• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural landscape on a series of rhein: Berberine cocrystal salt solvates: The formation,dissolution elucidation from experimental and theoretical investigations

    2022-07-11 03:39:38DezhiYngHongjunWngQiwenLiuPenghuiYunTingChenLiZhngShiyingYngZhengzhengZhouYngLuGunhuDu
    Chinese Chemical Letters 2022年6期

    Dezhi Yng,Hongjun Wng,Qiwen Liu,Penghui Yun,Ting Chen,Li Zhng,Shiying Yng,Zhengzheng Zhou,Yng Lu,?,Gunhu Du

    a Beijing City Key Laboratory of Polymorphic Drugs,Center of Pharmaceutical Polymorphs,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China

    b Department of Hygiene Inspection and Quarantine Science,School of Public Health,Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research,NMPA Key Laboratory for Safety Evaluation of Cosmetics),Guangzhou 510515,China

    c Beijing City Key Laboratory of Drug Target and Screening Research,National Center for Pharmaceutical Screening,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China

    Keywords:Cocrystal Rhein Berberine Theoretical computation Energy decomposition analysis Solubility

    ABSTRACT The specific crystalline form of a compound remarkably affects its physicochemical properties.Therefore,a detailed analysis of the structural features and intermolecular interactions of a multi-component crystal is feasible to understand the relationships among the structure,physicochemical properties and the formation mechanism.In the present study,three novel cocrystal salt solvates of rhein and berberine were reported for the first time.Various solid characterizations and theoretical computations based on density functional theory (DFT) were carried out to demonstrate the intermolecular interactions.The theoretical computation shows that the strongest interaction existed between berberine cation and rhein anion,and the electrostatic interaction play a dominant role.However,no salt bond was observed between them.Further intrinsic dissolution rate analysis in water shows that the monohydrate exhibits 17 times enhancement in comparison with rhein.The rhein and berberine combined in ionic state in cocrystal salt is the main reason for the solubility improvement.This paper suggests that the interactions between the different components can be visualized and qualitatively and quantitatively analyzed by theoretical computation,which is helpful to understand the relationship between stereochemical structure and physicochemical properties of multi-component complex.

    Rhein (RH) and berberine (BB) are both effective ingredients in traditional Chinese medicinal materials and have various biological activities.For example,rhein demonstrates medical activities in the treatment of inflammation,osteoarthritis,diabetes and cancer [1–4],while berberine shows its advantage in the treatment of atherosclerosis,diabetes,inflammation,and cancer [5–8].However,these two compounds have drawbacks,in which their bioavailability is very low,limiting further clinical application.There are different reasons for the poor bioavailability of rhein and berberine.Rhein belongs to biopharmaceutics classification system (BCS)class II compound because of its poor water solubility but better permeability [9].While,berberine hydrochloride has a relatively good solubility,its permeability is poor,and it belongs to BCS class III drug [10].Therefore,the berberine’s permeability and rhein’s solubility improvements are beneficial for their bioavailability enhancement.Many complementary biological activities are associated with rhein and berberine.In some classic Chinese medicine prescriptions,traditional Chinese medicine containing rhein and berberine as active ingredients are frequently used in the compatibility,such as Sanhuang soup and Xiexin soup [11].Therefore,a complex containing rhein and berberine should be designed to determine their complementary physicochemical properties and synergistic effect,and thus improve their bioavailability.

    Based on the above consideration,we carried out studies on the organic salts (only composed of ions) of rhein and berberine(Scheme 1) [12]and accidentally obtained a series of cocrystal salt solvates.Cocrystal is a complex which consists of two or more solid state compounds linked togethervianon-covalent bonds [13–15].It has attracted more and more attentions from pharmaceutical industries because its advantages on the physicochemical properties improvement for poorly water-soluble drugs [16–19].According to the multicomponent crystal classification [20],cocrystal salt solvate belongs to a special class.Its components include both the molecule and ion states of drugs or coformers and the molecular states of water or solvents.Although the existence of the solvents may increase the toxicity,the importance of solvates is still reflected in their potential contributions of new crystalline forms.Some solvates exist as approved drugs on the market.Among the cocrystal salt solvates in this study,the ratio of rhein molecule:rhein anion: berberine cation: solvent molecule is 1:1:1:1,and the solvents used were water [21],methanol,ethanol and acetonitrile,respectively.

    Scheme 1.Structure of (a) rhein,(b) rhein anion and (c) berberine cation.

    To fully understand the crystallization form,we carried out experimental characterizations,such as single crystal X-ray diffraction (SXRD),powder X-ray diffraction (PXRD),differential scanning calorimetry (DSC),and thermogravimetric (TG) analysis [22–26].Starting from the structural characteristics of these complexes,different theoretical computations based on DFT were used to analyze the charge distribution,weak interaction,and other characteristics of their structures by using different programs [27–31],such as restrained electrostatic potential (RESP) charge distribution,atom in molecule (AIM) topological analysis,molecular electrostatic potential surface (MEPS),and energy decomposition analysis (EDA) of interaction energy.In addition,for the cocrystal salt monohydrate,intrinsic dissolution rate (IDR) analysis was used forin vitroevaluation [32,33].

    The cocrystal salt solvates were prepared as follows: A mixture of BB chloride (1 mmol) and NaOH (1 mmol) was added into 50 mL of water and stirred for 2 h at a speed of 350 rpm.After filtration,approximately 1 mmol RH was added into the filtrate and sequentially stirred overnight.Then,the solution was filtered and left to stand at 2–8 °C for approximately 1 month.Dark red crystals were obtained.The remaining crystals including different solvents were prepared through the same process in the corresponding solvent.The detailed crystallographic information is shown in Table S1 (Supporting information).Except for BB-RH-H2O,the other solvates were obtained for the first time.The single-crystal data were deposited in the CCDC with the reference Nos.2107884,2107885 and 2107886.

    The main hydrogen bond interactions in the cocrystal salt solvates were similar (Fig.S1 in Supporting information).Rhein molecule and anion formed hydrogen bond interaction inD11(2)crystal motif.Two rhein molecules formed cyclic hydrogen bond interaction inR22(16)crystal motifs.Intramolecular hydrogen bonding inS11(2)crystal motifs were found in rhein molecule and anion.However,in BB-RH-H2O,BB-RH-MeOH,and BB-RH-EtOH,rhein anion and solvent molecule also formed hydrogen bond interaction inD11(2)crystal motifs.In addition,no classical hydrogen or salt bond was found between rhein anion and berberine cation.π–πstacking interaction were also found in these cocrystal salt solvates and summarized in Table S2 (Supporting information).

    Fig.S2 (Supporting information) shows that the experimental PXRD patterns were in line with the calculated ones.The results indicated that the prepared cocrystal salt solvates were in pure phase and could be used in other characterization experiments.

    The DSC curves were similar in that they all contained a solvent endothermic peak and a complex endothermic peak,and they all showed the characteristics of melting decomposition.The solvent endothermic peak of the complexes appeared in the high temperature range of 175–194 °C,suggesting that the solvent played an important role in maintaining the crystal spatial structure and had strong interaction with other components.The second endothermic peak appeared at 224–232 °C,which was significantly lower than the endothermic peak of rhein (328 °C) and higher than that of berberine (204–206 °C).The solvent ratios of all the 4 solvates were obtained from TG analysis.The relevant TG curves are shown in green color in Fig.S3 (Supporting information).The mass loss of solvents were 1.65%,3.23%,4.57% and 4.29%.The number of solvents molecules in each solvate was 0.9,0.9,0.8 and 1.0,basically agreeing well with the SXRD results.In addition,a maximum difference of approximately 6 °C of the endothermic peak temperature was observed,which indicated significant differences existed in the arrangement of the three-dimensional space of these cocrystal salt solvates [34,35].

    RESP atomic charge can effectively combine the actual situation of atomic charge in molecules dominated by electrostatic interactions [36].Charge analysis can show the charge distribution of the cocrystal salt solvates from a whole or the ion parts and can help analyze the mechanism of the intermolecular interaction (Table S3 in Supporting information).In these cocrystal salt solvates,rhein and solvent molecules only have a small negative charge (close to zero).Rhein anion has a negative charge of ?0.8 (close to ?1).Berberine cations have positive charge of 0.9 (close to+1).The N atom on position 7 should have a positive charge of+1 with intuition,but it actually had only very small positive charge (close to zero).Generally,the salt bond should be formed between the positively charged N7 atom in berberine cation and carboxylate ion in rhein anion.However,the result of charge analysis showed that N7 atom had only slightly positive charge.Therefore,no salt bond existence between rhein anion and berberine cation,and they interacted with each other mainly through electrostatic interaction.

    Bader’s AIM topological analysis can show the characteristics of weak interaction of intra-or inter-molecules through the properties of the bond critical point (BCP) and the corresponding bond path (BP) between interacting atoms [37,38].The BCP (orange ball)and the corresponding BP (orange line) of classical hydrogen bonds are shown clearly in Fig.1.The BCP and BP of the non-classical hydrogen bonds such as C-H…O and C-H…C were also exhibited clearly.

    The topologies of BB-RH-H2O,BB-RH-MeOH,and BB-RH-EtOH were very similar and differed from BB-RH-ACN.BCP and BP can accurately show the intermolecular interactions as well as the intramolecular interactions in cocrystal salt solvates.Fig.1 indicates the absence of BCP and BP between the rhein anion and berberine cation,indicating that no salt bond was present.AIM topology analysis can qualitatively show the existing interactions but cannot directly quantify the strength of the interaction.Therefore,we used MEPS and EDA to carry out additional analysis.

    Fig.1.AIM topological analysis of cocrystal salt solvates.(a) BB-RH-H2O;(b) BB-RH-MeOH;(c) BB-RH-EtOH;(d) BB-RH-ACN.

    Fig.2.MEPS analysis of cocrystal salt solvate BB-RH-H2O.

    Most of the interactions dominated by hydrogen bonds belong to electrostatic interactions,which can be demonstrated and analyzed using MEPS [39–43].In the present paper,the color scale of the MEPS of each component in the cocrystal salt solvates was used BWR method.The blue region represents electron-rich regions.The red region represents the electron-deficient region and the white region was generally neutral.The cyan and orange ball represent the local minimum and maximum on the MEPS,respectively.Fig.2 shows the MEPS of BB-RH-H2O and the MEPS of the other three are show in Fig.S4 (Supporting information).The interaction sites in BB-RH-H2O,BB-RH-MeOH,and BB-RH-EtOH were similar but quite different from BB-RH-ACN.The MEPS analysis from a spatial perspective confirmed the AIM analysis results.

    EDA can decompose the total interaction energy between fragments into energy terms of physical significance to investigate the nature of the interaction [44–46].GSK-EDA decomposes the interaction energy into five parts,as shown in Eq.1.

    whereΔEtotalis the total interaction energy of the complex,ΔEeleis the electrostatic energy,ΔEexis the exchange energy,ΔErepis the repulsion energy,ΔEpolis the polarization energy,andΔEdispis the electron correlation.

    As listed in Table 1 and showed in Fig.S5 (Supporting information),the interaction of pair 1,2 (rhein anion and berberine cation) was basically dominated by electrostatic energy,which was the strongest interaction in these cocrystal salt solvates.The interaction of pair 1,3 (rhein anion and rhein molecule) was basically dominated by electrostatic,exchange,and polarization energy.The interaction is the second strongest interaction,which reflected the O-H…O classical hydrogen bond interaction.The interactions of pairs 1,4 (rhein anion and solvent) and 2,3 (rhein molecule and berberine cation) were much weaker than pairs 1,2 and 1,3.The interactions of pair 1,4 was basically dominated by electrostatic energy with polarization energy as secondary.The interactions of pair 2,3 were basically dominated by electrostatic energy with polarization and dispersion energy as secondary.Considering the long distance between the components of pairs 2,4 (berberine cation and water) and 3,4 (rhein molecule and solvent),no intermolecular interactions were observed between them.

    Table 1 Energy decomposition in cocrystal salt solvates (kcal/mol).

    EDA combined MEPS analysis can accurately explain the nature of the intermolecular interactions.For instance,no hydrogen or salt bond was found between rhein and berberine ion,but the EDA revealed that the interaction between them was the strongest and was even more than the hydrogen bond interaction between rhein and rhein ion.This finding cannot be easily explained by AIM topological analysis.Although no global maximum site is present in the MEPS of the methoxy group on position 10 of berberine cation,this region has four local maximum sites,which interacts with the carbonyl group on position 10 of rhein anion.The addition of these numbers will yield a value of approximately+50 kcal/mol.Hence,the strength of the interaction can be clearly evaluated.This phenomenon can also be analyzed qualitatively based on the MEPS diagram.The larger the penetration distance between rhein molecule and rhein anion,the larger the repulsion energy.The smaller the penetration distance between rhein molecule and berberine cation,the smaller the repulsion energy.Although the electrostatic attraction of the former was larger,after deducting the effect of repulsion energy,the interaction of the latter was stronger.

    In terms of druggability of the cocrystal salt solvates,BB-RHH2O was selected to investigate the dissolution rate of rhein and berberine in water.According to the IDR experiment,the dissolution rate of berberine was reduced by approximately 6 times and the dissolution amount in 60 min reduced by approximately 4 times,however the dissolution rate of rhein was increased by approximately 17 times,and the dissolution amount in 60 min increased by approximately 14 times (Fig.3).

    In this paper,four cocrystal salt solvates of rhein and berberine were prepared and characterized.To understand the structural features,we used a series of theoretical calculation methods (qualitative and quantitative) based on DFT theory to explore the interaction among these multi-component substances.This method of combining experimental characterization with theoretical calculation is significant for understanding their formation mechanism and can be used as reference the structure and physicochemical properties of other substances.RESP charge analysis can show the charge distribution of molecules and ions,and this information is helpful to evaluate salt formation.AIM topological analysis can qualitatively reveal the existence of interaction through the existence of BCP and BP.MEPS analysis and EDA can carry out semiquantitative or quantitative analysis of the interaction to a certain extent.Especially,EDA can also decompose the interaction in multiple components to different components to provide a clear understanding of the nature of the interaction.

    Fig.3.IDR test for BB-RH-H2O,rhein (a) and berberine (b) in water.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We would like to express our sincere thanks to Professor Peifeng Su of Department of Chemistry,Xiamen University for providing the software developed by his research team and his help in the EDA calculation.We gratefully acknowledge the Drug Innovation Major Project (No.2018ZX09711001-001-015),the CAMS Innovation Fund for Medical Sciences (No.2020-I2M-1-003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.012.

    亚洲欧美日韩东京热| 床上黄色一级片| 一个人看视频在线观看www免费 | 色综合站精品国产| 亚洲精品影视一区二区三区av| 国产单亲对白刺激| 日韩欧美在线乱码| 97碰自拍视频| 久久久久久久久久黄片| 极品教师在线免费播放| 夜夜爽天天搞| 成人性生交大片免费视频hd| 亚洲男人的天堂狠狠| 欧美成人一区二区免费高清观看| 欧美xxxx黑人xx丫x性爽| 亚洲无线在线观看| 一个人免费在线观看电影| 久久亚洲真实| 麻豆成人午夜福利视频| 夜夜夜夜夜久久久久| 日本三级黄在线观看| 一级毛片女人18水好多| 搡老熟女国产l中国老女人| h日本视频在线播放| 91久久精品电影网| 少妇人妻一区二区三区视频| 欧美午夜高清在线| 国产国拍精品亚洲av在线观看 | 亚洲一区高清亚洲精品| 成人18禁在线播放| 麻豆一二三区av精品| 欧美激情久久久久久爽电影| 国产99白浆流出| 女人高潮潮喷娇喘18禁视频| 国产成人系列免费观看| 久久中文看片网| 噜噜噜噜噜久久久久久91| 免费人成视频x8x8入口观看| 很黄的视频免费| 国产在视频线在精品| 欧美高清成人免费视频www| 成年版毛片免费区| 婷婷精品国产亚洲av在线| 国产主播在线观看一区二区| 黄片小视频在线播放| 国产一区二区激情短视频| 极品教师在线免费播放| 午夜福利在线观看吧| 亚洲最大成人手机在线| 午夜激情福利司机影院| 亚洲欧美精品综合久久99| 国产aⅴ精品一区二区三区波| av专区在线播放| 伊人久久精品亚洲午夜| 老司机在亚洲福利影院| 日本黄大片高清| 国产真人三级小视频在线观看| 国产黄a三级三级三级人| 一个人观看的视频www高清免费观看| 特大巨黑吊av在线直播| 少妇高潮的动态图| 色综合亚洲欧美另类图片| 亚洲五月天丁香| 国产精品 欧美亚洲| 国产乱人伦免费视频| 搡女人真爽免费视频火全软件 | 91九色精品人成在线观看| 亚洲真实伦在线观看| 国产精品自产拍在线观看55亚洲| 操出白浆在线播放| 一本精品99久久精品77| 国产精品久久久久久人妻精品电影| av在线天堂中文字幕| 男女视频在线观看网站免费| 精品一区二区三区视频在线 | 国产探花极品一区二区| 在线a可以看的网站| 99久久久亚洲精品蜜臀av| 午夜免费成人在线视频| 国产精品久久久人人做人人爽| 有码 亚洲区| 国产精品久久久久久人妻精品电影| 国产淫片久久久久久久久 | 十八禁人妻一区二区| 非洲黑人性xxxx精品又粗又长| 欧美日韩亚洲国产一区二区在线观看| 成人一区二区视频在线观看| 亚洲色图av天堂| 国产高清视频在线播放一区| 久久这里只有精品中国| 嫩草影院精品99| 国产成人av教育| 夜夜躁狠狠躁天天躁| 国语自产精品视频在线第100页| 热99在线观看视频| 日本 欧美在线| www.熟女人妻精品国产| 国内精品美女久久久久久| 国产欧美日韩精品亚洲av| 日韩有码中文字幕| 欧美乱色亚洲激情| 搡女人真爽免费视频火全软件 | 精品福利观看| 岛国视频午夜一区免费看| 亚洲最大成人手机在线| 亚洲成av人片在线播放无| 国产三级在线视频| 69人妻影院| 日韩欧美在线二视频| 亚洲成人免费电影在线观看| 亚洲精品国产精品久久久不卡| 中文字幕精品亚洲无线码一区| 韩国av一区二区三区四区| 亚洲人成伊人成综合网2020| 9191精品国产免费久久| av欧美777| 在线观看午夜福利视频| 成人欧美大片| 在线视频色国产色| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区av网在线观看| 嫩草影视91久久| 黄色视频,在线免费观看| 亚洲第一欧美日韩一区二区三区| 久久精品亚洲精品国产色婷小说| 不卡一级毛片| 18禁在线播放成人免费| 欧美日韩一级在线毛片| 国产成人a区在线观看| 国产爱豆传媒在线观看| 亚洲欧美日韩卡通动漫| 天堂影院成人在线观看| 中文字幕av成人在线电影| 超碰av人人做人人爽久久 | 国产野战对白在线观看| 中亚洲国语对白在线视频| 成人18禁在线播放| 午夜福利高清视频| 一个人免费在线观看电影| 亚洲av电影不卡..在线观看| 全区人妻精品视频| 九九热线精品视视频播放| 国产精品亚洲av一区麻豆| 国产毛片a区久久久久| 久久99热这里只有精品18| 毛片女人毛片| 色综合婷婷激情| 亚洲国产精品sss在线观看| 岛国在线免费视频观看| 国产又黄又爽又无遮挡在线| 日韩欧美 国产精品| a级毛片a级免费在线| 欧美丝袜亚洲另类 | 国产成人啪精品午夜网站| 欧美日韩综合久久久久久 | 久久久久国产精品人妻aⅴ院| avwww免费| 成人无遮挡网站| 亚洲在线观看片| 日韩精品青青久久久久久| 叶爱在线成人免费视频播放| 亚洲男人的天堂狠狠| 国产午夜福利久久久久久| 久久久国产精品麻豆| 性欧美人与动物交配| 网址你懂的国产日韩在线| 亚洲精品美女久久久久99蜜臀| 国产中年淑女户外野战色| 欧美乱色亚洲激情| 亚洲,欧美精品.| 51国产日韩欧美| 国产免费男女视频| 精品乱码久久久久久99久播| 亚洲人成伊人成综合网2020| 亚洲国产精品合色在线| 免费高清视频大片| 成年女人毛片免费观看观看9| 国产精品98久久久久久宅男小说| 亚洲av美国av| 首页视频小说图片口味搜索| 夜夜看夜夜爽夜夜摸| 欧美一区二区国产精品久久精品| 欧美一级毛片孕妇| 国产午夜福利久久久久久| 舔av片在线| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 听说在线观看完整版免费高清| 国产激情欧美一区二区| 亚洲 国产 在线| 免费人成视频x8x8入口观看| 少妇的逼水好多| 搡女人真爽免费视频火全软件 | 亚洲电影在线观看av| 舔av片在线| 久久久久精品国产欧美久久久| 欧美一区二区精品小视频在线| 亚洲欧美一区二区三区黑人| 成人一区二区视频在线观看| 草草在线视频免费看| 在线观看日韩欧美| 国产精品99久久99久久久不卡| 19禁男女啪啪无遮挡网站| 免费看日本二区| 国产一级毛片七仙女欲春2| 香蕉丝袜av| 男女那种视频在线观看| 一a级毛片在线观看| 精品熟女少妇八av免费久了| 亚洲专区国产一区二区| 俄罗斯特黄特色一大片| 怎么达到女性高潮| 一区福利在线观看| 国产黄色小视频在线观看| 性色avwww在线观看| 精品国产三级普通话版| 久久久精品欧美日韩精品| 美女cb高潮喷水在线观看| 在线播放国产精品三级| 亚洲在线观看片| 小说图片视频综合网站| 精品国产三级普通话版| 18禁美女被吸乳视频| 成年免费大片在线观看| 一本综合久久免费| 亚洲美女黄片视频| 国产精品自产拍在线观看55亚洲| 久久久久性生活片| 国产亚洲精品综合一区在线观看| 91字幕亚洲| 国产一区二区激情短视频| 亚洲成人久久爱视频| 免费人成在线观看视频色| 国产午夜福利久久久久久| 国产成年人精品一区二区| 青草久久国产| 真实男女啪啪啪动态图| 欧美日韩黄片免| 五月玫瑰六月丁香| 91麻豆av在线| 男人舔奶头视频| 久久久久国内视频| www日本在线高清视频| 天堂√8在线中文| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 午夜免费激情av| 国产精品永久免费网站| 男女午夜视频在线观看| 国产欧美日韩一区二区精品| 免费av不卡在线播放| 天天添夜夜摸| 可以在线观看毛片的网站| 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| 欧美区成人在线视频| 国产伦人伦偷精品视频| 中文字幕av在线有码专区| 国产一区在线观看成人免费| 母亲3免费完整高清在线观看| 日韩欧美在线二视频| 一区二区三区国产精品乱码| 亚洲欧美日韩高清专用| 狂野欧美激情性xxxx| 亚洲一区二区三区不卡视频| 夜夜看夜夜爽夜夜摸| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美98| 亚洲av二区三区四区| 男女床上黄色一级片免费看| 99热6这里只有精品| 精品久久久久久久人妻蜜臀av| 国产爱豆传媒在线观看| 90打野战视频偷拍视频| 女人被狂操c到高潮| 少妇熟女aⅴ在线视频| 成人三级黄色视频| 国产精品久久久久久人妻精品电影| 高清在线国产一区| 亚洲中文字幕日韩| 国产欧美日韩精品亚洲av| 51国产日韩欧美| 欧美绝顶高潮抽搐喷水| 一a级毛片在线观看| 十八禁人妻一区二区| 啦啦啦韩国在线观看视频| 欧美+亚洲+日韩+国产| 最近视频中文字幕2019在线8| 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av香蕉五月| 亚洲一区高清亚洲精品| 人人妻人人澡欧美一区二区| 国产中年淑女户外野战色| 色哟哟哟哟哟哟| 一区二区三区免费毛片| 国产精品98久久久久久宅男小说| 欧美激情在线99| 欧美日韩国产亚洲二区| 99国产综合亚洲精品| 国产精品野战在线观看| 亚洲熟妇中文字幕五十中出| 黑人欧美特级aaaaaa片| 欧美日本亚洲视频在线播放| 18美女黄网站色大片免费观看| 99热精品在线国产| 色吧在线观看| 99久久成人亚洲精品观看| 国产一区在线观看成人免费| 欧美一级毛片孕妇| 18禁黄网站禁片免费观看直播| 99热6这里只有精品| 两个人的视频大全免费| 禁无遮挡网站| 国产午夜福利久久久久久| 日韩欧美精品免费久久 | 亚洲中文字幕一区二区三区有码在线看| 最近最新免费中文字幕在线| h日本视频在线播放| 69人妻影院| 国产伦在线观看视频一区| 亚洲精品国产精品久久久不卡| 99热这里只有是精品50| 亚洲av美国av| 亚洲欧美日韩高清在线视频| 黄片小视频在线播放| 丰满人妻熟妇乱又伦精品不卡| 3wmmmm亚洲av在线观看| 亚洲一区高清亚洲精品| 亚洲欧美日韩无卡精品| 国产精品久久久久久久久免 | 99久久精品热视频| 成人18禁在线播放| 一进一出好大好爽视频| 制服人妻中文乱码| 久久久久久久久久黄片| 国内精品久久久久精免费| 久久中文看片网| 国产av一区在线观看免费| av欧美777| 欧美成人免费av一区二区三区| 免费看a级黄色片| 一级黄片播放器| 日本免费一区二区三区高清不卡| 国产美女午夜福利| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 欧美+亚洲+日韩+国产| 亚洲av免费高清在线观看| 国产伦在线观看视频一区| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 免费无遮挡裸体视频| 岛国在线免费视频观看| 白带黄色成豆腐渣| 久久亚洲真实| 欧美区成人在线视频| 中国美女看黄片| 亚洲色图av天堂| 亚洲国产精品成人综合色| 亚洲欧美日韩东京热| 精品免费久久久久久久清纯| 少妇熟女aⅴ在线视频| 一夜夜www| 欧美日韩国产亚洲二区| 亚洲欧美一区二区三区黑人| 白带黄色成豆腐渣| 亚洲精品久久国产高清桃花| 午夜两性在线视频| 毛片女人毛片| 国产精品综合久久久久久久免费| 一进一出抽搐动态| 97碰自拍视频| 首页视频小说图片口味搜索| 国产一区二区在线观看日韩 | av中文乱码字幕在线| 午夜激情福利司机影院| 色在线成人网| 校园春色视频在线观看| 久久婷婷人人爽人人干人人爱| 亚洲国产精品久久男人天堂| 国产精品,欧美在线| 亚洲天堂国产精品一区在线| 五月玫瑰六月丁香| 国产激情偷乱视频一区二区| 久久久久久国产a免费观看| 麻豆一二三区av精品| 一个人免费在线观看的高清视频| 91九色精品人成在线观看| 叶爱在线成人免费视频播放| 岛国在线观看网站| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区| 最近在线观看免费完整版| 12—13女人毛片做爰片一| 成人性生交大片免费视频hd| 日本五十路高清| 国产精品亚洲av一区麻豆| 搡老岳熟女国产| 午夜福利成人在线免费观看| 丰满的人妻完整版| 亚洲av成人精品一区久久| 天堂√8在线中文| 国产激情偷乱视频一区二区| 18禁在线播放成人免费| 少妇高潮的动态图| 午夜老司机福利剧场| 熟女电影av网| 好男人在线观看高清免费视频| 亚洲成人久久性| 在线观看日韩欧美| 国产男靠女视频免费网站| 日本黄色片子视频| 亚洲乱码一区二区免费版| 91麻豆av在线| 亚洲激情在线av| 国产在线精品亚洲第一网站| 有码 亚洲区| 99久久99久久久精品蜜桃| 免费大片18禁| 网址你懂的国产日韩在线| 最后的刺客免费高清国语| 成年女人看的毛片在线观看| 狂野欧美白嫩少妇大欣赏| 日本与韩国留学比较| 精品午夜福利视频在线观看一区| av福利片在线观看| 久久九九热精品免费| 国产爱豆传媒在线观看| 女人被狂操c到高潮| 久久精品国产自在天天线| 欧美国产日韩亚洲一区| 亚洲精品色激情综合| 亚洲在线观看片| 亚洲国产欧美人成| 午夜日韩欧美国产| 制服丝袜大香蕉在线| 白带黄色成豆腐渣| 欧美乱妇无乱码| 久久精品人妻少妇| 亚洲第一欧美日韩一区二区三区| 搡女人真爽免费视频火全软件 | 男女做爰动态图高潮gif福利片| 国内久久婷婷六月综合欲色啪| 国产精品免费一区二区三区在线| 国产激情欧美一区二区| 一二三四社区在线视频社区8| 尤物成人国产欧美一区二区三区| 美女黄网站色视频| 人人妻人人看人人澡| 一夜夜www| 一级黄色大片毛片| 亚洲成人久久爱视频| 精品久久久久久,| 国产精品 欧美亚洲| 五月玫瑰六月丁香| 搡老熟女国产l中国老女人| 丝袜美腿在线中文| 国内精品美女久久久久久| 成人永久免费在线观看视频| 国产黄色小视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品91无色码中文字幕| 99久久久亚洲精品蜜臀av| 色视频www国产| 男人舔女人下体高潮全视频| 久久久精品大字幕| 国产精品女同一区二区软件 | 国产伦在线观看视频一区| 母亲3免费完整高清在线观看| 国产精品久久久久久久电影 | 男人舔女人下体高潮全视频| 久久久精品大字幕| 免费看美女性在线毛片视频| 黄色日韩在线| 国产淫片久久久久久久久 | 宅男免费午夜| 精品久久久久久久人妻蜜臀av| 51午夜福利影视在线观看| 熟女电影av网| 在线看三级毛片| 国产精品av视频在线免费观看| 国内精品久久久久精免费| 99国产综合亚洲精品| 国产精品1区2区在线观看.| av女优亚洲男人天堂| 最好的美女福利视频网| 国产精品 欧美亚洲| 亚洲熟妇熟女久久| 国产精品99久久久久久久久| 一边摸一边抽搐一进一小说| 男人舔奶头视频| 亚洲男人的天堂狠狠| 久久精品影院6| 熟妇人妻久久中文字幕3abv| 日韩欧美精品免费久久 | 国产成人福利小说| 丁香六月欧美| 久久久久久国产a免费观看| 欧美最黄视频在线播放免费| 欧美黑人欧美精品刺激| 天堂影院成人在线观看| 一a级毛片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 日韩人妻高清精品专区| 一进一出抽搐动态| 欧美一区二区精品小视频在线| 国产淫片久久久久久久久 | 国产亚洲精品av在线| 淫秽高清视频在线观看| 可以在线观看毛片的网站| 19禁男女啪啪无遮挡网站| 国产av麻豆久久久久久久| 天堂√8在线中文| av专区在线播放| 国产一区二区在线av高清观看| 99热精品在线国产| 国产黄a三级三级三级人| 真人做人爱边吃奶动态| 舔av片在线| 国产午夜精品论理片| 男女之事视频高清在线观看| 免费看光身美女| av视频在线观看入口| 亚洲av二区三区四区| 可以在线观看的亚洲视频| 最新中文字幕久久久久| a级一级毛片免费在线观看| 国产精品久久久久久人妻精品电影| 成人av一区二区三区在线看| 校园春色视频在线观看| 国产三级黄色录像| 激情在线观看视频在线高清| 国产精品美女特级片免费视频播放器| 最新中文字幕久久久久| 午夜视频国产福利| 亚洲五月天丁香| 久久欧美精品欧美久久欧美| 国内久久婷婷六月综合欲色啪| 国产一区二区亚洲精品在线观看| 手机成人av网站| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av香蕉五月| 少妇的逼水好多| 欧美成人一区二区免费高清观看| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区免费欧美| 日本a在线网址| 日本黄大片高清| 亚洲av不卡在线观看| 有码 亚洲区| 亚洲av二区三区四区| 精品无人区乱码1区二区| 久久久久久久久大av| 欧美日韩国产亚洲二区| 国产精品嫩草影院av在线观看 | 婷婷亚洲欧美| 51国产日韩欧美| 一进一出好大好爽视频| 久久精品亚洲精品国产色婷小说| 真人一进一出gif抽搐免费| 啦啦啦免费观看视频1| 精品久久久久久久久久免费视频| 女生性感内裤真人,穿戴方法视频| 亚洲无线观看免费| 伊人久久大香线蕉亚洲五| www.www免费av| 老汉色∧v一级毛片| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| 欧美3d第一页| 免费av毛片视频| 精品久久久久久久人妻蜜臀av| 观看美女的网站| 国产精品亚洲一级av第二区| 美女cb高潮喷水在线观看| 波多野结衣高清无吗| 亚洲久久久久久中文字幕| 免费高清视频大片| 国产午夜精品论理片| 免费看美女性在线毛片视频| 一级黄色大片毛片| 成人性生交大片免费视频hd| 亚洲国产精品999在线| 久久国产精品人妻蜜桃| 精品久久久久久久毛片微露脸| 熟妇人妻久久中文字幕3abv| 一本久久中文字幕| 日韩欧美国产一区二区入口| 欧美中文日本在线观看视频| 久久99热这里只有精品18| 怎么达到女性高潮| 天美传媒精品一区二区| 亚洲av二区三区四区| 国产美女午夜福利| 啦啦啦免费观看视频1| 精品一区二区三区av网在线观看| 乱人视频在线观看| 少妇高潮的动态图| 麻豆成人午夜福利视频| 美女大奶头视频| 日本一本二区三区精品| 亚洲性夜色夜夜综合| 久久国产精品影院| 狂野欧美白嫩少妇大欣赏| 久久精品夜夜夜夜夜久久蜜豆| 国产探花在线观看一区二区| 制服丝袜大香蕉在线| 全区人妻精品视频| 99久久精品国产亚洲精品| 国产免费av片在线观看野外av| 国产激情欧美一区二区| 日日干狠狠操夜夜爽| 人妻夜夜爽99麻豆av|