• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bi2S3 nanorods encapsulated in iodine-doped graphene frameworks with enhanced potassium storage properties

    2022-07-11 03:39:38YiWeiWenhuiHouPengZhngRziumSoomroBinXu
    Chinese Chemical Letters 2022年6期

    Yi Wei,Wenhui Hou,Peng Zhng,b,Rzium A.Soomro,Bin Xu,?

    a State Key Laboratory of Organic-Inorganic Composites,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    b Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    Keywords:Bi2S3 Iodine-doped graphene Potassium-ion battery Anode materials Nanorods

    ABSTRACT Bismuth sulfide (Bi2S3) is a promising anode material for high-performance potassium ion batteries due to its high theoretical capacity.However,the poor conductivity and substantial volume expansion hinder its practical application.We proposed an iodine-doped graphene encapsulated Bi2S3 nanorods composite(Bi2S3/IG) as an efficient anode for PIBs.The uniform-sized Bi2S3 nanorods evenly in-situ encapsulated in iodine-doped graphene framework,facilitating the electron transportation and structural stability.The potassium storage performance was evaluated in three electrolytes,with the best option of 5 mol/L KFSI in DME.The reversible capacity of representative Bi2S3/IG reached 453.5 mAh/g at 50 mA/g.Meanwhile,it could deliver an initial reversible capacity of 413.6 mAh/g at 100 mA/g,which maintained 256.9 mAh/g after 200 cycles.The proposed strategy contributes to improving potassium storage performance of metal sulfide anodes.

    Potassium-ion batteries (PIBs) are regarded as a promising substitution of lithium-ion batteries (LIBs) based on their low cost,high ionic conductivity and the close redox potential of K+/K(?2.93 Vvs.SHE) to that of Li+/Li (?3.04 Vvs.SHE) [1–4].However,the anode suffers from extensive volume expansion during potassiation process due to the large size of K ion (1.38 ?A).For example,the volume expansion of graphite could reach as high as 61% when used as the anode of PIBs [5,6].Moreover,the large size of K+results in slow charge kinetics and leads to inferior rate capability of the batteries.Thus,selecting and designing appropriate anode materials is crucial in the case of PIBs.In this regard,a variety of nanomaterials such as carbon materials [7–9],alloys [10,11],metal oxides [12,13]and metal sulfides (MSs) [14,15]have been explored as anode materials for PIBs.

    Unlike carbon-based materials,which follow an intercalation mechanism,MSs rely on multiple processes including conversion and alloying reaction for potassium storage and form a cumulative mechanism with a large theoretical capacity [15].Recently,some MSs,such as WS2[16,17],MoS2[18–20],CoS2[21],FeS2[22–24],CuS [25,26],Sb2S3[27,28]and ZnS [29],have proven to be efficient in achieving high capacity,however,their poor electron conductivity and sluggish ion-diffusion rates usually lead to delayed reaction kinetics.In addition,the drastic volume change during potassiation/de-potassiation may result in the collapse of the electrode structure and impair the cycling performance.Controlling the morphology or constructing nanocomposites is a viable route to improve the performance of MSs-based anodes.For example,Penget al.prepared a nitrogen-doped carbon coated Cu2S hollow nanocube structure as anode of PIBs,realizing enhanced conductivity as well as efficient volume expansion mitigation [30].Similarly,Liet al.designed Fe7S8/C hybrid nanocages reinforced by defect-rich MoS2nanosheets [31],which exhibited an enhanced structure stability with rapid K+diffusion rates.Bi2S3is a layered semiconductor material widely utilized in photoelectric components and thermoelectric equipment,and also shows great potential for PIBs [32–34].Besides conversion and alloying reaction,the unique layered structure enables the Bi2S3with extra intercalation process for K+storage,resulting in higher potassium storage capacity.Moreover,its growth has a 1D preferred orientation trend and is easy to form nanowires or nanorods,which is beneficial for alleviating the large volume change during potassiation/depotassiation process [35,36].

    Herein,we reported an iodine-doped graphene encapsulated Bi2S3nanorods composite (denoted as Bi2S3/IG) as the effective anode for PIBs.In the composite,the uniform sized Bi2S3nanorods evenly encapsulated in the iodine-doped graphene framework.This unique structure design cannot only improve the conductivity of the composites,but also alleviate the large volume expansion and maintain the structure stability during potassiation.These advantages endow the Bi2S3/IG nanocomposites with enhanced capacity,rate capability,and cycle stability as PIBs anode in reference to its pristine Bi2S3counterpart.In addition,since electrolyte has a great influence on the potassium storage performance,three electrolytes(i.e.,1 mol/L KFSI in EC/DEC,1 mol/L KFSI in DME,and 5 mol/L KFSI in DME) were selected for optimum the potassium storage performance of the Bi2S3/IG electrodes.Among all,the Bi2S3/IG showed the best comprehensive performance with 5 mol/L KFSI in DME electrolyte in terms of capacity,cycle performance,and rate capability.

    Fig.1.Synthesis process and characterizations of the electrode materials.(a)Schematic diagram representing the synthesis of Bi2S3/IG.(b) SEM,(c) TEM and (d)HRTEM images (Inset: SAED pattern) of the Bi2S3 nanorods.(e) SEM,(f) TEM and(g) HRTEM images (Inset: SAED pattern) of the Bi2S3/IG composite.

    Fig.1a showed the schematic illustration of the synthesis procedure for the Bi2S3/IG composite.BiOI nanoflowers were firstly synthesized through a hydrothermal process at 160 °C using Bi(NO3)·5H2O and KI as precursors.The BiOI was then re-dispersed into graphene oxide dispersion and sulfurized with thioacetamide by hydrothermal method at 180 °C for 12 h In this process,Bi2S3wasin-situgrew and encapsulated in graphene framework,and iodine atoms decomposed by BiOI were captured by graphene to form iodine-doped graphene.Finally,after an annealing process under Ar atmosphere at 300 °C,the Bi2S3/I doped-rGO (denoted as Bi2S3/IG) was obtained.The morphologies of the materials were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The BiOI intermediates exhibited a nanoflower-like structure composed of multiple nanosheets(Fig.S1 in Supporting information).The microstructure of Bi2S3exhibited a nanorod-like morphology with a length of ~200 nm and a width of ~50 nm (Figs.1b and c).The high-resolution TEM(HRTEM) image of Bi2S3shown in Fig.1d revealed two sets of crystal lattice fringes with interplane spacing of 0.375 nm and 0.357 nm,corresponding to the (101) and (130) index planes.The morphologies of the Bi2S3/IG composite were shown in Figs.1e and f,where the Bi2S3nanorods were dispersed throughout the graphene skeleton structure.Interestingly,the graphene encapsulation further confined the growth of Bi2S3nanorods to a length of~100 nm and a width of ~30 nm.The interfacial boundary of Bi2S3and iodine-doped graphene could be seen in the HRTEM image of the complex (Fig.1g).The observed blur of the Bi2S3lattice fringes could be linked to the overlaying of graphene sheets.Besides,the element distribution mapping results of Bi2S3/IG were displayed in Fig.S2 (Supporting information),demonstrating the presence of iodine.

    Fig.2.Characterization of Bi2S3 and Bi2S3/IG.(a) XRD pattern of Bi2S3 and Bi2S3/IG,with the standard PDF card of orthorhombic Bi2S3 for identification.(b) Raman spectra of Bi2S3 and Bi2S3/IG.(c) Survey XPS spectrum of Bi2S3 and Bi2S3/IG,the dotted boxes marked the differences in peaks between the two samples.Highresolution (d) I 3d,(e) Bi 4f,and (f) C 1s XPS spectra of the Bi2S3 and Bi2S3/IG.

    X-ray diffraction (XRD) pattern was employed to investigate the crystal structure of the Bi2S3and Bi2S3/IG (Fig.2a).The Bi2S3consisted of peaks indexed to the orthorhombic crystal system referenced against PDF card (Bi2S3,#17–0320).The main crystal planes were marked in the spectrum.Besides,the XRD pattern of the precursor BiOI was provided in Fig.S3 (Supporting information),with major peaks indexed to the tetragonal crystal lattice structure.Fig.2b showed the Raman spectra of Bi2S3/IG in reference to the Bi2S3,where the obvious D and G peaks of carbon confirmed the existence of graphene in the former.

    X-ray photoelectron spectroscopy (XPS) further revealed the presence of iodine and the interaction between Bi2S3and graphene in the composite.Fig.2c showed the full XPS spectra of the Bi2S3and Bi2S3/IG,where the I 3d peak appeared in the Bi2S3/IG composite,while the peaks of O 1s and C 1s were strengthened significantly compared with the pure Bi2S3.The rise in binding energy for carbon and oxygen within the composite further confirmed the existence of graphene with oxygen-containing groups.Moreover,the emergence of iodine peaks demonstrated that iodine doping had been successful.Since no iodine peak was seen for Bi2S3and the associated XRD pattern did not alter,it was fair to infer that the iodine atoms doped predominantly inside graphene sheets.The high-resolution I 3d XPS spectrum of the Bi2S3/IG was displayed in Fig.2d,where the peaks at 630.8 and 619.3 eV belonged to I5?3d5/2and I5?3d3/2,and the peaks at 630.3 and 618.8 eV belonged to I3?3d5/2and I3?3d3/2,respectively [37,38].The iodine-doping in graphene could led to the formation of iodide polyanions which facilitated the improvement of electrical conductivity and chemical activity,resulting in rapid charge transfer and enhanced charge density [39].As for the high-resolution XPS spectrum of Bi 4f (Fig.2e),the peaks of Bi2S3/IG shifted towards the high binding energy compared with that of Bi2S3,confirming the strong interaction between Bi2S3and IG.This interfacial electron migration resulted in strong polarization and electron field at the interface,which was conducive to higher electrochemical activity [34].The C 1s spectra (Fig.2f) showed enhanced peaks of C=O/C-OH bonds,which belonged to the residual surface groups of graphene.

    Fig.3.Electrochemical behaviors of the Bi2S3 and Bi2S3/IG in 5 mol/L KFSI/DME electrolyte.CV curves of (a) Bi2S3 and (b) Bi2S3/IG at a scan rate of 0.1 mV/s.Initial three galvanostatic discharge/charge curves of (c) Bi2S3 and (d) Bi2S3/IG at a current density of 50 mA/g.

    Half-batteries were assembled to examine the potassium storage behavior of the Bi2S3/IG composite.Three electrolytes (i.e.,1 mol/L KFSI in EC/DEC,1 mol/L KFSI in DME,and 5 mol/L KFSI in DME) were used for Bi2S3and Bi2S3/IG electrodes to optimum the potassium storage performance.The corresponding cyclic voltammograms (CV) and galvanostatic charge/discharge curves of the Bi2S3and Bi2S3/IG in these three electrolytes were shown in Fig.3,Figs.S3 and S4 (Supporting information).As seen,the Bi2S3electrode had a poor CV reversibility regardless of the nature of electrolyte.In contrast,the reversibility was significantly improved post iodine doping and graphene encapsulation as in Bi2S3/IG.The discharge-charge curves of the Bi2S3further exhibited low initial Coulombic efficiencies of 40.1%,47.8% and 43.6% in the ester and ether-based electrolytes (Fig.S4b and S5b in Supporting information,Fig.3c),respectively.In the case of the Bi2S3/IG electrode,the initial Coulombic efficiency in ester electrolytes (Fig.S4d,54.5%)was also a little lower than those in the ether electrolytes (Fig.S5d in Supporting information,57.6% and Fig.3d,57.8%).Thus etherbased electrolytes might be preferable to Bi2S3-based electrodes.Figs.3a and b showed the CV curves of the Bi2S3and Bi2S3/IG electrodes in a potential range from 0.01 to 3.0 V (vs.K+/K) at a scan rate of 0.1 mV/s with 5 mol/L KFSI in DME as electrolyte.As seen,three peaks located at 1.19,0.58 and 0.07 V were found in the initial cathodic scan.The peak at 1.19 V could be ascribed to the formation of a solid electrolyte interphase (SEI) film and the conversion of Bi2S3to Bi and K2S,while the other two peaks reflected the alloying process between Bi and K+,resulting in numerous KxBi molecules [40].The first anodic scan also showed three peaks near 0.71,1.23 and 2.43 V,respectively.The peaks at 0.71 and 1.23 V represented the dealloying reaction of KxBi to Bi,whereas the peak at 2.43 V signified the weak conversion reaction from Bi and K2S to Bi2S3.Interestingly,these anodic peaks of Bi2S3later weakened or disappeared in the subsequent cycles,which could be attributed to the low reversibility of conversion reactions and the structural collapse of the electrode.Although no new peaks were identified in the case of Bi2S3/IG,the reversibility of CV curves readily improved,suggesting a kinetic facilitation with iodine-doped graphene encapsulation.The cathodic peak at~1.02 V later weakened in the second and third cycles,indicating the formation of SEI layer and the weak process of the conversion reaction.The peaks at ~0.63 V shifted to higher potential in the subsequent cycles,which could be attributed to the structural refinement of the electrode materials.Figs.3c and d showed the galvanostatic charge/discharge curves of Bi2S3and Bi2S3/IG electrodes.The potential plateaus in discharge/charge curves were nearly identical to those seen in CV curves.Compared with the Bi2S3,enhanced initial coulombic efficiency with inhibited capacity attenuation was realized in Bi2S3/IG.

    To further investigate the influence of electrolytes on potassium storage performance,cycling performances in the above three electrolytes were conducted for the Bi2S3electrode at 200 mA/g,as shown in Fig.S6 (Supporting information).The Bi2S3electrode had the highest capacity and the best cycle stability with the 5 mol/L KFSI in DME electrolyte.The rate performance of Bi2S3electrode was tested at different current densities,where the Bi2S3with 5 mol/L KFSI in DME exhibited the highest capacity retention at enhanced current density.The improved chemical characteristics of Bi2S3in ether electrolytes might be derived from its ability to produce a more stable SEI layer on the Bi2S3surface and prompt kinetic process of potassium ion storage [41].Fig.S7 (Supporting information) showed the electrochemical performances of Bi2S3/IG electrodes in the above three electrolytes with relatively improved performance realized in 5 mol/L KFSI in DME.According to the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels of KFSI,KPF6,DME,EC and DEC,the KFSI salt owns more reactive feature,while the DME solvent owns a more inactive characteristic [42–45].Thus,when KFSI/DME electrolyte is selected,KFSI is preferred to form a robust inorganic SEI layer on the electrode surface rather than solvent decomposition,which can inhibit the growth of potassium dendrites [46,47].Meanwhile,concentrated KFSI electrolyte can enhance the stability of the solvent [47,48].These characteristics enabled Bi2S3/IG to perform higher Coulombic efficiency and better cyclic stability with the electrolyte of 5 mol/L KFSI in DME.As a result,5 mol/L KFSI in DME electrolyte was chosen as the optimum electrolyte for comparing the potassium storage performance of the Bi2S3and Bi2S3/IG electrode.

    The cycling performances of Bi2S3and Bi2S3/IG electrodes at 100 mA/g for 200 cycles were shown in Fig.4a,which were pre-activated at a low current density of 50 mA/g for the initial three cycles before the long-term cycle testing.The Bi2S3electrode showed an initial reversible capacity of 242.1 mAh/g with a maintained capacity of only 94.9 mAh/g after 200 cycles.In contrast,the Bi2S3/IG composite revealed an initial reversible capacity of 413.6 mAh/g with a maintained capacity of 256.9 mAh/g after 200 cycles.The rate performances of Bi2S3and Bi2S3/IG electrodes were evaluated by varying the current density from 50 mA/g to 2000 mA/g (Fig.4b).Here,the Bi2S3/IG electrode delivered reversible capacities of 453.5,373.5,304.8,241.0,169.9 and 78.2 mAh/g at different current densities of 0.05,0.1,0.2,0.5,1 and 2 A/g,respectively,much higher than those of the Bi2S3electrode,which lost its work ability at 500 mA/g.The results indicated that the addition of iodine-doped graphene could effectively increase the potassium storage performances of the Bi2S3.Meanwhile,Fig.S8 (Supporting information) provided the rate capabilities of pure graphene electrode with 5 mol/L KFSI in DME as electrolyte.Fig.4c showed the electrochemical impedance spectroscopy (EIS) of Bi2S3and Bi2S3/IG electrodes with the 5 mol/L KFSI in DME electrolyte.The charge transfer resistance (Rct) of Bi2S3reduced dramatically when the iodine-doped graphene was introduced,as evident by the lower semicircle diameter of the Bi2S3/IG electrode,which was responsible for the superior electron transfer efficiency and good rate performance of the Bi2S3/IG composite.The Nyquist plots of Bi2S3and Bi2S3/IG with their fitting curves in 1 mol/L KFSI in EC/DEC and 1 mol/L KFSI in DME were provided in Fig.S9 (Supporting information),which showed similar rule.Figs.4d and e showed the morphologies of the Bi2S3and Bi2S3/IG electrodes before and after cycling,respectively.The surface of both electrodes had good flatness before cycling.However,obvious cracks were observed for the Bi2S3electrode post cycles at 100 mA/g,explaining its fast-declining capacity.By contrast,after adding the iodinedoped graphene,the structural stability of the Bi2S3/IG electrode was obviously improved.No obvious crack can be observed on the surface of Bi2S3/IG electrode after cycling,which was responsible for the better cycling stability.

    Fig.4.Electrochemical properties of Bi2S3 and Bi2S3/IG as electrode materials.(a) Cycle performance of Bi2S3 and Bi2S3/IG at 100 mA/g in 5 mol/L KFSI in DME electrolyte.(b) Rate capabilities of Bi2S3 and Bi2S3/IG from 50 mA/g to 2 A/g in 5 mol/L KFSI in DME electrolyte.(c) Nyquist plots of the Bi2S3 and Bi2S3/IG with corresponding fitting circuit.(d) The morphologies of Bi2S3 electrode (i,ii) before and (iii,iv) after cycling.(e) The morphologies of Bi2S3/IG electrode (i,ii) before and (iii,iv) after cycling.

    I n conclusion,we proposed a Bi2S3/IG composite as an effi-cient anode for PIBs.Compared with the pure Bi2S3,the interaction between Bi2S3and iodine-doped graphene realized a more stable structure with improved electron transfer rate,enhancing the overall potassium storage performances of the Bi2S3-based materials in terms of capacity,cycle performance,and rate performance.The electrochemical performances of Bi2S3and Bi2S3/IG electrodes were also investigated in three different electrolytes,with 5 mol/L KFSI in DME as the best choice.The representative Bi2S3/IG composite achieved a high specific capacity of 453.5 mAh/g at a current density of 50 mA/g with good cycling performance at 100 mA/g.The constructed Bi2S3/IG composite and the proposed iodine doping graphene approach are expected to improve the performance of potassium ion batteries and related electrochemical applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (No.52072021).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.035.

    亚洲在线自拍视频| 中文字幕人妻熟女乱码| 亚洲国产欧美一区二区综合| 免费不卡黄色视频| 看免费av毛片| 级片在线观看| 午夜老司机福利片| 午夜两性在线视频| 12—13女人毛片做爰片一| 成人av一区二区三区在线看| 侵犯人妻中文字幕一二三四区| 少妇 在线观看| 久久欧美精品欧美久久欧美| 亚洲专区中文字幕在线| 亚洲av成人一区二区三| 精品午夜福利视频在线观看一区| 男男h啪啪无遮挡| 女人爽到高潮嗷嗷叫在线视频| 午夜激情av网站| 又紧又爽又黄一区二区| 丝袜在线中文字幕| av天堂在线播放| 久久国产乱子伦精品免费另类| av欧美777| 男女下面进入的视频免费午夜 | 十八禁网站免费在线| av在线播放免费不卡| 波多野结衣高清无吗| av中文乱码字幕在线| 婷婷精品国产亚洲av在线| 亚洲专区中文字幕在线| av天堂在线播放| 91成人精品电影| 国产野战对白在线观看| 日韩欧美国产一区二区入口| 乱人伦中国视频| 久久国产乱子伦精品免费另类| 天天影视国产精品| av欧美777| 在线永久观看黄色视频| 在线永久观看黄色视频| 国产午夜精品久久久久久| av超薄肉色丝袜交足视频| 一区在线观看完整版| 99精品久久久久人妻精品| 精品一区二区三区四区五区乱码| 久久久国产成人免费| 欧美日韩亚洲国产一区二区在线观看| 黄色a级毛片大全视频| 国产精品免费一区二区三区在线| 又大又爽又粗| 这个男人来自地球电影免费观看| 青草久久国产| 色婷婷av一区二区三区视频| 久久热在线av| 脱女人内裤的视频| 午夜福利影视在线免费观看| 欧美日韩av久久| 亚洲色图av天堂| 12—13女人毛片做爰片一| 99国产极品粉嫩在线观看| 日韩精品青青久久久久久| 欧美日韩黄片免| 国产精品一区二区精品视频观看| 欧美日韩瑟瑟在线播放| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久中文| 高清欧美精品videossex| 日韩大尺度精品在线看网址 | 香蕉国产在线看| 一区在线观看完整版| 日本五十路高清| 美国免费a级毛片| 久热爱精品视频在线9| 99国产精品一区二区三区| 午夜视频精品福利| 色在线成人网| 精品日产1卡2卡| 久久香蕉激情| 欧美成狂野欧美在线观看| 19禁男女啪啪无遮挡网站| 男女下面进入的视频免费午夜 | 亚洲aⅴ乱码一区二区在线播放 | 日本黄色视频三级网站网址| 欧美日韩亚洲高清精品| 久热爱精品视频在线9| 人人妻,人人澡人人爽秒播| 高清欧美精品videossex| 午夜两性在线视频| 国产又色又爽无遮挡免费看| 国产一区二区三区在线臀色熟女 | 水蜜桃什么品种好| 涩涩av久久男人的天堂| 国产欧美日韩精品亚洲av| 久久精品国产亚洲av高清一级| 真人一进一出gif抽搐免费| 亚洲成国产人片在线观看| 麻豆一二三区av精品| 动漫黄色视频在线观看| 精品久久久久久,| 黄色视频不卡| 嫁个100分男人电影在线观看| 日本vs欧美在线观看视频| 日本三级黄在线观看| 一本综合久久免费| 三上悠亚av全集在线观看| avwww免费| 成人亚洲精品一区在线观看| 亚洲精华国产精华精| 亚洲一区高清亚洲精品| 精品国产乱子伦一区二区三区| 变态另类成人亚洲欧美熟女 | 一级黄色大片毛片| 啦啦啦免费观看视频1| 免费高清在线观看日韩| 欧美人与性动交α欧美精品济南到| 午夜久久久在线观看| 亚洲av成人一区二区三| 国产无遮挡羞羞视频在线观看| 国产真人三级小视频在线观看| 国产av精品麻豆| 后天国语完整版免费观看| 国产精品 欧美亚洲| 女人爽到高潮嗷嗷叫在线视频| 午夜视频精品福利| 亚洲第一青青草原| 满18在线观看网站| 十分钟在线观看高清视频www| 国产成人av激情在线播放| 一边摸一边抽搐一进一出视频| 黄色 视频免费看| 国产高清激情床上av| www.999成人在线观看| 久久久久久久久久久久大奶| 精品久久蜜臀av无| 国产精品电影一区二区三区| 又紧又爽又黄一区二区| 亚洲国产精品sss在线观看 | 极品人妻少妇av视频| 国产精品电影一区二区三区| 97人妻天天添夜夜摸| 久久欧美精品欧美久久欧美| 视频区欧美日本亚洲| 大香蕉久久成人网| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区在线不卡| 欧美日韩瑟瑟在线播放| 美女大奶头视频| 极品教师在线免费播放| 波多野结衣一区麻豆| 亚洲在线自拍视频| 国产精品98久久久久久宅男小说| 无遮挡黄片免费观看| 亚洲精品美女久久av网站| 丝袜人妻中文字幕| 国产麻豆69| 人人澡人人妻人| 999久久久精品免费观看国产| 免费av毛片视频| 人成视频在线观看免费观看| 欧美丝袜亚洲另类 | 老汉色∧v一级毛片| 免费av毛片视频| 女生性感内裤真人,穿戴方法视频| 午夜福利在线观看吧| 色婷婷av一区二区三区视频| 亚洲在线自拍视频| 久久婷婷成人综合色麻豆| 丁香欧美五月| 国产精品自产拍在线观看55亚洲| 大香蕉久久成人网| www.熟女人妻精品国产| 精品高清国产在线一区| 亚洲av第一区精品v没综合| 高清黄色对白视频在线免费看| 很黄的视频免费| 在线观看舔阴道视频| 亚洲成人精品中文字幕电影 | 亚洲一区二区三区欧美精品| 久久久精品国产亚洲av高清涩受| 久久国产精品人妻蜜桃| 看黄色毛片网站| 国产乱人伦免费视频| 三上悠亚av全集在线观看| 久久精品国产清高在天天线| 午夜亚洲福利在线播放| 欧美乱妇无乱码| 18禁黄网站禁片午夜丰满| 一级片'在线观看视频| 日韩欧美在线二视频| 午夜福利影视在线免费观看| 亚洲成人免费电影在线观看| 80岁老熟妇乱子伦牲交| 国产欧美日韩一区二区精品| av免费在线观看网站| 久久久水蜜桃国产精品网| 成人国语在线视频| 亚洲欧美激情在线| 韩国精品一区二区三区| 国产精品久久久久久人妻精品电影| 国产精品一区二区免费欧美| 精品一品国产午夜福利视频| 极品人妻少妇av视频| 少妇 在线观看| 国产精品爽爽va在线观看网站 | 少妇裸体淫交视频免费看高清 | 久久狼人影院| av片东京热男人的天堂| 国产无遮挡羞羞视频在线观看| 免费观看人在逋| 国产精品一区二区在线不卡| 日韩 欧美 亚洲 中文字幕| 久久久久久久精品吃奶| 看黄色毛片网站| 免费av毛片视频| 国产精品秋霞免费鲁丝片| 757午夜福利合集在线观看| 成年人免费黄色播放视频| 老司机午夜福利在线观看视频| 欧美成人午夜精品| 中文字幕人妻丝袜制服| 精品久久久久久久久久免费视频 | 又大又爽又粗| 美国免费a级毛片| 日韩欧美三级三区| 欧美中文综合在线视频| 亚洲国产毛片av蜜桃av| 女警被强在线播放| 丰满饥渴人妻一区二区三| 国产有黄有色有爽视频| 啦啦啦在线免费观看视频4| 日韩 欧美 亚洲 中文字幕| 99在线视频只有这里精品首页| 高清欧美精品videossex| 国产欧美日韩精品亚洲av| 91麻豆av在线| 99久久人妻综合| 亚洲国产欧美一区二区综合| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 亚洲免费av在线视频| 一区二区三区激情视频| 18禁美女被吸乳视频| 50天的宝宝边吃奶边哭怎么回事| 国产真人三级小视频在线观看| 国产熟女午夜一区二区三区| 色老头精品视频在线观看| 欧美激情极品国产一区二区三区| e午夜精品久久久久久久| 亚洲中文字幕日韩| 日韩av在线大香蕉| av电影中文网址| 亚洲av美国av| 精品无人区乱码1区二区| 亚洲色图av天堂| 成在线人永久免费视频| 日韩大尺度精品在线看网址 | 母亲3免费完整高清在线观看| 看片在线看免费视频| 黄色女人牲交| 老司机福利观看| 不卡一级毛片| 国产黄色免费在线视频| 777久久人妻少妇嫩草av网站| 成人亚洲精品一区在线观看| 看免费av毛片| 久久天堂一区二区三区四区| 午夜成年电影在线免费观看| 欧美av亚洲av综合av国产av| bbb黄色大片| 亚洲五月色婷婷综合| 国产精品av久久久久免费| 黑人欧美特级aaaaaa片| 日韩精品免费视频一区二区三区| 亚洲一区高清亚洲精品| 亚洲少妇的诱惑av| 女警被强在线播放| 午夜a级毛片| 国产精品二区激情视频| 国产欧美日韩综合在线一区二区| 脱女人内裤的视频| 色老头精品视频在线观看| 国产精品亚洲av一区麻豆| netflix在线观看网站| 日本免费一区二区三区高清不卡 | 一二三四在线观看免费中文在| 村上凉子中文字幕在线| 精品久久久久久久毛片微露脸| 99久久国产精品久久久| 国产精品一区二区免费欧美| 国产精品1区2区在线观看.| 亚洲精品在线观看二区| 99国产精品免费福利视频| 午夜精品久久久久久毛片777| 很黄的视频免费| 亚洲午夜精品一区,二区,三区| 欧美黑人精品巨大| 国产成人精品久久二区二区91| 精品午夜福利视频在线观看一区| a级毛片黄视频| 久久精品国产亚洲av香蕉五月| 一个人免费在线观看的高清视频| 国产国语露脸激情在线看| 黑人操中国人逼视频| 国产主播在线观看一区二区| 男女床上黄色一级片免费看| 可以在线观看毛片的网站| 老熟妇仑乱视频hdxx| 淫秽高清视频在线观看| 18禁裸乳无遮挡免费网站照片 | 精品福利观看| av在线播放免费不卡| 久久人妻熟女aⅴ| 人人妻人人澡人人看| 人妻丰满熟妇av一区二区三区| 九色亚洲精品在线播放| 国产在线观看jvid| 一二三四社区在线视频社区8| 高清毛片免费观看视频网站 | 97碰自拍视频| 亚洲性夜色夜夜综合| 欧美中文日本在线观看视频| 中文字幕av电影在线播放| 自线自在国产av| 久久精品人人爽人人爽视色| 欧洲精品卡2卡3卡4卡5卡区| 每晚都被弄得嗷嗷叫到高潮| tocl精华| 999精品在线视频| 电影成人av| 国产精品国产高清国产av| 久久精品aⅴ一区二区三区四区| 女人精品久久久久毛片| 色在线成人网| 老司机午夜福利在线观看视频| 新久久久久国产一级毛片| 国产精华一区二区三区| 超碰97精品在线观看| 久久精品成人免费网站| 一级黄色大片毛片| 男人的好看免费观看在线视频 | 久久香蕉激情| 18禁观看日本| bbb黄色大片| 一进一出抽搐gif免费好疼 | 精品久久久久久,| 色婷婷av一区二区三区视频| 色在线成人网| 欧美一级毛片孕妇| 在线观看免费视频网站a站| 成年女人毛片免费观看观看9| 午夜免费成人在线视频| 97超级碰碰碰精品色视频在线观看| 97碰自拍视频| 夜夜夜夜夜久久久久| 黑人巨大精品欧美一区二区蜜桃| 美女 人体艺术 gogo| 少妇粗大呻吟视频| 黄色片一级片一级黄色片| 老司机靠b影院| 中文欧美无线码| 黑人巨大精品欧美一区二区mp4| 18美女黄网站色大片免费观看| 亚洲精品一卡2卡三卡4卡5卡| 老鸭窝网址在线观看| 岛国在线观看网站| 69av精品久久久久久| 又黄又爽又免费观看的视频| 亚洲精华国产精华精| 一级a爱视频在线免费观看| 99国产精品一区二区蜜桃av| 国产精品免费视频内射| 国产精华一区二区三区| 成人av一区二区三区在线看| 在线观看免费午夜福利视频| 少妇粗大呻吟视频| 国产麻豆69| 婷婷精品国产亚洲av在线| 无人区码免费观看不卡| 欧美日本亚洲视频在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 欧美 亚洲 中文字幕| 成人亚洲精品av一区二区 | 精品国产乱子伦一区二区三区| 男女床上黄色一级片免费看| 一级毛片精品| 99精国产麻豆久久婷婷| 高清欧美精品videossex| 18禁美女被吸乳视频| 在线十欧美十亚洲十日本专区| а√天堂www在线а√下载| 久久久久国产精品人妻aⅴ院| 狠狠狠狠99中文字幕| 高清欧美精品videossex| 亚洲精品中文字幕一二三四区| 日韩精品中文字幕看吧| 一个人观看的视频www高清免费观看 | 高清黄色对白视频在线免费看| 久久久久国产精品人妻aⅴ院| 人成视频在线观看免费观看| 久热爱精品视频在线9| 国产成人影院久久av| 亚洲熟女毛片儿| 高清毛片免费观看视频网站 | 亚洲精华国产精华精| 在线观看免费视频日本深夜| 国产色视频综合| 丝袜在线中文字幕| 精品久久久久久电影网| 久久国产乱子伦精品免费另类| 国产单亲对白刺激| 一a级毛片在线观看| 国产精品永久免费网站| 天堂动漫精品| 亚洲国产欧美网| 91av网站免费观看| 国产精品98久久久久久宅男小说| 国产精品成人在线| 少妇粗大呻吟视频| 国产区一区二久久| 国产不卡一卡二| 黄色丝袜av网址大全| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 久久久精品欧美日韩精品| av电影中文网址| 高清黄色对白视频在线免费看| av免费在线观看网站| 久久性视频一级片| 欧美一区二区精品小视频在线| 视频区图区小说| 久久人人精品亚洲av| 久久久国产一区二区| 男女下面进入的视频免费午夜 | 91字幕亚洲| av免费在线观看网站| av欧美777| 性少妇av在线| 亚洲精品在线美女| 色精品久久人妻99蜜桃| 欧美精品啪啪一区二区三区| 久久久精品欧美日韩精品| 丰满迷人的少妇在线观看| www.自偷自拍.com| 国产精品 国内视频| 亚洲一区二区三区不卡视频| 国产精品二区激情视频| 欧美一级毛片孕妇| 一本综合久久免费| 日本免费一区二区三区高清不卡 | 国产成人欧美| 五月开心婷婷网| 成人18禁在线播放| 久久国产精品男人的天堂亚洲| 国产精品秋霞免费鲁丝片| 999精品在线视频| 日韩高清综合在线| 又黄又爽又免费观看的视频| 性色av乱码一区二区三区2| 99国产精品99久久久久| 国产高清激情床上av| 色综合欧美亚洲国产小说| 婷婷精品国产亚洲av在线| 午夜老司机福利片| 三上悠亚av全集在线观看| 麻豆国产av国片精品| 激情视频va一区二区三区| 这个男人来自地球电影免费观看| 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| 老司机深夜福利视频在线观看| 日韩欧美免费精品| 91九色精品人成在线观看| 国产成人精品在线电影| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看| 国产精品久久电影中文字幕| 亚洲国产精品sss在线观看 | 在线观看舔阴道视频| videosex国产| 精品高清国产在线一区| videosex国产| 亚洲av五月六月丁香网| 久久久国产成人免费| 久久人人精品亚洲av| 高清在线国产一区| 亚洲av日韩精品久久久久久密| 中文字幕精品免费在线观看视频| 亚洲人成电影观看| 在线视频色国产色| 两个人看的免费小视频| 一个人免费在线观看的高清视频| 午夜激情av网站| 香蕉国产在线看| 最好的美女福利视频网| 天堂影院成人在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 午夜久久久在线观看| 亚洲av美国av| 久久精品国产综合久久久| 欧美日韩乱码在线| 一二三四在线观看免费中文在| av福利片在线| 搡老岳熟女国产| 精品久久久久久久久久免费视频 | 中文字幕av电影在线播放| 18禁美女被吸乳视频| 天堂俺去俺来也www色官网| 老司机午夜十八禁免费视频| 午夜a级毛片| 欧美最黄视频在线播放免费 | 亚洲av成人一区二区三| 一级,二级,三级黄色视频| 女人被躁到高潮嗷嗷叫费观| 成熟少妇高潮喷水视频| 久久精品影院6| 日韩国内少妇激情av| 欧美乱妇无乱码| 精品久久久久久,| 欧美久久黑人一区二区| 国产精品自产拍在线观看55亚洲| 亚洲专区国产一区二区| 日本wwww免费看| 欧美在线黄色| 欧美久久黑人一区二区| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区精品视频观看| 久久午夜亚洲精品久久| 日韩欧美国产一区二区入口| 自拍欧美九色日韩亚洲蝌蚪91| 欧美黄色片欧美黄色片| 国产亚洲精品综合一区在线观看 | 欧美国产精品va在线观看不卡| 一边摸一边抽搐一进一小说| 午夜视频精品福利| 欧美日韩亚洲国产一区二区在线观看| 免费高清视频大片| 欧美性长视频在线观看| 大香蕉久久成人网| 午夜影院日韩av| 成人影院久久| 成在线人永久免费视频| 国产精品98久久久久久宅男小说| 国产极品粉嫩免费观看在线| 男女做爰动态图高潮gif福利片 | 精品卡一卡二卡四卡免费| 久久久久久久久久久久大奶| 国产精品综合久久久久久久免费 | 国产成人av教育| 国产一区在线观看成人免费| 人人澡人人妻人| 91av网站免费观看| 久久久久久免费高清国产稀缺| 极品人妻少妇av视频| 80岁老熟妇乱子伦牲交| 一区二区三区国产精品乱码| 欧美成人性av电影在线观看| 亚洲国产欧美日韩在线播放| 狂野欧美激情性xxxx| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| a在线观看视频网站| 久久欧美精品欧美久久欧美| 国产片内射在线| 亚洲av日韩精品久久久久久密| 精品福利观看| 女警被强在线播放| 精品一品国产午夜福利视频| 在线观看免费高清a一片| 大型av网站在线播放| 身体一侧抽搐| 可以免费在线观看a视频的电影网站| 人人妻人人爽人人添夜夜欢视频| 亚洲专区字幕在线| 午夜精品在线福利| 国产精品久久久av美女十八| 怎么达到女性高潮| 大型av网站在线播放| 99久久久亚洲精品蜜臀av| 老司机福利观看| 一二三四社区在线视频社区8| 欧美日韩瑟瑟在线播放| 一级作爱视频免费观看| 国产xxxxx性猛交| 啦啦啦在线免费观看视频4| 亚洲黑人精品在线| 韩国精品一区二区三区| 中文字幕最新亚洲高清| 淫秽高清视频在线观看| 色老头精品视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 精品国产一区二区三区四区第35| 国产高清videossex| 免费高清视频大片| 久久 成人 亚洲| 欧美激情极品国产一区二区三区| 久久久久久久久中文| 18禁美女被吸乳视频| 黑人巨大精品欧美一区二区mp4| 在线观看日韩欧美| 最好的美女福利视频网| 欧洲精品卡2卡3卡4卡5卡区| www.999成人在线观看| 午夜91福利影院| 久久99一区二区三区| 国产亚洲精品久久久久久毛片| 久久久国产成人免费| 亚洲成人免费av在线播放| 国内久久婷婷六月综合欲色啪| 岛国视频午夜一区免费看| 亚洲av成人一区二区三| 日韩av在线大香蕉| 欧美亚洲日本最大视频资源|