• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous and multiplex detection of exosomal microRNAs based on the asymmetric Au@Au@Ag probes with enhanced Raman signal

    2022-07-11 03:39:34MinHouDinggengHeHuizhenWngJinHungHongChengKejinWnHungWingLiZifengTngXioxioHeKeminWng
    Chinese Chemical Letters 2022年6期

    Min Hou,Dinggeng He,,?,Huizhen Wng,Jin Hung,Hong Cheng,Kejin Wn,Hung-Wing Li,Zifeng Tng,Xioxio He,?,Kemin Wng,?

    a State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Biology,College of Chemistry and Chemical Engineering,Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province,Hunan University,Changsha 410082,China

    b Department of Chemistry,The Chinese University of Hong Kong,Shatin,New Territories,Hong Kong,China

    c College of Art and Science,New York University,New York 10012,United States

    Keywords:SERS Au@Au@Ag probes Exosomes miR-21 miR-126 miR-1246

    ABSTRACT Simultaneous and quantitative detection of multiple exosomal microRNAs (miRNAs) was successfully performed by a surface-enhanced Raman scattering (SERS) assay consisting of Raman probes and capture probes.In this design,the asymmetric core-shell structured Au@Au@Ag nanoparticles were first synthesized by layer-by-layer self-assembly method and modified with different Raman molecules and recognition sequences (polyA-DNA) to prepare the surface-enhanced Raman probes.Then,the streptavidinmodified magnetic beads were used to immobilize the biotinylated DNA capture sequences (biotin-DNA)to obtain capture probes.In the presence of target exosomal miRNAs,the Raman probes and capture probes could bind to the target exosomal miRNAs in the partial hybridization manner.Thus,the developed SERS sensor could indicate the target miRNAs levels in the buffer solution.Using breast cancerrelated miRNAs as model targets,the limits of detection of this sensor were determined to be 1.076 fmol/L for synthetic miR-21,0.068 fmol/L for synthetic miR-126,and 4.57 fmol/L for synthetic miR-1246,respectively.Such SERS sensors were further employed to detect the miR-21 in 20% human serum and the extraction solution of exosomes,respectively.Therefore,simultaneous and multiplex detection of cancerrelated exosomal miRNAs by this assay could provide new opportunities for further biomedical applications.

    Exosomes have become hotspots owing to their role in cancer research recently [1,2].MiRNAs with different levels of expression can be used to confirm the initial and progression stages of cancer [3,4].Previous studies demonstrated that the expression levels of exosomal miRNAs secreted into body fluid can reflect the physiological state of parent cancer cells.Exosomal miRNAs,protected from RNase digestion by lipid bilayer of vesicles,can act as a promising biomarker for liquid biopsies [5,6].It was also demonstrated that cancer-specific exosomal miRNAs fingerprints are expressed in different types of human cancers [7,8].Therefore,these studies emphasize the potential,progress,and therapeutic response of multiplex miRNAs in cancer diagnosis.Consequently,specific and simultaneous detection of multiple exosomal miRNAs is essential for cancer diagnosis and tumorigenesis [9].

    Up to now,researchers have developed various methods to detect multiplex exosomal miRNAs,such as quantitative reverse transcription-polymerase chain reaction (qRT-PCR),microarrays[10,11].However,the PCR design is very sophisticated,timeconsuming.Microarray assays oblige several complicated steps and expensive equipment for fluid control [12].Other emerging analytical techniques have been developed for miRNAs detection,such as electrochemistry,fluorescence,surface plasmon resonance (SPR)[13–15].However,these methods may be prone to some problems in multiplex exosomal miRNAs detection,such as autofluorescence,overlap of broad fluorescent bands,and charge interference in complex systems.Therefore,there is an urgent need to develop a simple but powerful strategy to detect tumor-associated multiplex exosomal miRNAs.

    Surface enhanced Raman scattering (SERS) spectroscopy is an optical ultra-sensitive assay for label-free biomarkers detection[16–18].The SERS based on metal nanostructures has attracted the attention of many researchers due to its high sensitivity,selectivity,outstanding spectral multiplexing competence for the detection of target simultaneously [19–23].Meanwhile,some SERS methods based on metal nanostructures have been reported for the detection of exosomal miRNAs [24–27].For example,Panget al.have exhibited the dual-SERS array to detect exosomal microRNAs based on the Fe3O4@Ag-DNA-Au@Ag@DTNB (SERS tag) conjugates[6].Leeet al.have reported a uniform gold nanopillar SERS substrate for exosomal miRNAs detection.Although the selectivity was improved and signal fluctuation was reduced for these methods,the use of SERS for reliable quantitative analysis of multiplex miRNAs has been still hindered due to the lack of ultrasensitive SERS active nanostructures [28–31].

    Herein,we designed a SERS strategy based on the asymmetric Au@Au@Ag probes with enhanced Raman signal to detect various exosomal miRNAs simultaneously.The Raman probes were rationally designed by using anchor DNA modified AuNPs (Au@aDNA)as a nanocore,followed by the coating of Raman signal molecules on the appearance of Au@aDNA by Au-S bond and the subsequent formed gold shells around the nanocores.To further improve the Raman signal,the Au@Au was covered by silver shell to form the Au@Au@Ag nanostructure.Then,the polyA-functionalized DNA probes (polyA-DNA) were modified on the gold head of Au@Au@Ag nanostructure according to Ref.[32].The polyA-DNA used in this work contained an oligonucleotide sequence that was partially complementary to the target exosomal miRNAs (Scheme 1A).Similarly,the biotin-DNA modified on streptavidin-modified magnetic beads (MB) was partially complementary to the target miRNA.When the target exosomal miRNA was present,Raman probes could be conjugated to the capture probes through sandwich hybridization (Scheme 1B).

    Scheme 1.Schematic representation of SERS assay using the asymmetric Raman probes for the detection of multiplex exosomal miRNAs.(A) The synthesis process of Raman probes using Au@Au@Ag nanostructure.(B) Schematic representation of fabrication of capture probes using streptavidin-modified magnetic beads,and SERS assay for the detection of multiplex exosomal miRNA by sandwich hybridization.Each type of exosomal miRNA was captured by the corresponding capture probe,and then hybridized with its own Raman probe to form sandwich complex.The concentration of target exosomal miRNA was obtained by analyzing the reduced SERS signal in the supernatant after forming sandwich complex.

    Fig.1.(A) TEM image of AuNP.Inset: High-resolution TEM image of Au@Au.(B)TEM image of the asymmetric Au@Au@Ag.Inset: The magnified TEM image.(C) UV–vis spectra of Au,Au@aDNA,Au@aDNA@DTNB,Au@Au and Au@Au@Ag nanostructure.(D) SERS spectra of Au@Au@Ag,Au@Au,Au@aDNA@DTNB,Au@DTNB,DTNB,and Au.

    The concentration of target miRNAs was obtained by analyzing the reduced SERS signal in the supernatant after forming sandwich complex [33].In this work,three Raman signal molecules,including 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB),phthalazine (PHTH)and 4,4′-dipyridyl (44DP),were used as Raman reporters to get three different Raman probes (Fig.S1 in Supporting information).The signal change of the characteristic peaks of DTNB (1333 cm?1),44DP (1610 cm?1) and PHTH (1450 cm?1) indicated the concentration of miR-21,miR-1246 and miR-126,respectively.In this manner,simultaneous and ultrasensitive detection of multiplex cancerrelated exosomal miR-21,miR-126 and miR-1246 in one sample was realized,which is beneficial for early diagnosis of cancers [34–36].

    As a proof of concept,TEM was used to characterize the morphology and structures of different nanoparticles.Firstly,13 nm gold nanoparticles (AuNPs) were prepared (Fig.1A),followed with modification of anchor DNA (aDNA) and Raman signal molecules DTNB onto the AuNP surface to prepare the Au@aDNA@DTNB.Gold shells were further formed around the Au@aDNA@DTNB (Au@Au,inset in Fig.1A).Due to the similar lattice between Au and Ag,Ag atoms could be deposited on Au@Au quickly to form a goldsilver alloy shell (Fig.1B) after reduction by ascorbic acid.The dynamic light scattering (DLS) results of AuNPs displayed an increase after the formation of Au@aDNA and Au@Au (Fig.S2A in Supporting information).A red shift in the absorption peak of AuNPs could be observed after the forming Au@aDNA,Au@aDNA@DTNB and Au@Au nanoparticles (Fig.1C),respectively.Moreover,a novel strong silver absorption peak at 420 nm (Au@Au@Ag) was displayed,which presented the successful formation of Au@Au@Ag nanostructure [34].Besides,energy dispersive X-ray (EDX) results of gold or silver showed an optical absorption band peak at about 2.2 keV or 3 keV individually (Fig.S3A in Supporting information).The mapping image of Au@Au@Ag showed the distribution of Au and Ag in the synthesized nanoparticles,which proved the Ag shell structures (Fig.S3B in Supporting information).

    Fig.2.SEM of sandwich complex.(A) In the presence of target,the Raman probes were connected to the exterior of the capture probes because of DNA hybridization.(B) The control examination with no target.(C) SERS spectra of specific analysis.The Raman probes and capture probes were mixed with 100 nmol/L miRNA-21,100 μmol/L Random chain,single-base mismatch (C,A and T),and the blank samples (0 nmol/L).(D) SERS intensity of the characteristic peaks of DTNB (1333 cm?1)in Fig.2C.

    After characterizing the nanostructure of Au@Au@Ag,we further investigated the SERS enhancements performance of different nanoparticles.As seen from Fig.1D,the Raman substrate fabricated with Au@Au showed enhanced Raman signals compared with the AuNPs,which was attributed to the Au shell.The substrate of Au@Au@Ag showed powerful Raman signals,and its intensity reached about 400 and 40 times than the Raman signal of the Au and Au@Au substrates,respectively.It is evidence of the role of Au shell and Ag shell to provide optimal SERS activities.We observed that the SERS spectroscopy of the Au@Au@Ag was highly uniform in time-dependent Raman spectra (Fig.S4 in Supporting information),which arose from their stable structures.

    To evaluate the specificity of the SERS assay,miR-21 was taken as an example.In the presence of the miR-21,sandwich complex could be formed among the target miR-21,capture probes and the corresponding Raman probes due to the partial complement to the target miRNA of the Raman probes and the capture probes,respectively.There were some free SERS probes in the supernatant.In the case of absence of the target,complex won’t be formed,and the suspension contained almost all SERS probes added.The successful formation of sandwich complex had been demonstrated by SEM.As exhibited in Fig.2A,in the presence of target,the Raman probes were connected to the exterior of the MB because of DNA hybridization.Meanwhile,it could be observed that there were no Raman probes on the surface of capture probes in the blank control experiment.(Fig.2B).It also showed that the nonspecific adsorption between the Raman probes and capture probes is extremely low in this experiment.Meanwhile,the EDS elemental mapping (Fig.S2B in Supporting information) confirmed the existence of Au atoms and Ag atoms.We also tested the specificity of the Raman probes by designing oligonucleotide sequences with a single-base mismatch and a random sequence,respectively (Table S1 in Supporting information).As indicated in Figs.2C and D,the SERS signal of the 100 nmol/L fully complementary miR-21 was distinct from 100 μmol/L Random chain,single-base mismatch (C,A and T),Au@Au@Ag nanoparticles and the blank samples (0 nmol/L).These phenomena showed that the Raman probes could recognize and hybridize with the target miRNA specifically.There was no difference in Raman signals between Au@Au@Ag nanoparticles and blank samples (0 nmol/L),which showed no effect of the capture probes on the Raman signal.Those results also confirmed the low non-specific adsorption between Raman probes and capture probes.

    Having demonstrated the biofunction and cognitive ability of Raman probes,we further utilized the Raman probes to detect miR-21,miR-1246,and miR-126,respectively.As shown in Figs.3A and B,as the concentration of miR-21 increased,the SERS intensity of the DTNB-encoded probes in the supernatant decreased.The change value of SERS intensity was obtained from the difference from presence of the target to absence of target.We observed a good linear response ranging from 1 nmol/L to 1 fmol/L.The fitted formula wasΔI1333=562.6 (lg[CmiR-21])+8923,the R-square (R2)value is 0.97,and the limits of detection (LODs) was approximately 700 amol/L.Correspondingly,as the concentration of miR-1246 increased,the signal intensity of 44DP-encoded probes in the supernatant was prone to be weaker (Figs.3C and D).The regression equation isΔI1610=366.2 (lg[CmiR-1246])+7106.5,theR2value was 0.96,and the LOD was approximately 2.46 amol/L.As the concentration of miR-126 increased,the signal intensity of PHTH-encoded probes in the supernatant was prone to be weaker (Figs.3E and F).The regression equation wasΔI1457=546.4 (lg[CmiR-126])+8249.6,theR2value was 0.95,and the LOD was approximately 589 amol/L.

    In order to detect multiple miRNAs simultaneously,three Raman probes were preparedviathe functionalization of DNA probes on Au@Au@Ag nanostructure encoded by DTNB,PHTH or 44DP,respectively.SERS spectra of three Raman probes (Figs.4A and B)demonstrated that each kind of specific Raman probes could be explicitly recognized due to its unique spectroscopic fingerprint,which was capable of multiplex biorecognition.Subsequently,the specificity detection of miRNA was investigated by the mixture of different Raman probes.In the examination,miR-1246,selected as a model target,was added to the multiple reaction assay to observe whether the changes in the SERS intensity would be affected.After adding non-specific Raman probes,the association between the band intensity of DP and the concentration of the corresponding target miR-1246 remained unchanged.It confirmed that the crosstalk between the different Raman probes classes was negligible (Fig.S5 in Supporting information).

    Subsequently,we selected cancer-associated miR-21,miR-1246,miR-126 as the targets to investigate the selectivity of the SERS array.Raman scattering peaks of 1333 cm?1(?),1610 cm?1(★),1457 cm?1(▲) are the characteristic peaks of DTNB,44DP,and PHTH,which were,respectively corresponded to the target miR-21,miR-1246,and miR-126.Divide the SERS intensity in the presence of the target by the intensity in the absence of the target to get theR1/R0ratio.Compared to the SERS signal of control probes (blank),the Raman signal was reduced in the supernatant after adding a target miRNA.Furthermore,when in the presence of two different synthetic miRNAs,the SERS intensities of two homologous probes were decreased.Similarly,after three different synthetic miRNAs were added,the SERS intensities were reduced (Figs.4C and D).Therefore,multiple miRNAs could be detected simultaneously by these SERS-based assays.

    Fig.3.(A) SERS assay performance for the detection of different concentrations of miR-21.(B) Calibration graph of DTNB peak (1333 cm?1) versus the concentration of miR-21.(C) SERS assay performance for the detection of different concentrations of miR-1246.(D) Calibration graph of DTNB peak (1610 cm?1) versus the concentration of miR-1246.(E) SERS assay performance for the detection of different concentrations of miR-126.(F) Calibration graph of DTNB peak (1457 cm?1) versus the concentration of miR-126.Data are indicated as the mean ± SD.

    Fig.4.(A) SERS spectra of three Raman probes,which were prepared via the functionalization of DNA probe on Au@Au@Ag nanostructure encoded by DTNB,PHTH or 44DP.(B) The band intensities of three different Raman probes.(C) SERS sensor for the detection of miR-21,miR-126,miR-1246,miR-1246+miR-126,miR-21+miR-126,miR-21+miR-1246,and miR-21+miR-126+miR-1246.The mixture between capture probes and the SERS probes was used as a blank control.(D) The correlation analysis of SERS intensity in Fig.4C.

    We further investigated the sensitivity of functionalized Raman probes in the detection of multiple miRNAs.Raman intensity of the typical peaks of DTNB-encoded probes,44DP-encoded probes,and PHTH-encoded probes was decreased with increasing concentrations of the miR-21,miR-1246,and miR-126.Fig.5A showed the quantitative detection of miR-21,miR-1246,and miR-126.As the concentration of miR-21,miR-1246,and miR-126 increased,the signal intensity of DTNB-encoded probes,44DP-encoded probes and PHTH-encoded probes in the supernatant was prone to be weaker,respectively.The LODs of the developed sensors for miR-21 (Fig.5B),miR-1246 (Fig.5C),and miR-126 (Fig.5D) was determined to be 1.076 fmol/L,4.57 fmol/L,and 0.068 fmol/L,respectively.As the signal amplification performance of above designed Raman probes,the SERS assay exhibited better capability in terms of sensitivity compared to the previously published literatures in Table S2 (Supporting information).Therefore,the SERS assay enabled highly sensitive quantification of multiplex miRNAs in one test.

    To explore the feasible application in biological samples,the exosomal miR-21 was analyzed.There was not a significant difference in the SERS signal between diluted serum (20%) sample and buffer (Fig.S6 in Supporting information).Therefore,Raman probes had excellent anti-interference ability in serum.Afterward,we investigated the multiplex detection performance of our proposed method for exosomal miRNAs.TEM images and DLS analysis displayed that the size of the obtained exosomes size was about 150 nm and the morphology was round (Fig.6A),which matched very well with the published literature [6].The total RNA was extracted from exosomes obtained from MDA-MB-231 and HBL-100 cell culture supernatant.It was demonstrated that the expression levels of miR-21,miR-126,and miR-1246 in the MDA-MB-231 exosomes were higher than those of HBL-100 exosomes (Fig.6B).These results were in good accordance with previous reports [5],which suggested that this method had great potential in diagnosis application.

    Fig.5.SERS biosensor for multiple-target detection simultaneously.(A) SERS spectra of the supernatant after adding miR-21,miR-126,miR-1246 with different concentrations.(B) Standard curve of the change in SERS signal (at 1333 cm?1) relative to the miR-21 concentration from 100 fmol/L to 1 nmol/L.(C) Standard curve of the change in SERS signal (at 1450 cm?1) relative to the miR-126 concentration from 1 pmol/L to 1 nmol/L.(D) Standard curve of the change in SERS signal(at 1610 cm?1) relative to the miR-1246 concentration from 100 fmol/L to 1 nmol/L.Data are denoted as the mean ± SD.

    Fig.6.(A) DLS and TEM characterization of MDA-MB-231 exosomes.(B) SERS analysis of related expression levels of miR-21,miR-126,miR-1246 in MDA-MB-231 exosomes (MDA-MB-231-Exo) and HBL-100 exosomes (HBL-100-Exo).

    We have developed a SERS assay for the detection of diseaserelated multiplex exosomal miRNAs.Such a SERS sensor consisted of asymmetric Au@Au@Ag nanoparticles with DNA probes as Raman probes and MB modified with capture DNA as capturing probes.The Raman probes can be effectively bound to the surface of MB by the sandwich hybridization in the presence of target miRNAs.Notably,three Raman probes were successfully constructed by introducing the different Raman signal molecules to the asymmetric Au@Au@Ag nanoparticles.Simultaneous and multiplex analysis of three target miRNAs was further performed by using different Raman probes as recognition signals.The LODs of miR-21,miR-1246,and miR-126 was determined to be 1.076 fmol/L,4.57 fmol/L,and 0.068 fmol/L,respectively.Therefore,the proposed SERS sensor can simultaneously detect multiple tumor-related exosomal miRNAs with high sensitivity and excellent selectivity,showing great potential for the early diagnosis of cancers.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the Project of National Natural Science Foundation of China (Nos.21775036,21735002,21874035 and 22174044).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.11.092.

    在线 av 中文字幕| 午夜福利在线观看免费完整高清在| 蜜臀久久99精品久久宅男| 99久久中文字幕三级久久日本| 久久97久久精品| 下体分泌物呈黄色| 男人狂女人下面高潮的视频| 国产精品久久久久久精品电影小说 | 国产精品.久久久| 免费观看在线日韩| 精华霜和精华液先用哪个| 亚洲欧洲国产日韩| 麻豆国产97在线/欧美| 观看美女的网站| 99久久精品国产国产毛片| 最近的中文字幕免费完整| av在线老鸭窝| 亚洲最大成人中文| 国内少妇人妻偷人精品xxx网站| 久久99热这里只有精品18| 免费看日本二区| av线在线观看网站| av在线亚洲专区| av.在线天堂| 日本色播在线视频| 男女国产视频网站| 成人无遮挡网站| 欧美丝袜亚洲另类| 国产一区有黄有色的免费视频| 麻豆成人av视频| 日韩欧美 国产精品| 亚洲成人中文字幕在线播放| 九色成人免费人妻av| 男男h啪啪无遮挡| 建设人人有责人人尽责人人享有的 | 国产成人精品婷婷| 一边亲一边摸免费视频| 69av精品久久久久久| 精品一区二区三区视频在线| 丝袜脚勾引网站| 成年人午夜在线观看视频| 好男人在线观看高清免费视频| 亚洲成人一二三区av| 丝袜喷水一区| 亚洲精品一二三| 国产精品爽爽va在线观看网站| 国产av不卡久久| 亚洲av男天堂| 久久久精品94久久精品| 啦啦啦中文免费视频观看日本| 婷婷色综合www| 青春草国产在线视频| 久久精品国产a三级三级三级| 日韩欧美一区视频在线观看 | 卡戴珊不雅视频在线播放| 热99国产精品久久久久久7| 啦啦啦啦在线视频资源| 亚洲国产精品国产精品| 精品久久久久久久人妻蜜臀av| 成年版毛片免费区| 日韩一本色道免费dvd| 亚洲国产av新网站| 国产精品爽爽va在线观看网站| videossex国产| 国产亚洲一区二区精品| 又爽又黄a免费视频| 岛国毛片在线播放| 国产午夜精品久久久久久一区二区三区| 免费av毛片视频| 久久综合国产亚洲精品| 国产片特级美女逼逼视频| 日日啪夜夜爽| 国产精品99久久久久久久久| 亚洲精品亚洲一区二区| 一级毛片电影观看| 老司机影院成人| 99久久人妻综合| 久久精品国产亚洲av涩爱| 两个人的视频大全免费| av免费在线看不卡| 性插视频无遮挡在线免费观看| 啦啦啦啦在线视频资源| 国产精品国产av在线观看| 午夜福利在线观看免费完整高清在| 亚洲综合色惰| 日韩成人av中文字幕在线观看| 在线免费观看不下载黄p国产| 久久久久久久久久久丰满| 久久久欧美国产精品| 久久久精品免费免费高清| 国产在视频线精品| 性色av一级| 中文字幕久久专区| 99精国产麻豆久久婷婷| 国产精品福利在线免费观看| 91久久精品国产一区二区三区| 亚洲精品色激情综合| 能在线免费看毛片的网站| 高清毛片免费看| 大香蕉久久网| 国产乱人视频| 亚洲欧洲日产国产| 亚洲高清免费不卡视频| 国产69精品久久久久777片| 成人美女网站在线观看视频| 国产白丝娇喘喷水9色精品| 欧美亚洲 丝袜 人妻 在线| 97超视频在线观看视频| 久久97久久精品| 亚洲欧美日韩另类电影网站 | 亚洲综合精品二区| 欧美 日韩 精品 国产| 国产伦精品一区二区三区四那| 99精国产麻豆久久婷婷| 3wmmmm亚洲av在线观看| 我要看日韩黄色一级片| 午夜福利视频1000在线观看| 精品人妻一区二区三区麻豆| 一个人看的www免费观看视频| 欧美日韩在线观看h| 国产国拍精品亚洲av在线观看| videossex国产| 如何舔出高潮| 免费看不卡的av| 亚洲精品亚洲一区二区| 3wmmmm亚洲av在线观看| xxx大片免费视频| 视频中文字幕在线观看| 国产淫片久久久久久久久| 日韩视频在线欧美| 国产精品国产av在线观看| 在线天堂最新版资源| www.av在线官网国产| 国产免费又黄又爽又色| 两个人的视频大全免费| 中文字幕av成人在线电影| 日韩av免费高清视频| 男人爽女人下面视频在线观看| 中文在线观看免费www的网站| 色网站视频免费| 久久久久久伊人网av| 一级二级三级毛片免费看| 亚洲欧美清纯卡通| 成年av动漫网址| 久久精品国产亚洲av涩爱| 亚洲精品自拍成人| 高清av免费在线| 美女cb高潮喷水在线观看| 直男gayav资源| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 啦啦啦在线观看免费高清www| 日韩免费高清中文字幕av| 欧美成人午夜免费资源| 精品少妇黑人巨大在线播放| 男的添女的下面高潮视频| 免费不卡的大黄色大毛片视频在线观看| 国产免费视频播放在线视频| 久久久久久久大尺度免费视频| 国产成人一区二区在线| 亚州av有码| 最近的中文字幕免费完整| 日韩,欧美,国产一区二区三区| 亚洲av.av天堂| 人妻少妇偷人精品九色| 女人久久www免费人成看片| 国产成年人精品一区二区| 少妇熟女欧美另类| 国产有黄有色有爽视频| 综合色丁香网| 欧美97在线视频| 亚洲欧美精品专区久久| 亚洲四区av| 国产伦理片在线播放av一区| 日韩三级伦理在线观看| 亚洲人成网站在线播| 亚洲欧美精品自产自拍| 亚洲,一卡二卡三卡| 在线观看一区二区三区激情| 精品久久久久久久久亚洲| 婷婷色综合www| 亚洲精华国产精华液的使用体验| 成人国产av品久久久| 亚洲国产日韩一区二区| 国国产精品蜜臀av免费| 国产大屁股一区二区在线视频| 亚洲av中文av极速乱| 欧美成人a在线观看| 成人一区二区视频在线观看| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产专区5o| av天堂中文字幕网| 丰满乱子伦码专区| 99热这里只有是精品50| 精品久久久久久久久亚洲| 在线 av 中文字幕| 九草在线视频观看| 麻豆国产97在线/欧美| 欧美极品一区二区三区四区| 22中文网久久字幕| 亚洲va在线va天堂va国产| 国产又色又爽无遮挡免| 爱豆传媒免费全集在线观看| 日本黄色片子视频| 天堂中文最新版在线下载 | 乱码一卡2卡4卡精品| 亚洲精品aⅴ在线观看| 91在线精品国自产拍蜜月| 亚洲人成网站高清观看| 日韩精品有码人妻一区| 国产精品一区www在线观看| 五月开心婷婷网| 日韩av免费高清视频| 国产欧美日韩一区二区三区在线 | 亚洲成人一二三区av| 亚洲电影在线观看av| 美女xxoo啪啪120秒动态图| 国产 一区 欧美 日韩| av播播在线观看一区| 亚洲综合精品二区| 亚洲色图av天堂| 欧美国产精品一级二级三级 | 蜜桃亚洲精品一区二区三区| 亚洲精品视频女| 欧美成人一区二区免费高清观看| 国产一区二区三区综合在线观看 | 一级黄片播放器| av福利片在线观看| 亚洲欧美日韩卡通动漫| 人人妻人人看人人澡| 我的女老师完整版在线观看| 成年av动漫网址| 亚洲精品视频女| 一级毛片我不卡| 国产伦理片在线播放av一区| 久久久久久久午夜电影| 黄色欧美视频在线观看| 国产成人免费观看mmmm| 中文字幕制服av| 22中文网久久字幕| 亚洲精品日本国产第一区| 久久鲁丝午夜福利片| 麻豆国产97在线/欧美| 亚洲av在线观看美女高潮| 一区二区三区精品91| 毛片女人毛片| 亚洲经典国产精华液单| 日本av手机在线免费观看| 黄色欧美视频在线观看| 亚洲欧美成人综合另类久久久| 午夜激情福利司机影院| 身体一侧抽搐| 精品久久久精品久久久| .国产精品久久| 美女xxoo啪啪120秒动态图| 夜夜爽夜夜爽视频| 亚洲一级一片aⅴ在线观看| 蜜桃亚洲精品一区二区三区| 国产黄频视频在线观看| 国产成人aa在线观看| 欧美最新免费一区二区三区| 偷拍熟女少妇极品色| 中文字幕久久专区| 亚洲自偷自拍三级| 亚洲天堂国产精品一区在线| 亚洲av成人精品一二三区| 国产精品国产三级国产专区5o| 大话2 男鬼变身卡| 免费av观看视频| 国产av码专区亚洲av| 大码成人一级视频| 51国产日韩欧美| 麻豆成人av视频| 成人国产麻豆网| 亚洲欧美清纯卡通| 秋霞伦理黄片| 国产精品成人在线| 亚洲色图综合在线观看| 久久久久久久久久久丰满| 寂寞人妻少妇视频99o| 亚洲国产欧美人成| 极品教师在线视频| 九九在线视频观看精品| 视频区图区小说| 国产有黄有色有爽视频| 日韩中字成人| 日韩成人av中文字幕在线观看| 在线亚洲精品国产二区图片欧美 | 国产午夜精品久久久久久一区二区三区| 欧美精品国产亚洲| 亚洲激情五月婷婷啪啪| 久久久成人免费电影| 免费观看无遮挡的男女| 老女人水多毛片| 99精国产麻豆久久婷婷| 欧美一区二区亚洲| 最近最新中文字幕大全电影3| 亚洲精品久久久久久婷婷小说| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av.av天堂| 国产精品蜜桃在线观看| 欧美日韩在线观看h| 午夜激情福利司机影院| 日韩av不卡免费在线播放| 亚洲av免费高清在线观看| 成人亚洲欧美一区二区av| 狂野欧美激情性xxxx在线观看| 中文字幕制服av| 国产有黄有色有爽视频| 久久人人爽人人爽人人片va| 成年人午夜在线观看视频| 亚洲在久久综合| 国产伦精品一区二区三区视频9| 大香蕉97超碰在线| 男女无遮挡免费网站观看| 亚洲精品日韩在线中文字幕| 日韩成人av中文字幕在线观看| 亚洲久久久久久中文字幕| 亚洲av日韩在线播放| 在线观看国产h片| 亚洲不卡免费看| 日韩欧美 国产精品| 黄色怎么调成土黄色| 国产高清三级在线| 国产精品无大码| 国语对白做爰xxxⅹ性视频网站| 可以在线观看毛片的网站| 少妇被粗大猛烈的视频| 99久国产av精品国产电影| 亚洲精品一二三| 精品一区二区免费观看| 久久久久国产精品人妻一区二区| 国产成人精品福利久久| 精品久久久久久久久av| 亚洲久久久久久中文字幕| 国产永久视频网站| 亚洲精品影视一区二区三区av| 国产一区二区三区综合在线观看 | 国产精品久久久久久久久免| 亚洲精品成人久久久久久| 亚洲成人一二三区av| 自拍偷自拍亚洲精品老妇| 少妇熟女欧美另类| 日本与韩国留学比较| 少妇熟女欧美另类| 街头女战士在线观看网站| 51国产日韩欧美| 天天躁夜夜躁狠狠久久av| 精品久久久精品久久久| 精品熟女少妇av免费看| 日韩亚洲欧美综合| 成人毛片a级毛片在线播放| 成年人午夜在线观看视频| 欧美三级亚洲精品| 麻豆成人午夜福利视频| 男女啪啪激烈高潮av片| 国产视频内射| 亚洲自拍偷在线| 美女高潮的动态| 亚洲欧美精品专区久久| 欧美 日韩 精品 国产| av免费观看日本| 极品教师在线视频| 少妇人妻 视频| 亚洲美女搞黄在线观看| 国内揄拍国产精品人妻在线| 精品人妻一区二区三区麻豆| 国产成年人精品一区二区| 99热这里只有是精品50| 麻豆国产97在线/欧美| 亚洲丝袜综合中文字幕| 91久久精品国产一区二区三区| 国产午夜精品一二区理论片| 久久ye,这里只有精品| 国产午夜精品一二区理论片| 国产精品女同一区二区软件| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 特级一级黄色大片| 久久韩国三级中文字幕| 老司机影院毛片| 精品久久久久久久末码| 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 男女无遮挡免费网站观看| 搡女人真爽免费视频火全软件| 99热这里只有是精品在线观看| 两个人的视频大全免费| 午夜福利视频精品| 国产在线男女| 久久久成人免费电影| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 一本一本综合久久| 欧美激情国产日韩精品一区| 国产亚洲午夜精品一区二区久久 | 国产伦精品一区二区三区视频9| 又爽又黄无遮挡网站| 亚洲av中文av极速乱| 日本欧美国产在线视频| 老司机影院毛片| 在线观看免费高清a一片| 伦精品一区二区三区| 国国产精品蜜臀av免费| 精品亚洲乱码少妇综合久久| 蜜臀久久99精品久久宅男| 国产淫片久久久久久久久| 国产探花极品一区二区| 爱豆传媒免费全集在线观看| 女的被弄到高潮叫床怎么办| 日韩一本色道免费dvd| 午夜老司机福利剧场| 国产成人一区二区在线| 一边亲一边摸免费视频| 新久久久久国产一级毛片| 亚洲精品日韩av片在线观看| 丝袜脚勾引网站| 美女脱内裤让男人舔精品视频| 啦啦啦中文免费视频观看日本| 午夜视频国产福利| av又黄又爽大尺度在线免费看| 熟妇人妻不卡中文字幕| 国产午夜精品久久久久久一区二区三区| 国产成人aa在线观看| 日本熟妇午夜| 中国国产av一级| 成人一区二区视频在线观看| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| 亚洲av电影在线观看一区二区三区 | 真实男女啪啪啪动态图| 国产一区二区三区av在线| 乱系列少妇在线播放| 欧美日韩综合久久久久久| av在线播放精品| 中国美白少妇内射xxxbb| 国产亚洲午夜精品一区二区久久 | 亚洲国产欧美在线一区| 久久精品国产鲁丝片午夜精品| 少妇被粗大猛烈的视频| 久久精品久久久久久久性| 免费黄频网站在线观看国产| 久久久精品免费免费高清| 欧美亚洲 丝袜 人妻 在线| 男插女下体视频免费在线播放| 日韩国内少妇激情av| 99九九线精品视频在线观看视频| av黄色大香蕉| 亚洲熟女精品中文字幕| 青春草国产在线视频| 精品人妻偷拍中文字幕| av卡一久久| 黄色一级大片看看| 舔av片在线| 97在线人人人人妻| 2022亚洲国产成人精品| 2021少妇久久久久久久久久久| 成人高潮视频无遮挡免费网站| 午夜免费鲁丝| 尾随美女入室| 在线观看国产h片| 人人妻人人看人人澡| 亚洲自偷自拍三级| 熟妇人妻不卡中文字幕| 国产高清有码在线观看视频| 免费黄频网站在线观看国产| 亚洲精品乱久久久久久| 久久久久久久亚洲中文字幕| 精品国产三级普通话版| 色视频www国产| 日产精品乱码卡一卡2卡三| 国产黄色视频一区二区在线观看| av在线蜜桃| 禁无遮挡网站| 老司机影院毛片| 亚洲高清免费不卡视频| 国产精品.久久久| 女人十人毛片免费观看3o分钟| 人人妻人人爽人人添夜夜欢视频 | 日韩 亚洲 欧美在线| av在线蜜桃| 老司机影院成人| 大话2 男鬼变身卡| 国产亚洲精品久久久com| 日本-黄色视频高清免费观看| 欧美日韩国产mv在线观看视频 | 性插视频无遮挡在线免费观看| 80岁老熟妇乱子伦牲交| 大片电影免费在线观看免费| 老师上课跳d突然被开到最大视频| 亚洲国产av新网站| 亚洲美女搞黄在线观看| 成人国产麻豆网| 亚洲美女搞黄在线观看| 2022亚洲国产成人精品| 国产精品99久久99久久久不卡 | 午夜福利高清视频| 好男人在线观看高清免费视频| 国产免费福利视频在线观看| 热99国产精品久久久久久7| 在线看a的网站| 禁无遮挡网站| 天堂中文最新版在线下载 | 成人欧美大片| 国产黄a三级三级三级人| 尾随美女入室| 97热精品久久久久久| 国产永久视频网站| 内地一区二区视频在线| 欧美国产精品一级二级三级 | 国产伦理片在线播放av一区| 能在线免费看毛片的网站| 男人舔奶头视频| 18禁动态无遮挡网站| 国产亚洲91精品色在线| 人妻制服诱惑在线中文字幕| 亚洲精品日本国产第一区| 成人黄色视频免费在线看| 99热这里只有是精品50| 校园人妻丝袜中文字幕| 日本黄大片高清| 亚洲精品456在线播放app| 亚洲精品色激情综合| 国产精品99久久久久久久久| 国内精品宾馆在线| 日韩欧美精品v在线| 久久久久久久亚洲中文字幕| 精品少妇久久久久久888优播| 亚洲欧美精品自产自拍| 欧美成人精品欧美一级黄| 亚洲av福利一区| 亚洲欧美日韩东京热| 男人和女人高潮做爰伦理| 97人妻精品一区二区三区麻豆| 天堂网av新在线| 久久精品久久精品一区二区三区| 午夜福利网站1000一区二区三区| 18禁动态无遮挡网站| 精品久久久久久久久av| 三级经典国产精品| 亚洲精品第二区| 99热网站在线观看| 国产伦在线观看视频一区| 久久久久九九精品影院| 欧美日韩视频精品一区| 亚洲三级黄色毛片| 少妇猛男粗大的猛烈进出视频 | 久热久热在线精品观看| 一级片'在线观看视频| 精品酒店卫生间| 亚洲人与动物交配视频| 美女国产视频在线观看| 日韩成人伦理影院| 大香蕉97超碰在线| 精品久久久久久久久亚洲| 日韩一区二区视频免费看| 亚洲高清免费不卡视频| 久久99精品国语久久久| 国产日韩欧美在线精品| 欧美zozozo另类| 久久精品人妻少妇| videos熟女内射| 视频中文字幕在线观看| 边亲边吃奶的免费视频| av线在线观看网站| 一级二级三级毛片免费看| 免费观看在线日韩| 中文字幕制服av| 男女国产视频网站| 你懂的网址亚洲精品在线观看| 婷婷色av中文字幕| 国产成人福利小说| 久久久久久久久久人人人人人人| 久久精品久久久久久久性| 亚洲av福利一区| 成人免费观看视频高清| 亚洲欧美日韩另类电影网站 | 99九九线精品视频在线观看视频| 永久网站在线| 蜜桃久久精品国产亚洲av| 久久影院123| 日本黄大片高清| 国产爽快片一区二区三区| 激情 狠狠 欧美| 国产成人精品久久久久久| 晚上一个人看的免费电影| a级毛片免费高清观看在线播放| 国产有黄有色有爽视频| 欧美成人精品欧美一级黄| 一级毛片电影观看| 肉色欧美久久久久久久蜜桃 | 免费电影在线观看免费观看| 天天一区二区日本电影三级| 狂野欧美激情性bbbbbb| 一本色道久久久久久精品综合| 黄色配什么色好看| 99热全是精品| 啦啦啦在线观看免费高清www| h日本视频在线播放| 麻豆乱淫一区二区| av又黄又爽大尺度在线免费看| 五月开心婷婷网| 99热这里只有是精品在线观看| 午夜激情久久久久久久| 网址你懂的国产日韩在线| 美女高潮的动态| 色哟哟·www| 你懂的网址亚洲精品在线观看| 中文字幕亚洲精品专区| 国产成人福利小说| 日本黄大片高清| 国产精品久久久久久精品电影小说 | 国产人妻一区二区三区在| 只有这里有精品99| 国产久久久一区二区三区|