• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer

    2022-07-11 03:39:22SifengMoXiohongHuYumiTnkLinZhouChenhnPengNhokoKsiHizuruNkjimShungoKtoKtsumiUchiym
    Chinese Chemical Letters 2022年6期

    Sifeng Mo,Xiohong Hu,Yumi Tnk,Lin Zhou,Chenhn Peng,Nhoko Ksi,Hizuru Nkjim,Shungo Kto,Ktsumi Uchiym

    a Department of Applied Chemistry,Graduate School of Urban Environmental Sciences,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    b University Education Center,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    Keywords:Microchip Valve Flow control NIPPAm Chemo-mechanical switch Thermo-responsive polymer

    ABSTRACT Microfluidic devices have become a powerful tool for chemical and biologic applications.To control different functional parts on the microchip,valve plays a key role in the device.In conventional methods,physio-mechanical valves are usually used on microfluidic chip.Herein,we reported a chemo-mechanical switchable valve on microfluidic chip by using a thermally responsive block copolymer.The wettability changes of capillary with copolymer modification on inner surface were investigated to verify the function as a valve.Capillaries with modification of poly-(N-isopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAm-co-HFIPA)) with a 20% HFIPA was demonstrated capable of control aqueous solution stop or go through.Then short capillaries with copolymer modification were integrated in microchannels as valves.With the temperature changing around lower critical solution temperature (LCST),the integrated chemo-mechanical switchable valve exhibited excellent “OPEN–CLOSE’’behavior for microflow control.After optimization of the block copolymer sequences and molar ratio,a switching time as low as 20 s was achieved.The developed micro valve was demonstrated effective for flow control on microchip.

    Microfluidic chip developed from 1990s has been widely used for sample pretreatment [1,2],immunoassay [3-5],chemical synthesis [6,7],cell analysis [8-10].Valve,as one of the key function parts,helps to control microflow in microfluidic device in desirable sequence [11,12].Various types of valves have been integrated in microchannels,including shut-off valve [13],normally closed valve [14,15],monolithic elastomer valves [16],and surface tension plug [17].Limited to the large size,most of the valves were difficult to integrate into channels on microscale [13–15].Surface tension plug was easy to integrate in microchannel,but it is not reversible.Recent years,Smart valves have attracted considerable attentions for dynamically controlling microflow transport [18,19].Micro/nano structured channels modified with stimuli-responsive polymers are frequently be designed as switchable smart valves[20].

    Poly(N-isopropylacrylamide) (PNIPAAm) has been reported as an excellent thermal responsive polymer that owns a lower critical solution temperature (LCST) [21].The LCST could be adjust as wish when designing different copolymer with PNIPAAm [22,23].Surface grafted with the polymer could change its hydrophilicity as the environment temperature changes[24].Most studies have focused on surface property change and drug release [25,26].However,the design of a practical switchable valve based on PNIPAAm on microchip for temperature controlling the transportation of microflow remains challenging.

    In this work,we report on a switchable valve integrated on microfluidic chip by using a thermally responsive block copolymer for temperature controlling the transportation of microflow.As illustrated in Fig.1a,a T-shaped microfluidic chip was designed with two functional switchable valve (Valve 1 and Valve 2) in the two branch channels.The two branch channels with two individual valve were positioned on two individual thermoelectric cooler for temperature control.By adjusting the temperatures of the two thermoelectric cooler,the injected flow could be controlled to flow left or flow right only.The results suggested the valve could switch in short time (20 s).The switchable valve was fabricated by grafting a thermally responsive block copolymer brush poly-(Nisopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAmco-HFIPA)) on the inner side of glass capillaries which were then integrated in the micro channels (Fig.1b).As demonstrated in other reports,PNIPAAm was never hydrophobic whenever the temperature was above or below the LCST [27].Therefore,HFIPA was added to adjust hydrophilicity and hydrophobicity while PNIPAAm governed the thermal properties.In design,high molecule ratio of HFIPA would cause a higher contact angel (CA) that mean higher hydrophobicity.On the modified surface,the C=O and N?H groups of the PNIPPAm and (P(NIPAAm-co-HFIPA) parts generated intermolecular hydrogen bonding with water molecules,which would enhance the hydrophilicity (Fig.1b).In contrast,the C?F groups of the (P(NIPAAm-co-HFIPA) part would result in hydrophobic (Fig.1b).When the temperature (T) was below the LCST (Fig.1c),the polymer brush had a stretched state where the inter-molecule hydrogen bonding between C=O/N?H and water molecules contributed to the hydrophilic property.As a result,the aqueous solution could pass the channel easily,where the valve state was defined as “OPEN”.In contrast,at the temperature above the LCST,the inner surface of the valve became hydrophobic because of the intra-molecule hydrogen bonding between C=O and N-H while C=O and N?H group difficult to interact with water molecules.The valve with hydrophobic inner surface would stop aqueous solution to go through the valve,where the valve state was defined as “CLOSE” (Fig.1d).Therefore,the valve state could be controlled by temperature to control the flow stream in the microchannels.

    Fig.1.Chemo-mechanical switchable valve on microfluidic chip for flow control.(a) Illustration of the integrated device with switchable valves.(b) Structure of the copolymer brush.(c) Valve at the “OPEN” state when temperature was below the LCST.(d) Valve at the “CLOSE” state when temperature was below the LCST.

    To graft the P(NIPAAm-co-HFIPA to the substrate,the substrate(capillary or glass plate) was first cleaned and modified to generate –OH groups on the surface.Then,the substrate was aminated by treating with 3-aminopropyltrimethoxysilane (APTMS) and amidated by treatment with 2-bromoisobutyryl bromide (BBiB).In polymerization process,the substrate was reacted with NIPAAm solution for 1 h at 60 °C.The reaction would allow to proceed from another 1 h at 60 °C after addition of HFIPA.The entire polymerization details are described in Supporting Information and Fig.S1 (Supporting information).Energy-dispersive X-ray spectroscopy(EDX) was used to investigated the surface chemical composites.Compare to the Energy-dispersive X-ray spectroscopy (EDX) analysis of bare slide glass (Fig.2a),the element contents of carbon and nitrogen (Fig.2b) increased significantly after amine functionalization.The peak relative to bromine (Fig.2c) from BBiB was observed after amidation.After polymerization,the peak relative to fluorine (Fig.2d) from HFIPA was observed.The results indicated that the polymerization of P(NIPAAm-co-HFIPA) on the substrate was achieved.

    To confirm the function of the valve,the surface tension of polymerization substrate should have sufficient change between hydrophilicity and hydrophobicity.For achievement of the “OPEN”state,the water contact angle need to be below 90°.Meanwhile,the water contact angle need to be above 90° after switch to achieve the state of “CLOSE”.To improve the switch function of the valve,HFIPA was added in the polymerization process to ensure the water CA to be above 90° when the temperature was higher than LCST.Before applying to glass capillary,the optimization of HFIPA ratio was carried out by polymerize the copolymer on slide glass substrate.The water CA on the prepared substrate was measured by a self-assembled system under conditions of saturated humidity (Fig.S2 in Supporting information).A thermoelectric cooler (ECE-F15P-D12,OHM Electric Co.,Ltd.,Japan) was used to control the temperature during measurements.After 5 μL of deionized water was dropped onto the substrate surface and became stable,Image of the water droplet on substrate were recorded by a Dino-Lite digital microscope.The water CA were measured according to half angle formula (Fig.S3 in Supporting information).For one substrate,the water CAs at different positon were measured,and the water CA angle of the substrate was determined to be the average.

    As shown in Fig.3a,the water CA of the substrate raised with the increasing ratio of HFIPA.When the HFIPA ratio reached 20%,the water CA was below 90° (69.2° ± 1.2°) at 20 °C and above 90°(96.0° ± 1.1°) at 40 °C.The ratio of HFIPA was optimized as 20%.Moreover,the response time was also investigated.The substrate placed on the temperature control plate with a temperature of 20°C,the water CA was measured.Then,the substrate with droplet was moved carefully to another temperature plate with a temperature of 40 °C,and the water CA was recording with different time.The water CA increased quickly with the passage of time increases,and reach a maximum after 20 s (Fig.3b).The results suggested that the copolymer with 20% HFIPA was suitable for valve manufacture.Satisfactorily,the response time was as short as 20 s,which was capable of flow control in microchannels.

    After optimization of HFIPA ratio,the polymerization was applied to Square-Miniature Hollow Glass Tubing.The glass capillary owned a square inner diameter of 500 μm and a square outer diameter of 700 μm (Fig.S4 in Supporting information).The glass capillaries were modified using the same polymerization as before a HFIPA ratio of 20%.In the experiment,the modified capillaries were inserted in water with different temperature.Image was obtained using a digital camera when the height (H) of water in the capillary became stable.

    As shown in Fig.4a,when the temperature of water was kept at 20 °C that was lower than the LCST (TLCST),Hwas negative value because of the hydrophobic inner surface as we discussed before (Fig.4a).TheHdropped as raising the temperature of the environment water.With the decrease of the temperature,the height of water in capillary reached a maximum (1.1 ± 0.2 mm) at the temperature of 20°C and kept constant (Fig.4b).TheHwith positive value mean that the water could be injected the capillary easily in further experiments.With the increase of the temperature,the height of water in capillary reached a minimum (?6.1 ± 0.2) at 40 °C and kept constant then (Fig.4b).As the temperature increased from 10 °C to 50 °C,the H changed from positive values to negative values(Fig.4c).TheHwith negative value mean that the water would be difficult to be injected into and go through the capillary in further experiments.All those results indicated that the capillary with polymerization of P(NIPAAm-co-HFIPA) was ready for use as valve in microchannel.

    Fig.2.Characterization of the substrate with each polymerization step by EDX.(a) Bare slide glass.(b) Substrate after amine functionalization.(c) Substrate after Amidation.(d) Substrate after polymerization.

    Fig.3.Optimization of the copolymer on slide glass.(a) Water CA on slide glass polymerized with different ratios of HFIPA (0,10%,20%).(b) The water CA at different heating time on a temperature control plate of 40 °C.

    The microfluidic chip was designed with “T” shape.All channels were with a width of 700 μm and a height of 700 μm.The Microfluidic chip was fabricated using polydimethylsiloxane (PDMS)by standard soft lithography and replica molding techniques as previous report [28].Before the PDMS layer with channel was irreversibly sealed with another PDMS as substrate layer by oxygen plasma treatment (Electro-technic products,Inc.,Japan),two individual capillaries with polymerization function as valves were placed in the two downstream microchannels (Fig.S5 in Supporting information).The two downstream microchannel parts were placed on two individual thermoelectric coolers for temperature control.In all the application experiments,temperature of 20 °C was used to turn the valve to “OPEN” state,while temperature of 40 °C was used to turn the valve to “CLOSE” state.When the left thermoelectric cooler was set at 20 °C and the right one was set at 40 °C,an aqueous solution containing 200 μmol/L Rhodamine 6G at a speed of 1000 μL/h was injected into the microchannel.The results showed that the injected solution flowed into the left downstream microchannel which no solution flowed into the right downstream microchannel (Fig.4d).Instead,the injection solution flowed right (Fig.4e) when thermoelectric cooler was set at 40 °C.All those results demonstrated that the valve state could turn to“OPEN” and “CLOSE” conveniently by changing the temperature.In further applications,the total system will include cell culture part,valve part,and assay part.Each part can be controlled with desirable temperature.Therefore,the temperature in the valve part will not limit the temperature requirements in assay part.The reported valve made from polymer brush,thus it could work for limited times in real sample detection because of the adsorptions of metabolites from cells.The property of the valve depended on brush density and molecule ratio of HFIPA.By changing the percent of HFIPA,the LCST could be adjusted to meet the requirements of different applications.

    Fig.4.Conformation of the hydrophobicity and hydrophilicity switch in polymerized glass and application as a valve in microchannel.(a) The height of water (H)inside the capillary at 20 °C.(b) The height of water (H) inside the capillary at 40°C.(c) The H at different temperatures.(d) Flow direction when Valve 1 was “OPEN”and Valve 2 was “CLOSE”.(e) Flow direction when Valve 1 was “CLOSE” and Valve 2 was “OPEN”.

    In summary,we have developed a switchable valve that is capable of integrating in microchannel for control flow stream using a thermally responsive block copolymer.The ratio of HFIPA at 20% in the P(NIPAAm-co-HFIPA) was demonstrated to be optimal.The water contact angle changed from 69oto 96owhen then temperature changed from 20 °C to 40 °C.The integrated valve in microchannel showed excellent performance on flow control.The method provides a potential approach for valve manufacture on microfluidic chip,which will be much benefit for integration of various function parts.In further applications,every channel with valve could connect with a functional assay channel where different metabolites from cells could been analyzed.The valve channel could also connect with mass spectrometer.By controlling the valve,metabolites at different time could be collected and detected.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgment

    We acknowledge the financial support from JSPS KAKENHI Grants (Nos.JP21K14653,JP20K22555 and JP20K05557).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.065.

    国产成人系列免费观看| 国产精品 欧美亚洲| 国产精品亚洲一级av第二区| 999精品在线视频| 两性夫妻黄色片| 国产午夜精品久久久久久| 身体一侧抽搐| 自拍欧美九色日韩亚洲蝌蚪91| 日韩人妻精品一区2区三区| 91精品三级在线观看| 搡老岳熟女国产| 国产高清视频在线播放一区| 欧美日韩精品网址| 国产在线精品亚洲第一网站| 香蕉久久夜色| 欧美成人免费av一区二区三区 | 久久久国产成人精品二区 | 国产99久久九九免费精品| 黄色视频不卡| 成年动漫av网址| 久久国产精品影院| 精品久久久久久电影网| 人人妻人人爽人人添夜夜欢视频| 欧美+亚洲+日韩+国产| 久久久久久人人人人人| 国产男靠女视频免费网站| 天堂俺去俺来也www色官网| 国产精品乱码一区二三区的特点 | 少妇猛男粗大的猛烈进出视频| 精品熟女少妇八av免费久了| 露出奶头的视频| 一级a爱片免费观看的视频| videos熟女内射| 麻豆乱淫一区二区| 亚洲av片天天在线观看| 精品第一国产精品| 十分钟在线观看高清视频www| 久久精品亚洲av国产电影网| 亚洲av日韩在线播放| 一区二区三区精品91| 色婷婷av一区二区三区视频| 精品国内亚洲2022精品成人 | 天天躁夜夜躁狠狠躁躁| 中文字幕人妻丝袜一区二区| 男女下面插进去视频免费观看| 久久午夜亚洲精品久久| www.精华液| 美女福利国产在线| 女人被躁到高潮嗷嗷叫费观| 另类亚洲欧美激情| 亚洲国产欧美一区二区综合| 亚洲精品中文字幕一二三四区| 视频在线观看一区二区三区| 久久精品91无色码中文字幕| 午夜福利欧美成人| cao死你这个sao货| 另类亚洲欧美激情| 日韩精品免费视频一区二区三区| 亚洲国产欧美日韩在线播放| 欧美精品亚洲一区二区| 欧美日韩国产mv在线观看视频| 黑人欧美特级aaaaaa片| 一边摸一边抽搐一进一小说 | 国产精品国产av在线观看| 国产一区在线观看成人免费| 色在线成人网| 午夜影院日韩av| 午夜免费观看网址| 麻豆国产av国片精品| 成人三级做爰电影| 色综合婷婷激情| 欧美大码av| 日日爽夜夜爽网站| 欧美日韩瑟瑟在线播放| 中文字幕av电影在线播放| 最近最新中文字幕大全电影3 | 欧美成人免费av一区二区三区 | 国产精品亚洲一级av第二区| 天天躁狠狠躁夜夜躁狠狠躁| 99国产综合亚洲精品| 午夜精品久久久久久毛片777| 成人三级做爰电影| 99久久99久久久精品蜜桃| 精品国产超薄肉色丝袜足j| 男女午夜视频在线观看| 一进一出好大好爽视频| 亚洲av熟女| av福利片在线| 91老司机精品| 又黄又爽又免费观看的视频| 女人高潮潮喷娇喘18禁视频| 国产免费av片在线观看野外av| 亚洲人成77777在线视频| 老鸭窝网址在线观看| 男女下面插进去视频免费观看| 久久久精品国产亚洲av高清涩受| 91老司机精品| 黄网站色视频无遮挡免费观看| 大型黄色视频在线免费观看| 美女高潮喷水抽搐中文字幕| cao死你这个sao货| 在线av久久热| 日日摸夜夜添夜夜添小说| 欧美日韩精品网址| 精品亚洲成a人片在线观看| av中文乱码字幕在线| av不卡在线播放| 久久久久精品国产欧美久久久| 国产精品久久电影中文字幕 | 亚洲成人国产一区在线观看| 一级a爱片免费观看的视频| ponron亚洲| 999久久久国产精品视频| 精品人妻1区二区| 99国产极品粉嫩在线观看| 女人高潮潮喷娇喘18禁视频| 18禁观看日本| a级毛片黄视频| 亚洲中文日韩欧美视频| 免费观看精品视频网站| 亚洲avbb在线观看| 国产成人啪精品午夜网站| 91麻豆av在线| 亚洲情色 制服丝袜| 久久久久精品国产欧美久久久| 成人18禁高潮啪啪吃奶动态图| 欧美精品av麻豆av| 成人影院久久| av天堂久久9| 黑人猛操日本美女一级片| 国产激情久久老熟女| 成年女人毛片免费观看观看9 | √禁漫天堂资源中文www| 美女国产高潮福利片在线看| 欧美中文综合在线视频| 老司机午夜福利在线观看视频| 成人国语在线视频| 免费不卡黄色视频| 久久久久国产一级毛片高清牌| 中文字幕色久视频| 夜夜夜夜夜久久久久| 少妇的丰满在线观看| 女人精品久久久久毛片| 欧美黄色淫秽网站| 精品一区二区三区四区五区乱码| 精品国产一区二区久久| 亚洲欧洲精品一区二区精品久久久| 欧美日韩瑟瑟在线播放| 水蜜桃什么品种好| 国产精品国产高清国产av | 黄色毛片三级朝国网站| 久久草成人影院| 两人在一起打扑克的视频| 国产精品美女特级片免费视频播放器 | 精品国产一区二区三区久久久樱花| 老司机影院毛片| 大香蕉久久成人网| 免费久久久久久久精品成人欧美视频| av电影中文网址| 久久久久久免费高清国产稀缺| 久久久国产欧美日韩av| 亚洲av成人av| 后天国语完整版免费观看| 成人影院久久| 侵犯人妻中文字幕一二三四区| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 女人被狂操c到高潮| av片东京热男人的天堂| 欧美日韩av久久| 免费少妇av软件| 极品教师在线免费播放| 亚洲人成电影免费在线| 亚洲 欧美一区二区三区| 天天躁夜夜躁狠狠躁躁| av有码第一页| 欧美人与性动交α欧美精品济南到| 精品一区二区三区四区五区乱码| 亚洲午夜理论影院| 国产成人系列免费观看| 日韩人妻精品一区2区三区| 欧美成人免费av一区二区三区 | 精品一区二区三卡| 亚洲av熟女| 亚洲免费av在线视频| 好看av亚洲va欧美ⅴa在| 国产深夜福利视频在线观看| 亚洲av电影在线进入| 国产欧美日韩综合在线一区二区| 一级毛片精品| 99久久人妻综合| 视频区欧美日本亚洲| 亚洲色图 男人天堂 中文字幕| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区mp4| 国产精品久久久av美女十八| 日韩欧美免费精品| 最新在线观看一区二区三区| 欧美乱色亚洲激情| avwww免费| 日本a在线网址| 操美女的视频在线观看| 男男h啪啪无遮挡| 国产高清视频在线播放一区| 国产男女超爽视频在线观看| 亚洲人成伊人成综合网2020| av国产精品久久久久影院| 国产精品久久久久成人av| 久久人人97超碰香蕉20202| 91成人精品电影| 大香蕉久久网| 在线免费观看的www视频| 涩涩av久久男人的天堂| 天堂俺去俺来也www色官网| 久久久久精品国产欧美久久久| 国产精品免费大片| 亚洲一区高清亚洲精品| 大香蕉久久成人网| 午夜福利在线免费观看网站| 国产精品久久久久久精品古装| 色播在线永久视频| 国产成人啪精品午夜网站| 丝袜人妻中文字幕| 日韩 欧美 亚洲 中文字幕| 熟女少妇亚洲综合色aaa.| 人人妻人人添人人爽欧美一区卜| 国产乱人伦免费视频| 两个人免费观看高清视频| 美女高潮喷水抽搐中文字幕| cao死你这个sao货| av网站在线播放免费| 日日夜夜操网爽| 久久精品亚洲熟妇少妇任你| 欧美成人午夜精品| 精品人妻1区二区| 亚洲久久久国产精品| 免费观看人在逋| 交换朋友夫妻互换小说| av福利片在线| 亚洲欧洲精品一区二区精品久久久| 在线观看舔阴道视频| 不卡一级毛片| 精品久久久久久,| 亚洲av成人av| 啪啪无遮挡十八禁网站| 免费在线观看黄色视频的| 18禁裸乳无遮挡动漫免费视频| 亚洲av日韩精品久久久久久密| 女人高潮潮喷娇喘18禁视频| 国产91精品成人一区二区三区| а√天堂www在线а√下载 | 精品国产一区二区久久| 夫妻午夜视频| 亚洲成国产人片在线观看| 电影成人av| 国产成人影院久久av| 欧美色视频一区免费| 国产成人免费观看mmmm| 1024视频免费在线观看| a级毛片在线看网站| 欧美日韩福利视频一区二区| 两个人看的免费小视频| 国产在视频线精品| 中文亚洲av片在线观看爽 | 日本精品一区二区三区蜜桃| 黑丝袜美女国产一区| 免费看十八禁软件| 亚洲一区高清亚洲精品| 搡老熟女国产l中国老女人| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 午夜亚洲福利在线播放| 国产成人欧美在线观看 | 午夜福利欧美成人| 国产亚洲精品久久久久5区| 18禁黄网站禁片午夜丰满| av国产精品久久久久影院| 少妇粗大呻吟视频| 啦啦啦 在线观看视频| 视频区图区小说| 成人精品一区二区免费| 国产真人三级小视频在线观看| 亚洲国产精品一区二区三区在线| √禁漫天堂资源中文www| 成人精品一区二区免费| 国产在线一区二区三区精| 狠狠狠狠99中文字幕| 亚洲国产中文字幕在线视频| 一区二区三区国产精品乱码| 国产精品影院久久| 国产av精品麻豆| 成年女人毛片免费观看观看9 | 欧美不卡视频在线免费观看 | 又大又爽又粗| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼 | 国产成+人综合+亚洲专区| 水蜜桃什么品种好| 一进一出好大好爽视频| 欧美激情高清一区二区三区| 久久精品人人爽人人爽视色| 国产片内射在线| 啦啦啦在线免费观看视频4| 不卡av一区二区三区| 日韩免费av在线播放| 1024香蕉在线观看| 久久精品国产亚洲av高清一级| 成年人免费黄色播放视频| 中文字幕人妻丝袜制服| 麻豆国产av国片精品| 多毛熟女@视频| 精品卡一卡二卡四卡免费| a级毛片黄视频| 亚洲专区中文字幕在线| 一级a爱片免费观看的视频| 天堂√8在线中文| 免费女性裸体啪啪无遮挡网站| 国产欧美日韩一区二区精品| 国产欧美日韩综合在线一区二区| 多毛熟女@视频| 国产片内射在线| 美女福利国产在线| 国产视频一区二区在线看| 久久久国产欧美日韩av| 欧美日韩中文字幕国产精品一区二区三区 | 国产91精品成人一区二区三区| 很黄的视频免费| 一二三四在线观看免费中文在| 黄色视频不卡| svipshipincom国产片| 国产亚洲精品一区二区www | 久久久久国产一级毛片高清牌| 女同久久另类99精品国产91| 少妇裸体淫交视频免费看高清 | 精品国产超薄肉色丝袜足j| 国产欧美日韩一区二区三区在线| 男女下面插进去视频免费观看| 国产aⅴ精品一区二区三区波| 9热在线视频观看99| 天天影视国产精品| 国产欧美日韩精品亚洲av| 国产主播在线观看一区二区| 国产有黄有色有爽视频| 亚洲av美国av| 露出奶头的视频| 叶爱在线成人免费视频播放| 国产伦人伦偷精品视频| 国产一区二区三区在线臀色熟女 | a级毛片黄视频| 丝袜美足系列| 日韩免费高清中文字幕av| 老司机在亚洲福利影院| 中文字幕av电影在线播放| 亚洲精品在线观看二区| 母亲3免费完整高清在线观看| 午夜免费观看网址| 国产三级黄色录像| 国产欧美日韩一区二区精品| 国产精品欧美亚洲77777| 9热在线视频观看99| 成年动漫av网址| 一级片免费观看大全| 亚洲情色 制服丝袜| 欧美日韩黄片免| 国产精品一区二区在线观看99| 精品福利观看| 宅男免费午夜| 在线十欧美十亚洲十日本专区| 村上凉子中文字幕在线| 狠狠婷婷综合久久久久久88av| 国产精品亚洲av一区麻豆| 久热爱精品视频在线9| 女性生殖器流出的白浆| 熟女少妇亚洲综合色aaa.| 国产高清视频在线播放一区| 亚洲精华国产精华精| 搡老熟女国产l中国老女人| 80岁老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 国产精品国产高清国产av | 久99久视频精品免费| 97人妻天天添夜夜摸| 亚洲av电影在线进入| 久久ye,这里只有精品| 亚洲少妇的诱惑av| 18禁裸乳无遮挡免费网站照片 | 最近最新中文字幕大全电影3 | 无人区码免费观看不卡| 色综合婷婷激情| av在线播放免费不卡| 欧美日韩福利视频一区二区| 午夜91福利影院| 国产精品久久久人人做人人爽| 免费观看a级毛片全部| 色综合婷婷激情| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 757午夜福利合集在线观看| 国产精品二区激情视频| e午夜精品久久久久久久| 一边摸一边抽搐一进一出视频| 天堂动漫精品| 国产亚洲欧美98| 黄色成人免费大全| 黄色视频不卡| 中出人妻视频一区二区| 午夜激情av网站| 老汉色av国产亚洲站长工具| 免费在线观看亚洲国产| 777久久人妻少妇嫩草av网站| 亚洲精品美女久久久久99蜜臀| 18禁黄网站禁片午夜丰满| 变态另类成人亚洲欧美熟女 | 午夜成年电影在线免费观看| 精品国产超薄肉色丝袜足j| 老司机影院毛片| 亚洲第一欧美日韩一区二区三区| 岛国在线观看网站| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| 美国免费a级毛片| 久久亚洲精品不卡| 两性夫妻黄色片| 亚洲欧美一区二区三区久久| 亚洲欧美色中文字幕在线| 亚洲黑人精品在线| 欧美黄色淫秽网站| 下体分泌物呈黄色| a级片在线免费高清观看视频| 午夜福利在线观看吧| 黄色a级毛片大全视频| 亚洲精品在线美女| 成年人免费黄色播放视频| 18禁黄网站禁片午夜丰满| 国产1区2区3区精品| www.自偷自拍.com| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 国产精品乱码一区二三区的特点 | 久久人妻福利社区极品人妻图片| e午夜精品久久久久久久| 香蕉久久夜色| 日本五十路高清| 美女高潮到喷水免费观看| 夜夜夜夜夜久久久久| 美国免费a级毛片| 91成人精品电影| 午夜精品在线福利| 99国产精品一区二区三区| 精品国产美女av久久久久小说| 国产国语露脸激情在线看| 亚洲国产中文字幕在线视频| 一本综合久久免费| 另类亚洲欧美激情| 午夜精品久久久久久毛片777| 久久久久国产精品人妻aⅴ院 | 精品久久久久久久久久免费视频 | 国产精品1区2区在线观看. | 国产精品偷伦视频观看了| www日本在线高清视频| av有码第一页| 国产精品永久免费网站| 精品亚洲成a人片在线观看| 欧美日韩视频精品一区| 国产精品98久久久久久宅男小说| 久久精品人人爽人人爽视色| 亚洲色图综合在线观看| 国产成人系列免费观看| 成人黄色视频免费在线看| 黑人巨大精品欧美一区二区mp4| 99精国产麻豆久久婷婷| 久久久久久久久免费视频了| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 麻豆乱淫一区二区| 高清黄色对白视频在线免费看| 人人澡人人妻人| 丰满的人妻完整版| 久久这里只有精品19| 老司机靠b影院| 久久久久久久久久久久大奶| 亚洲一区二区三区不卡视频| 国产一区二区激情短视频| 国产精品一区二区在线不卡| 好男人电影高清在线观看| 波多野结衣一区麻豆| 欧美精品啪啪一区二区三区| 国产精品九九99| 精品第一国产精品| 一a级毛片在线观看| 99久久精品国产亚洲精品| 黄色 视频免费看| 丝袜人妻中文字幕| 曰老女人黄片| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 亚洲精品美女久久久久99蜜臀| 日韩欧美在线二视频 | 国产麻豆69| 婷婷成人精品国产| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美软件| 五月开心婷婷网| 国产1区2区3区精品| 日本精品一区二区三区蜜桃| 丰满人妻熟妇乱又伦精品不卡| 99久久人妻综合| 精品熟女少妇八av免费久了| 国产亚洲一区二区精品| 一级,二级,三级黄色视频| 欧美日韩av久久| а√天堂www在线а√下载 | 国产一区二区激情短视频| 久久热在线av| 久久国产精品男人的天堂亚洲| 久久香蕉激情| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 亚洲专区字幕在线| 五月开心婷婷网| 国内久久婷婷六月综合欲色啪| 十八禁高潮呻吟视频| 欧美人与性动交α欧美精品济南到| 久热爱精品视频在线9| 久久99一区二区三区| 王馨瑶露胸无遮挡在线观看| 美女高潮到喷水免费观看| 国产在线精品亚洲第一网站| 国产不卡一卡二| 亚洲精品乱久久久久久| 999久久久国产精品视频| 国产色视频综合| 精品少妇一区二区三区视频日本电影| 亚洲国产精品一区二区三区在线| 午夜91福利影院| 成人免费观看视频高清| 黑人欧美特级aaaaaa片| av视频免费观看在线观看| 国产片内射在线| 午夜福利欧美成人| 大码成人一级视频| 老熟妇仑乱视频hdxx| 亚洲五月天丁香| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | avwww免费| 少妇的丰满在线观看| 色在线成人网| av片东京热男人的天堂| 亚洲伊人色综图| 国产国语露脸激情在线看| 午夜视频精品福利| 欧美日韩成人在线一区二区| 国产精品1区2区在线观看. | 十分钟在线观看高清视频www| 久久婷婷成人综合色麻豆| 视频在线观看一区二区三区| 欧美精品亚洲一区二区| 免费女性裸体啪啪无遮挡网站| 日日夜夜操网爽| 99精品欧美一区二区三区四区| 久久午夜综合久久蜜桃| 在线永久观看黄色视频| 校园春色视频在线观看| 免费少妇av软件| 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| 人人妻人人澡人人看| 成人国产一区最新在线观看| 午夜精品在线福利| 国产99白浆流出| 国产成人影院久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品一区二区在线观看99| 91老司机精品| 一区二区日韩欧美中文字幕| x7x7x7水蜜桃| 日韩欧美国产一区二区入口| 午夜福利在线观看吧| 老司机深夜福利视频在线观看| 丝袜美腿诱惑在线| 天天躁日日躁夜夜躁夜夜| 久久久水蜜桃国产精品网| 人妻丰满熟妇av一区二区三区 | 啪啪无遮挡十八禁网站| 美女国产高潮福利片在线看| 黄频高清免费视频| 岛国在线观看网站| 精品福利永久在线观看| 欧美精品啪啪一区二区三区| 国产成人精品无人区| 亚洲国产精品合色在线| 午夜福利在线观看吧| 一边摸一边做爽爽视频免费| 日韩人妻精品一区2区三区| 一级a爱视频在线免费观看| 最近最新免费中文字幕在线| 中文亚洲av片在线观看爽 | 色老头精品视频在线观看| 亚洲五月天丁香| 精品少妇一区二区三区视频日本电影| 一边摸一边抽搐一进一小说 | 高清黄色对白视频在线免费看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区黑人| 亚洲专区字幕在线| 亚洲av日韩在线播放| 国产精品乱码一区二三区的特点 | av不卡在线播放| 老鸭窝网址在线观看| 少妇 在线观看| 大香蕉久久成人网| 悠悠久久av| 国产成人一区二区三区免费视频网站| 日韩欧美国产一区二区入口|