• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous and multiplex detection of exosomal microRNAs based on the asymmetric Au@Au@Ag probes with enhanced Raman signal

    2022-07-11 03:39:34MinHouDinggengHeHuizhenWngJinHungHongChengKejinWnHungWingLiZifengTngXioxioHeKeminWng
    Chinese Chemical Letters 2022年6期

    Min Hou,Dinggeng He,,?,Huizhen Wng,Jin Hung,Hong Cheng,Kejin Wn,Hung-Wing Li,Zifeng Tng,Xioxio He,?,Kemin Wng,?

    a State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Biology,College of Chemistry and Chemical Engineering,Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province,Hunan University,Changsha 410082,China

    b Department of Chemistry,The Chinese University of Hong Kong,Shatin,New Territories,Hong Kong,China

    c College of Art and Science,New York University,New York 10012,United States

    Keywords:SERS Au@Au@Ag probes Exosomes miR-21 miR-126 miR-1246

    ABSTRACT Simultaneous and quantitative detection of multiple exosomal microRNAs (miRNAs) was successfully performed by a surface-enhanced Raman scattering (SERS) assay consisting of Raman probes and capture probes.In this design,the asymmetric core-shell structured Au@Au@Ag nanoparticles were first synthesized by layer-by-layer self-assembly method and modified with different Raman molecules and recognition sequences (polyA-DNA) to prepare the surface-enhanced Raman probes.Then,the streptavidinmodified magnetic beads were used to immobilize the biotinylated DNA capture sequences (biotin-DNA)to obtain capture probes.In the presence of target exosomal miRNAs,the Raman probes and capture probes could bind to the target exosomal miRNAs in the partial hybridization manner.Thus,the developed SERS sensor could indicate the target miRNAs levels in the buffer solution.Using breast cancerrelated miRNAs as model targets,the limits of detection of this sensor were determined to be 1.076 fmol/L for synthetic miR-21,0.068 fmol/L for synthetic miR-126,and 4.57 fmol/L for synthetic miR-1246,respectively.Such SERS sensors were further employed to detect the miR-21 in 20% human serum and the extraction solution of exosomes,respectively.Therefore,simultaneous and multiplex detection of cancerrelated exosomal miRNAs by this assay could provide new opportunities for further biomedical applications.

    Exosomes have become hotspots owing to their role in cancer research recently [1,2].MiRNAs with different levels of expression can be used to confirm the initial and progression stages of cancer [3,4].Previous studies demonstrated that the expression levels of exosomal miRNAs secreted into body fluid can reflect the physiological state of parent cancer cells.Exosomal miRNAs,protected from RNase digestion by lipid bilayer of vesicles,can act as a promising biomarker for liquid biopsies [5,6].It was also demonstrated that cancer-specific exosomal miRNAs fingerprints are expressed in different types of human cancers [7,8].Therefore,these studies emphasize the potential,progress,and therapeutic response of multiplex miRNAs in cancer diagnosis.Consequently,specific and simultaneous detection of multiple exosomal miRNAs is essential for cancer diagnosis and tumorigenesis [9].

    Up to now,researchers have developed various methods to detect multiplex exosomal miRNAs,such as quantitative reverse transcription-polymerase chain reaction (qRT-PCR),microarrays[10,11].However,the PCR design is very sophisticated,timeconsuming.Microarray assays oblige several complicated steps and expensive equipment for fluid control [12].Other emerging analytical techniques have been developed for miRNAs detection,such as electrochemistry,fluorescence,surface plasmon resonance (SPR)[13–15].However,these methods may be prone to some problems in multiplex exosomal miRNAs detection,such as autofluorescence,overlap of broad fluorescent bands,and charge interference in complex systems.Therefore,there is an urgent need to develop a simple but powerful strategy to detect tumor-associated multiplex exosomal miRNAs.

    Surface enhanced Raman scattering (SERS) spectroscopy is an optical ultra-sensitive assay for label-free biomarkers detection[16–18].The SERS based on metal nanostructures has attracted the attention of many researchers due to its high sensitivity,selectivity,outstanding spectral multiplexing competence for the detection of target simultaneously [19–23].Meanwhile,some SERS methods based on metal nanostructures have been reported for the detection of exosomal miRNAs [24–27].For example,Panget al.have exhibited the dual-SERS array to detect exosomal microRNAs based on the Fe3O4@Ag-DNA-Au@Ag@DTNB (SERS tag) conjugates[6].Leeet al.have reported a uniform gold nanopillar SERS substrate for exosomal miRNAs detection.Although the selectivity was improved and signal fluctuation was reduced for these methods,the use of SERS for reliable quantitative analysis of multiplex miRNAs has been still hindered due to the lack of ultrasensitive SERS active nanostructures [28–31].

    Herein,we designed a SERS strategy based on the asymmetric Au@Au@Ag probes with enhanced Raman signal to detect various exosomal miRNAs simultaneously.The Raman probes were rationally designed by using anchor DNA modified AuNPs (Au@aDNA)as a nanocore,followed by the coating of Raman signal molecules on the appearance of Au@aDNA by Au-S bond and the subsequent formed gold shells around the nanocores.To further improve the Raman signal,the Au@Au was covered by silver shell to form the Au@Au@Ag nanostructure.Then,the polyA-functionalized DNA probes (polyA-DNA) were modified on the gold head of Au@Au@Ag nanostructure according to Ref.[32].The polyA-DNA used in this work contained an oligonucleotide sequence that was partially complementary to the target exosomal miRNAs (Scheme 1A).Similarly,the biotin-DNA modified on streptavidin-modified magnetic beads (MB) was partially complementary to the target miRNA.When the target exosomal miRNA was present,Raman probes could be conjugated to the capture probes through sandwich hybridization (Scheme 1B).

    Scheme 1.Schematic representation of SERS assay using the asymmetric Raman probes for the detection of multiplex exosomal miRNAs.(A) The synthesis process of Raman probes using Au@Au@Ag nanostructure.(B) Schematic representation of fabrication of capture probes using streptavidin-modified magnetic beads,and SERS assay for the detection of multiplex exosomal miRNA by sandwich hybridization.Each type of exosomal miRNA was captured by the corresponding capture probe,and then hybridized with its own Raman probe to form sandwich complex.The concentration of target exosomal miRNA was obtained by analyzing the reduced SERS signal in the supernatant after forming sandwich complex.

    Fig.1.(A) TEM image of AuNP.Inset: High-resolution TEM image of Au@Au.(B)TEM image of the asymmetric Au@Au@Ag.Inset: The magnified TEM image.(C) UV–vis spectra of Au,Au@aDNA,Au@aDNA@DTNB,Au@Au and Au@Au@Ag nanostructure.(D) SERS spectra of Au@Au@Ag,Au@Au,Au@aDNA@DTNB,Au@DTNB,DTNB,and Au.

    The concentration of target miRNAs was obtained by analyzing the reduced SERS signal in the supernatant after forming sandwich complex [33].In this work,three Raman signal molecules,including 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB),phthalazine (PHTH)and 4,4′-dipyridyl (44DP),were used as Raman reporters to get three different Raman probes (Fig.S1 in Supporting information).The signal change of the characteristic peaks of DTNB (1333 cm?1),44DP (1610 cm?1) and PHTH (1450 cm?1) indicated the concentration of miR-21,miR-1246 and miR-126,respectively.In this manner,simultaneous and ultrasensitive detection of multiplex cancerrelated exosomal miR-21,miR-126 and miR-1246 in one sample was realized,which is beneficial for early diagnosis of cancers [34–36].

    As a proof of concept,TEM was used to characterize the morphology and structures of different nanoparticles.Firstly,13 nm gold nanoparticles (AuNPs) were prepared (Fig.1A),followed with modification of anchor DNA (aDNA) and Raman signal molecules DTNB onto the AuNP surface to prepare the Au@aDNA@DTNB.Gold shells were further formed around the Au@aDNA@DTNB (Au@Au,inset in Fig.1A).Due to the similar lattice between Au and Ag,Ag atoms could be deposited on Au@Au quickly to form a goldsilver alloy shell (Fig.1B) after reduction by ascorbic acid.The dynamic light scattering (DLS) results of AuNPs displayed an increase after the formation of Au@aDNA and Au@Au (Fig.S2A in Supporting information).A red shift in the absorption peak of AuNPs could be observed after the forming Au@aDNA,Au@aDNA@DTNB and Au@Au nanoparticles (Fig.1C),respectively.Moreover,a novel strong silver absorption peak at 420 nm (Au@Au@Ag) was displayed,which presented the successful formation of Au@Au@Ag nanostructure [34].Besides,energy dispersive X-ray (EDX) results of gold or silver showed an optical absorption band peak at about 2.2 keV or 3 keV individually (Fig.S3A in Supporting information).The mapping image of Au@Au@Ag showed the distribution of Au and Ag in the synthesized nanoparticles,which proved the Ag shell structures (Fig.S3B in Supporting information).

    Fig.2.SEM of sandwich complex.(A) In the presence of target,the Raman probes were connected to the exterior of the capture probes because of DNA hybridization.(B) The control examination with no target.(C) SERS spectra of specific analysis.The Raman probes and capture probes were mixed with 100 nmol/L miRNA-21,100 μmol/L Random chain,single-base mismatch (C,A and T),and the blank samples (0 nmol/L).(D) SERS intensity of the characteristic peaks of DTNB (1333 cm?1)in Fig.2C.

    After characterizing the nanostructure of Au@Au@Ag,we further investigated the SERS enhancements performance of different nanoparticles.As seen from Fig.1D,the Raman substrate fabricated with Au@Au showed enhanced Raman signals compared with the AuNPs,which was attributed to the Au shell.The substrate of Au@Au@Ag showed powerful Raman signals,and its intensity reached about 400 and 40 times than the Raman signal of the Au and Au@Au substrates,respectively.It is evidence of the role of Au shell and Ag shell to provide optimal SERS activities.We observed that the SERS spectroscopy of the Au@Au@Ag was highly uniform in time-dependent Raman spectra (Fig.S4 in Supporting information),which arose from their stable structures.

    To evaluate the specificity of the SERS assay,miR-21 was taken as an example.In the presence of the miR-21,sandwich complex could be formed among the target miR-21,capture probes and the corresponding Raman probes due to the partial complement to the target miRNA of the Raman probes and the capture probes,respectively.There were some free SERS probes in the supernatant.In the case of absence of the target,complex won’t be formed,and the suspension contained almost all SERS probes added.The successful formation of sandwich complex had been demonstrated by SEM.As exhibited in Fig.2A,in the presence of target,the Raman probes were connected to the exterior of the MB because of DNA hybridization.Meanwhile,it could be observed that there were no Raman probes on the surface of capture probes in the blank control experiment.(Fig.2B).It also showed that the nonspecific adsorption between the Raman probes and capture probes is extremely low in this experiment.Meanwhile,the EDS elemental mapping (Fig.S2B in Supporting information) confirmed the existence of Au atoms and Ag atoms.We also tested the specificity of the Raman probes by designing oligonucleotide sequences with a single-base mismatch and a random sequence,respectively (Table S1 in Supporting information).As indicated in Figs.2C and D,the SERS signal of the 100 nmol/L fully complementary miR-21 was distinct from 100 μmol/L Random chain,single-base mismatch (C,A and T),Au@Au@Ag nanoparticles and the blank samples (0 nmol/L).These phenomena showed that the Raman probes could recognize and hybridize with the target miRNA specifically.There was no difference in Raman signals between Au@Au@Ag nanoparticles and blank samples (0 nmol/L),which showed no effect of the capture probes on the Raman signal.Those results also confirmed the low non-specific adsorption between Raman probes and capture probes.

    Having demonstrated the biofunction and cognitive ability of Raman probes,we further utilized the Raman probes to detect miR-21,miR-1246,and miR-126,respectively.As shown in Figs.3A and B,as the concentration of miR-21 increased,the SERS intensity of the DTNB-encoded probes in the supernatant decreased.The change value of SERS intensity was obtained from the difference from presence of the target to absence of target.We observed a good linear response ranging from 1 nmol/L to 1 fmol/L.The fitted formula wasΔI1333=562.6 (lg[CmiR-21])+8923,the R-square (R2)value is 0.97,and the limits of detection (LODs) was approximately 700 amol/L.Correspondingly,as the concentration of miR-1246 increased,the signal intensity of 44DP-encoded probes in the supernatant was prone to be weaker (Figs.3C and D).The regression equation isΔI1610=366.2 (lg[CmiR-1246])+7106.5,theR2value was 0.96,and the LOD was approximately 2.46 amol/L.As the concentration of miR-126 increased,the signal intensity of PHTH-encoded probes in the supernatant was prone to be weaker (Figs.3E and F).The regression equation wasΔI1457=546.4 (lg[CmiR-126])+8249.6,theR2value was 0.95,and the LOD was approximately 589 amol/L.

    In order to detect multiple miRNAs simultaneously,three Raman probes were preparedviathe functionalization of DNA probes on Au@Au@Ag nanostructure encoded by DTNB,PHTH or 44DP,respectively.SERS spectra of three Raman probes (Figs.4A and B)demonstrated that each kind of specific Raman probes could be explicitly recognized due to its unique spectroscopic fingerprint,which was capable of multiplex biorecognition.Subsequently,the specificity detection of miRNA was investigated by the mixture of different Raman probes.In the examination,miR-1246,selected as a model target,was added to the multiple reaction assay to observe whether the changes in the SERS intensity would be affected.After adding non-specific Raman probes,the association between the band intensity of DP and the concentration of the corresponding target miR-1246 remained unchanged.It confirmed that the crosstalk between the different Raman probes classes was negligible (Fig.S5 in Supporting information).

    Subsequently,we selected cancer-associated miR-21,miR-1246,miR-126 as the targets to investigate the selectivity of the SERS array.Raman scattering peaks of 1333 cm?1(?),1610 cm?1(★),1457 cm?1(▲) are the characteristic peaks of DTNB,44DP,and PHTH,which were,respectively corresponded to the target miR-21,miR-1246,and miR-126.Divide the SERS intensity in the presence of the target by the intensity in the absence of the target to get theR1/R0ratio.Compared to the SERS signal of control probes (blank),the Raman signal was reduced in the supernatant after adding a target miRNA.Furthermore,when in the presence of two different synthetic miRNAs,the SERS intensities of two homologous probes were decreased.Similarly,after three different synthetic miRNAs were added,the SERS intensities were reduced (Figs.4C and D).Therefore,multiple miRNAs could be detected simultaneously by these SERS-based assays.

    Fig.3.(A) SERS assay performance for the detection of different concentrations of miR-21.(B) Calibration graph of DTNB peak (1333 cm?1) versus the concentration of miR-21.(C) SERS assay performance for the detection of different concentrations of miR-1246.(D) Calibration graph of DTNB peak (1610 cm?1) versus the concentration of miR-1246.(E) SERS assay performance for the detection of different concentrations of miR-126.(F) Calibration graph of DTNB peak (1457 cm?1) versus the concentration of miR-126.Data are indicated as the mean ± SD.

    Fig.4.(A) SERS spectra of three Raman probes,which were prepared via the functionalization of DNA probe on Au@Au@Ag nanostructure encoded by DTNB,PHTH or 44DP.(B) The band intensities of three different Raman probes.(C) SERS sensor for the detection of miR-21,miR-126,miR-1246,miR-1246+miR-126,miR-21+miR-126,miR-21+miR-1246,and miR-21+miR-126+miR-1246.The mixture between capture probes and the SERS probes was used as a blank control.(D) The correlation analysis of SERS intensity in Fig.4C.

    We further investigated the sensitivity of functionalized Raman probes in the detection of multiple miRNAs.Raman intensity of the typical peaks of DTNB-encoded probes,44DP-encoded probes,and PHTH-encoded probes was decreased with increasing concentrations of the miR-21,miR-1246,and miR-126.Fig.5A showed the quantitative detection of miR-21,miR-1246,and miR-126.As the concentration of miR-21,miR-1246,and miR-126 increased,the signal intensity of DTNB-encoded probes,44DP-encoded probes and PHTH-encoded probes in the supernatant was prone to be weaker,respectively.The LODs of the developed sensors for miR-21 (Fig.5B),miR-1246 (Fig.5C),and miR-126 (Fig.5D) was determined to be 1.076 fmol/L,4.57 fmol/L,and 0.068 fmol/L,respectively.As the signal amplification performance of above designed Raman probes,the SERS assay exhibited better capability in terms of sensitivity compared to the previously published literatures in Table S2 (Supporting information).Therefore,the SERS assay enabled highly sensitive quantification of multiplex miRNAs in one test.

    To explore the feasible application in biological samples,the exosomal miR-21 was analyzed.There was not a significant difference in the SERS signal between diluted serum (20%) sample and buffer (Fig.S6 in Supporting information).Therefore,Raman probes had excellent anti-interference ability in serum.Afterward,we investigated the multiplex detection performance of our proposed method for exosomal miRNAs.TEM images and DLS analysis displayed that the size of the obtained exosomes size was about 150 nm and the morphology was round (Fig.6A),which matched very well with the published literature [6].The total RNA was extracted from exosomes obtained from MDA-MB-231 and HBL-100 cell culture supernatant.It was demonstrated that the expression levels of miR-21,miR-126,and miR-1246 in the MDA-MB-231 exosomes were higher than those of HBL-100 exosomes (Fig.6B).These results were in good accordance with previous reports [5],which suggested that this method had great potential in diagnosis application.

    Fig.5.SERS biosensor for multiple-target detection simultaneously.(A) SERS spectra of the supernatant after adding miR-21,miR-126,miR-1246 with different concentrations.(B) Standard curve of the change in SERS signal (at 1333 cm?1) relative to the miR-21 concentration from 100 fmol/L to 1 nmol/L.(C) Standard curve of the change in SERS signal (at 1450 cm?1) relative to the miR-126 concentration from 1 pmol/L to 1 nmol/L.(D) Standard curve of the change in SERS signal(at 1610 cm?1) relative to the miR-1246 concentration from 100 fmol/L to 1 nmol/L.Data are denoted as the mean ± SD.

    Fig.6.(A) DLS and TEM characterization of MDA-MB-231 exosomes.(B) SERS analysis of related expression levels of miR-21,miR-126,miR-1246 in MDA-MB-231 exosomes (MDA-MB-231-Exo) and HBL-100 exosomes (HBL-100-Exo).

    We have developed a SERS assay for the detection of diseaserelated multiplex exosomal miRNAs.Such a SERS sensor consisted of asymmetric Au@Au@Ag nanoparticles with DNA probes as Raman probes and MB modified with capture DNA as capturing probes.The Raman probes can be effectively bound to the surface of MB by the sandwich hybridization in the presence of target miRNAs.Notably,three Raman probes were successfully constructed by introducing the different Raman signal molecules to the asymmetric Au@Au@Ag nanoparticles.Simultaneous and multiplex analysis of three target miRNAs was further performed by using different Raman probes as recognition signals.The LODs of miR-21,miR-1246,and miR-126 was determined to be 1.076 fmol/L,4.57 fmol/L,and 0.068 fmol/L,respectively.Therefore,the proposed SERS sensor can simultaneously detect multiple tumor-related exosomal miRNAs with high sensitivity and excellent selectivity,showing great potential for the early diagnosis of cancers.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the Project of National Natural Science Foundation of China (Nos.21775036,21735002,21874035 and 22174044).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.11.092.

    黑人高潮一二区| 人人妻人人澡人人爽人人夜夜 | 国产亚洲av嫩草精品影院| 精品人妻视频免费看| 99热精品在线国产| 偷拍熟女少妇极品色| 成年版毛片免费区| 一级黄片播放器| 精品久久国产蜜桃| a级毛片a级免费在线| 国产极品天堂在线| 国产av在哪里看| 亚洲色图av天堂| 亚洲av中文字字幕乱码综合| 婷婷色av中文字幕| 禁无遮挡网站| 丰满人妻一区二区三区视频av| 少妇熟女aⅴ在线视频| 久久这里有精品视频免费| 国产 一区 欧美 日韩| 99在线视频只有这里精品首页| 亚洲av熟女| 成人特级av手机在线观看| 亚洲成人中文字幕在线播放| 亚洲在久久综合| 99久国产av精品| videossex国产| 国产视频首页在线观看| 色吧在线观看| 精品国产三级普通话版| 日韩欧美精品v在线| 久久久久国产网址| 少妇熟女欧美另类| 久久国内精品自在自线图片| 免费观看a级毛片全部| 亚洲欧美日韩东京热| 色视频www国产| 天美传媒精品一区二区| 日日啪夜夜撸| 亚洲国产日韩欧美精品在线观看| 国产精品久久久久久精品电影小说 | 国内少妇人妻偷人精品xxx网站| 欧美日韩一区二区视频在线观看视频在线 | 国产一区二区在线观看日韩| 国产三级中文精品| 精品不卡国产一区二区三区| 插逼视频在线观看| 色哟哟哟哟哟哟| 日日摸夜夜添夜夜添av毛片| 亚洲成av人片在线播放无| 国产综合懂色| 91精品国产九色| 日韩一区二区三区影片| 日本黄色片子视频| 精品人妻一区二区三区麻豆| 一级毛片aaaaaa免费看小| 成人高潮视频无遮挡免费网站| 精品不卡国产一区二区三区| 国产乱人视频| 成人三级黄色视频| 一边亲一边摸免费视频| 校园人妻丝袜中文字幕| av卡一久久| 18禁裸乳无遮挡免费网站照片| 久久久色成人| 欧美xxxx性猛交bbbb| 色视频www国产| 亚洲国产精品国产精品| 国产激情偷乱视频一区二区| 色5月婷婷丁香| 亚洲中文字幕日韩| 国产av不卡久久| 日本一二三区视频观看| 啦啦啦观看免费观看视频高清| 插逼视频在线观看| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 黄色欧美视频在线观看| av天堂在线播放| 国国产精品蜜臀av免费| 最近2019中文字幕mv第一页| kizo精华| 色噜噜av男人的天堂激情| 国产高清有码在线观看视频| 人妻久久中文字幕网| 久久鲁丝午夜福利片| 久久国产乱子免费精品| 欧美在线一区亚洲| 亚洲精品乱码久久久v下载方式| www.av在线官网国产| www日本黄色视频网| 一区二区三区四区激情视频 | 欧美bdsm另类| 日本一二三区视频观看| 国产激情偷乱视频一区二区| 亚洲自拍偷在线| 亚洲av一区综合| 成人二区视频| 夫妻性生交免费视频一级片| 五月玫瑰六月丁香| 最近的中文字幕免费完整| a级一级毛片免费在线观看| 天堂中文最新版在线下载 | 国产精品女同一区二区软件| 99热6这里只有精品| 波多野结衣巨乳人妻| 亚洲激情五月婷婷啪啪| 嫩草影院新地址| 久久久久性生活片| h日本视频在线播放| 免费av毛片视频| 日韩高清综合在线| 天堂网av新在线| 两个人的视频大全免费| 免费不卡的大黄色大毛片视频在线观看 | 国产一区二区三区av在线 | 你懂的网址亚洲精品在线观看 | 亚洲欧美清纯卡通| 成人一区二区视频在线观看| 亚洲激情五月婷婷啪啪| 久久6这里有精品| 欧美极品一区二区三区四区| 天堂中文最新版在线下载 | 99热这里只有精品一区| 亚洲成人av在线免费| 国产精品一及| 99久久无色码亚洲精品果冻| 久久久久久久久久久丰满| 亚洲在线观看片| 亚洲电影在线观看av| 99国产极品粉嫩在线观看| 又粗又爽又猛毛片免费看| 男人舔女人下体高潮全视频| 长腿黑丝高跟| 少妇猛男粗大的猛烈进出视频 | 内地一区二区视频在线| 精品久久久久久久久久免费视频| 成人欧美大片| 岛国毛片在线播放| 国产女主播在线喷水免费视频网站 | 国产精品乱码一区二三区的特点| 亚洲精品自拍成人| 久久婷婷人人爽人人干人人爱| 嫩草影院精品99| 日日摸夜夜添夜夜爱| 久久久久性生活片| 亚洲成a人片在线一区二区| 国产精品麻豆人妻色哟哟久久 | 少妇猛男粗大的猛烈进出视频 | 夜夜爽天天搞| 一本一本综合久久| 桃色一区二区三区在线观看| 特大巨黑吊av在线直播| 亚洲精品456在线播放app| 99热全是精品| 久久99热6这里只有精品| 激情 狠狠 欧美| 精品午夜福利在线看| 精品久久久久久久久av| 少妇的逼好多水| 欧美bdsm另类| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av涩爱 | 22中文网久久字幕| 亚洲欧美日韩无卡精品| 又粗又硬又长又爽又黄的视频 | 成年免费大片在线观看| 女人被狂操c到高潮| 免费在线观看成人毛片| 精品人妻熟女av久视频| 国产黄色视频一区二区在线观看 | 可以在线观看的亚洲视频| 成人二区视频| 亚洲第一电影网av| 日本撒尿小便嘘嘘汇集6| 亚洲成a人片在线一区二区| 国产单亲对白刺激| 成人美女网站在线观看视频| 亚洲av成人精品一区久久| 亚洲人成网站在线播| 成熟少妇高潮喷水视频| 一级毛片aaaaaa免费看小| 人人妻人人澡人人爽人人夜夜 | 九九久久精品国产亚洲av麻豆| 国产黄a三级三级三级人| 午夜老司机福利剧场| 极品教师在线视频| 亚洲av中文字字幕乱码综合| 啦啦啦韩国在线观看视频| 国产精品一区二区性色av| or卡值多少钱| 精品日产1卡2卡| 亚洲人成网站在线播放欧美日韩| 九九热线精品视视频播放| 欧美成人免费av一区二区三区| 黄色一级大片看看| 91久久精品国产一区二区三区| 国产日本99.免费观看| 欧美日韩国产亚洲二区| 亚洲国产欧洲综合997久久,| 99久国产av精品| 亚洲中文字幕日韩| 日日干狠狠操夜夜爽| 又黄又爽又刺激的免费视频.| 日韩精品青青久久久久久| 成人午夜高清在线视频| 美女被艹到高潮喷水动态| 最好的美女福利视频网| 99久久精品国产国产毛片| 波多野结衣巨乳人妻| 看非洲黑人一级黄片| 给我免费播放毛片高清在线观看| 精品少妇黑人巨大在线播放 | 97热精品久久久久久| 亚洲av中文字字幕乱码综合| 色吧在线观看| 欧美丝袜亚洲另类| 婷婷亚洲欧美| 久久中文看片网| 国产人妻一区二区三区在| 亚洲在久久综合| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 欧美精品一区二区大全| 日日摸夜夜添夜夜爱| 国产探花在线观看一区二区| 国产真实伦视频高清在线观看| 我要搜黄色片| 性欧美人与动物交配| 日韩欧美在线乱码| 国产成人精品久久久久久| 高清日韩中文字幕在线| 最近中文字幕高清免费大全6| 春色校园在线视频观看| 国产69精品久久久久777片| 99久久精品一区二区三区| 国产精品久久久久久久电影| 日韩中字成人| 国产精品人妻久久久影院| 国产视频首页在线观看| 91久久精品国产一区二区成人| 国产真实乱freesex| 91精品国产九色| 成人永久免费在线观看视频| 男的添女的下面高潮视频| 高清日韩中文字幕在线| 久久午夜福利片| 国产精品一二三区在线看| 亚洲精华国产精华液的使用体验 | 成人午夜高清在线视频| 欧美成人精品欧美一级黄| 精品久久久久久久人妻蜜臀av| 看十八女毛片水多多多| 2021天堂中文幕一二区在线观| 亚洲美女视频黄频| 九色成人免费人妻av| 一级毛片我不卡| 欧美色欧美亚洲另类二区| 成年av动漫网址| 国产精品乱码一区二三区的特点| 蜜臀久久99精品久久宅男| 国产精品爽爽va在线观看网站| 国产精品一区www在线观看| 国产亚洲av片在线观看秒播厂 | 日本黄色视频三级网站网址| 亚洲精品日韩av片在线观看| 久久人人爽人人爽人人片va| 少妇猛男粗大的猛烈进出视频 | 欧美xxxx性猛交bbbb| 天堂网av新在线| 一级黄色大片毛片| 男人舔奶头视频| 97超视频在线观看视频| 欧美成人一区二区免费高清观看| 特大巨黑吊av在线直播| 男女那种视频在线观看| 国产成人一区二区在线| 国产亚洲5aaaaa淫片| 国产精品人妻久久久影院| 69人妻影院| 给我免费播放毛片高清在线观看| 久久精品国产99精品国产亚洲性色| 亚洲av成人精品一区久久| 人妻制服诱惑在线中文字幕| 精品熟女少妇av免费看| 在线观看一区二区三区| 97在线视频观看| 天天躁日日操中文字幕| 干丝袜人妻中文字幕| 国产 一区 欧美 日韩| 国产探花极品一区二区| 人妻夜夜爽99麻豆av| 久久精品国产自在天天线| 综合色av麻豆| 精品久久久久久久末码| 最近2019中文字幕mv第一页| 一卡2卡三卡四卡精品乱码亚洲| 99精品在免费线老司机午夜| 亚洲国产高清在线一区二区三| 久久99精品国语久久久| 99热网站在线观看| 18禁在线无遮挡免费观看视频| 99热这里只有是精品在线观看| 亚洲av成人精品一区久久| 国产精品1区2区在线观看.| 91午夜精品亚洲一区二区三区| 国产私拍福利视频在线观看| 最近中文字幕高清免费大全6| 男人和女人高潮做爰伦理| 免费人成在线观看视频色| 免费看a级黄色片| 亚洲精品色激情综合| 丝袜美腿在线中文| 久99久视频精品免费| 国产av一区在线观看免费| 人妻制服诱惑在线中文字幕| 天天一区二区日本电影三级| www.av在线官网国产| 美女国产视频在线观看| 69av精品久久久久久| 久久精品久久久久久久性| 亚洲人成网站高清观看| 国产熟女欧美一区二区| 久久久成人免费电影| 好男人视频免费观看在线| 又爽又黄a免费视频| 国产伦在线观看视频一区| 日韩一本色道免费dvd| 亚洲无线在线观看| 国产精品美女特级片免费视频播放器| 国产av一区在线观看免费| 九草在线视频观看| 精品人妻偷拍中文字幕| 亚洲自偷自拍三级| 午夜免费激情av| 在线播放国产精品三级| 少妇高潮的动态图| 村上凉子中文字幕在线| 国产一区二区在线av高清观看| 久久精品夜色国产| 成人综合一区亚洲| 成年女人看的毛片在线观看| 高清日韩中文字幕在线| 国产精品久久久久久av不卡| 内地一区二区视频在线| 夫妻性生交免费视频一级片| 国产精品一及| 亚洲国产精品成人久久小说 | 国内精品美女久久久久久| 综合色av麻豆| 久久久久性生活片| 赤兔流量卡办理| 午夜福利高清视频| 欧美性猛交黑人性爽| 蜜桃亚洲精品一区二区三区| 国产午夜精品论理片| 又粗又爽又猛毛片免费看| 九色成人免费人妻av| 1024手机看黄色片| 麻豆一二三区av精品| 久久久久久九九精品二区国产| 99九九线精品视频在线观看视频| 性欧美人与动物交配| 看十八女毛片水多多多| 国产精品av视频在线免费观看| 国产精品久久久久久av不卡| 久久精品国产鲁丝片午夜精品| 午夜福利在线观看免费完整高清在 | 国产精品,欧美在线| 久久久久九九精品影院| 联通29元200g的流量卡| av国产免费在线观看| 欧美色视频一区免费| 日韩大尺度精品在线看网址| 一区二区三区高清视频在线| 久久久久久久久久黄片| 久久国内精品自在自线图片| 黄色欧美视频在线观看| 国产一区二区三区av在线 | 黄色一级大片看看| 99久久中文字幕三级久久日本| 国产老妇伦熟女老妇高清| 欧美日本视频| 午夜a级毛片| 1024手机看黄色片| 亚洲在线自拍视频| 中文亚洲av片在线观看爽| 久久亚洲精品不卡| 综合色丁香网| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 亚洲欧洲国产日韩| 午夜福利在线观看吧| 久久精品国产亚洲av天美| av天堂中文字幕网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本与韩国留学比较| а√天堂www在线а√下载| 亚洲人成网站在线播| 欧美日韩综合久久久久久| 久久久久久久久久黄片| 亚洲欧美中文字幕日韩二区| 91狼人影院| 我的女老师完整版在线观看| 美女cb高潮喷水在线观看| 99热精品在线国产| 欧美+亚洲+日韩+国产| 成人特级av手机在线观看| 99riav亚洲国产免费| 能在线免费观看的黄片| 又爽又黄无遮挡网站| 久久久久久久亚洲中文字幕| 18+在线观看网站| 国产白丝娇喘喷水9色精品| 一区二区三区高清视频在线| 亚洲美女视频黄频| 亚洲欧美日韩卡通动漫| 少妇熟女欧美另类| 成人一区二区视频在线观看| 高清午夜精品一区二区三区 | 激情 狠狠 欧美| 亚洲欧美中文字幕日韩二区| 人妻久久中文字幕网| 美女被艹到高潮喷水动态| 九草在线视频观看| 在线观看av片永久免费下载| 少妇被粗大猛烈的视频| 寂寞人妻少妇视频99o| 免费人成在线观看视频色| videossex国产| 亚洲欧美日韩高清专用| 亚洲久久久久久中文字幕| 久久久久久久久久成人| 国内揄拍国产精品人妻在线| 日韩高清综合在线| 亚洲人成网站在线观看播放| 少妇人妻一区二区三区视频| 亚洲va在线va天堂va国产| 午夜视频国产福利| 99国产极品粉嫩在线观看| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜添av毛片| 国产精品久久久久久精品电影| 成人av在线播放网站| 久久鲁丝午夜福利片| 亚洲美女视频黄频| 成年av动漫网址| 欧美最黄视频在线播放免费| 综合色av麻豆| 看免费成人av毛片| 高清毛片免费观看视频网站| 国产免费一级a男人的天堂| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 国产精品蜜桃在线观看 | 九色成人免费人妻av| 性欧美人与动物交配| 高清午夜精品一区二区三区 | av在线亚洲专区| 国产高清视频在线观看网站| 中文字幕免费在线视频6| 国产av在哪里看| 乱系列少妇在线播放| 熟女电影av网| 国产成人a∨麻豆精品| 国产午夜精品论理片| 麻豆国产97在线/欧美| 观看免费一级毛片| 97超视频在线观看视频| 赤兔流量卡办理| 观看美女的网站| 婷婷精品国产亚洲av| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 欧美3d第一页| 草草在线视频免费看| 亚洲在线观看片| 中文字幕熟女人妻在线| 成年版毛片免费区| 99久久精品国产国产毛片| 悠悠久久av| 久久久久性生活片| 久久久午夜欧美精品| 国产精品一区www在线观看| 精品熟女少妇av免费看| 最近手机中文字幕大全| 九草在线视频观看| 亚洲av免费在线观看| 美女 人体艺术 gogo| 麻豆一二三区av精品| 亚洲欧美精品专区久久| 两个人视频免费观看高清| 一卡2卡三卡四卡精品乱码亚洲| 婷婷亚洲欧美| 日日撸夜夜添| 麻豆国产av国片精品| 日韩在线高清观看一区二区三区| 久久久午夜欧美精品| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 免费看光身美女| 久久精品夜夜夜夜夜久久蜜豆| 我要看日韩黄色一级片| 精品一区二区三区视频在线| 联通29元200g的流量卡| 国产成人精品久久久久久| 亚洲内射少妇av| 亚洲国产精品成人久久小说 | 国产黄片美女视频| 久久亚洲精品不卡| 一级毛片我不卡| 国产 一区 欧美 日韩| 亚洲人成网站在线播放欧美日韩| 亚洲av免费在线观看| 高清毛片免费观看视频网站| 国产成人精品一,二区 | av卡一久久| 久久久久久久久中文| 久久亚洲精品不卡| 三级毛片av免费| 在线观看免费视频日本深夜| 成人午夜高清在线视频| 国产精品不卡视频一区二区| 国产精品日韩av在线免费观看| 亚洲人成网站高清观看| 色综合亚洲欧美另类图片| 国产v大片淫在线免费观看| 蜜臀久久99精品久久宅男| 精品欧美国产一区二区三| 婷婷亚洲欧美| 99九九线精品视频在线观看视频| av在线老鸭窝| 少妇被粗大猛烈的视频| 婷婷色av中文字幕| 精品人妻偷拍中文字幕| 老司机影院成人| 日本成人三级电影网站| 日本免费a在线| 国产欧美日韩精品一区二区| 国产私拍福利视频在线观看| 又爽又黄无遮挡网站| 国产乱人视频| 禁无遮挡网站| 成年版毛片免费区| 综合色丁香网| 欧美高清成人免费视频www| 欧美精品国产亚洲| 高清毛片免费看| 日本色播在线视频| 国产日本99.免费观看| 久久久久久九九精品二区国产| 久久久色成人| 精品一区二区三区人妻视频| 18禁裸乳无遮挡免费网站照片| www.av在线官网国产| 偷拍熟女少妇极品色| 99久久精品一区二区三区| 国产私拍福利视频在线观看| 欧美成人免费av一区二区三区| 日日啪夜夜撸| 久99久视频精品免费| 久久精品91蜜桃| 91久久精品国产一区二区成人| kizo精华| 亚洲国产欧美人成| 日本一本二区三区精品| 热99在线观看视频| 男人狂女人下面高潮的视频| 亚洲激情五月婷婷啪啪| 99久国产av精品国产电影| 永久网站在线| 国产淫片久久久久久久久| 1000部很黄的大片| 久久久国产成人免费| 12—13女人毛片做爰片一| 成人美女网站在线观看视频| 26uuu在线亚洲综合色| 亚洲欧美精品综合久久99| 国产真实伦视频高清在线观看| 女人被狂操c到高潮| 国产三级在线视频| 欧美3d第一页| 最好的美女福利视频网| 麻豆乱淫一区二区| 日本与韩国留学比较| 亚洲一区高清亚洲精品| 日本五十路高清| 国产中年淑女户外野战色| 久久精品人妻少妇| 亚洲欧美中文字幕日韩二区| 国产免费一级a男人的天堂| 亚洲国产色片| 国产高潮美女av| 国内精品宾馆在线| 日本黄色视频三级网站网址| 99riav亚洲国产免费| av.在线天堂| 好男人在线观看高清免费视频| 寂寞人妻少妇视频99o| 在现免费观看毛片| 九九在线视频观看精品| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播放欧美日韩| 天天躁日日操中文字幕| 日日摸夜夜添夜夜添av毛片| 美女黄网站色视频| 婷婷色av中文字幕| 亚洲第一区二区三区不卡| 69人妻影院| 亚洲av成人精品一区久久| 村上凉子中文字幕在线| 国模一区二区三区四区视频| 赤兔流量卡办理| 久久婷婷人人爽人人干人人爱| 久久久久性生活片|