• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer

    2022-07-11 03:39:22SifengMoXiohongHuYumiTnkLinZhouChenhnPengNhokoKsiHizuruNkjimShungoKtoKtsumiUchiym
    Chinese Chemical Letters 2022年6期

    Sifeng Mo,Xiohong Hu,Yumi Tnk,Lin Zhou,Chenhn Peng,Nhoko Ksi,Hizuru Nkjim,Shungo Kto,Ktsumi Uchiym

    a Department of Applied Chemistry,Graduate School of Urban Environmental Sciences,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    b University Education Center,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    Keywords:Microchip Valve Flow control NIPPAm Chemo-mechanical switch Thermo-responsive polymer

    ABSTRACT Microfluidic devices have become a powerful tool for chemical and biologic applications.To control different functional parts on the microchip,valve plays a key role in the device.In conventional methods,physio-mechanical valves are usually used on microfluidic chip.Herein,we reported a chemo-mechanical switchable valve on microfluidic chip by using a thermally responsive block copolymer.The wettability changes of capillary with copolymer modification on inner surface were investigated to verify the function as a valve.Capillaries with modification of poly-(N-isopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAm-co-HFIPA)) with a 20% HFIPA was demonstrated capable of control aqueous solution stop or go through.Then short capillaries with copolymer modification were integrated in microchannels as valves.With the temperature changing around lower critical solution temperature (LCST),the integrated chemo-mechanical switchable valve exhibited excellent “OPEN–CLOSE’’behavior for microflow control.After optimization of the block copolymer sequences and molar ratio,a switching time as low as 20 s was achieved.The developed micro valve was demonstrated effective for flow control on microchip.

    Microfluidic chip developed from 1990s has been widely used for sample pretreatment [1,2],immunoassay [3-5],chemical synthesis [6,7],cell analysis [8-10].Valve,as one of the key function parts,helps to control microflow in microfluidic device in desirable sequence [11,12].Various types of valves have been integrated in microchannels,including shut-off valve [13],normally closed valve [14,15],monolithic elastomer valves [16],and surface tension plug [17].Limited to the large size,most of the valves were difficult to integrate into channels on microscale [13–15].Surface tension plug was easy to integrate in microchannel,but it is not reversible.Recent years,Smart valves have attracted considerable attentions for dynamically controlling microflow transport [18,19].Micro/nano structured channels modified with stimuli-responsive polymers are frequently be designed as switchable smart valves[20].

    Poly(N-isopropylacrylamide) (PNIPAAm) has been reported as an excellent thermal responsive polymer that owns a lower critical solution temperature (LCST) [21].The LCST could be adjust as wish when designing different copolymer with PNIPAAm [22,23].Surface grafted with the polymer could change its hydrophilicity as the environment temperature changes[24].Most studies have focused on surface property change and drug release [25,26].However,the design of a practical switchable valve based on PNIPAAm on microchip for temperature controlling the transportation of microflow remains challenging.

    In this work,we report on a switchable valve integrated on microfluidic chip by using a thermally responsive block copolymer for temperature controlling the transportation of microflow.As illustrated in Fig.1a,a T-shaped microfluidic chip was designed with two functional switchable valve (Valve 1 and Valve 2) in the two branch channels.The two branch channels with two individual valve were positioned on two individual thermoelectric cooler for temperature control.By adjusting the temperatures of the two thermoelectric cooler,the injected flow could be controlled to flow left or flow right only.The results suggested the valve could switch in short time (20 s).The switchable valve was fabricated by grafting a thermally responsive block copolymer brush poly-(Nisopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAmco-HFIPA)) on the inner side of glass capillaries which were then integrated in the micro channels (Fig.1b).As demonstrated in other reports,PNIPAAm was never hydrophobic whenever the temperature was above or below the LCST [27].Therefore,HFIPA was added to adjust hydrophilicity and hydrophobicity while PNIPAAm governed the thermal properties.In design,high molecule ratio of HFIPA would cause a higher contact angel (CA) that mean higher hydrophobicity.On the modified surface,the C=O and N?H groups of the PNIPPAm and (P(NIPAAm-co-HFIPA) parts generated intermolecular hydrogen bonding with water molecules,which would enhance the hydrophilicity (Fig.1b).In contrast,the C?F groups of the (P(NIPAAm-co-HFIPA) part would result in hydrophobic (Fig.1b).When the temperature (T) was below the LCST (Fig.1c),the polymer brush had a stretched state where the inter-molecule hydrogen bonding between C=O/N?H and water molecules contributed to the hydrophilic property.As a result,the aqueous solution could pass the channel easily,where the valve state was defined as “OPEN”.In contrast,at the temperature above the LCST,the inner surface of the valve became hydrophobic because of the intra-molecule hydrogen bonding between C=O and N-H while C=O and N?H group difficult to interact with water molecules.The valve with hydrophobic inner surface would stop aqueous solution to go through the valve,where the valve state was defined as “CLOSE” (Fig.1d).Therefore,the valve state could be controlled by temperature to control the flow stream in the microchannels.

    Fig.1.Chemo-mechanical switchable valve on microfluidic chip for flow control.(a) Illustration of the integrated device with switchable valves.(b) Structure of the copolymer brush.(c) Valve at the “OPEN” state when temperature was below the LCST.(d) Valve at the “CLOSE” state when temperature was below the LCST.

    To graft the P(NIPAAm-co-HFIPA to the substrate,the substrate(capillary or glass plate) was first cleaned and modified to generate –OH groups on the surface.Then,the substrate was aminated by treating with 3-aminopropyltrimethoxysilane (APTMS) and amidated by treatment with 2-bromoisobutyryl bromide (BBiB).In polymerization process,the substrate was reacted with NIPAAm solution for 1 h at 60 °C.The reaction would allow to proceed from another 1 h at 60 °C after addition of HFIPA.The entire polymerization details are described in Supporting Information and Fig.S1 (Supporting information).Energy-dispersive X-ray spectroscopy(EDX) was used to investigated the surface chemical composites.Compare to the Energy-dispersive X-ray spectroscopy (EDX) analysis of bare slide glass (Fig.2a),the element contents of carbon and nitrogen (Fig.2b) increased significantly after amine functionalization.The peak relative to bromine (Fig.2c) from BBiB was observed after amidation.After polymerization,the peak relative to fluorine (Fig.2d) from HFIPA was observed.The results indicated that the polymerization of P(NIPAAm-co-HFIPA) on the substrate was achieved.

    To confirm the function of the valve,the surface tension of polymerization substrate should have sufficient change between hydrophilicity and hydrophobicity.For achievement of the “OPEN”state,the water contact angle need to be below 90°.Meanwhile,the water contact angle need to be above 90° after switch to achieve the state of “CLOSE”.To improve the switch function of the valve,HFIPA was added in the polymerization process to ensure the water CA to be above 90° when the temperature was higher than LCST.Before applying to glass capillary,the optimization of HFIPA ratio was carried out by polymerize the copolymer on slide glass substrate.The water CA on the prepared substrate was measured by a self-assembled system under conditions of saturated humidity (Fig.S2 in Supporting information).A thermoelectric cooler (ECE-F15P-D12,OHM Electric Co.,Ltd.,Japan) was used to control the temperature during measurements.After 5 μL of deionized water was dropped onto the substrate surface and became stable,Image of the water droplet on substrate were recorded by a Dino-Lite digital microscope.The water CA were measured according to half angle formula (Fig.S3 in Supporting information).For one substrate,the water CAs at different positon were measured,and the water CA angle of the substrate was determined to be the average.

    As shown in Fig.3a,the water CA of the substrate raised with the increasing ratio of HFIPA.When the HFIPA ratio reached 20%,the water CA was below 90° (69.2° ± 1.2°) at 20 °C and above 90°(96.0° ± 1.1°) at 40 °C.The ratio of HFIPA was optimized as 20%.Moreover,the response time was also investigated.The substrate placed on the temperature control plate with a temperature of 20°C,the water CA was measured.Then,the substrate with droplet was moved carefully to another temperature plate with a temperature of 40 °C,and the water CA was recording with different time.The water CA increased quickly with the passage of time increases,and reach a maximum after 20 s (Fig.3b).The results suggested that the copolymer with 20% HFIPA was suitable for valve manufacture.Satisfactorily,the response time was as short as 20 s,which was capable of flow control in microchannels.

    After optimization of HFIPA ratio,the polymerization was applied to Square-Miniature Hollow Glass Tubing.The glass capillary owned a square inner diameter of 500 μm and a square outer diameter of 700 μm (Fig.S4 in Supporting information).The glass capillaries were modified using the same polymerization as before a HFIPA ratio of 20%.In the experiment,the modified capillaries were inserted in water with different temperature.Image was obtained using a digital camera when the height (H) of water in the capillary became stable.

    As shown in Fig.4a,when the temperature of water was kept at 20 °C that was lower than the LCST (TLCST),Hwas negative value because of the hydrophobic inner surface as we discussed before (Fig.4a).TheHdropped as raising the temperature of the environment water.With the decrease of the temperature,the height of water in capillary reached a maximum (1.1 ± 0.2 mm) at the temperature of 20°C and kept constant (Fig.4b).TheHwith positive value mean that the water could be injected the capillary easily in further experiments.With the increase of the temperature,the height of water in capillary reached a minimum (?6.1 ± 0.2) at 40 °C and kept constant then (Fig.4b).As the temperature increased from 10 °C to 50 °C,the H changed from positive values to negative values(Fig.4c).TheHwith negative value mean that the water would be difficult to be injected into and go through the capillary in further experiments.All those results indicated that the capillary with polymerization of P(NIPAAm-co-HFIPA) was ready for use as valve in microchannel.

    Fig.2.Characterization of the substrate with each polymerization step by EDX.(a) Bare slide glass.(b) Substrate after amine functionalization.(c) Substrate after Amidation.(d) Substrate after polymerization.

    Fig.3.Optimization of the copolymer on slide glass.(a) Water CA on slide glass polymerized with different ratios of HFIPA (0,10%,20%).(b) The water CA at different heating time on a temperature control plate of 40 °C.

    The microfluidic chip was designed with “T” shape.All channels were with a width of 700 μm and a height of 700 μm.The Microfluidic chip was fabricated using polydimethylsiloxane (PDMS)by standard soft lithography and replica molding techniques as previous report [28].Before the PDMS layer with channel was irreversibly sealed with another PDMS as substrate layer by oxygen plasma treatment (Electro-technic products,Inc.,Japan),two individual capillaries with polymerization function as valves were placed in the two downstream microchannels (Fig.S5 in Supporting information).The two downstream microchannel parts were placed on two individual thermoelectric coolers for temperature control.In all the application experiments,temperature of 20 °C was used to turn the valve to “OPEN” state,while temperature of 40 °C was used to turn the valve to “CLOSE” state.When the left thermoelectric cooler was set at 20 °C and the right one was set at 40 °C,an aqueous solution containing 200 μmol/L Rhodamine 6G at a speed of 1000 μL/h was injected into the microchannel.The results showed that the injected solution flowed into the left downstream microchannel which no solution flowed into the right downstream microchannel (Fig.4d).Instead,the injection solution flowed right (Fig.4e) when thermoelectric cooler was set at 40 °C.All those results demonstrated that the valve state could turn to“OPEN” and “CLOSE” conveniently by changing the temperature.In further applications,the total system will include cell culture part,valve part,and assay part.Each part can be controlled with desirable temperature.Therefore,the temperature in the valve part will not limit the temperature requirements in assay part.The reported valve made from polymer brush,thus it could work for limited times in real sample detection because of the adsorptions of metabolites from cells.The property of the valve depended on brush density and molecule ratio of HFIPA.By changing the percent of HFIPA,the LCST could be adjusted to meet the requirements of different applications.

    Fig.4.Conformation of the hydrophobicity and hydrophilicity switch in polymerized glass and application as a valve in microchannel.(a) The height of water (H)inside the capillary at 20 °C.(b) The height of water (H) inside the capillary at 40°C.(c) The H at different temperatures.(d) Flow direction when Valve 1 was “OPEN”and Valve 2 was “CLOSE”.(e) Flow direction when Valve 1 was “CLOSE” and Valve 2 was “OPEN”.

    In summary,we have developed a switchable valve that is capable of integrating in microchannel for control flow stream using a thermally responsive block copolymer.The ratio of HFIPA at 20% in the P(NIPAAm-co-HFIPA) was demonstrated to be optimal.The water contact angle changed from 69oto 96owhen then temperature changed from 20 °C to 40 °C.The integrated valve in microchannel showed excellent performance on flow control.The method provides a potential approach for valve manufacture on microfluidic chip,which will be much benefit for integration of various function parts.In further applications,every channel with valve could connect with a functional assay channel where different metabolites from cells could been analyzed.The valve channel could also connect with mass spectrometer.By controlling the valve,metabolites at different time could be collected and detected.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgment

    We acknowledge the financial support from JSPS KAKENHI Grants (Nos.JP21K14653,JP20K22555 and JP20K05557).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.065.

    成人永久免费在线观看视频 | 丝袜美足系列| 日本黄色视频三级网站网址 | 久久人妻熟女aⅴ| 视频区图区小说| 日本av手机在线免费观看| 在线 av 中文字幕| 国产真人三级小视频在线观看| 国产精品自产拍在线观看55亚洲 | 免费在线观看日本一区| 婷婷成人精品国产| 久久av网站| 午夜福利在线观看吧| 91麻豆av在线| 我要看黄色一级片免费的| 99国产极品粉嫩在线观看| 久久久水蜜桃国产精品网| 欧美精品人与动牲交sv欧美| 精品久久久久久电影网| 黑人操中国人逼视频| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人爽人人夜夜| 久久午夜亚洲精品久久| 丰满迷人的少妇在线观看| 亚洲专区国产一区二区| 宅男免费午夜| 69精品国产乱码久久久| 午夜日韩欧美国产| 老熟女久久久| 免费黄频网站在线观看国产| 亚洲欧美一区二区三区黑人| 欧美成人免费av一区二区三区 | 国产精品熟女久久久久浪| 丁香六月天网| 国内毛片毛片毛片毛片毛片| 777米奇影视久久| 色播在线永久视频| 久久久国产欧美日韩av| 欧美在线一区亚洲| 成人影院久久| 成人av一区二区三区在线看| 亚洲av电影在线进入| 三级毛片av免费| 91精品国产国语对白视频| 久久久久久人人人人人| 亚洲性夜色夜夜综合| 久久久精品国产亚洲av高清涩受| 男男h啪啪无遮挡| 伊人久久大香线蕉亚洲五| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 国产高清视频在线播放一区| 天天添夜夜摸| 国产精品久久电影中文字幕 | 天堂俺去俺来也www色官网| 日韩欧美一区二区三区在线观看 | 波多野结衣一区麻豆| 精品少妇久久久久久888优播| 亚洲精品在线美女| 精品少妇黑人巨大在线播放| 久久久精品国产亚洲av高清涩受| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利视频在线观看免费| 天天操日日干夜夜撸| 亚洲精品国产一区二区精华液| 欧美日韩精品网址| 国产伦理片在线播放av一区| 成年人黄色毛片网站| 9色porny在线观看| 国产一区二区三区视频了| 高清视频免费观看一区二区| 日本wwww免费看| 亚洲av成人一区二区三| 啦啦啦免费观看视频1| 高清黄色对白视频在线免费看| 午夜激情久久久久久久| 午夜两性在线视频| 亚洲精品国产精品久久久不卡| 欧美人与性动交α欧美精品济南到| 50天的宝宝边吃奶边哭怎么回事| 久久久久久免费高清国产稀缺| 精品少妇黑人巨大在线播放| 首页视频小说图片口味搜索| 9热在线视频观看99| 久热这里只有精品99| 免费看十八禁软件| 啦啦啦视频在线资源免费观看| 天天躁夜夜躁狠狠躁躁| 满18在线观看网站| 国产精品久久电影中文字幕 | 伊人久久大香线蕉亚洲五| 国产精品一区二区在线观看99| 老司机午夜十八禁免费视频| a级毛片黄视频| 国产精品久久久人人做人人爽| 十八禁人妻一区二区| 黑人欧美特级aaaaaa片| 狠狠精品人妻久久久久久综合| 露出奶头的视频| 国产97色在线日韩免费| 久久国产精品影院| 99国产精品免费福利视频| 国产熟女午夜一区二区三区| 天天躁日日躁夜夜躁夜夜| 色在线成人网| 欧美亚洲 丝袜 人妻 在线| 9色porny在线观看| 男女午夜视频在线观看| 中国美女看黄片| 亚洲欧美日韩高清在线视频 | 午夜久久久在线观看| 国产精品1区2区在线观看. | 亚洲一码二码三码区别大吗| 天堂8中文在线网| 午夜视频精品福利| 满18在线观看网站| 日本av手机在线免费观看| 韩国精品一区二区三区| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 婷婷成人精品国产| 51午夜福利影视在线观看| 亚洲国产中文字幕在线视频| 丝袜在线中文字幕| 99国产综合亚洲精品| 精品欧美一区二区三区在线| 精品少妇一区二区三区视频日本电影| 欧美黄色片欧美黄色片| av片东京热男人的天堂| 黑人巨大精品欧美一区二区mp4| 久久av网站| 操出白浆在线播放| 激情在线观看视频在线高清 | 成人手机av| 成人精品一区二区免费| 日本欧美视频一区| 最黄视频免费看| av电影中文网址| 久热这里只有精品99| 欧美乱妇无乱码| 国产成人精品久久二区二区免费| 一区二区日韩欧美中文字幕| 亚洲国产av新网站| 亚洲成人免费电影在线观看| 成在线人永久免费视频| 国产精品一区二区在线不卡| 久久久国产欧美日韩av| 欧美日韩视频精品一区| 国产老妇伦熟女老妇高清| 久久毛片免费看一区二区三区| tocl精华| 国产精品国产高清国产av | 久久性视频一级片| 久久精品亚洲熟妇少妇任你| 精品人妻熟女毛片av久久网站| 色婷婷av一区二区三区视频| 国产视频一区二区在线看| 亚洲熟妇熟女久久| 大码成人一级视频| 亚洲国产成人一精品久久久| av网站免费在线观看视频| av天堂久久9| www.自偷自拍.com| 汤姆久久久久久久影院中文字幕| 我要看黄色一级片免费的| 午夜精品国产一区二区电影| 最近最新免费中文字幕在线| 一区二区三区乱码不卡18| 久久精品国产亚洲av香蕉五月 | 最新美女视频免费是黄的| 欧美+亚洲+日韩+国产| 69av精品久久久久久 | 少妇裸体淫交视频免费看高清 | 视频在线观看一区二区三区| 亚洲伊人久久精品综合| 午夜激情久久久久久久| 视频在线观看一区二区三区| 极品人妻少妇av视频| 两个人看的免费小视频| 美国免费a级毛片| 热re99久久精品国产66热6| 国产野战对白在线观看| 亚洲中文av在线| 一区在线观看完整版| av天堂久久9| 国产精品亚洲一级av第二区| 狠狠精品人妻久久久久久综合| 精品国内亚洲2022精品成人 | 亚洲av日韩在线播放| cao死你这个sao货| 亚洲成a人片在线一区二区| 精品少妇久久久久久888优播| 搡老熟女国产l中国老女人| 五月天丁香电影| 少妇 在线观看| 美女视频免费永久观看网站| 久久精品国产a三级三级三级| 精品国产一区二区三区四区第35| 亚洲成av片中文字幕在线观看| 日本a在线网址| 又大又爽又粗| 国产极品粉嫩免费观看在线| 久久精品国产99精品国产亚洲性色 | av欧美777| 亚洲成人国产一区在线观看| 岛国毛片在线播放| www.自偷自拍.com| 91麻豆精品激情在线观看国产 | 欧美国产精品一级二级三级| 王馨瑶露胸无遮挡在线观看| 国产亚洲一区二区精品| 国产成人系列免费观看| 亚洲性夜色夜夜综合| 一二三四在线观看免费中文在| 精品亚洲成a人片在线观看| 女性生殖器流出的白浆| 69精品国产乱码久久久| 成人18禁在线播放| 中文字幕精品免费在线观看视频| 日韩欧美国产一区二区入口| 日韩成人在线观看一区二区三区| 99精国产麻豆久久婷婷| 国产区一区二久久| 一本久久精品| 国产精品久久久av美女十八| 91av网站免费观看| av网站在线播放免费| 亚洲va日本ⅴa欧美va伊人久久| 精品国产一区二区三区四区第35| 男女下面插进去视频免费观看| 国产男女内射视频| 成年版毛片免费区| 他把我摸到了高潮在线观看 | 一区二区三区国产精品乱码| 伊人久久大香线蕉亚洲五| 久久免费观看电影| 亚洲va日本ⅴa欧美va伊人久久| 久久久久精品人妻al黑| 国产精品一区二区在线不卡| 一区福利在线观看| 狂野欧美激情性xxxx| 蜜桃国产av成人99| 亚洲精华国产精华精| 国产成人精品久久二区二区免费| 精品人妻熟女毛片av久久网站| 一级片'在线观看视频| 亚洲专区中文字幕在线| 日本av免费视频播放| 亚洲午夜精品一区,二区,三区| 美女高潮到喷水免费观看| 一级毛片电影观看| 精品国产一区二区三区四区第35| 最新在线观看一区二区三区| 欧美+亚洲+日韩+国产| 国产成人影院久久av| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| www.精华液| 97在线人人人人妻| 免费观看a级毛片全部| 国产精品99久久99久久久不卡| 露出奶头的视频| 人人澡人人妻人| 成年动漫av网址| 精品国产一区二区久久| 纯流量卡能插随身wifi吗| 久久久久久久久久久久大奶| 女性被躁到高潮视频| 国产精品.久久久| 成人18禁高潮啪啪吃奶动态图| 欧美在线黄色| 日韩大片免费观看网站| 国产男靠女视频免费网站| 一区在线观看完整版| 黄色成人免费大全| 国产免费福利视频在线观看| av电影中文网址| 19禁男女啪啪无遮挡网站| 一级毛片电影观看| 国产在线观看jvid| 亚洲免费av在线视频| 欧美日韩亚洲高清精品| 亚洲色图 男人天堂 中文字幕| 色婷婷久久久亚洲欧美| 免费观看人在逋| 99国产精品99久久久久| 国产一区二区三区综合在线观看| 天堂8中文在线网| 人妻 亚洲 视频| 成人国语在线视频| 97在线人人人人妻| 日本vs欧美在线观看视频| 欧美日韩亚洲高清精品| 国产亚洲精品久久久久5区| 亚洲伊人久久精品综合| 国产亚洲av高清不卡| 90打野战视频偷拍视频| 高清在线国产一区| 好男人电影高清在线观看| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 国产亚洲精品第一综合不卡| 久久精品亚洲av国产电影网| 亚洲专区字幕在线| 国产欧美日韩一区二区三| 夜夜夜夜夜久久久久| 999精品在线视频| 国产成人精品在线电影| 大码成人一级视频| 黄网站色视频无遮挡免费观看| 亚洲性夜色夜夜综合| 两个人看的免费小视频| 妹子高潮喷水视频| 成人免费观看视频高清| 夫妻午夜视频| 欧美日韩黄片免| 国产亚洲欧美在线一区二区| 18禁裸乳无遮挡动漫免费视频| 国产精品99久久99久久久不卡| 精品少妇黑人巨大在线播放| 两人在一起打扑克的视频| 国产精品98久久久久久宅男小说| 亚洲精品美女久久av网站| 性少妇av在线| 久热爱精品视频在线9| 国产一区二区三区综合在线观看| 成人国产av品久久久| 在线观看一区二区三区激情| 又大又爽又粗| 丰满少妇做爰视频| 91麻豆精品激情在线观看国产 | 精品乱码久久久久久99久播| 久9热在线精品视频| 欧美日韩av久久| 视频区欧美日本亚洲| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 色94色欧美一区二区| 国产精品久久电影中文字幕 | 国产精品久久久久成人av| kizo精华| 国产单亲对白刺激| 欧美日韩黄片免| 国产在线视频一区二区| 国产区一区二久久| 女同久久另类99精品国产91| av有码第一页| 熟女少妇亚洲综合色aaa.| 免费在线观看影片大全网站| 日本a在线网址| 9色porny在线观看| 丁香六月天网| 国产精品偷伦视频观看了| 欧美日韩国产mv在线观看视频| 国产免费av片在线观看野外av| 菩萨蛮人人尽说江南好唐韦庄| 少妇 在线观看| 午夜福利在线免费观看网站| 男女高潮啪啪啪动态图| www.自偷自拍.com| 欧美日韩成人在线一区二区| 一本久久精品| 国产欧美日韩精品亚洲av| 欧美一级毛片孕妇| 国产高清视频在线播放一区| 人妻 亚洲 视频| 亚洲第一青青草原| bbb黄色大片| 一边摸一边抽搐一进一出视频| 国产免费av片在线观看野外av| 啦啦啦 在线观看视频| 亚洲成a人片在线一区二区| 国产精品免费视频内射| 啦啦啦 在线观看视频| 制服诱惑二区| 最近最新中文字幕大全电影3 | 亚洲视频免费观看视频| 国产精品偷伦视频观看了| 91老司机精品| 欧美精品高潮呻吟av久久| 高清毛片免费观看视频网站 | 在线亚洲精品国产二区图片欧美| 中文字幕人妻丝袜制服| 伦理电影免费视频| 久久人人97超碰香蕉20202| 亚洲精品自拍成人| 女人爽到高潮嗷嗷叫在线视频| 黄片小视频在线播放| 国产成人欧美在线观看 | 在线观看免费视频日本深夜| av电影中文网址| 在线观看免费视频网站a站| 国产黄色免费在线视频| 国产av国产精品国产| 欧美av亚洲av综合av国产av| 国产黄色免费在线视频| 国产在视频线精品| 亚洲男人天堂网一区| 免费久久久久久久精品成人欧美视频| 91字幕亚洲| a在线观看视频网站| 岛国在线观看网站| 五月开心婷婷网| 成人影院久久| 国产又爽黄色视频| 黄色片一级片一级黄色片| 天堂俺去俺来也www色官网| 欧美在线一区亚洲| 咕卡用的链子| 国产一区二区三区综合在线观看| 国产精品 欧美亚洲| 男女午夜视频在线观看| 别揉我奶头~嗯~啊~动态视频| 日韩一区二区三区影片| 精品免费久久久久久久清纯 | 看免费av毛片| 欧美老熟妇乱子伦牲交| 精品一区二区三区四区五区乱码| 丁香欧美五月| 中文字幕最新亚洲高清| 男女高潮啪啪啪动态图| 国产精品香港三级国产av潘金莲| 制服人妻中文乱码| 国产三级黄色录像| 午夜福利影视在线免费观看| 叶爱在线成人免费视频播放| 一边摸一边抽搐一进一出视频| 麻豆av在线久日| 黄网站色视频无遮挡免费观看| 久9热在线精品视频| 国产深夜福利视频在线观看| 亚洲第一欧美日韩一区二区三区 | 国产成人av教育| 国产野战对白在线观看| 国产亚洲午夜精品一区二区久久| 高清视频免费观看一区二区| 亚洲国产欧美网| 亚洲av第一区精品v没综合| 亚洲午夜精品一区,二区,三区| 又大又爽又粗| 亚洲全国av大片| 首页视频小说图片口味搜索| av免费在线观看网站| 99国产精品一区二区蜜桃av | 日韩欧美三级三区| 日日摸夜夜添夜夜添小说| 成在线人永久免费视频| 老司机在亚洲福利影院| 国产黄频视频在线观看| 乱人伦中国视频| 欧美一级毛片孕妇| 亚洲成人国产一区在线观看| 99国产精品99久久久久| 国产福利在线免费观看视频| 黄网站色视频无遮挡免费观看| 欧美日韩福利视频一区二区| 在线观看人妻少妇| 国产高清videossex| 十八禁网站网址无遮挡| 咕卡用的链子| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情高清一区二区三区| 久久人妻av系列| 欧美乱码精品一区二区三区| 国产亚洲欧美在线一区二区| 怎么达到女性高潮| 91精品三级在线观看| 国产精品一区二区在线不卡| 精品一品国产午夜福利视频| 黄色片一级片一级黄色片| 飞空精品影院首页| 久久精品亚洲av国产电影网| 久热爱精品视频在线9| 纵有疾风起免费观看全集完整版| 我要看黄色一级片免费的| 老司机影院毛片| 精品国产国语对白av| 久久久国产精品麻豆| 国产精品电影一区二区三区 | 热99久久久久精品小说推荐| 欧美中文综合在线视频| 免费少妇av软件| 国产97色在线日韩免费| av天堂在线播放| 色婷婷av一区二区三区视频| av天堂在线播放| 两人在一起打扑克的视频| 女人高潮潮喷娇喘18禁视频| 性少妇av在线| 国产亚洲精品第一综合不卡| av一本久久久久| 国产精品九九99| 我要看黄色一级片免费的| 日韩大码丰满熟妇| 日本五十路高清| 一级毛片电影观看| 视频区欧美日本亚洲| 一边摸一边抽搐一进一出视频| 香蕉国产在线看| 在线观看人妻少妇| 国产日韩一区二区三区精品不卡| 大陆偷拍与自拍| 变态另类成人亚洲欧美熟女 | 在线观看免费视频网站a站| 黄色怎么调成土黄色| 免费观看人在逋| 日本黄色视频三级网站网址 | 国产精品久久久久成人av| 超色免费av| 十八禁高潮呻吟视频| 在线播放国产精品三级| 日韩熟女老妇一区二区性免费视频| 久久久久网色| 美女主播在线视频| 午夜福利欧美成人| 精品少妇久久久久久888优播| 肉色欧美久久久久久久蜜桃| 精品一区二区三区视频在线观看免费 | 日韩成人在线观看一区二区三区| 9色porny在线观看| 中文字幕人妻丝袜制服| 久久久久久免费高清国产稀缺| 国产97色在线日韩免费| 欧美黄色片欧美黄色片| 高清欧美精品videossex| 91国产中文字幕| 色在线成人网| 50天的宝宝边吃奶边哭怎么回事| 中文字幕另类日韩欧美亚洲嫩草| 中文亚洲av片在线观看爽 | 美国免费a级毛片| 一区二区三区精品91| 精品亚洲成a人片在线观看| 91大片在线观看| 亚洲性夜色夜夜综合| 午夜两性在线视频| 在线av久久热| 亚洲精品美女久久久久99蜜臀| 欧美性长视频在线观看| 欧美日韩视频精品一区| 欧美在线黄色| 丁香六月欧美| 久久精品91无色码中文字幕| 人人妻,人人澡人人爽秒播| 黑人猛操日本美女一级片| 国产免费现黄频在线看| 黑人巨大精品欧美一区二区mp4| 日本撒尿小便嘘嘘汇集6| 亚洲第一青青草原| 欧美 亚洲 国产 日韩一| 波多野结衣一区麻豆| 国产不卡一卡二| 国产成人免费无遮挡视频| 亚洲精华国产精华精| 亚洲精品在线观看二区| 精品第一国产精品| 亚洲av第一区精品v没综合| 12—13女人毛片做爰片一| 亚洲avbb在线观看| 久久久国产精品麻豆| 女同久久另类99精品国产91| 欧美黄色淫秽网站| 捣出白浆h1v1| 水蜜桃什么品种好| 免费不卡黄色视频| 中文字幕人妻丝袜一区二区| 五月天丁香电影| 黄色片一级片一级黄色片| 热99久久久久精品小说推荐| 一本久久精品| 国产熟女午夜一区二区三区| 欧美黑人精品巨大| 91九色精品人成在线观看| 欧美精品一区二区免费开放| 国产精品久久久av美女十八| 丁香六月欧美| 亚洲av国产av综合av卡| 丁香六月天网| 国产99久久九九免费精品| av超薄肉色丝袜交足视频| 精品亚洲成a人片在线观看| 高潮久久久久久久久久久不卡| 99国产精品一区二区蜜桃av | 叶爱在线成人免费视频播放| 欧美亚洲日本最大视频资源| 亚洲欧洲日产国产| 老司机影院毛片| 国产精品久久久久久精品古装| 国产激情久久老熟女| 黑丝袜美女国产一区| 国产精品久久久久久精品古装| 国产激情久久老熟女| 99精国产麻豆久久婷婷| 老汉色∧v一级毛片| svipshipincom国产片| 叶爱在线成人免费视频播放| 亚洲国产欧美日韩在线播放| 黑人猛操日本美女一级片| 欧美激情高清一区二区三区| 久久久久久久大尺度免费视频| 国产片内射在线| 亚洲av第一区精品v没综合| 久久人人97超碰香蕉20202| 精品第一国产精品| 交换朋友夫妻互换小说| 新久久久久国产一级毛片| 久久青草综合色| 久久精品成人免费网站| 国产在线观看jvid| 丝袜美足系列| 一区在线观看完整版| 他把我摸到了高潮在线观看 | 日本av免费视频播放|