• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural landscape on a series of rhein: Berberine cocrystal salt solvates: The formation,dissolution elucidation from experimental and theoretical investigations

    2022-07-11 03:39:38DezhiYngHongjunWngQiwenLiuPenghuiYunTingChenLiZhngShiyingYngZhengzhengZhouYngLuGunhuDu
    Chinese Chemical Letters 2022年6期

    Dezhi Yng,Hongjun Wng,Qiwen Liu,Penghui Yun,Ting Chen,Li Zhng,Shiying Yng,Zhengzheng Zhou,Yng Lu,?,Gunhu Du

    a Beijing City Key Laboratory of Polymorphic Drugs,Center of Pharmaceutical Polymorphs,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China

    b Department of Hygiene Inspection and Quarantine Science,School of Public Health,Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research,NMPA Key Laboratory for Safety Evaluation of Cosmetics),Guangzhou 510515,China

    c Beijing City Key Laboratory of Drug Target and Screening Research,National Center for Pharmaceutical Screening,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China

    Keywords:Cocrystal Rhein Berberine Theoretical computation Energy decomposition analysis Solubility

    ABSTRACT The specific crystalline form of a compound remarkably affects its physicochemical properties.Therefore,a detailed analysis of the structural features and intermolecular interactions of a multi-component crystal is feasible to understand the relationships among the structure,physicochemical properties and the formation mechanism.In the present study,three novel cocrystal salt solvates of rhein and berberine were reported for the first time.Various solid characterizations and theoretical computations based on density functional theory (DFT) were carried out to demonstrate the intermolecular interactions.The theoretical computation shows that the strongest interaction existed between berberine cation and rhein anion,and the electrostatic interaction play a dominant role.However,no salt bond was observed between them.Further intrinsic dissolution rate analysis in water shows that the monohydrate exhibits 17 times enhancement in comparison with rhein.The rhein and berberine combined in ionic state in cocrystal salt is the main reason for the solubility improvement.This paper suggests that the interactions between the different components can be visualized and qualitatively and quantitatively analyzed by theoretical computation,which is helpful to understand the relationship between stereochemical structure and physicochemical properties of multi-component complex.

    Rhein (RH) and berberine (BB) are both effective ingredients in traditional Chinese medicinal materials and have various biological activities.For example,rhein demonstrates medical activities in the treatment of inflammation,osteoarthritis,diabetes and cancer [1–4],while berberine shows its advantage in the treatment of atherosclerosis,diabetes,inflammation,and cancer [5–8].However,these two compounds have drawbacks,in which their bioavailability is very low,limiting further clinical application.There are different reasons for the poor bioavailability of rhein and berberine.Rhein belongs to biopharmaceutics classification system (BCS)class II compound because of its poor water solubility but better permeability [9].While,berberine hydrochloride has a relatively good solubility,its permeability is poor,and it belongs to BCS class III drug [10].Therefore,the berberine’s permeability and rhein’s solubility improvements are beneficial for their bioavailability enhancement.Many complementary biological activities are associated with rhein and berberine.In some classic Chinese medicine prescriptions,traditional Chinese medicine containing rhein and berberine as active ingredients are frequently used in the compatibility,such as Sanhuang soup and Xiexin soup [11].Therefore,a complex containing rhein and berberine should be designed to determine their complementary physicochemical properties and synergistic effect,and thus improve their bioavailability.

    Based on the above consideration,we carried out studies on the organic salts (only composed of ions) of rhein and berberine(Scheme 1) [12]and accidentally obtained a series of cocrystal salt solvates.Cocrystal is a complex which consists of two or more solid state compounds linked togethervianon-covalent bonds [13–15].It has attracted more and more attentions from pharmaceutical industries because its advantages on the physicochemical properties improvement for poorly water-soluble drugs [16–19].According to the multicomponent crystal classification [20],cocrystal salt solvate belongs to a special class.Its components include both the molecule and ion states of drugs or coformers and the molecular states of water or solvents.Although the existence of the solvents may increase the toxicity,the importance of solvates is still reflected in their potential contributions of new crystalline forms.Some solvates exist as approved drugs on the market.Among the cocrystal salt solvates in this study,the ratio of rhein molecule:rhein anion: berberine cation: solvent molecule is 1:1:1:1,and the solvents used were water [21],methanol,ethanol and acetonitrile,respectively.

    Scheme 1.Structure of (a) rhein,(b) rhein anion and (c) berberine cation.

    To fully understand the crystallization form,we carried out experimental characterizations,such as single crystal X-ray diffraction (SXRD),powder X-ray diffraction (PXRD),differential scanning calorimetry (DSC),and thermogravimetric (TG) analysis [22–26].Starting from the structural characteristics of these complexes,different theoretical computations based on DFT were used to analyze the charge distribution,weak interaction,and other characteristics of their structures by using different programs [27–31],such as restrained electrostatic potential (RESP) charge distribution,atom in molecule (AIM) topological analysis,molecular electrostatic potential surface (MEPS),and energy decomposition analysis (EDA) of interaction energy.In addition,for the cocrystal salt monohydrate,intrinsic dissolution rate (IDR) analysis was used forin vitroevaluation [32,33].

    The cocrystal salt solvates were prepared as follows: A mixture of BB chloride (1 mmol) and NaOH (1 mmol) was added into 50 mL of water and stirred for 2 h at a speed of 350 rpm.After filtration,approximately 1 mmol RH was added into the filtrate and sequentially stirred overnight.Then,the solution was filtered and left to stand at 2–8 °C for approximately 1 month.Dark red crystals were obtained.The remaining crystals including different solvents were prepared through the same process in the corresponding solvent.The detailed crystallographic information is shown in Table S1 (Supporting information).Except for BB-RH-H2O,the other solvates were obtained for the first time.The single-crystal data were deposited in the CCDC with the reference Nos.2107884,2107885 and 2107886.

    The main hydrogen bond interactions in the cocrystal salt solvates were similar (Fig.S1 in Supporting information).Rhein molecule and anion formed hydrogen bond interaction inD11(2)crystal motif.Two rhein molecules formed cyclic hydrogen bond interaction inR22(16)crystal motifs.Intramolecular hydrogen bonding inS11(2)crystal motifs were found in rhein molecule and anion.However,in BB-RH-H2O,BB-RH-MeOH,and BB-RH-EtOH,rhein anion and solvent molecule also formed hydrogen bond interaction inD11(2)crystal motifs.In addition,no classical hydrogen or salt bond was found between rhein anion and berberine cation.π–πstacking interaction were also found in these cocrystal salt solvates and summarized in Table S2 (Supporting information).

    Fig.S2 (Supporting information) shows that the experimental PXRD patterns were in line with the calculated ones.The results indicated that the prepared cocrystal salt solvates were in pure phase and could be used in other characterization experiments.

    The DSC curves were similar in that they all contained a solvent endothermic peak and a complex endothermic peak,and they all showed the characteristics of melting decomposition.The solvent endothermic peak of the complexes appeared in the high temperature range of 175–194 °C,suggesting that the solvent played an important role in maintaining the crystal spatial structure and had strong interaction with other components.The second endothermic peak appeared at 224–232 °C,which was significantly lower than the endothermic peak of rhein (328 °C) and higher than that of berberine (204–206 °C).The solvent ratios of all the 4 solvates were obtained from TG analysis.The relevant TG curves are shown in green color in Fig.S3 (Supporting information).The mass loss of solvents were 1.65%,3.23%,4.57% and 4.29%.The number of solvents molecules in each solvate was 0.9,0.9,0.8 and 1.0,basically agreeing well with the SXRD results.In addition,a maximum difference of approximately 6 °C of the endothermic peak temperature was observed,which indicated significant differences existed in the arrangement of the three-dimensional space of these cocrystal salt solvates [34,35].

    RESP atomic charge can effectively combine the actual situation of atomic charge in molecules dominated by electrostatic interactions [36].Charge analysis can show the charge distribution of the cocrystal salt solvates from a whole or the ion parts and can help analyze the mechanism of the intermolecular interaction (Table S3 in Supporting information).In these cocrystal salt solvates,rhein and solvent molecules only have a small negative charge (close to zero).Rhein anion has a negative charge of ?0.8 (close to ?1).Berberine cations have positive charge of 0.9 (close to+1).The N atom on position 7 should have a positive charge of+1 with intuition,but it actually had only very small positive charge (close to zero).Generally,the salt bond should be formed between the positively charged N7 atom in berberine cation and carboxylate ion in rhein anion.However,the result of charge analysis showed that N7 atom had only slightly positive charge.Therefore,no salt bond existence between rhein anion and berberine cation,and they interacted with each other mainly through electrostatic interaction.

    Bader’s AIM topological analysis can show the characteristics of weak interaction of intra-or inter-molecules through the properties of the bond critical point (BCP) and the corresponding bond path (BP) between interacting atoms [37,38].The BCP (orange ball)and the corresponding BP (orange line) of classical hydrogen bonds are shown clearly in Fig.1.The BCP and BP of the non-classical hydrogen bonds such as C-H…O and C-H…C were also exhibited clearly.

    The topologies of BB-RH-H2O,BB-RH-MeOH,and BB-RH-EtOH were very similar and differed from BB-RH-ACN.BCP and BP can accurately show the intermolecular interactions as well as the intramolecular interactions in cocrystal salt solvates.Fig.1 indicates the absence of BCP and BP between the rhein anion and berberine cation,indicating that no salt bond was present.AIM topology analysis can qualitatively show the existing interactions but cannot directly quantify the strength of the interaction.Therefore,we used MEPS and EDA to carry out additional analysis.

    Fig.1.AIM topological analysis of cocrystal salt solvates.(a) BB-RH-H2O;(b) BB-RH-MeOH;(c) BB-RH-EtOH;(d) BB-RH-ACN.

    Fig.2.MEPS analysis of cocrystal salt solvate BB-RH-H2O.

    Most of the interactions dominated by hydrogen bonds belong to electrostatic interactions,which can be demonstrated and analyzed using MEPS [39–43].In the present paper,the color scale of the MEPS of each component in the cocrystal salt solvates was used BWR method.The blue region represents electron-rich regions.The red region represents the electron-deficient region and the white region was generally neutral.The cyan and orange ball represent the local minimum and maximum on the MEPS,respectively.Fig.2 shows the MEPS of BB-RH-H2O and the MEPS of the other three are show in Fig.S4 (Supporting information).The interaction sites in BB-RH-H2O,BB-RH-MeOH,and BB-RH-EtOH were similar but quite different from BB-RH-ACN.The MEPS analysis from a spatial perspective confirmed the AIM analysis results.

    EDA can decompose the total interaction energy between fragments into energy terms of physical significance to investigate the nature of the interaction [44–46].GSK-EDA decomposes the interaction energy into five parts,as shown in Eq.1.

    whereΔEtotalis the total interaction energy of the complex,ΔEeleis the electrostatic energy,ΔEexis the exchange energy,ΔErepis the repulsion energy,ΔEpolis the polarization energy,andΔEdispis the electron correlation.

    As listed in Table 1 and showed in Fig.S5 (Supporting information),the interaction of pair 1,2 (rhein anion and berberine cation) was basically dominated by electrostatic energy,which was the strongest interaction in these cocrystal salt solvates.The interaction of pair 1,3 (rhein anion and rhein molecule) was basically dominated by electrostatic,exchange,and polarization energy.The interaction is the second strongest interaction,which reflected the O-H…O classical hydrogen bond interaction.The interactions of pairs 1,4 (rhein anion and solvent) and 2,3 (rhein molecule and berberine cation) were much weaker than pairs 1,2 and 1,3.The interactions of pair 1,4 was basically dominated by electrostatic energy with polarization energy as secondary.The interactions of pair 2,3 were basically dominated by electrostatic energy with polarization and dispersion energy as secondary.Considering the long distance between the components of pairs 2,4 (berberine cation and water) and 3,4 (rhein molecule and solvent),no intermolecular interactions were observed between them.

    Table 1 Energy decomposition in cocrystal salt solvates (kcal/mol).

    EDA combined MEPS analysis can accurately explain the nature of the intermolecular interactions.For instance,no hydrogen or salt bond was found between rhein and berberine ion,but the EDA revealed that the interaction between them was the strongest and was even more than the hydrogen bond interaction between rhein and rhein ion.This finding cannot be easily explained by AIM topological analysis.Although no global maximum site is present in the MEPS of the methoxy group on position 10 of berberine cation,this region has four local maximum sites,which interacts with the carbonyl group on position 10 of rhein anion.The addition of these numbers will yield a value of approximately+50 kcal/mol.Hence,the strength of the interaction can be clearly evaluated.This phenomenon can also be analyzed qualitatively based on the MEPS diagram.The larger the penetration distance between rhein molecule and rhein anion,the larger the repulsion energy.The smaller the penetration distance between rhein molecule and berberine cation,the smaller the repulsion energy.Although the electrostatic attraction of the former was larger,after deducting the effect of repulsion energy,the interaction of the latter was stronger.

    In terms of druggability of the cocrystal salt solvates,BB-RHH2O was selected to investigate the dissolution rate of rhein and berberine in water.According to the IDR experiment,the dissolution rate of berberine was reduced by approximately 6 times and the dissolution amount in 60 min reduced by approximately 4 times,however the dissolution rate of rhein was increased by approximately 17 times,and the dissolution amount in 60 min increased by approximately 14 times (Fig.3).

    In this paper,four cocrystal salt solvates of rhein and berberine were prepared and characterized.To understand the structural features,we used a series of theoretical calculation methods (qualitative and quantitative) based on DFT theory to explore the interaction among these multi-component substances.This method of combining experimental characterization with theoretical calculation is significant for understanding their formation mechanism and can be used as reference the structure and physicochemical properties of other substances.RESP charge analysis can show the charge distribution of molecules and ions,and this information is helpful to evaluate salt formation.AIM topological analysis can qualitatively reveal the existence of interaction through the existence of BCP and BP.MEPS analysis and EDA can carry out semiquantitative or quantitative analysis of the interaction to a certain extent.Especially,EDA can also decompose the interaction in multiple components to different components to provide a clear understanding of the nature of the interaction.

    Fig.3.IDR test for BB-RH-H2O,rhein (a) and berberine (b) in water.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We would like to express our sincere thanks to Professor Peifeng Su of Department of Chemistry,Xiamen University for providing the software developed by his research team and his help in the EDA calculation.We gratefully acknowledge the Drug Innovation Major Project (No.2018ZX09711001-001-015),the CAMS Innovation Fund for Medical Sciences (No.2020-I2M-1-003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.012.

    欧美激情国产日韩精品一区| 男女边吃奶边做爰视频| 99九九线精品视频在线观看视频| 成人性生交大片免费视频hd| 精品人妻一区二区三区麻豆| 国语自产精品视频在线第100页| 国产三级中文精品| 欧美性猛交黑人性爽| 性插视频无遮挡在线免费观看| 非洲黑人性xxxx精品又粗又长| 乱码一卡2卡4卡精品| 人妻制服诱惑在线中文字幕| 亚洲欧美精品专区久久| 激情 狠狠 欧美| 麻豆国产av国片精品| 99久久人妻综合| 国产成人freesex在线| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 亚洲四区av| 国内久久婷婷六月综合欲色啪| 内射极品少妇av片p| 91午夜精品亚洲一区二区三区| 91麻豆精品激情在线观看国产| 一区二区三区四区激情视频 | 国产精品女同一区二区软件| 免费观看的影片在线观看| 国产一级毛片在线| 成人午夜精彩视频在线观看| 国产成人精品久久久久久| 国产高清激情床上av| 国产蜜桃级精品一区二区三区| 久久久久国产网址| 亚洲精品国产av成人精品| 亚洲最大成人手机在线| 日韩亚洲欧美综合| 亚洲图色成人| 一个人看的www免费观看视频| 最好的美女福利视频网| 深爱激情五月婷婷| 男人狂女人下面高潮的视频| 搞女人的毛片| 成人国产麻豆网| 综合色丁香网| 中出人妻视频一区二区| 一个人看的www免费观看视频| www日本黄色视频网| 中文字幕熟女人妻在线| 欧美丝袜亚洲另类| 久久精品国产亚洲av涩爱 | 熟女人妻精品中文字幕| 国产av麻豆久久久久久久| 免费av观看视频| 校园春色视频在线观看| 亚洲欧美精品专区久久| 日韩欧美 国产精品| 亚洲中文字幕一区二区三区有码在线看| 男女做爰动态图高潮gif福利片| 一区二区三区四区激情视频 | 国产精品福利在线免费观看| 两个人视频免费观看高清| 日本黄色片子视频| 国产午夜精品论理片| 久久99精品国语久久久| 一个人免费在线观看电影| 国产69精品久久久久777片| 国产激情偷乱视频一区二区| av天堂在线播放| 嫩草影院精品99| 久久久久性生活片| 日韩,欧美,国产一区二区三区 | 日本免费a在线| 免费在线观看成人毛片| 国产精品99久久久久久久久| 最新中文字幕久久久久| 中国美女看黄片| 中文在线观看免费www的网站| av天堂中文字幕网| 免费电影在线观看免费观看| 日韩 亚洲 欧美在线| 欧美潮喷喷水| 中文字幕av成人在线电影| 麻豆国产97在线/欧美| 国产精品嫩草影院av在线观看| 国产色爽女视频免费观看| 夜夜看夜夜爽夜夜摸| 日韩欧美三级三区| 熟女人妻精品中文字幕| 天天一区二区日本电影三级| 色综合亚洲欧美另类图片| 日韩高清综合在线| 久久久精品大字幕| 天天躁夜夜躁狠狠久久av| 亚洲欧洲日产国产| 99热6这里只有精品| 国产精品野战在线观看| 亚洲精品日韩在线中文字幕 | 老熟妇乱子伦视频在线观看| 国产成年人精品一区二区| 男插女下体视频免费在线播放| 国产大屁股一区二区在线视频| 欧美区成人在线视频| 亚洲综合色惰| 亚洲av免费高清在线观看| 成人综合一区亚洲| av在线观看视频网站免费| 超碰av人人做人人爽久久| 亚洲一区高清亚洲精品| 亚洲,欧美,日韩| 深夜a级毛片| 久久久久久国产a免费观看| 国产男人的电影天堂91| 久久婷婷人人爽人人干人人爱| 日本爱情动作片www.在线观看| 麻豆精品久久久久久蜜桃| 特级一级黄色大片| 久久精品国产亚洲av香蕉五月| 亚洲婷婷狠狠爱综合网| 午夜久久久久精精品| 国产高清不卡午夜福利| 国产黄a三级三级三级人| av女优亚洲男人天堂| 99久久精品一区二区三区| 欧美一区二区精品小视频在线| 久久久精品94久久精品| 中出人妻视频一区二区| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看 | 国产亚洲精品久久久com| 国产精品蜜桃在线观看 | 精华霜和精华液先用哪个| 久久久久久久久大av| 超碰av人人做人人爽久久| 欧美3d第一页| 美女被艹到高潮喷水动态| 悠悠久久av| a级毛片a级免费在线| 中文字幕精品亚洲无线码一区| 午夜免费男女啪啪视频观看| 日韩精品有码人妻一区| 久99久视频精品免费| 国产成人午夜福利电影在线观看| 五月伊人婷婷丁香| 久久久久网色| 少妇熟女aⅴ在线视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人一区二区免费高清观看| 精品久久久久久久人妻蜜臀av| 亚洲真实伦在线观看| 美女高潮的动态| 亚洲av不卡在线观看| 婷婷精品国产亚洲av| 丰满人妻一区二区三区视频av| 亚洲婷婷狠狠爱综合网| 免费一级毛片在线播放高清视频| av国产免费在线观看| 精品久久久久久久末码| 国产激情偷乱视频一区二区| 国产黄片美女视频| 丰满的人妻完整版| 非洲黑人性xxxx精品又粗又长| 国产 一区 欧美 日韩| 搞女人的毛片| 九草在线视频观看| 免费看av在线观看网站| 人妻系列 视频| 男女那种视频在线观看| 日韩,欧美,国产一区二区三区 | 国产综合懂色| 欧美激情久久久久久爽电影| 婷婷色综合大香蕉| 亚洲最大成人av| 韩国av在线不卡| 午夜视频国产福利| 男人舔奶头视频| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 天堂av国产一区二区熟女人妻| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久精品电影| 午夜福利在线观看吧| 久久草成人影院| 欧美一级a爱片免费观看看| 中国美白少妇内射xxxbb| 美女脱内裤让男人舔精品视频 | 欧美日韩精品成人综合77777| 亚洲av成人av| 能在线免费看毛片的网站| 中出人妻视频一区二区| 国产日韩欧美在线精品| 欧美又色又爽又黄视频| 18禁裸乳无遮挡免费网站照片| 大又大粗又爽又黄少妇毛片口| 国产精品福利在线免费观看| 精品欧美国产一区二区三| 97超碰精品成人国产| 国内揄拍国产精品人妻在线| 亚洲成人久久爱视频| 黄色配什么色好看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 波野结衣二区三区在线| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 久久99精品国语久久久| 男人和女人高潮做爰伦理| 欧美日本视频| 国产精品人妻久久久影院| 日本黄色片子视频| 国产午夜福利久久久久久| 99九九线精品视频在线观看视频| 成人综合一区亚洲| 久久这里只有精品中国| 韩国av在线不卡| 在线观看66精品国产| 九色成人免费人妻av| 一级av片app| 日本成人三级电影网站| 免费观看a级毛片全部| 卡戴珊不雅视频在线播放| 国产日韩欧美在线精品| 精品国产三级普通话版| 中文字幕精品亚洲无线码一区| 欧美激情久久久久久爽电影| 有码 亚洲区| 晚上一个人看的免费电影| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av第一区精品v没综合| 99久久成人亚洲精品观看| 欧美一区二区精品小视频在线| 亚洲av第一区精品v没综合| 精品久久久久久久久久免费视频| 婷婷色综合大香蕉| 色播亚洲综合网| 黄色欧美视频在线观看| 久久亚洲精品不卡| 99热6这里只有精品| 久久久久久久久久久免费av| 狂野欧美激情性xxxx在线观看| 久久精品国产鲁丝片午夜精品| 悠悠久久av| 亚洲欧美日韩卡通动漫| 99精品在免费线老司机午夜| 99热网站在线观看| 亚洲精品456在线播放app| 身体一侧抽搐| 性插视频无遮挡在线免费观看| 天堂av国产一区二区熟女人妻| 国产不卡一卡二| 国产美女午夜福利| 在线天堂最新版资源| 噜噜噜噜噜久久久久久91| 欧美高清性xxxxhd video| 99久久久亚洲精品蜜臀av| 嫩草影院新地址| 亚洲人成网站高清观看| 最新中文字幕久久久久| 国产精品一二三区在线看| 亚洲人成网站在线播放欧美日韩| 国产黄片视频在线免费观看| 免费av观看视频| 久久中文看片网| a级毛色黄片| 高清午夜精品一区二区三区 | 欧美日韩一区二区视频在线观看视频在线 | 在线观看午夜福利视频| 欧美激情久久久久久爽电影| 久久综合国产亚洲精品| 赤兔流量卡办理| 亚洲av.av天堂| 久久精品国产99精品国产亚洲性色| 麻豆久久精品国产亚洲av| 一区二区三区四区激情视频 | 免费搜索国产男女视频| 欧美+日韩+精品| 色综合站精品国产| 午夜久久久久精精品| 亚洲精品日韩av片在线观看| 国产视频内射| 午夜福利在线观看免费完整高清在 | 国产激情偷乱视频一区二区| 亚洲国产欧美在线一区| 成年av动漫网址| 日本免费一区二区三区高清不卡| 禁无遮挡网站| 白带黄色成豆腐渣| 偷拍熟女少妇极品色| 国产黄a三级三级三级人| 一级av片app| 免费观看在线日韩| 国模一区二区三区四区视频| 欧美激情久久久久久爽电影| 成人特级av手机在线观看| 别揉我奶头 嗯啊视频| 只有这里有精品99| 国产真实乱freesex| 国产精品一区二区在线观看99 | 2022亚洲国产成人精品| 亚洲国产精品成人久久小说 | 可以在线观看的亚洲视频| 国产精品1区2区在线观看.| 国产成年人精品一区二区| 国产精品久久电影中文字幕| 欧美日韩在线观看h| 可以在线观看的亚洲视频| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看电影| 日韩一区二区视频免费看| 99热网站在线观看| 国内久久婷婷六月综合欲色啪| 亚洲av中文av极速乱| 一边摸一边抽搐一进一小说| 三级经典国产精品| 少妇猛男粗大的猛烈进出视频 | 六月丁香七月| 大香蕉久久网| 两个人视频免费观看高清| 国产亚洲精品av在线| 中文精品一卡2卡3卡4更新| 亚洲av电影不卡..在线观看| www日本黄色视频网| 中文字幕精品亚洲无线码一区| 亚洲国产高清在线一区二区三| 久久韩国三级中文字幕| 国产精品一区二区三区四区免费观看| 天美传媒精品一区二区| 日本一本二区三区精品| 久久人人精品亚洲av| 国产真实乱freesex| 国产伦理片在线播放av一区 | 亚洲成a人片在线一区二区| av在线蜜桃| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av| 激情 狠狠 欧美| 一级毛片aaaaaa免费看小| 久久精品国产清高在天天线| 尤物成人国产欧美一区二区三区| 欧美bdsm另类| 久久精品国产99精品国产亚洲性色| 在线观看av片永久免费下载| 99久久精品国产国产毛片| 免费av不卡在线播放| av视频在线观看入口| 亚洲,欧美,日韩| 日韩强制内射视频| 国产午夜精品论理片| 国产精品爽爽va在线观看网站| 99精品在免费线老司机午夜| 亚洲精品粉嫩美女一区| a级一级毛片免费在线观看| 波多野结衣高清作品| 真实男女啪啪啪动态图| 又粗又硬又长又爽又黄的视频 | 久久精品国产自在天天线| 成人鲁丝片一二三区免费| 亚洲精品久久久久久婷婷小说 | 蜜桃久久精品国产亚洲av| 亚洲精品成人久久久久久| 女人被狂操c到高潮| 日本五十路高清| 美女 人体艺术 gogo| 悠悠久久av| 麻豆成人午夜福利视频| 国产精品综合久久久久久久免费| 精品人妻熟女av久视频| 又粗又爽又猛毛片免费看| 亚洲人与动物交配视频| 久久精品91蜜桃| 亚洲va在线va天堂va国产| 网址你懂的国产日韩在线| а√天堂www在线а√下载| 中文资源天堂在线| 少妇裸体淫交视频免费看高清| 尾随美女入室| 免费大片18禁| 日本熟妇午夜| 久久韩国三级中文字幕| 国产亚洲精品久久久久久毛片| 欧美成人一区二区免费高清观看| 熟女电影av网| 久久久色成人| 日本免费一区二区三区高清不卡| 非洲黑人性xxxx精品又粗又长| 日韩av不卡免费在线播放| 国产美女午夜福利| 村上凉子中文字幕在线| 成人鲁丝片一二三区免费| 日本与韩国留学比较| 久久精品久久久久久久性| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| 午夜a级毛片| 蜜桃久久精品国产亚洲av| 一区福利在线观看| 色尼玛亚洲综合影院| 草草在线视频免费看| 国产91av在线免费观看| 国产成人91sexporn| 亚洲不卡免费看| 成人国产麻豆网| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 国产精品1区2区在线观看.| 边亲边吃奶的免费视频| 少妇人妻一区二区三区视频| 亚洲av免费高清在线观看| 国产精品一区二区三区四区免费观看| 国产国拍精品亚洲av在线观看| 国产精品久久久久久久久免| 色哟哟哟哟哟哟| 99久久无色码亚洲精品果冻| 午夜视频国产福利| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久精品热视频| 一本久久精品| 日韩国内少妇激情av| 国产高清激情床上av| 免费观看的影片在线观看| 成人高潮视频无遮挡免费网站| 久久久久久久午夜电影| 老师上课跳d突然被开到最大视频| 只有这里有精品99| 精品欧美国产一区二区三| 99热全是精品| 欧美激情久久久久久爽电影| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 日本与韩国留学比较| 婷婷色av中文字幕| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 日韩欧美三级三区| 欧美潮喷喷水| 少妇裸体淫交视频免费看高清| 日本熟妇午夜| 国产成人影院久久av| 全区人妻精品视频| 国产人妻一区二区三区在| 亚洲精品自拍成人| 女人被狂操c到高潮| 精品国产三级普通话版| 久久久a久久爽久久v久久| 亚洲自偷自拍三级| 国产久久久一区二区三区| 亚洲av.av天堂| 国产探花在线观看一区二区| 舔av片在线| 看免费成人av毛片| 一区二区三区免费毛片| 91久久精品电影网| 夜夜夜夜夜久久久久| 久久精品久久久久久噜噜老黄 | 免费看光身美女| 卡戴珊不雅视频在线播放| 人体艺术视频欧美日本| 简卡轻食公司| 亚洲成人精品中文字幕电影| 国产精品永久免费网站| 国产成年人精品一区二区| 欧美变态另类bdsm刘玥| 一夜夜www| 国产高清不卡午夜福利| 麻豆成人午夜福利视频| 欧美日本亚洲视频在线播放| 99久久人妻综合| 国产精品人妻久久久影院| 国产成人午夜福利电影在线观看| 日日干狠狠操夜夜爽| 国产精品.久久久| 午夜免费激情av| 日韩av不卡免费在线播放| 国产单亲对白刺激| 99热网站在线观看| 赤兔流量卡办理| 日本av手机在线免费观看| 国语自产精品视频在线第100页| 免费观看的影片在线观看| 久久热精品热| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产清高在天天线| 看黄色毛片网站| 一个人免费在线观看电影| 亚洲经典国产精华液单| 日本欧美国产在线视频| 国产亚洲5aaaaa淫片| 国产黄色视频一区二区在线观看 | 日日摸夜夜添夜夜添av毛片| 久久精品国产清高在天天线| 国产高清三级在线| or卡值多少钱| 日韩欧美在线乱码| 日本av手机在线免费观看| 看黄色毛片网站| 亚洲av熟女| 国产又黄又爽又无遮挡在线| 亚洲无线在线观看| 18+在线观看网站| 欧美成人a在线观看| 国产精品.久久久| 欧美色视频一区免费| 永久网站在线| 久久人人爽人人爽人人片va| 99久久成人亚洲精品观看| 哪里可以看免费的av片| 亚洲欧美日韩高清在线视频| 99九九线精品视频在线观看视频| 中文资源天堂在线| 好男人视频免费观看在线| 在线观看免费视频日本深夜| 国产精品久久久久久精品电影小说 | 国产精品永久免费网站| 99久久精品热视频| 国产伦精品一区二区三区四那| 国产一区二区在线av高清观看| 亚洲最大成人中文| 欧美在线一区亚洲| 22中文网久久字幕| 男插女下体视频免费在线播放| 国产av在哪里看| 亚洲欧美日韩高清专用| 最好的美女福利视频网| 欧美激情在线99| 亚洲国产高清在线一区二区三| 99热6这里只有精品| 国产高清激情床上av| 中文字幕制服av| 国产男人的电影天堂91| 亚洲欧美日韩东京热| 高清日韩中文字幕在线| 精品久久久久久久久久久久久| 日日撸夜夜添| 成年av动漫网址| 精品久久久久久久久亚洲| 大又大粗又爽又黄少妇毛片口| 欧美日韩乱码在线| av.在线天堂| 男插女下体视频免费在线播放| 日本与韩国留学比较| 狂野欧美白嫩少妇大欣赏| 国产午夜精品久久久久久一区二区三区| 国产av一区在线观看免费| 少妇丰满av| 99精品在免费线老司机午夜| 欧美激情在线99| 大香蕉久久网| 国产麻豆成人av免费视频| 22中文网久久字幕| 久久精品国产鲁丝片午夜精品| eeuss影院久久| 免费黄网站久久成人精品| 18禁黄网站禁片免费观看直播| 久久久精品大字幕| 欧美bdsm另类| 老女人水多毛片| 99九九线精品视频在线观看视频| 久久久久免费精品人妻一区二区| 亚洲欧美清纯卡通| 成年女人看的毛片在线观看| 晚上一个人看的免费电影| 亚洲成人中文字幕在线播放| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| h日本视频在线播放| 亚洲国产精品成人综合色| 久久久久久久久久成人| 久久6这里有精品| 一个人看的www免费观看视频| 舔av片在线| 国产探花极品一区二区| 色吧在线观看| 亚洲人成网站在线观看播放| 中文字幕熟女人妻在线| 国产成人精品一,二区 | ponron亚洲| 美女内射精品一级片tv| 在线天堂最新版资源| 国产视频首页在线观看| 欧美日本视频| 国产精品久久久久久精品电影| 中文字幕制服av| 国产蜜桃级精品一区二区三区| 亚洲无线观看免费| а√天堂www在线а√下载| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 国产精品国产三级国产av玫瑰| 成人一区二区视频在线观看| 好男人视频免费观看在线| 一级黄色大片毛片| 色视频www国产| 亚洲真实伦在线观看| 欧美一级a爱片免费观看看| 女人十人毛片免费观看3o分钟| 国产精品1区2区在线观看.| 午夜免费激情av| 天堂中文最新版在线下载 | 国产又黄又爽又无遮挡在线| 国产精品av视频在线免费观看| 国产又黄又爽又无遮挡在线| av免费观看日本| 欧美色视频一区免费| 九九在线视频观看精品| 亚洲精品国产成人久久av| 国产伦一二天堂av在线观看| 成年女人永久免费观看视频| 国产精品麻豆人妻色哟哟久久 | 日韩欧美一区二区三区在线观看| 中文字幕免费在线视频6| 亚洲综合色惰| 欧美激情国产日韩精品一区| а√天堂www在线а√下载| 中文字幕av成人在线电影| 免费看日本二区| 亚洲国产欧美在线一区|