• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural landscape on a series of rhein: Berberine cocrystal salt solvates: The formation,dissolution elucidation from experimental and theoretical investigations

    2022-07-11 03:39:38DezhiYngHongjunWngQiwenLiuPenghuiYunTingChenLiZhngShiyingYngZhengzhengZhouYngLuGunhuDu
    Chinese Chemical Letters 2022年6期

    Dezhi Yng,Hongjun Wng,Qiwen Liu,Penghui Yun,Ting Chen,Li Zhng,Shiying Yng,Zhengzheng Zhou,Yng Lu,?,Gunhu Du

    a Beijing City Key Laboratory of Polymorphic Drugs,Center of Pharmaceutical Polymorphs,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China

    b Department of Hygiene Inspection and Quarantine Science,School of Public Health,Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research,NMPA Key Laboratory for Safety Evaluation of Cosmetics),Guangzhou 510515,China

    c Beijing City Key Laboratory of Drug Target and Screening Research,National Center for Pharmaceutical Screening,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China

    Keywords:Cocrystal Rhein Berberine Theoretical computation Energy decomposition analysis Solubility

    ABSTRACT The specific crystalline form of a compound remarkably affects its physicochemical properties.Therefore,a detailed analysis of the structural features and intermolecular interactions of a multi-component crystal is feasible to understand the relationships among the structure,physicochemical properties and the formation mechanism.In the present study,three novel cocrystal salt solvates of rhein and berberine were reported for the first time.Various solid characterizations and theoretical computations based on density functional theory (DFT) were carried out to demonstrate the intermolecular interactions.The theoretical computation shows that the strongest interaction existed between berberine cation and rhein anion,and the electrostatic interaction play a dominant role.However,no salt bond was observed between them.Further intrinsic dissolution rate analysis in water shows that the monohydrate exhibits 17 times enhancement in comparison with rhein.The rhein and berberine combined in ionic state in cocrystal salt is the main reason for the solubility improvement.This paper suggests that the interactions between the different components can be visualized and qualitatively and quantitatively analyzed by theoretical computation,which is helpful to understand the relationship between stereochemical structure and physicochemical properties of multi-component complex.

    Rhein (RH) and berberine (BB) are both effective ingredients in traditional Chinese medicinal materials and have various biological activities.For example,rhein demonstrates medical activities in the treatment of inflammation,osteoarthritis,diabetes and cancer [1–4],while berberine shows its advantage in the treatment of atherosclerosis,diabetes,inflammation,and cancer [5–8].However,these two compounds have drawbacks,in which their bioavailability is very low,limiting further clinical application.There are different reasons for the poor bioavailability of rhein and berberine.Rhein belongs to biopharmaceutics classification system (BCS)class II compound because of its poor water solubility but better permeability [9].While,berberine hydrochloride has a relatively good solubility,its permeability is poor,and it belongs to BCS class III drug [10].Therefore,the berberine’s permeability and rhein’s solubility improvements are beneficial for their bioavailability enhancement.Many complementary biological activities are associated with rhein and berberine.In some classic Chinese medicine prescriptions,traditional Chinese medicine containing rhein and berberine as active ingredients are frequently used in the compatibility,such as Sanhuang soup and Xiexin soup [11].Therefore,a complex containing rhein and berberine should be designed to determine their complementary physicochemical properties and synergistic effect,and thus improve their bioavailability.

    Based on the above consideration,we carried out studies on the organic salts (only composed of ions) of rhein and berberine(Scheme 1) [12]and accidentally obtained a series of cocrystal salt solvates.Cocrystal is a complex which consists of two or more solid state compounds linked togethervianon-covalent bonds [13–15].It has attracted more and more attentions from pharmaceutical industries because its advantages on the physicochemical properties improvement for poorly water-soluble drugs [16–19].According to the multicomponent crystal classification [20],cocrystal salt solvate belongs to a special class.Its components include both the molecule and ion states of drugs or coformers and the molecular states of water or solvents.Although the existence of the solvents may increase the toxicity,the importance of solvates is still reflected in their potential contributions of new crystalline forms.Some solvates exist as approved drugs on the market.Among the cocrystal salt solvates in this study,the ratio of rhein molecule:rhein anion: berberine cation: solvent molecule is 1:1:1:1,and the solvents used were water [21],methanol,ethanol and acetonitrile,respectively.

    Scheme 1.Structure of (a) rhein,(b) rhein anion and (c) berberine cation.

    To fully understand the crystallization form,we carried out experimental characterizations,such as single crystal X-ray diffraction (SXRD),powder X-ray diffraction (PXRD),differential scanning calorimetry (DSC),and thermogravimetric (TG) analysis [22–26].Starting from the structural characteristics of these complexes,different theoretical computations based on DFT were used to analyze the charge distribution,weak interaction,and other characteristics of their structures by using different programs [27–31],such as restrained electrostatic potential (RESP) charge distribution,atom in molecule (AIM) topological analysis,molecular electrostatic potential surface (MEPS),and energy decomposition analysis (EDA) of interaction energy.In addition,for the cocrystal salt monohydrate,intrinsic dissolution rate (IDR) analysis was used forin vitroevaluation [32,33].

    The cocrystal salt solvates were prepared as follows: A mixture of BB chloride (1 mmol) and NaOH (1 mmol) was added into 50 mL of water and stirred for 2 h at a speed of 350 rpm.After filtration,approximately 1 mmol RH was added into the filtrate and sequentially stirred overnight.Then,the solution was filtered and left to stand at 2–8 °C for approximately 1 month.Dark red crystals were obtained.The remaining crystals including different solvents were prepared through the same process in the corresponding solvent.The detailed crystallographic information is shown in Table S1 (Supporting information).Except for BB-RH-H2O,the other solvates were obtained for the first time.The single-crystal data were deposited in the CCDC with the reference Nos.2107884,2107885 and 2107886.

    The main hydrogen bond interactions in the cocrystal salt solvates were similar (Fig.S1 in Supporting information).Rhein molecule and anion formed hydrogen bond interaction inD11(2)crystal motif.Two rhein molecules formed cyclic hydrogen bond interaction inR22(16)crystal motifs.Intramolecular hydrogen bonding inS11(2)crystal motifs were found in rhein molecule and anion.However,in BB-RH-H2O,BB-RH-MeOH,and BB-RH-EtOH,rhein anion and solvent molecule also formed hydrogen bond interaction inD11(2)crystal motifs.In addition,no classical hydrogen or salt bond was found between rhein anion and berberine cation.π–πstacking interaction were also found in these cocrystal salt solvates and summarized in Table S2 (Supporting information).

    Fig.S2 (Supporting information) shows that the experimental PXRD patterns were in line with the calculated ones.The results indicated that the prepared cocrystal salt solvates were in pure phase and could be used in other characterization experiments.

    The DSC curves were similar in that they all contained a solvent endothermic peak and a complex endothermic peak,and they all showed the characteristics of melting decomposition.The solvent endothermic peak of the complexes appeared in the high temperature range of 175–194 °C,suggesting that the solvent played an important role in maintaining the crystal spatial structure and had strong interaction with other components.The second endothermic peak appeared at 224–232 °C,which was significantly lower than the endothermic peak of rhein (328 °C) and higher than that of berberine (204–206 °C).The solvent ratios of all the 4 solvates were obtained from TG analysis.The relevant TG curves are shown in green color in Fig.S3 (Supporting information).The mass loss of solvents were 1.65%,3.23%,4.57% and 4.29%.The number of solvents molecules in each solvate was 0.9,0.9,0.8 and 1.0,basically agreeing well with the SXRD results.In addition,a maximum difference of approximately 6 °C of the endothermic peak temperature was observed,which indicated significant differences existed in the arrangement of the three-dimensional space of these cocrystal salt solvates [34,35].

    RESP atomic charge can effectively combine the actual situation of atomic charge in molecules dominated by electrostatic interactions [36].Charge analysis can show the charge distribution of the cocrystal salt solvates from a whole or the ion parts and can help analyze the mechanism of the intermolecular interaction (Table S3 in Supporting information).In these cocrystal salt solvates,rhein and solvent molecules only have a small negative charge (close to zero).Rhein anion has a negative charge of ?0.8 (close to ?1).Berberine cations have positive charge of 0.9 (close to+1).The N atom on position 7 should have a positive charge of+1 with intuition,but it actually had only very small positive charge (close to zero).Generally,the salt bond should be formed between the positively charged N7 atom in berberine cation and carboxylate ion in rhein anion.However,the result of charge analysis showed that N7 atom had only slightly positive charge.Therefore,no salt bond existence between rhein anion and berberine cation,and they interacted with each other mainly through electrostatic interaction.

    Bader’s AIM topological analysis can show the characteristics of weak interaction of intra-or inter-molecules through the properties of the bond critical point (BCP) and the corresponding bond path (BP) between interacting atoms [37,38].The BCP (orange ball)and the corresponding BP (orange line) of classical hydrogen bonds are shown clearly in Fig.1.The BCP and BP of the non-classical hydrogen bonds such as C-H…O and C-H…C were also exhibited clearly.

    The topologies of BB-RH-H2O,BB-RH-MeOH,and BB-RH-EtOH were very similar and differed from BB-RH-ACN.BCP and BP can accurately show the intermolecular interactions as well as the intramolecular interactions in cocrystal salt solvates.Fig.1 indicates the absence of BCP and BP between the rhein anion and berberine cation,indicating that no salt bond was present.AIM topology analysis can qualitatively show the existing interactions but cannot directly quantify the strength of the interaction.Therefore,we used MEPS and EDA to carry out additional analysis.

    Fig.1.AIM topological analysis of cocrystal salt solvates.(a) BB-RH-H2O;(b) BB-RH-MeOH;(c) BB-RH-EtOH;(d) BB-RH-ACN.

    Fig.2.MEPS analysis of cocrystal salt solvate BB-RH-H2O.

    Most of the interactions dominated by hydrogen bonds belong to electrostatic interactions,which can be demonstrated and analyzed using MEPS [39–43].In the present paper,the color scale of the MEPS of each component in the cocrystal salt solvates was used BWR method.The blue region represents electron-rich regions.The red region represents the electron-deficient region and the white region was generally neutral.The cyan and orange ball represent the local minimum and maximum on the MEPS,respectively.Fig.2 shows the MEPS of BB-RH-H2O and the MEPS of the other three are show in Fig.S4 (Supporting information).The interaction sites in BB-RH-H2O,BB-RH-MeOH,and BB-RH-EtOH were similar but quite different from BB-RH-ACN.The MEPS analysis from a spatial perspective confirmed the AIM analysis results.

    EDA can decompose the total interaction energy between fragments into energy terms of physical significance to investigate the nature of the interaction [44–46].GSK-EDA decomposes the interaction energy into five parts,as shown in Eq.1.

    whereΔEtotalis the total interaction energy of the complex,ΔEeleis the electrostatic energy,ΔEexis the exchange energy,ΔErepis the repulsion energy,ΔEpolis the polarization energy,andΔEdispis the electron correlation.

    As listed in Table 1 and showed in Fig.S5 (Supporting information),the interaction of pair 1,2 (rhein anion and berberine cation) was basically dominated by electrostatic energy,which was the strongest interaction in these cocrystal salt solvates.The interaction of pair 1,3 (rhein anion and rhein molecule) was basically dominated by electrostatic,exchange,and polarization energy.The interaction is the second strongest interaction,which reflected the O-H…O classical hydrogen bond interaction.The interactions of pairs 1,4 (rhein anion and solvent) and 2,3 (rhein molecule and berberine cation) were much weaker than pairs 1,2 and 1,3.The interactions of pair 1,4 was basically dominated by electrostatic energy with polarization energy as secondary.The interactions of pair 2,3 were basically dominated by electrostatic energy with polarization and dispersion energy as secondary.Considering the long distance between the components of pairs 2,4 (berberine cation and water) and 3,4 (rhein molecule and solvent),no intermolecular interactions were observed between them.

    Table 1 Energy decomposition in cocrystal salt solvates (kcal/mol).

    EDA combined MEPS analysis can accurately explain the nature of the intermolecular interactions.For instance,no hydrogen or salt bond was found between rhein and berberine ion,but the EDA revealed that the interaction between them was the strongest and was even more than the hydrogen bond interaction between rhein and rhein ion.This finding cannot be easily explained by AIM topological analysis.Although no global maximum site is present in the MEPS of the methoxy group on position 10 of berberine cation,this region has four local maximum sites,which interacts with the carbonyl group on position 10 of rhein anion.The addition of these numbers will yield a value of approximately+50 kcal/mol.Hence,the strength of the interaction can be clearly evaluated.This phenomenon can also be analyzed qualitatively based on the MEPS diagram.The larger the penetration distance between rhein molecule and rhein anion,the larger the repulsion energy.The smaller the penetration distance between rhein molecule and berberine cation,the smaller the repulsion energy.Although the electrostatic attraction of the former was larger,after deducting the effect of repulsion energy,the interaction of the latter was stronger.

    In terms of druggability of the cocrystal salt solvates,BB-RHH2O was selected to investigate the dissolution rate of rhein and berberine in water.According to the IDR experiment,the dissolution rate of berberine was reduced by approximately 6 times and the dissolution amount in 60 min reduced by approximately 4 times,however the dissolution rate of rhein was increased by approximately 17 times,and the dissolution amount in 60 min increased by approximately 14 times (Fig.3).

    In this paper,four cocrystal salt solvates of rhein and berberine were prepared and characterized.To understand the structural features,we used a series of theoretical calculation methods (qualitative and quantitative) based on DFT theory to explore the interaction among these multi-component substances.This method of combining experimental characterization with theoretical calculation is significant for understanding their formation mechanism and can be used as reference the structure and physicochemical properties of other substances.RESP charge analysis can show the charge distribution of molecules and ions,and this information is helpful to evaluate salt formation.AIM topological analysis can qualitatively reveal the existence of interaction through the existence of BCP and BP.MEPS analysis and EDA can carry out semiquantitative or quantitative analysis of the interaction to a certain extent.Especially,EDA can also decompose the interaction in multiple components to different components to provide a clear understanding of the nature of the interaction.

    Fig.3.IDR test for BB-RH-H2O,rhein (a) and berberine (b) in water.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We would like to express our sincere thanks to Professor Peifeng Su of Department of Chemistry,Xiamen University for providing the software developed by his research team and his help in the EDA calculation.We gratefully acknowledge the Drug Innovation Major Project (No.2018ZX09711001-001-015),the CAMS Innovation Fund for Medical Sciences (No.2020-I2M-1-003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.012.

    色网站视频免费| 99re6热这里在线精品视频| 中文字幕av电影在线播放| 视频在线观看一区二区三区| 无遮挡黄片免费观看| 亚洲国产欧美网| 黑人欧美特级aaaaaa片| 久久精品成人免费网站| 亚洲,欧美,日韩| 久久久久久免费高清国产稀缺| 99热国产这里只有精品6| 亚洲av日韩精品久久久久久密 | 免费一级毛片在线播放高清视频 | 国产欧美日韩一区二区三区在线| 大码成人一级视频| 男女下面插进去视频免费观看| 久久国产精品男人的天堂亚洲| 无限看片的www在线观看| 免费久久久久久久精品成人欧美视频| 久久天躁狠狠躁夜夜2o2o | 国产成人精品久久久久久| 国产深夜福利视频在线观看| 免费日韩欧美在线观看| 色视频在线一区二区三区| 午夜老司机福利片| 大话2 男鬼变身卡| 欧美97在线视频| 亚洲欧美日韩另类电影网站| 少妇猛男粗大的猛烈进出视频| 黄色片一级片一级黄色片| 亚洲一区二区三区欧美精品| 叶爱在线成人免费视频播放| 日本av免费视频播放| 丝袜喷水一区| 我要看黄色一级片免费的| 久久人人爽av亚洲精品天堂| 亚洲国产av新网站| 欧美黑人欧美精品刺激| 亚洲av成人不卡在线观看播放网 | 视频区图区小说| 电影成人av| 久久精品国产亚洲av涩爱| 自线自在国产av| 日韩 亚洲 欧美在线| 校园人妻丝袜中文字幕| 国产激情久久老熟女| 在线观看免费日韩欧美大片| 亚洲av日韩精品久久久久久密 | 无限看片的www在线观看| 十分钟在线观看高清视频www| cao死你这个sao货| 亚洲成av片中文字幕在线观看| 一级黄片播放器| 久久国产亚洲av麻豆专区| av国产久精品久网站免费入址| 人人妻人人添人人爽欧美一区卜| 日韩av在线免费看完整版不卡| 亚洲中文av在线| 久久av网站| 午夜影院在线不卡| 欧美+亚洲+日韩+国产| 午夜两性在线视频| 亚洲国产精品成人久久小说| 国产av国产精品国产| 啦啦啦在线观看免费高清www| 99精品久久久久人妻精品| 免费看十八禁软件| 永久免费av网站大全| 另类亚洲欧美激情| 国产精品麻豆人妻色哟哟久久| 亚洲av综合色区一区| 九色亚洲精品在线播放| 国产成人a∨麻豆精品| 久久ye,这里只有精品| 少妇的丰满在线观看| 国产97色在线日韩免费| 亚洲国产av影院在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁夜夜躁狠狠久久av| 中文字幕人妻丝袜一区二区| 亚洲精品久久成人aⅴ小说| 欧美黑人精品巨大| 一个人免费看片子| 亚洲国产成人一精品久久久| 曰老女人黄片| 精品国产国语对白av| 亚洲 欧美一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 日韩制服骚丝袜av| 国产成人影院久久av| 精品免费久久久久久久清纯 | 黄网站色视频无遮挡免费观看| 9191精品国产免费久久| 亚洲国产精品一区三区| av网站在线播放免费| 精品久久久久久电影网| 欧美日韩视频精品一区| 这个男人来自地球电影免费观看| 肉色欧美久久久久久久蜜桃| 99国产综合亚洲精品| 女性生殖器流出的白浆| www.av在线官网国产| 精品人妻在线不人妻| 18禁国产床啪视频网站| 精品一品国产午夜福利视频| 精品国产一区二区三区四区第35| 妹子高潮喷水视频| 色播在线永久视频| 看免费av毛片| 免费av中文字幕在线| 777米奇影视久久| 精品熟女少妇八av免费久了| 亚洲激情五月婷婷啪啪| 国产av精品麻豆| 啦啦啦 在线观看视频| 热99久久久久精品小说推荐| 日韩制服丝袜自拍偷拍| 精品国产超薄肉色丝袜足j| 亚洲欧美日韩另类电影网站| 在线精品无人区一区二区三| 老司机深夜福利视频在线观看 | 久久性视频一级片| 国产精品 国内视频| 男女免费视频国产| 天天添夜夜摸| 99精国产麻豆久久婷婷| 91精品三级在线观看| 精品一区二区三卡| 老司机午夜十八禁免费视频| 国产精品国产三级专区第一集| cao死你这个sao货| 一级毛片电影观看| 久久免费观看电影| 天堂中文最新版在线下载| 少妇裸体淫交视频免费看高清 | 999久久久国产精品视频| 免费看av在线观看网站| 亚洲精品成人av观看孕妇| 一本大道久久a久久精品| 99九九在线精品视频| 在线观看免费高清a一片| 青青草视频在线视频观看| 色综合欧美亚洲国产小说| 中文字幕色久视频| 久久久久视频综合| 一级毛片 在线播放| 日本午夜av视频| 欧美日韩成人在线一区二区| 制服诱惑二区| 国产国语露脸激情在线看| 最黄视频免费看| 国产麻豆69| 黄色片一级片一级黄色片| 日本vs欧美在线观看视频| 18禁裸乳无遮挡动漫免费视频| 性少妇av在线| 爱豆传媒免费全集在线观看| 国产一区二区在线观看av| 在线观看免费午夜福利视频| 亚洲欧美成人综合另类久久久| 欧美精品一区二区免费开放| 99国产精品一区二区蜜桃av | 久久久久国产一级毛片高清牌| 一区二区三区精品91| 满18在线观看网站| 性色av乱码一区二区三区2| 亚洲精品美女久久av网站| 99re6热这里在线精品视频| 亚洲视频免费观看视频| 精品一品国产午夜福利视频| 日韩电影二区| 乱人伦中国视频| 人人妻,人人澡人人爽秒播 | 又大又爽又粗| 日韩精品免费视频一区二区三区| 国产成人欧美| 亚洲图色成人| 亚洲成人免费av在线播放| 国产xxxxx性猛交| 成人午夜精彩视频在线观看| 午夜福利一区二区在线看| 欧美人与善性xxx| 19禁男女啪啪无遮挡网站| 国产男女超爽视频在线观看| 久久久久精品人妻al黑| 国产欧美日韩精品亚洲av| 90打野战视频偷拍视频| 国产有黄有色有爽视频| 久久女婷五月综合色啪小说| 90打野战视频偷拍视频| 免费高清在线观看日韩| 性色av乱码一区二区三区2| a级毛片在线看网站| 国产黄频视频在线观看| 中国美女看黄片| av网站在线播放免费| 爱豆传媒免费全集在线观看| 99热国产这里只有精品6| 国产精品人妻久久久影院| 亚洲精品国产色婷婷电影| av国产精品久久久久影院| netflix在线观看网站| 中文乱码字字幕精品一区二区三区| 一本大道久久a久久精品| 天堂俺去俺来也www色官网| 天天躁夜夜躁狠狠躁躁| 日本91视频免费播放| 一区二区日韩欧美中文字幕| 宅男免费午夜| 久久久国产精品麻豆| 男女免费视频国产| 久久精品成人免费网站| 亚洲熟女精品中文字幕| 国产熟女欧美一区二区| 亚洲精品日韩在线中文字幕| 日本色播在线视频| 大码成人一级视频| 日本av手机在线免费观看| 亚洲av片天天在线观看| 亚洲精品日本国产第一区| 亚洲精品成人av观看孕妇| 一边摸一边做爽爽视频免费| 乱人伦中国视频| 国产av一区二区精品久久| 捣出白浆h1v1| 国产成人精品久久久久久| 国产精品久久久久久人妻精品电影 | av网站在线播放免费| av天堂久久9| av电影中文网址| 热re99久久精品国产66热6| tube8黄色片| 深夜精品福利| 免费观看人在逋| 男人操女人黄网站| 日韩中文字幕视频在线看片| 欧美精品av麻豆av| 午夜福利影视在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 精品少妇久久久久久888优播| 咕卡用的链子| 又紧又爽又黄一区二区| 97在线人人人人妻| 高清视频免费观看一区二区| 久久中文字幕一级| 久久精品亚洲av国产电影网| 最新在线观看一区二区三区 | 精品国产国语对白av| 亚洲五月色婷婷综合| 国产亚洲av片在线观看秒播厂| 午夜福利视频在线观看免费| 午夜免费男女啪啪视频观看| 男女床上黄色一级片免费看| 天堂中文最新版在线下载| 欧美人与性动交α欧美精品济南到| 69精品国产乱码久久久| 欧美国产精品一级二级三级| 欧美日韩国产mv在线观看视频| 亚洲精品国产av成人精品| 黄色视频在线播放观看不卡| 欧美 日韩 精品 国产| 日本欧美视频一区| 国产三级黄色录像| 国产成人精品无人区| 亚洲欧洲国产日韩| 2018国产大陆天天弄谢| 黄色怎么调成土黄色| 亚洲av片天天在线观看| 久久久久国产精品人妻一区二区| 麻豆乱淫一区二区| 欧美成人精品欧美一级黄| 亚洲欧美激情在线| 极品少妇高潮喷水抽搐| 日韩精品免费视频一区二区三区| 国产伦理片在线播放av一区| a级片在线免费高清观看视频| 啦啦啦 在线观看视频| 亚洲av日韩在线播放| 欧美亚洲 丝袜 人妻 在线| 国产成人欧美在线观看 | 国产成人精品久久久久久| 成年美女黄网站色视频大全免费| av网站免费在线观看视频| 视频区图区小说| 两个人看的免费小视频| 99久久综合免费| 少妇 在线观看| 久久精品国产a三级三级三级| 女人高潮潮喷娇喘18禁视频| 人妻一区二区av| 亚洲,欧美,日韩| 交换朋友夫妻互换小说| 亚洲精品国产一区二区精华液| 熟女少妇亚洲综合色aaa.| 啦啦啦视频在线资源免费观看| 91精品国产国语对白视频| 妹子高潮喷水视频| 日韩 欧美 亚洲 中文字幕| 国产日韩欧美在线精品| 搡老岳熟女国产| 亚洲精品美女久久久久99蜜臀 | 啦啦啦在线观看免费高清www| 我的亚洲天堂| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲成国产人片在线观看| 亚洲欧美日韩高清在线视频 | 久久狼人影院| 90打野战视频偷拍视频| 国产一区二区三区av在线| 操出白浆在线播放| 午夜免费鲁丝| 久久久精品区二区三区| 赤兔流量卡办理| 国产福利在线免费观看视频| e午夜精品久久久久久久| av国产精品久久久久影院| 久久久精品区二区三区| 午夜福利一区二区在线看| 亚洲av国产av综合av卡| 91精品三级在线观看| 黑丝袜美女国产一区| 婷婷色综合大香蕉| 制服人妻中文乱码| 侵犯人妻中文字幕一二三四区| 人人妻,人人澡人人爽秒播 | 欧美日韩综合久久久久久| 国产成人精品无人区| 免费不卡黄色视频| 亚洲,一卡二卡三卡| 欧美日韩亚洲高清精品| 男人添女人高潮全过程视频| 人人妻人人澡人人爽人人夜夜| 汤姆久久久久久久影院中文字幕| 日韩中文字幕视频在线看片| 精品卡一卡二卡四卡免费| 老司机靠b影院| 另类亚洲欧美激情| 国产成人精品无人区| 最新在线观看一区二区三区 | 久久人人爽人人片av| 精品亚洲成a人片在线观看| videosex国产| bbb黄色大片| 国产免费视频播放在线视频| 久久久久久人人人人人| www.av在线官网国产| 在线观看免费日韩欧美大片| 中文精品一卡2卡3卡4更新| 黑人猛操日本美女一级片| 超色免费av| 日韩欧美一区视频在线观看| 一本大道久久a久久精品| 亚洲国产av影院在线观看| 久9热在线精品视频| 少妇人妻 视频| 男男h啪啪无遮挡| av天堂在线播放| 成在线人永久免费视频| 日韩制服骚丝袜av| 久久99热这里只频精品6学生| 秋霞在线观看毛片| 搡老岳熟女国产| 久久人妻福利社区极品人妻图片 | 人妻人人澡人人爽人人| 91字幕亚洲| 捣出白浆h1v1| 欧美人与性动交α欧美精品济南到| svipshipincom国产片| 秋霞在线观看毛片| 久久精品aⅴ一区二区三区四区| 大陆偷拍与自拍| 国产成人av教育| 国产成人a∨麻豆精品| 在线亚洲精品国产二区图片欧美| 成人午夜精彩视频在线观看| 在线看a的网站| 男女国产视频网站| 又紧又爽又黄一区二区| 高清视频免费观看一区二区| 如日韩欧美国产精品一区二区三区| 午夜久久久在线观看| 国产精品99久久99久久久不卡| 少妇精品久久久久久久| 久久人妻熟女aⅴ| www.精华液| 少妇 在线观看| 1024香蕉在线观看| 制服诱惑二区| 精品高清国产在线一区| 在线观看人妻少妇| 成在线人永久免费视频| 女人精品久久久久毛片| 一本综合久久免费| 精品亚洲成国产av| 高清黄色对白视频在线免费看| 日韩一卡2卡3卡4卡2021年| 亚洲欧美清纯卡通| 精品亚洲成a人片在线观看| 久久国产精品大桥未久av| 七月丁香在线播放| 丝袜美足系列| 一个人免费看片子| 亚洲国产精品一区二区三区在线| 成人国产av品久久久| 亚洲中文字幕日韩| 欧美激情 高清一区二区三区| 视频区欧美日本亚洲| 麻豆av在线久日| 亚洲情色 制服丝袜| 久久久久久久大尺度免费视频| 亚洲av美国av| 最黄视频免费看| 中文字幕精品免费在线观看视频| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av | 十八禁人妻一区二区| 91老司机精品| 伊人久久大香线蕉亚洲五| 人体艺术视频欧美日本| 久久久久久亚洲精品国产蜜桃av| 国产在视频线精品| 人妻 亚洲 视频| 国产精品一国产av| 国语对白做爰xxxⅹ性视频网站| 国产精品麻豆人妻色哟哟久久| 天堂中文最新版在线下载| 欧美另类一区| 久热爱精品视频在线9| 国产一区二区三区综合在线观看| 99香蕉大伊视频| 婷婷色综合www| 美女午夜性视频免费| 亚洲精品日韩在线中文字幕| 国产激情久久老熟女| 欧美亚洲日本最大视频资源| 国产成人精品在线电影| 自拍欧美九色日韩亚洲蝌蚪91| a 毛片基地| 成年人免费黄色播放视频| 国产一区二区在线观看av| 免费日韩欧美在线观看| 蜜桃在线观看..| 精品一区在线观看国产| 亚洲av国产av综合av卡| 美女扒开内裤让男人捅视频| 热re99久久精品国产66热6| 久久国产精品大桥未久av| 欧美中文综合在线视频| 国产高清视频在线播放一区 | 18禁国产床啪视频网站| 欧美日韩一级在线毛片| 婷婷色综合www| 日韩 欧美 亚洲 中文字幕| 亚洲人成电影观看| 91精品国产国语对白视频| 午夜免费观看性视频| 这个男人来自地球电影免费观看| 国产日韩一区二区三区精品不卡| 亚洲精品第二区| 在线精品无人区一区二区三| 免费不卡黄色视频| 国产精品久久久久成人av| 热99久久久久精品小说推荐| 亚洲一卡2卡3卡4卡5卡精品中文| netflix在线观看网站| 国产真人三级小视频在线观看| 婷婷色麻豆天堂久久| 男男h啪啪无遮挡| 另类亚洲欧美激情| 菩萨蛮人人尽说江南好唐韦庄| 99国产精品一区二区三区| 亚洲第一青青草原| 国产精品人妻久久久影院| 999久久久国产精品视频| 美女大奶头黄色视频| 国产成人免费无遮挡视频| 亚洲国产看品久久| 汤姆久久久久久久影院中文字幕| 一区二区三区四区激情视频| 日本五十路高清| 国产黄频视频在线观看| 啦啦啦在线免费观看视频4| 国产日韩欧美在线精品| 男女边摸边吃奶| 久久精品久久精品一区二区三区| 老熟女久久久| 国产黄色免费在线视频| 色播在线永久视频| 人妻一区二区av| 精品一区二区三区四区五区乱码 | 国产爽快片一区二区三区| 永久免费av网站大全| 日本av手机在线免费观看| 搡老岳熟女国产| 日本一区二区免费在线视频| 久久久久国产精品人妻一区二区| 在线精品无人区一区二区三| 熟女少妇亚洲综合色aaa.| 国产日韩欧美亚洲二区| 婷婷色综合大香蕉| 丝袜脚勾引网站| 亚洲人成77777在线视频| 性少妇av在线| 激情视频va一区二区三区| 一级片免费观看大全| 大片免费播放器 马上看| 久久精品熟女亚洲av麻豆精品| 日韩伦理黄色片| 中文乱码字字幕精品一区二区三区| 大香蕉久久网| 国产精品免费大片| av天堂在线播放| 大香蕉久久成人网| 亚洲欧美中文字幕日韩二区| 免费在线观看完整版高清| 亚洲成国产人片在线观看| 好男人电影高清在线观看| 青草久久国产| 少妇 在线观看| 国产成人精品久久二区二区91| 91精品伊人久久大香线蕉| a级片在线免费高清观看视频| 一本—道久久a久久精品蜜桃钙片| 亚洲中文字幕日韩| 久久久久久久久久久久大奶| 无限看片的www在线观看| 久久女婷五月综合色啪小说| 50天的宝宝边吃奶边哭怎么回事| 国产又爽黄色视频| 桃花免费在线播放| 自线自在国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区中文字幕在线| 国产成人精品在线电影| 亚洲精品久久午夜乱码| kizo精华| 男男h啪啪无遮挡| 波野结衣二区三区在线| 天天躁日日躁夜夜躁夜夜| 精品久久久久久久毛片微露脸 | 久久久久国产一级毛片高清牌| 亚洲成人免费av在线播放| 日韩av免费高清视频| 国产又色又爽无遮挡免| 天堂8中文在线网| 久久国产精品大桥未久av| 国产老妇伦熟女老妇高清| 一级,二级,三级黄色视频| 悠悠久久av| 首页视频小说图片口味搜索 | 亚洲综合色网址| 精品人妻在线不人妻| 亚洲情色 制服丝袜| 成人亚洲精品一区在线观看| 欧美精品啪啪一区二区三区 | 国产伦人伦偷精品视频| 久热爱精品视频在线9| 99香蕉大伊视频| 在线观看一区二区三区激情| 中国国产av一级| 亚洲国产日韩一区二区| 午夜福利影视在线免费观看| 1024视频免费在线观看| 久久久久久久国产电影| 十分钟在线观看高清视频www| 国产精品香港三级国产av潘金莲 | www.999成人在线观看| netflix在线观看网站| 久久99一区二区三区| 97精品久久久久久久久久精品| 久久天躁狠狠躁夜夜2o2o | 国产成人精品久久二区二区91| 五月天丁香电影| 中国美女看黄片| 久久人人97超碰香蕉20202| 啦啦啦在线观看免费高清www| 久久天堂一区二区三区四区| 国产成人av激情在线播放| 香蕉丝袜av| 秋霞在线观看毛片| 麻豆国产av国片精品| 欧美精品高潮呻吟av久久| 精品第一国产精品| 国产av精品麻豆| 一级黄片播放器| 亚洲伊人久久精品综合| 女人高潮潮喷娇喘18禁视频| www.熟女人妻精品国产| 色94色欧美一区二区| 中文乱码字字幕精品一区二区三区| 汤姆久久久久久久影院中文字幕| 在线亚洲精品国产二区图片欧美| 国产成人免费观看mmmm| 久久精品aⅴ一区二区三区四区| 国产一区二区 视频在线| 成人亚洲精品一区在线观看| 欧美精品亚洲一区二区| 国产国语露脸激情在线看| 国产主播在线观看一区二区 | 啦啦啦 在线观看视频| 又黄又粗又硬又大视频| 国产黄色免费在线视频| 美女视频免费永久观看网站| e午夜精品久久久久久久| av视频免费观看在线观看| 亚洲精品av麻豆狂野| cao死你这个sao货| 中文字幕制服av| 精品久久蜜臀av无| 精品少妇黑人巨大在线播放| 亚洲国产最新在线播放| av网站免费在线观看视频| 午夜精品国产一区二区电影| www.精华液| 人人妻人人澡人人爽人人夜夜|