• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer

    2022-07-11 03:39:22SifengMoXiohongHuYumiTnkLinZhouChenhnPengNhokoKsiHizuruNkjimShungoKtoKtsumiUchiym
    Chinese Chemical Letters 2022年6期

    Sifeng Mo,Xiohong Hu,Yumi Tnk,Lin Zhou,Chenhn Peng,Nhoko Ksi,Hizuru Nkjim,Shungo Kto,Ktsumi Uchiym

    a Department of Applied Chemistry,Graduate School of Urban Environmental Sciences,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    b University Education Center,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    Keywords:Microchip Valve Flow control NIPPAm Chemo-mechanical switch Thermo-responsive polymer

    ABSTRACT Microfluidic devices have become a powerful tool for chemical and biologic applications.To control different functional parts on the microchip,valve plays a key role in the device.In conventional methods,physio-mechanical valves are usually used on microfluidic chip.Herein,we reported a chemo-mechanical switchable valve on microfluidic chip by using a thermally responsive block copolymer.The wettability changes of capillary with copolymer modification on inner surface were investigated to verify the function as a valve.Capillaries with modification of poly-(N-isopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAm-co-HFIPA)) with a 20% HFIPA was demonstrated capable of control aqueous solution stop or go through.Then short capillaries with copolymer modification were integrated in microchannels as valves.With the temperature changing around lower critical solution temperature (LCST),the integrated chemo-mechanical switchable valve exhibited excellent “OPEN–CLOSE’’behavior for microflow control.After optimization of the block copolymer sequences and molar ratio,a switching time as low as 20 s was achieved.The developed micro valve was demonstrated effective for flow control on microchip.

    Microfluidic chip developed from 1990s has been widely used for sample pretreatment [1,2],immunoassay [3-5],chemical synthesis [6,7],cell analysis [8-10].Valve,as one of the key function parts,helps to control microflow in microfluidic device in desirable sequence [11,12].Various types of valves have been integrated in microchannels,including shut-off valve [13],normally closed valve [14,15],monolithic elastomer valves [16],and surface tension plug [17].Limited to the large size,most of the valves were difficult to integrate into channels on microscale [13–15].Surface tension plug was easy to integrate in microchannel,but it is not reversible.Recent years,Smart valves have attracted considerable attentions for dynamically controlling microflow transport [18,19].Micro/nano structured channels modified with stimuli-responsive polymers are frequently be designed as switchable smart valves[20].

    Poly(N-isopropylacrylamide) (PNIPAAm) has been reported as an excellent thermal responsive polymer that owns a lower critical solution temperature (LCST) [21].The LCST could be adjust as wish when designing different copolymer with PNIPAAm [22,23].Surface grafted with the polymer could change its hydrophilicity as the environment temperature changes[24].Most studies have focused on surface property change and drug release [25,26].However,the design of a practical switchable valve based on PNIPAAm on microchip for temperature controlling the transportation of microflow remains challenging.

    In this work,we report on a switchable valve integrated on microfluidic chip by using a thermally responsive block copolymer for temperature controlling the transportation of microflow.As illustrated in Fig.1a,a T-shaped microfluidic chip was designed with two functional switchable valve (Valve 1 and Valve 2) in the two branch channels.The two branch channels with two individual valve were positioned on two individual thermoelectric cooler for temperature control.By adjusting the temperatures of the two thermoelectric cooler,the injected flow could be controlled to flow left or flow right only.The results suggested the valve could switch in short time (20 s).The switchable valve was fabricated by grafting a thermally responsive block copolymer brush poly-(Nisopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAmco-HFIPA)) on the inner side of glass capillaries which were then integrated in the micro channels (Fig.1b).As demonstrated in other reports,PNIPAAm was never hydrophobic whenever the temperature was above or below the LCST [27].Therefore,HFIPA was added to adjust hydrophilicity and hydrophobicity while PNIPAAm governed the thermal properties.In design,high molecule ratio of HFIPA would cause a higher contact angel (CA) that mean higher hydrophobicity.On the modified surface,the C=O and N?H groups of the PNIPPAm and (P(NIPAAm-co-HFIPA) parts generated intermolecular hydrogen bonding with water molecules,which would enhance the hydrophilicity (Fig.1b).In contrast,the C?F groups of the (P(NIPAAm-co-HFIPA) part would result in hydrophobic (Fig.1b).When the temperature (T) was below the LCST (Fig.1c),the polymer brush had a stretched state where the inter-molecule hydrogen bonding between C=O/N?H and water molecules contributed to the hydrophilic property.As a result,the aqueous solution could pass the channel easily,where the valve state was defined as “OPEN”.In contrast,at the temperature above the LCST,the inner surface of the valve became hydrophobic because of the intra-molecule hydrogen bonding between C=O and N-H while C=O and N?H group difficult to interact with water molecules.The valve with hydrophobic inner surface would stop aqueous solution to go through the valve,where the valve state was defined as “CLOSE” (Fig.1d).Therefore,the valve state could be controlled by temperature to control the flow stream in the microchannels.

    Fig.1.Chemo-mechanical switchable valve on microfluidic chip for flow control.(a) Illustration of the integrated device with switchable valves.(b) Structure of the copolymer brush.(c) Valve at the “OPEN” state when temperature was below the LCST.(d) Valve at the “CLOSE” state when temperature was below the LCST.

    To graft the P(NIPAAm-co-HFIPA to the substrate,the substrate(capillary or glass plate) was first cleaned and modified to generate –OH groups on the surface.Then,the substrate was aminated by treating with 3-aminopropyltrimethoxysilane (APTMS) and amidated by treatment with 2-bromoisobutyryl bromide (BBiB).In polymerization process,the substrate was reacted with NIPAAm solution for 1 h at 60 °C.The reaction would allow to proceed from another 1 h at 60 °C after addition of HFIPA.The entire polymerization details are described in Supporting Information and Fig.S1 (Supporting information).Energy-dispersive X-ray spectroscopy(EDX) was used to investigated the surface chemical composites.Compare to the Energy-dispersive X-ray spectroscopy (EDX) analysis of bare slide glass (Fig.2a),the element contents of carbon and nitrogen (Fig.2b) increased significantly after amine functionalization.The peak relative to bromine (Fig.2c) from BBiB was observed after amidation.After polymerization,the peak relative to fluorine (Fig.2d) from HFIPA was observed.The results indicated that the polymerization of P(NIPAAm-co-HFIPA) on the substrate was achieved.

    To confirm the function of the valve,the surface tension of polymerization substrate should have sufficient change between hydrophilicity and hydrophobicity.For achievement of the “OPEN”state,the water contact angle need to be below 90°.Meanwhile,the water contact angle need to be above 90° after switch to achieve the state of “CLOSE”.To improve the switch function of the valve,HFIPA was added in the polymerization process to ensure the water CA to be above 90° when the temperature was higher than LCST.Before applying to glass capillary,the optimization of HFIPA ratio was carried out by polymerize the copolymer on slide glass substrate.The water CA on the prepared substrate was measured by a self-assembled system under conditions of saturated humidity (Fig.S2 in Supporting information).A thermoelectric cooler (ECE-F15P-D12,OHM Electric Co.,Ltd.,Japan) was used to control the temperature during measurements.After 5 μL of deionized water was dropped onto the substrate surface and became stable,Image of the water droplet on substrate were recorded by a Dino-Lite digital microscope.The water CA were measured according to half angle formula (Fig.S3 in Supporting information).For one substrate,the water CAs at different positon were measured,and the water CA angle of the substrate was determined to be the average.

    As shown in Fig.3a,the water CA of the substrate raised with the increasing ratio of HFIPA.When the HFIPA ratio reached 20%,the water CA was below 90° (69.2° ± 1.2°) at 20 °C and above 90°(96.0° ± 1.1°) at 40 °C.The ratio of HFIPA was optimized as 20%.Moreover,the response time was also investigated.The substrate placed on the temperature control plate with a temperature of 20°C,the water CA was measured.Then,the substrate with droplet was moved carefully to another temperature plate with a temperature of 40 °C,and the water CA was recording with different time.The water CA increased quickly with the passage of time increases,and reach a maximum after 20 s (Fig.3b).The results suggested that the copolymer with 20% HFIPA was suitable for valve manufacture.Satisfactorily,the response time was as short as 20 s,which was capable of flow control in microchannels.

    After optimization of HFIPA ratio,the polymerization was applied to Square-Miniature Hollow Glass Tubing.The glass capillary owned a square inner diameter of 500 μm and a square outer diameter of 700 μm (Fig.S4 in Supporting information).The glass capillaries were modified using the same polymerization as before a HFIPA ratio of 20%.In the experiment,the modified capillaries were inserted in water with different temperature.Image was obtained using a digital camera when the height (H) of water in the capillary became stable.

    As shown in Fig.4a,when the temperature of water was kept at 20 °C that was lower than the LCST (TLCST),Hwas negative value because of the hydrophobic inner surface as we discussed before (Fig.4a).TheHdropped as raising the temperature of the environment water.With the decrease of the temperature,the height of water in capillary reached a maximum (1.1 ± 0.2 mm) at the temperature of 20°C and kept constant (Fig.4b).TheHwith positive value mean that the water could be injected the capillary easily in further experiments.With the increase of the temperature,the height of water in capillary reached a minimum (?6.1 ± 0.2) at 40 °C and kept constant then (Fig.4b).As the temperature increased from 10 °C to 50 °C,the H changed from positive values to negative values(Fig.4c).TheHwith negative value mean that the water would be difficult to be injected into and go through the capillary in further experiments.All those results indicated that the capillary with polymerization of P(NIPAAm-co-HFIPA) was ready for use as valve in microchannel.

    Fig.2.Characterization of the substrate with each polymerization step by EDX.(a) Bare slide glass.(b) Substrate after amine functionalization.(c) Substrate after Amidation.(d) Substrate after polymerization.

    Fig.3.Optimization of the copolymer on slide glass.(a) Water CA on slide glass polymerized with different ratios of HFIPA (0,10%,20%).(b) The water CA at different heating time on a temperature control plate of 40 °C.

    The microfluidic chip was designed with “T” shape.All channels were with a width of 700 μm and a height of 700 μm.The Microfluidic chip was fabricated using polydimethylsiloxane (PDMS)by standard soft lithography and replica molding techniques as previous report [28].Before the PDMS layer with channel was irreversibly sealed with another PDMS as substrate layer by oxygen plasma treatment (Electro-technic products,Inc.,Japan),two individual capillaries with polymerization function as valves were placed in the two downstream microchannels (Fig.S5 in Supporting information).The two downstream microchannel parts were placed on two individual thermoelectric coolers for temperature control.In all the application experiments,temperature of 20 °C was used to turn the valve to “OPEN” state,while temperature of 40 °C was used to turn the valve to “CLOSE” state.When the left thermoelectric cooler was set at 20 °C and the right one was set at 40 °C,an aqueous solution containing 200 μmol/L Rhodamine 6G at a speed of 1000 μL/h was injected into the microchannel.The results showed that the injected solution flowed into the left downstream microchannel which no solution flowed into the right downstream microchannel (Fig.4d).Instead,the injection solution flowed right (Fig.4e) when thermoelectric cooler was set at 40 °C.All those results demonstrated that the valve state could turn to“OPEN” and “CLOSE” conveniently by changing the temperature.In further applications,the total system will include cell culture part,valve part,and assay part.Each part can be controlled with desirable temperature.Therefore,the temperature in the valve part will not limit the temperature requirements in assay part.The reported valve made from polymer brush,thus it could work for limited times in real sample detection because of the adsorptions of metabolites from cells.The property of the valve depended on brush density and molecule ratio of HFIPA.By changing the percent of HFIPA,the LCST could be adjusted to meet the requirements of different applications.

    Fig.4.Conformation of the hydrophobicity and hydrophilicity switch in polymerized glass and application as a valve in microchannel.(a) The height of water (H)inside the capillary at 20 °C.(b) The height of water (H) inside the capillary at 40°C.(c) The H at different temperatures.(d) Flow direction when Valve 1 was “OPEN”and Valve 2 was “CLOSE”.(e) Flow direction when Valve 1 was “CLOSE” and Valve 2 was “OPEN”.

    In summary,we have developed a switchable valve that is capable of integrating in microchannel for control flow stream using a thermally responsive block copolymer.The ratio of HFIPA at 20% in the P(NIPAAm-co-HFIPA) was demonstrated to be optimal.The water contact angle changed from 69oto 96owhen then temperature changed from 20 °C to 40 °C.The integrated valve in microchannel showed excellent performance on flow control.The method provides a potential approach for valve manufacture on microfluidic chip,which will be much benefit for integration of various function parts.In further applications,every channel with valve could connect with a functional assay channel where different metabolites from cells could been analyzed.The valve channel could also connect with mass spectrometer.By controlling the valve,metabolites at different time could be collected and detected.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgment

    We acknowledge the financial support from JSPS KAKENHI Grants (Nos.JP21K14653,JP20K22555 and JP20K05557).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.065.

    亚洲欧美精品自产自拍| 女的被弄到高潮叫床怎么办| a级毛片黄视频| 香蕉精品网在线| 一级毛片aaaaaa免费看小| 欧美最新免费一区二区三区| 欧美日韩视频精品一区| 亚洲精品国产色婷婷电影| 男人爽女人下面视频在线观看| 亚洲少妇的诱惑av| 久久久国产精品麻豆| 国产熟女午夜一区二区三区 | 亚洲丝袜综合中文字幕| 美女脱内裤让男人舔精品视频| 亚洲美女黄色视频免费看| 精品一区在线观看国产| 人妻少妇偷人精品九色| 久久狼人影院| 男女免费视频国产| 国产伦精品一区二区三区视频9| 黄片播放在线免费| 日韩 亚洲 欧美在线| 美女视频免费永久观看网站| 久久人人爽人人片av| 久久久久久久久久久久大奶| 婷婷色综合大香蕉| 国产成人免费观看mmmm| 亚洲欧洲日产国产| 久久国产亚洲av麻豆专区| 丝袜脚勾引网站| 欧美丝袜亚洲另类| 国产精品99久久99久久久不卡 | 中文字幕制服av| 精品亚洲乱码少妇综合久久| 国产白丝娇喘喷水9色精品| 婷婷色综合大香蕉| 免费观看性生交大片5| 亚洲成人一二三区av| 午夜福利,免费看| 最新的欧美精品一区二区| 黑人猛操日本美女一级片| 男人爽女人下面视频在线观看| 亚洲第一av免费看| 欧美精品一区二区大全| 一级片'在线观看视频| 国产精品久久久久成人av| 国产乱人偷精品视频| 久久精品人人爽人人爽视色| 国产精品秋霞免费鲁丝片| av在线播放精品| 亚洲国产欧美日韩在线播放| 黄色配什么色好看| 少妇丰满av| 日日摸夜夜添夜夜爱| 在线亚洲精品国产二区图片欧美 | 丝袜脚勾引网站| 免费人成在线观看视频色| 成人毛片60女人毛片免费| 啦啦啦在线观看免费高清www| 性色avwww在线观看| 涩涩av久久男人的天堂| 狠狠婷婷综合久久久久久88av| 亚洲综合色惰| 国产在视频线精品| 亚洲av在线观看美女高潮| 免费av不卡在线播放| 菩萨蛮人人尽说江南好唐韦庄| 毛片一级片免费看久久久久| 日日啪夜夜爽| 最近中文字幕2019免费版| 色婷婷av一区二区三区视频| 亚洲国产最新在线播放| 新久久久久国产一级毛片| 久久久久久久久久人人人人人人| www.色视频.com| 亚洲国产最新在线播放| 新久久久久国产一级毛片| 国产毛片在线视频| 亚洲人成网站在线观看播放| 日韩中字成人| 女人精品久久久久毛片| 久久ye,这里只有精品| 99九九在线精品视频| 午夜激情福利司机影院| 欧美亚洲日本最大视频资源| 免费黄频网站在线观看国产| 我的老师免费观看完整版| 免费久久久久久久精品成人欧美视频 | 日韩,欧美,国产一区二区三区| 欧美人与性动交α欧美精品济南到 | 亚洲av二区三区四区| 九九久久精品国产亚洲av麻豆| 能在线免费看毛片的网站| 免费黄频网站在线观看国产| av网站免费在线观看视频| 男女国产视频网站| 嘟嘟电影网在线观看| 国产成人精品福利久久| 少妇人妻久久综合中文| av不卡在线播放| 国产色婷婷99| 视频在线观看一区二区三区| 国产综合精华液| 建设人人有责人人尽责人人享有的| 国产一级毛片在线| 亚洲精品色激情综合| 天堂8中文在线网| 精品人妻熟女av久视频| 简卡轻食公司| 秋霞在线观看毛片| 韩国高清视频一区二区三区| 久久久久久人妻| 欧美成人精品欧美一级黄| 久久国产精品男人的天堂亚洲 | 青春草视频在线免费观看| 成人亚洲精品一区在线观看| 亚洲精品乱码久久久久久按摩| 美女xxoo啪啪120秒动态图| 欧美成人精品欧美一级黄| 亚洲成色77777| 亚洲综合色惰| 最近2019中文字幕mv第一页| 在线精品无人区一区二区三| 色婷婷av一区二区三区视频| 欧美日韩av久久| 熟女av电影| 观看av在线不卡| 18禁在线无遮挡免费观看视频| 日本91视频免费播放| 久久99一区二区三区| av一本久久久久| 妹子高潮喷水视频| 女性生殖器流出的白浆| 国产男人的电影天堂91| 人妻系列 视频| av有码第一页| 国产欧美另类精品又又久久亚洲欧美| 一级黄片播放器| 欧美激情极品国产一区二区三区 | 日韩欧美精品免费久久| av专区在线播放| 一区二区三区精品91| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站| 青春草国产在线视频| 女性生殖器流出的白浆| 一边亲一边摸免费视频| 在线观看www视频免费| 国产成人精品福利久久| 久久人人爽人人爽人人片va| 嘟嘟电影网在线观看| 人体艺术视频欧美日本| 欧美少妇被猛烈插入视频| 亚洲成人一二三区av| 成人亚洲欧美一区二区av| 午夜激情久久久久久久| 久久精品久久久久久久性| 国产在线免费精品| 777米奇影视久久| 麻豆精品久久久久久蜜桃| av有码第一页| 日本猛色少妇xxxxx猛交久久| 少妇熟女欧美另类| 亚洲经典国产精华液单| 丰满乱子伦码专区| 九九爱精品视频在线观看| 免费观看在线日韩| 91久久精品国产一区二区三区| 中文字幕制服av| 亚洲欧美一区二区三区黑人 | 九色成人免费人妻av| 免费看av在线观看网站| 欧美三级亚洲精品| 午夜免费鲁丝| 国产一区有黄有色的免费视频| 亚洲一区二区三区欧美精品| 国产免费一区二区三区四区乱码| 午夜免费观看性视频| 免费人妻精品一区二区三区视频| 一区二区三区免费毛片| 亚洲天堂av无毛| 插阴视频在线观看视频| 久久毛片免费看一区二区三区| 国产欧美日韩综合在线一区二区| 国产片特级美女逼逼视频| 国产成人一区二区在线| 亚洲av男天堂| 建设人人有责人人尽责人人享有的| 欧美最新免费一区二区三区| 成人影院久久| 乱码一卡2卡4卡精品| 国产黄色免费在线视频| 能在线免费看毛片的网站| 国产又色又爽无遮挡免| 亚洲欧美成人综合另类久久久| 亚洲四区av| 午夜福利,免费看| 一级毛片 在线播放| 午夜激情福利司机影院| 波野结衣二区三区在线| 国产高清国产精品国产三级| videos熟女内射| 免费高清在线观看视频在线观看| 性色avwww在线观看| 欧美激情 高清一区二区三区| 日日撸夜夜添| 热99国产精品久久久久久7| 乱码一卡2卡4卡精品| 亚洲,一卡二卡三卡| 国产免费一区二区三区四区乱码| 蜜桃国产av成人99| 男女免费视频国产| 国产成人免费无遮挡视频| 夜夜爽夜夜爽视频| 国产一区二区三区av在线| 精品国产国语对白av| av视频免费观看在线观看| 日本wwww免费看| 黄色视频在线播放观看不卡| 欧美激情极品国产一区二区三区 | 91精品国产国语对白视频| 欧美97在线视频| 少妇被粗大猛烈的视频| 欧美xxxx性猛交bbbb| 夫妻性生交免费视频一级片| 9色porny在线观看| 亚洲三级黄色毛片| 日韩不卡一区二区三区视频在线| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 久久综合国产亚洲精品| 男女无遮挡免费网站观看| 精品国产乱码久久久久久小说| 水蜜桃什么品种好| 精品国产一区二区三区久久久樱花| 丰满迷人的少妇在线观看| tube8黄色片| 制服诱惑二区| a级毛片黄视频| 亚洲av二区三区四区| 制服人妻中文乱码| 国产日韩欧美在线精品| 久久久久精品久久久久真实原创| 国产精品一二三区在线看| 国产精品久久久久久久电影| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 色吧在线观看| 中文字幕亚洲精品专区| 这个男人来自地球电影免费观看 | 免费高清在线观看视频在线观看| 国产精品嫩草影院av在线观看| 在线精品无人区一区二区三| av在线观看视频网站免费| 两个人的视频大全免费| 日本免费在线观看一区| 五月伊人婷婷丁香| av国产久精品久网站免费入址| 一级毛片aaaaaa免费看小| 成人手机av| 久久ye,这里只有精品| 妹子高潮喷水视频| 欧美97在线视频| 国产av码专区亚洲av| 在线观看国产h片| av在线老鸭窝| 亚洲欧洲国产日韩| 999精品在线视频| 日韩人妻高清精品专区| 2021少妇久久久久久久久久久| 亚洲欧美成人精品一区二区| 日韩av免费高清视频| 国产在线一区二区三区精| 欧美亚洲 丝袜 人妻 在线| 美女内射精品一级片tv| 亚洲欧美一区二区三区国产| 免费av中文字幕在线| 女性被躁到高潮视频| 久久亚洲国产成人精品v| 看非洲黑人一级黄片| 99久国产av精品国产电影| 国产毛片在线视频| 日日撸夜夜添| 亚洲人与动物交配视频| 亚洲性久久影院| 超色免费av| 中国国产av一级| 婷婷成人精品国产| 在线看a的网站| 男男h啪啪无遮挡| 人妻一区二区av| 精品久久国产蜜桃| 午夜影院在线不卡| 亚洲一级一片aⅴ在线观看| 久久久久久人妻| 午夜av观看不卡| 亚洲精品第二区| 我的老师免费观看完整版| 一级毛片我不卡| 少妇高潮的动态图| 久久青草综合色| 久久毛片免费看一区二区三区| 日韩中文字幕视频在线看片| videos熟女内射| 亚洲欧洲国产日韩| 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 国产 精品1| 成年美女黄网站色视频大全免费 | 一个人看视频在线观看www免费| 男女边吃奶边做爰视频| 欧美97在线视频| 色吧在线观看| 午夜福利视频在线观看免费| 日韩不卡一区二区三区视频在线| 亚洲精品国产av蜜桃| 黄片无遮挡物在线观看| 在线观看www视频免费| 视频在线观看一区二区三区| 少妇人妻精品综合一区二区| 22中文网久久字幕| 国产精品99久久99久久久不卡 | 51国产日韩欧美| 国产成人精品无人区| 美女cb高潮喷水在线观看| 久久精品人人爽人人爽视色| 美女福利国产在线| 久久久国产精品麻豆| 国精品久久久久久国模美| 国产成人一区二区在线| 天堂8中文在线网| 在线播放无遮挡| 午夜久久久在线观看| 又黄又爽又刺激的免费视频.| 亚洲精品日韩av片在线观看| 欧美激情国产日韩精品一区| 日本免费在线观看一区| 久久久久久久久久成人| 久久久久久久久久成人| av又黄又爽大尺度在线免费看| 欧美日韩av久久| 国产成人一区二区在线| 国产欧美日韩综合在线一区二区| 色婷婷久久久亚洲欧美| 岛国毛片在线播放| 一级片'在线观看视频| 性色av一级| 99精国产麻豆久久婷婷| 亚洲av福利一区| 午夜激情福利司机影院| videosex国产| 男女边吃奶边做爰视频| 狠狠精品人妻久久久久久综合| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 免费少妇av软件| 91aial.com中文字幕在线观看| 中文字幕精品免费在线观看视频 | 日韩欧美一区视频在线观看| 99热国产这里只有精品6| a级毛片黄视频| 国产成人freesex在线| 777米奇影视久久| 又粗又硬又长又爽又黄的视频| √禁漫天堂资源中文www| 婷婷成人精品国产| 亚洲人成77777在线视频| 丰满乱子伦码专区| 国产乱人偷精品视频| 男女啪啪激烈高潮av片| 久久韩国三级中文字幕| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 99热这里只有是精品在线观看| 欧美三级亚洲精品| 免费观看性生交大片5| av专区在线播放| 国产一区二区在线观看av| 国产精品一二三区在线看| 久久人妻熟女aⅴ| 国产av国产精品国产| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 最近2019中文字幕mv第一页| 欧美精品一区二区大全| 韩国av在线不卡| 久久99蜜桃精品久久| 另类精品久久| 26uuu在线亚洲综合色| 自线自在国产av| 精品一区二区免费观看| 国产成人精品一,二区| 亚洲综合色网址| 免费少妇av软件| 国产精品免费大片| 97超碰精品成人国产| 久久午夜综合久久蜜桃| 不卡视频在线观看欧美| 亚洲婷婷狠狠爱综合网| 成年美女黄网站色视频大全免费 | 欧美三级亚洲精品| 美女国产高潮福利片在线看| 国产女主播在线喷水免费视频网站| av女优亚洲男人天堂| 日韩一本色道免费dvd| 少妇熟女欧美另类| 观看av在线不卡| 亚洲美女搞黄在线观看| 我的女老师完整版在线观看| 在线观看免费视频网站a站| 国产片内射在线| 国产毛片在线视频| 卡戴珊不雅视频在线播放| 久久精品人人爽人人爽视色| 久久国内精品自在自线图片| 男的添女的下面高潮视频| 韩国av在线不卡| 亚洲色图 男人天堂 中文字幕 | 欧美97在线视频| 夫妻午夜视频| 人妻一区二区av| a级毛片免费高清观看在线播放| 亚洲第一av免费看| 久久这里有精品视频免费| 在线看a的网站| 卡戴珊不雅视频在线播放| 免费看不卡的av| 久久久国产一区二区| 久久久久久人妻| av福利片在线| 欧美 日韩 精品 国产| 天天躁夜夜躁狠狠久久av| 黑人欧美特级aaaaaa片| 欧美精品高潮呻吟av久久| 欧美亚洲 丝袜 人妻 在线| 99久久综合免费| 久久久久久久久久成人| 啦啦啦视频在线资源免费观看| 久久国产精品大桥未久av| 国内精品宾馆在线| 国产极品天堂在线| 999精品在线视频| 亚洲国产av新网站| 久久狼人影院| 在线观看美女被高潮喷水网站| 精品酒店卫生间| 99九九在线精品视频| 满18在线观看网站| 性高湖久久久久久久久免费观看| 亚洲精品国产av成人精品| 欧美精品一区二区大全| 蜜桃国产av成人99| 99热网站在线观看| 80岁老熟妇乱子伦牲交| av国产精品久久久久影院| 最近中文字幕2019免费版| a级毛片黄视频| 免费人妻精品一区二区三区视频| 亚洲不卡免费看| 大码成人一级视频| 中国美白少妇内射xxxbb| 黄色毛片三级朝国网站| 国产免费福利视频在线观看| 久久99热6这里只有精品| 精品久久久久久久久亚洲| 精品亚洲乱码少妇综合久久| 亚洲欧洲日产国产| 久久鲁丝午夜福利片| 精品久久久精品久久久| 国内精品宾馆在线| 日韩成人av中文字幕在线观看| 成人综合一区亚洲| 菩萨蛮人人尽说江南好唐韦庄| 婷婷成人精品国产| 亚洲激情五月婷婷啪啪| 美女国产高潮福利片在线看| 中文字幕人妻丝袜制服| 美女内射精品一级片tv| 女性生殖器流出的白浆| 国产高清有码在线观看视频| 国产成人精品在线电影| av女优亚洲男人天堂| 制服诱惑二区| 又黄又爽又刺激的免费视频.| 日韩强制内射视频| videosex国产| 简卡轻食公司| 精品国产乱码久久久久久小说| 久久久久久久亚洲中文字幕| 亚洲国产精品一区三区| 成人亚洲欧美一区二区av| 欧美精品亚洲一区二区| 久久精品久久久久久噜噜老黄| 国产黄片视频在线免费观看| 久久久久久久久久久免费av| 丝袜脚勾引网站| 免费观看a级毛片全部| av黄色大香蕉| 狂野欧美激情性xxxx在线观看| 国产成人精品福利久久| 亚洲国产色片| 久久精品国产自在天天线| 国产成人精品一,二区| 一级二级三级毛片免费看| 亚洲人成77777在线视频| 女性被躁到高潮视频| 91aial.com中文字幕在线观看| av在线app专区| 国产片内射在线| 成人亚洲精品一区在线观看| 最近2019中文字幕mv第一页| 视频区图区小说| 精品视频人人做人人爽| 亚洲精品av麻豆狂野| 制服丝袜香蕉在线| 久热久热在线精品观看| 啦啦啦在线观看免费高清www| 精品少妇黑人巨大在线播放| 91精品国产国语对白视频| 纵有疾风起免费观看全集完整版| 亚洲av不卡在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久久久成人| 热99国产精品久久久久久7| 亚洲美女黄色视频免费看| 丝袜喷水一区| 国产成人av激情在线播放 | 女人精品久久久久毛片| a级片在线免费高清观看视频| 99久久综合免费| 亚洲一区二区三区欧美精品| 精品亚洲乱码少妇综合久久| 各种免费的搞黄视频| 欧美一级a爱片免费观看看| 高清av免费在线| 国国产精品蜜臀av免费| 国产亚洲精品第一综合不卡 | 婷婷色麻豆天堂久久| 亚洲欧美一区二区三区国产| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 亚洲精品日韩av片在线观看| 纯流量卡能插随身wifi吗| 亚洲美女视频黄频| 新久久久久国产一级毛片| xxx大片免费视频| 一区二区日韩欧美中文字幕 | 大片免费播放器 马上看| 亚洲精品亚洲一区二区| 精品亚洲成a人片在线观看| 久久影院123| 欧美日韩综合久久久久久| 亚洲精品成人av观看孕妇| av免费在线看不卡| 99国产精品免费福利视频| 中文乱码字字幕精品一区二区三区| 看非洲黑人一级黄片| 精品人妻在线不人妻| 亚洲精品久久午夜乱码| 欧美精品人与动牲交sv欧美| 亚洲av在线观看美女高潮| 国产日韩一区二区三区精品不卡 | av卡一久久| 午夜日本视频在线| 伊人久久国产一区二区| 青青草视频在线视频观看| 亚洲国产精品一区二区三区在线| 久久久久久久国产电影| 男女高潮啪啪啪动态图| 精品国产露脸久久av麻豆| 免费看av在线观看网站| 国产亚洲欧美精品永久| 少妇高潮的动态图| 亚洲精品第二区| 一本色道久久久久久精品综合| 99re6热这里在线精品视频| 国产老妇伦熟女老妇高清| 国产极品粉嫩免费观看在线 | 一边亲一边摸免费视频| 亚洲成色77777| 丰满饥渴人妻一区二区三| 亚洲综合色网址| 国产免费现黄频在线看| 国产乱来视频区| 亚洲国产欧美在线一区| 五月开心婷婷网| 久久精品夜色国产| 中国三级夫妇交换| 亚洲国产日韩一区二区| 最近的中文字幕免费完整| 中国三级夫妇交换| 看免费成人av毛片| 狂野欧美白嫩少妇大欣赏| 中国三级夫妇交换| 欧美激情极品国产一区二区三区 | 国产成人一区二区在线| 国产片特级美女逼逼视频| 亚洲国产av影院在线观看| 国产精品99久久久久久久久| 国产精品一区www在线观看| 99热网站在线观看| 欧美日本中文国产一区发布| 在线免费观看不下载黄p国产| 日韩三级伦理在线观看| 看十八女毛片水多多多| 丰满饥渴人妻一区二区三| 亚洲内射少妇av| 国产有黄有色有爽视频| 午夜精品国产一区二区电影| 中文字幕最新亚洲高清| 我的老师免费观看完整版| 国产乱人偷精品视频| 最近中文字幕高清免费大全6|