that the high temperature destroys the newly formed amorphous Si during annealing.The Si/C/Si/C-800 electrode displays a lower ICE (80.1%) and discharge specific capacity (2136.1 mAh/g).This is due to that the Si/C/Si/C-800 cannot maintain good integrity owing to the insufficient inner voids and large strain/stress.The voltage hysteresis (ΔE) between the lithiation and delithiation platform for Si/C/Si/C-500 anode is 0.20 V,which is smaller than that with Si/C/Si/C-800 anode (0.36 V).This indicates that the cell has a better reversibility and less polarization [37,38].The above results are also evidenced by the differential capacityversusvoltage (dQ/dV) plots in Fig.4b.At first glance,the area arranged by Si/C/Si/C-500 is larger than that of Si/C/Si/C-800,which indicates the Si/C/Si/C-500 electrode delivers a higher specific capacity,consisting well with the result in Fig.4a.For Si/C/Si/C-500 electrode,there are two cathodic peaks at around 0.24 and 0.1 V in the first discharge process,which corresponds to the lithiation of amorphous Si and crystalline Si,respectively [35].Two anodic peaks at around 0.28 and 0.43 V are related to the de-alloying steps of LixSi [39,40].On the contrary,the Si/C/Si/C-800 displays only one cathodic peak (~0.13 V) and one anodic peak(~0.43 V),corresponding to the crystal property [41].When applied different current density,the Si/C/Si/C-500 electrode exhibits excellent rate capability (Fig.4c).It delivers reversible capacities of 2119.4,1929.6,1649.7,1398.5,1184.5,997.7 mAh/g at 0.5,1,2,3,4,5 A/g,respectively.Most notably,a high specific capacity of 1799.8 mAh/g is preserved when the current density reverses back to 1 A/g.This performance is superior to Si/C/Si/C-800 electrode.Compared to the Si/C/Si/C-800,the Si/C/Si/C-500 electrode exhibits an outstanding cycling performance,as shown in Fig.4d.After 200 cycles at 1 A/g,the Si/C/Si/C-500 displays a high capacity of 1673 mAh/g with a capacity retention of 86.9%.The capacity decay ratio is as low as 0.066% for each cycle.The electrochemical performance of Si/C/Si/C-500 in this work can be competitive to others nanostructured Si which are summarized in Table S1 (Supporting information).However,the Si/C/Si/C-800 electrode displays low retention of 68.3% and fast capacity decay.

    To further understand the mechanism for the superior electrochemical performance of Si/C/Si/C-500,electrochemical impedance spectra (EIS) data are collected to analyze the internal resistance and charge-transfer process of the pristine and cycled electrodes.Figs.4e and f display Nyquist plots of the Si/C/Si/C-500 and Si/C/Si/C-800 electrodes before and after 50 cycles.Before cycling,the two electrodes show similar Nyquist plots,involving a single semicircle at high-medium frequency region and an inclined line at low frequencies.Apparently,the radius of the semicircle for Si/C/Si/C-500 is smaller than that of Si/C/Si/C-800,which represents the lower charge transfer resistance (Rct) [42].This is ascribed to its unique matryoshka-type design to enhance the electrical conductivity.The equivalent circuit shown in Fig.S6 (Supporting information) is used to fit the Nyquist plots and the fitted data are summarized in Table S2 (Supporting information).Similar to the pristine electrode,the cycled electrodeRctof Si/C/Si/C-500 displays a smaller variation,indicating stable charge transfer and interface.In contrast,the Si/C/Si/C-800 shows dramatically decreasedRctvalue,demonstrating a progressive electrolyte infiltration and activation process [43].The excellent electrochemical performance of Si/C/Si/C-500 electrodes,on one hand,benefits from the porous and amorphous regions on mitigating the volume variation.On the other hand,carbon coated hollow shell provides multipoint contact with Si nanoparticles for good electronic conductivity,and accelerates the charge transfer and kinetics of Li+in the electrode.

    To evaluate its potential practical application,a full battery is fabricated with prelithiated Si/C/Si/C-500 anode and commercial Li(Ni1/3Co1/3Mn1/3)O2(NCM) cathode.The capacity ratio of N/P(negative/positive) was about 1.08:1 based on the capacity matching of the full cell.The prelithiation of Si/C/Si/C-500 was carried out through a discharge process in a half-cell and the cutoff voltage is 0.01 V.The cycling performance of the Si/C/Si/C-500//NCM full cell is shown in Fig.S7 (Supporting information) between 2.80 V and 4.25 V.The Si/C/Si/C-500//NCM full cell delivers a high initial capacity of 135.3 mAh/g at 100 mA/g.Moreover,the full battery exhibits a reversible capacity of 99.7 mAh/g with excellent retention.However,the ICE is only 49.6%,indicating that more times prelithiation are necessary to enhance the performance of the Si-based full cells.

    Fig.5.Morphology characterizations of Si anodes before and after 50 cycles.SEM images of top view and cross section based on (a) Si/C/Si/C-500 electrodes and(b) Si/C/Si/C-800 electrodes.TEM images of (c) Si/C/Si/C-500 nanospheres and (d)Si/C/Si/C-800 nanospheres after 50 cycles at 1 A/g.

    To further investigate the electrochemical stability of Si/C/Si/C-500,the morphology of electrodes is unveiled before and after 50 cycles (Fig.5).Fig.5a shows the top-view images of Si/C/Si/C-500 electrodes.After 50 cycles,the electrode maintains intact and active materials coalesce admirably,no obvious cracks are observed.This suggests Si/C/Si/C-500 retains structural integrity and stabilize the SEI on the surface.The morphology of the Si/C/Si/C-500 with and without SEI is examined by SEM (Fig.S8 in Supporting information).These nanospheres are covered by a thin and uniform SEI layer,and the morphologies are largely unchanged compared to those of the original Si/C/Si/C-500 nanospheres (Fig.S8a).SEM images of cross sections reveal that the thickness of 50thcycled electrode is very close to the pristine electrode (10.95vs.10.41 μm,respectively).This result is also confirmed by the morphology of Si/C/Si/C-500 hollow spheres after 50 cycles (Fig.5c).The spherical shape is still retained,revealing the superior mechanical property of carbon coating.As for Si/C/Si/C-800 electrodes,large amounts of agglomerations and cracks appear on the surface after 50 cycles(the arrow regions in Fig.5b).Moreover,the SEI damage on the surface is very serious (Fig.S8b).The electrode thickness increases from 9.62 μm to 11.11 μm,reflecting a huge volume variation.The hollow structures break down after 50 cycles as shown in Fig.5d.

    These above results prove that the Si/C/Si/C-500 sample gives excellent electrochemical performance which can be attributed to its hollow matryoshka-type strategy.First,the nested carbon shell provides both efficiently conductive paths and mechanical support,ensuring the stable surface charge transfer;Second,thin Si shell inside of carbon shell with multipoint physical contacts,considerably decreases diffusion length of Li+ions;Third,amorphous Si shows good tolerance to intrinsic strain/stress;Four,outer carbon shell facilitates the formation of stable SEI and improves the coulombic efficiency,rate capacity performance.Hence,some crucial issues of Si anodes can be resolved by using the synergy effect based on structure design.

    In summary,we demonstrate that through a low-temperature aluminothermic reaction and annealing process,matryoshka-type carbon stabilized hollow Si can be designed and synthesized successfully.The obtained Si/C/Si/C-500 anodes have significantly improved rate capacity and initial coulombic efficiency (83.1%).Impressively,the electrode can retain a reversible specific capacity of 997.7 mAh/g at 5 A/g current density.Such excellent electrochemical performance is ascribed to the good volume buffering effect,good mechanical stability and high conductivity during the charge/discharge process.This proposed approach can be widely employed to prepare porous hollow nanomaterials based on huge volume variation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Science Foundation of China programs (Nos.52007110,22078179,21901146),Key Research and Development Program of Shandong Province(No.2019GGX103027),and Taishan Scholar Foundation (No.tsqn201812063).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.039.

    乱码一卡2卡4卡精品| 久久精品熟女亚洲av麻豆精品| 久久婷婷青草| av.在线天堂| 男人舔奶头视频| 日韩中字成人| 久久久精品94久久精品| 亚洲婷婷狠狠爱综合网| 青春草国产在线视频| 极品少妇高潮喷水抽搐| 少妇高潮的动态图| 欧美精品一区二区免费开放| 免费不卡的大黄色大毛片视频在线观看| 在线观看国产h片| 六月丁香七月| 另类精品久久| 男人添女人高潮全过程视频| 成人亚洲精品一区在线观看| 免费人妻精品一区二区三区视频| 夫妻午夜视频| 午夜老司机福利剧场| 久久精品国产亚洲网站| tube8黄色片| 麻豆成人av视频| 夜夜看夜夜爽夜夜摸| 街头女战士在线观看网站| 我的女老师完整版在线观看| 少妇猛男粗大的猛烈进出视频| 水蜜桃什么品种好| 欧美97在线视频| 久久久久国产网址| 久久99蜜桃精品久久| 一本—道久久a久久精品蜜桃钙片| 青春草亚洲视频在线观看| 最后的刺客免费高清国语| av福利片在线| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩视频高清一区二区三区二| 欧美 亚洲 国产 日韩一| 国产无遮挡羞羞视频在线观看| 精品一区二区三卡| 永久网站在线| 久久国产乱子免费精品| 免费观看在线日韩| 国产在线男女| 亚洲精品成人av观看孕妇| 成人无遮挡网站| 亚洲综合色惰| 国产一区二区三区综合在线观看 | 肉色欧美久久久久久久蜜桃| 色5月婷婷丁香| 美女中出高潮动态图| videos熟女内射| 欧美丝袜亚洲另类| 插阴视频在线观看视频| 久久97久久精品| 亚洲国产最新在线播放| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人精品一区二区| 国产亚洲5aaaaa淫片| 欧美另类一区| 在线免费观看不下载黄p国产| av在线app专区| www.av在线官网国产| 日韩av不卡免费在线播放| 中国三级夫妇交换| 午夜福利视频精品| 精品亚洲成国产av| 国产免费一级a男人的天堂| 亚洲美女视频黄频| 国产色婷婷99| 亚洲,欧美,日韩| freevideosex欧美| 丰满乱子伦码专区| 国产精品一二三区在线看| 久久久精品免费免费高清| 日韩在线高清观看一区二区三区| 极品少妇高潮喷水抽搐| 亚洲av国产av综合av卡| 亚洲精品亚洲一区二区| 日韩不卡一区二区三区视频在线| av免费观看日本| 精品一区二区免费观看| 国产一区二区三区av在线| 自拍偷自拍亚洲精品老妇| 亚洲一区二区三区欧美精品| 丰满乱子伦码专区| 在线观看www视频免费| 在线播放无遮挡| 亚洲精品视频女| 久久ye,这里只有精品| 欧美日韩av久久| 午夜免费观看性视频| 亚洲第一区二区三区不卡| 成人国产av品久久久| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| 精品酒店卫生间| 少妇被粗大猛烈的视频| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 三级经典国产精品| 成人国产av品久久久| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放| 人人妻人人澡人人看| 亚洲,一卡二卡三卡| 丝袜在线中文字幕| av天堂中文字幕网| 亚洲国产欧美在线一区| 久久久久国产精品人妻一区二区| 在线观看免费视频网站a站| 成人毛片60女人毛片免费| 啦啦啦在线观看免费高清www| 中文字幕精品免费在线观看视频 | 国产精品一区www在线观看| 亚洲第一av免费看| 久久久亚洲精品成人影院| 高清av免费在线| 人妻人人澡人人爽人人| 中文字幕久久专区| 免费人妻精品一区二区三区视频| 国精品久久久久久国模美| 亚洲人与动物交配视频| 十八禁网站网址无遮挡 | 亚洲av在线观看美女高潮| 欧美日本中文国产一区发布| 草草在线视频免费看| 国产免费视频播放在线视频| 国产在线一区二区三区精| av天堂中文字幕网| 精品久久久久久久久av| 亚洲精品第二区| 亚洲在久久综合| av免费观看日本| 国产黄片视频在线免费观看| 国产高清三级在线| 日日啪夜夜撸| 嫩草影院入口| 成人综合一区亚洲| 最新的欧美精品一区二区| 视频中文字幕在线观看| 高清在线视频一区二区三区| 九九在线视频观看精品| 男女国产视频网站| 国产91av在线免费观看| 国产成人精品无人区| 国产男女内射视频| 丝袜在线中文字幕| 寂寞人妻少妇视频99o| 亚洲欧洲日产国产| 国产精品蜜桃在线观看| 亚洲国产精品一区二区三区在线| 一边亲一边摸免费视频| 久热久热在线精品观看| 色网站视频免费| 在线观看三级黄色| 美女视频免费永久观看网站| 人体艺术视频欧美日本| 国产精品免费大片| 婷婷色av中文字幕| 亚洲成人av在线免费| 亚洲精品乱码久久久久久按摩| .国产精品久久| 欧美少妇被猛烈插入视频| 3wmmmm亚洲av在线观看| 少妇人妻 视频| 噜噜噜噜噜久久久久久91| 国产精品秋霞免费鲁丝片| 黄片无遮挡物在线观看| 亚洲激情五月婷婷啪啪| 免费高清在线观看视频在线观看| 哪个播放器可以免费观看大片| 国产 一区精品| 色吧在线观看| 国产综合精华液| 一本大道久久a久久精品| 亚洲精品456在线播放app| 国产高清三级在线| 麻豆成人av视频| 九九在线视频观看精品| 两个人的视频大全免费| 亚洲精品日韩在线中文字幕| 日日撸夜夜添| 亚洲婷婷狠狠爱综合网| 男人添女人高潮全过程视频| av在线观看视频网站免费| av在线播放精品| 极品少妇高潮喷水抽搐| av在线观看视频网站免费| 多毛熟女@视频| 亚洲精品中文字幕在线视频 | 亚洲欧美精品专区久久| 啦啦啦中文免费视频观看日本| 久热久热在线精品观看| 国产女主播在线喷水免费视频网站| 在线观看三级黄色| 久久久久久久大尺度免费视频| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久| 在线免费观看不下载黄p国产| 欧美日本中文国产一区发布| 美女国产视频在线观看| 97精品久久久久久久久久精品| 国产精品国产av在线观看| 亚洲美女黄色视频免费看| 免费观看性生交大片5| 99热这里只有精品一区| 亚洲成色77777| 亚洲国产欧美在线一区| 熟妇人妻不卡中文字幕| 亚洲真实伦在线观看| 午夜91福利影院| 日韩电影二区| 搡女人真爽免费视频火全软件| 最近手机中文字幕大全| 91精品一卡2卡3卡4卡| 又大又黄又爽视频免费| 欧美精品亚洲一区二区| 性高湖久久久久久久久免费观看| av一本久久久久| 亚洲国产色片| 秋霞伦理黄片| a级毛片在线看网站| 爱豆传媒免费全集在线观看| 欧美日韩国产mv在线观看视频| 久久久久久久大尺度免费视频| 日韩在线高清观看一区二区三区| 在线观看免费日韩欧美大片 | 一级毛片久久久久久久久女| 色视频www国产| 久久久精品免费免费高清| 亚洲av日韩在线播放| 亚洲av男天堂| 美女内射精品一级片tv| 内地一区二区视频在线| 亚洲中文av在线| 国产一区二区三区av在线| 中国国产av一级| 国产精品99久久99久久久不卡 | 日韩一区二区三区影片| a级片在线免费高清观看视频| 我的老师免费观看完整版| 久久久久久伊人网av| 中文字幕av电影在线播放| 一级av片app| 蜜桃在线观看..| av福利片在线| 一级毛片我不卡| 久热这里只有精品99| 一区在线观看完整版| 一级毛片我不卡| 免费看不卡的av| 免费播放大片免费观看视频在线观看| 一本一本综合久久| 国产精品一区二区在线观看99| 有码 亚洲区| 中文字幕亚洲精品专区| 男女啪啪激烈高潮av片| 亚洲综合精品二区| 国产成人精品福利久久| 国产精品一区二区在线不卡| 精品一区二区三卡| 爱豆传媒免费全集在线观看| 内地一区二区视频在线| 日韩中字成人| 国产精品国产三级国产专区5o| 国产黄片美女视频| 天美传媒精品一区二区| 久久婷婷青草| 黑人高潮一二区| 如何舔出高潮| 久久99精品国语久久久| 熟女人妻精品中文字幕| 全区人妻精品视频| 欧美日韩国产mv在线观看视频| 免费观看在线日韩| 国模一区二区三区四区视频| 黄色一级大片看看| 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 97超视频在线观看视频| 午夜精品国产一区二区电影| 欧美日韩在线观看h| 日本欧美国产在线视频| 美女脱内裤让男人舔精品视频| 丰满乱子伦码专区| 男女无遮挡免费网站观看| 极品人妻少妇av视频| 免费黄色在线免费观看| 边亲边吃奶的免费视频| 人妻人人澡人人爽人人| h日本视频在线播放| 免费大片18禁| 人妻 亚洲 视频| 亚洲av男天堂| 又爽又黄a免费视频| 少妇人妻一区二区三区视频| 中文字幕人妻丝袜制服| 王馨瑶露胸无遮挡在线观看| 伦理电影大哥的女人| 国产日韩一区二区三区精品不卡 | 色5月婷婷丁香| 久久久国产一区二区| 久久精品国产a三级三级三级| 中文天堂在线官网| 国产精品熟女久久久久浪| 国产乱人偷精品视频| 国产精品偷伦视频观看了| 乱系列少妇在线播放| 欧美老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 偷拍熟女少妇极品色| 日本猛色少妇xxxxx猛交久久| 日本猛色少妇xxxxx猛交久久| 一本一本综合久久| 日韩视频在线欧美| 18+在线观看网站| 人人妻人人看人人澡| 69精品国产乱码久久久| 看非洲黑人一级黄片| 亚洲国产av新网站| 亚洲精品国产色婷婷电影| 色视频在线一区二区三区| 国产精品一区二区在线不卡| av免费在线看不卡| 2018国产大陆天天弄谢| 久久综合国产亚洲精品| 狂野欧美激情性xxxx在线观看| 国产亚洲午夜精品一区二区久久| 久久久久久久精品精品| 一区二区三区乱码不卡18| 丰满少妇做爰视频| 亚洲精品日本国产第一区| 久久精品国产亚洲av天美| 观看免费一级毛片| 晚上一个人看的免费电影| 黄色视频在线播放观看不卡| 亚洲成人手机| 久久久精品94久久精品| 少妇人妻久久综合中文| 日韩av不卡免费在线播放| 亚洲成色77777| 91精品一卡2卡3卡4卡| 啦啦啦啦在线视频资源| 在现免费观看毛片| 最近中文字幕高清免费大全6| 国产成人精品婷婷| 最近最新中文字幕免费大全7| 日韩中字成人| 99热国产这里只有精品6| 丰满人妻一区二区三区视频av| 777米奇影视久久| 国产高清国产精品国产三级| 91久久精品国产一区二区成人| 王馨瑶露胸无遮挡在线观看| 一级二级三级毛片免费看| 国产av国产精品国产| 亚洲四区av| 国产精品久久久久成人av| 曰老女人黄片| 亚洲精品中文字幕在线视频 | 制服丝袜香蕉在线| 亚洲av欧美aⅴ国产| 免费av不卡在线播放| 精品人妻熟女毛片av久久网站| 精品少妇黑人巨大在线播放| 日韩视频在线欧美| 80岁老熟妇乱子伦牲交| 成年人免费黄色播放视频 | 少妇的逼好多水| 国产亚洲欧美精品永久| 亚洲自偷自拍三级| av一本久久久久| 午夜福利影视在线免费观看| 国产 精品1| 免费黄网站久久成人精品| 观看免费一级毛片| 欧美老熟妇乱子伦牲交| 成人免费观看视频高清| 久久久久久久久久人人人人人人| 波野结衣二区三区在线| 亚洲在久久综合| av福利片在线观看| 日韩欧美 国产精品| 免费高清在线观看视频在线观看| 精品一区二区免费观看| 免费久久久久久久精品成人欧美视频 | 在线观看人妻少妇| 免费看av在线观看网站| 免费在线观看成人毛片| 热re99久久精品国产66热6| 男男h啪啪无遮挡| 亚洲va在线va天堂va国产| 国产片特级美女逼逼视频| 成人二区视频| 老女人水多毛片| 国产精品伦人一区二区| 国产精品久久久久久精品电影小说| 春色校园在线视频观看| 国产精品嫩草影院av在线观看| 老司机影院成人| 中文字幕免费在线视频6| 国产日韩欧美在线精品| 亚洲在久久综合| 高清午夜精品一区二区三区| 国产精品偷伦视频观看了| 亚洲av成人精品一二三区| 777米奇影视久久| 在线 av 中文字幕| 精品亚洲乱码少妇综合久久| 亚洲国产毛片av蜜桃av| 蜜桃在线观看..| av福利片在线观看| av网站免费在线观看视频| 亚洲精品视频女| 精品久久久久久久久av| 亚洲欧美中文字幕日韩二区| 亚洲国产成人一精品久久久| 亚洲av在线观看美女高潮| a级片在线免费高清观看视频| 日本黄大片高清| 免费播放大片免费观看视频在线观看| av又黄又爽大尺度在线免费看| 久久久久视频综合| 人人澡人人妻人| 色婷婷久久久亚洲欧美| 色视频www国产| 99久久精品国产国产毛片| 亚洲精品国产av成人精品| 久久久久网色| 精品99又大又爽又粗少妇毛片| 香蕉精品网在线| 秋霞伦理黄片| 精品酒店卫生间| 三级国产精品欧美在线观看| 亚洲av.av天堂| 多毛熟女@视频| 丰满少妇做爰视频| 久久久久国产精品人妻一区二区| 国产日韩欧美亚洲二区| 一级毛片aaaaaa免费看小| 国产在线男女| 精品国产露脸久久av麻豆| 成人国产麻豆网| 视频中文字幕在线观看| 国产亚洲精品久久久com| 国产欧美日韩一区二区三区在线 | 中文天堂在线官网| 日本午夜av视频| 偷拍熟女少妇极品色| 热re99久久精品国产66热6| 国产成人午夜福利电影在线观看| 91久久精品电影网| 日韩中文字幕视频在线看片| 久久 成人 亚洲| 久久精品久久精品一区二区三区| 日韩免费高清中文字幕av| 亚洲av免费高清在线观看| 欧美丝袜亚洲另类| 又黄又爽又刺激的免费视频.| 日本欧美国产在线视频| 国产一区亚洲一区在线观看| 午夜福利视频精品| 黄色视频在线播放观看不卡| 亚洲成人一二三区av| 夫妻性生交免费视频一级片| 国产一区二区在线观看av| 一区二区三区免费毛片| 国产乱人偷精品视频| 日韩成人伦理影院| 极品人妻少妇av视频| 卡戴珊不雅视频在线播放| 亚洲美女搞黄在线观看| kizo精华| 亚洲精品自拍成人| 亚洲欧洲精品一区二区精品久久久 | 国产男人的电影天堂91| 高清欧美精品videossex| 韩国av在线不卡| 亚洲成人av在线免费| av国产精品久久久久影院| 极品少妇高潮喷水抽搐| 国产有黄有色有爽视频| 极品人妻少妇av视频| 9色porny在线观看| 国产91av在线免费观看| 三级经典国产精品| 亚洲欧洲国产日韩| 在线观看国产h片| 黄色视频在线播放观看不卡| 一级爰片在线观看| 精品人妻偷拍中文字幕| 人人妻人人澡人人看| 大片免费播放器 马上看| 国产视频内射| 欧美最新免费一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩视频高清一区二区三区二| 亚洲欧美中文字幕日韩二区| 国产一区有黄有色的免费视频| 最近中文字幕2019免费版| 亚洲精品自拍成人| 亚州av有码| 大片免费播放器 马上看| 日本黄色片子视频| 日本91视频免费播放| 亚洲成人av在线免费| 精品国产一区二区久久| 夜夜骑夜夜射夜夜干| 久久久a久久爽久久v久久| 波野结衣二区三区在线| 久久精品国产自在天天线| 午夜免费鲁丝| 精品亚洲乱码少妇综合久久| 不卡视频在线观看欧美| 国产黄色免费在线视频| 久久人人爽av亚洲精品天堂| 纯流量卡能插随身wifi吗| a级片在线免费高清观看视频| 久久精品久久久久久噜噜老黄| 国产av国产精品国产| 免费黄网站久久成人精品| 大香蕉久久网| 成人国产麻豆网| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| a级一级毛片免费在线观看| 久久国产精品大桥未久av | 大又大粗又爽又黄少妇毛片口| 我的老师免费观看完整版| 国产男人的电影天堂91| 亚洲精品日本国产第一区| 久久国产精品男人的天堂亚洲 | av在线老鸭窝| 女性生殖器流出的白浆| 又大又黄又爽视频免费| 成人18禁高潮啪啪吃奶动态图 | 精品视频人人做人人爽| 成人毛片a级毛片在线播放| 中国国产av一级| 免费看av在线观看网站| 欧美激情极品国产一区二区三区 | 51国产日韩欧美| 人妻一区二区av| av福利片在线| 午夜老司机福利剧场| 免费少妇av软件| 中文天堂在线官网| 亚洲国产精品一区三区| 18禁动态无遮挡网站| 久久久国产精品麻豆| 美女主播在线视频| 91精品国产国语对白视频| 中文字幕制服av| 久久人人爽人人片av| 亚洲av综合色区一区| 久久久久久久久久久免费av| 国内揄拍国产精品人妻在线| 好男人视频免费观看在线| 国产免费一区二区三区四区乱码| 夜夜骑夜夜射夜夜干| 国产日韩欧美在线精品| 伊人亚洲综合成人网| 亚洲,一卡二卡三卡| 亚洲av在线观看美女高潮| av福利片在线观看| 亚洲怡红院男人天堂| 免费观看性生交大片5| 亚洲国产欧美日韩在线播放 | 美女中出高潮动态图| 只有这里有精品99| 男女国产视频网站| 一级av片app| 国产熟女欧美一区二区| 大片电影免费在线观看免费| 亚洲精品成人av观看孕妇| 成年人免费黄色播放视频 | 大香蕉久久网| 成人国产麻豆网| 高清欧美精品videossex| 国产欧美日韩精品一区二区| 欧美精品一区二区大全| 久久久国产一区二区| 狂野欧美白嫩少妇大欣赏| 人妻一区二区av| 亚州av有码| 99热全是精品| 三级经典国产精品| 又大又黄又爽视频免费| 最近2019中文字幕mv第一页| 久久亚洲国产成人精品v| 色婷婷av一区二区三区视频| 国产黄色视频一区二区在线观看| 欧美精品高潮呻吟av久久| 亚洲精品,欧美精品| 插阴视频在线观看视频| 中国美白少妇内射xxxbb| 九九久久精品国产亚洲av麻豆| 高清欧美精品videossex| 久久久欧美国产精品| 欧美xxⅹ黑人| 九色成人免费人妻av| 51国产日韩欧美| 亚洲国产日韩一区二区| 亚洲av成人精品一二三区| 99热全是精品| 黄色日韩在线| 国产精品免费大片| 国产精品久久久久久精品古装| 人人妻人人澡人人爽人人夜夜| 日韩强制内射视频| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 国产成人免费无遮挡视频|