• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer

    2022-07-11 03:39:22SifengMoXiohongHuYumiTnkLinZhouChenhnPengNhokoKsiHizuruNkjimShungoKtoKtsumiUchiym
    Chinese Chemical Letters 2022年6期

    Sifeng Mo,Xiohong Hu,Yumi Tnk,Lin Zhou,Chenhn Peng,Nhoko Ksi,Hizuru Nkjim,Shungo Kto,Ktsumi Uchiym

    a Department of Applied Chemistry,Graduate School of Urban Environmental Sciences,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    b University Education Center,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    Keywords:Microchip Valve Flow control NIPPAm Chemo-mechanical switch Thermo-responsive polymer

    ABSTRACT Microfluidic devices have become a powerful tool for chemical and biologic applications.To control different functional parts on the microchip,valve plays a key role in the device.In conventional methods,physio-mechanical valves are usually used on microfluidic chip.Herein,we reported a chemo-mechanical switchable valve on microfluidic chip by using a thermally responsive block copolymer.The wettability changes of capillary with copolymer modification on inner surface were investigated to verify the function as a valve.Capillaries with modification of poly-(N-isopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAm-co-HFIPA)) with a 20% HFIPA was demonstrated capable of control aqueous solution stop or go through.Then short capillaries with copolymer modification were integrated in microchannels as valves.With the temperature changing around lower critical solution temperature (LCST),the integrated chemo-mechanical switchable valve exhibited excellent “OPEN–CLOSE’’behavior for microflow control.After optimization of the block copolymer sequences and molar ratio,a switching time as low as 20 s was achieved.The developed micro valve was demonstrated effective for flow control on microchip.

    Microfluidic chip developed from 1990s has been widely used for sample pretreatment [1,2],immunoassay [3-5],chemical synthesis [6,7],cell analysis [8-10].Valve,as one of the key function parts,helps to control microflow in microfluidic device in desirable sequence [11,12].Various types of valves have been integrated in microchannels,including shut-off valve [13],normally closed valve [14,15],monolithic elastomer valves [16],and surface tension plug [17].Limited to the large size,most of the valves were difficult to integrate into channels on microscale [13–15].Surface tension plug was easy to integrate in microchannel,but it is not reversible.Recent years,Smart valves have attracted considerable attentions for dynamically controlling microflow transport [18,19].Micro/nano structured channels modified with stimuli-responsive polymers are frequently be designed as switchable smart valves[20].

    Poly(N-isopropylacrylamide) (PNIPAAm) has been reported as an excellent thermal responsive polymer that owns a lower critical solution temperature (LCST) [21].The LCST could be adjust as wish when designing different copolymer with PNIPAAm [22,23].Surface grafted with the polymer could change its hydrophilicity as the environment temperature changes[24].Most studies have focused on surface property change and drug release [25,26].However,the design of a practical switchable valve based on PNIPAAm on microchip for temperature controlling the transportation of microflow remains challenging.

    In this work,we report on a switchable valve integrated on microfluidic chip by using a thermally responsive block copolymer for temperature controlling the transportation of microflow.As illustrated in Fig.1a,a T-shaped microfluidic chip was designed with two functional switchable valve (Valve 1 and Valve 2) in the two branch channels.The two branch channels with two individual valve were positioned on two individual thermoelectric cooler for temperature control.By adjusting the temperatures of the two thermoelectric cooler,the injected flow could be controlled to flow left or flow right only.The results suggested the valve could switch in short time (20 s).The switchable valve was fabricated by grafting a thermally responsive block copolymer brush poly-(Nisopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAmco-HFIPA)) on the inner side of glass capillaries which were then integrated in the micro channels (Fig.1b).As demonstrated in other reports,PNIPAAm was never hydrophobic whenever the temperature was above or below the LCST [27].Therefore,HFIPA was added to adjust hydrophilicity and hydrophobicity while PNIPAAm governed the thermal properties.In design,high molecule ratio of HFIPA would cause a higher contact angel (CA) that mean higher hydrophobicity.On the modified surface,the C=O and N?H groups of the PNIPPAm and (P(NIPAAm-co-HFIPA) parts generated intermolecular hydrogen bonding with water molecules,which would enhance the hydrophilicity (Fig.1b).In contrast,the C?F groups of the (P(NIPAAm-co-HFIPA) part would result in hydrophobic (Fig.1b).When the temperature (T) was below the LCST (Fig.1c),the polymer brush had a stretched state where the inter-molecule hydrogen bonding between C=O/N?H and water molecules contributed to the hydrophilic property.As a result,the aqueous solution could pass the channel easily,where the valve state was defined as “OPEN”.In contrast,at the temperature above the LCST,the inner surface of the valve became hydrophobic because of the intra-molecule hydrogen bonding between C=O and N-H while C=O and N?H group difficult to interact with water molecules.The valve with hydrophobic inner surface would stop aqueous solution to go through the valve,where the valve state was defined as “CLOSE” (Fig.1d).Therefore,the valve state could be controlled by temperature to control the flow stream in the microchannels.

    Fig.1.Chemo-mechanical switchable valve on microfluidic chip for flow control.(a) Illustration of the integrated device with switchable valves.(b) Structure of the copolymer brush.(c) Valve at the “OPEN” state when temperature was below the LCST.(d) Valve at the “CLOSE” state when temperature was below the LCST.

    To graft the P(NIPAAm-co-HFIPA to the substrate,the substrate(capillary or glass plate) was first cleaned and modified to generate –OH groups on the surface.Then,the substrate was aminated by treating with 3-aminopropyltrimethoxysilane (APTMS) and amidated by treatment with 2-bromoisobutyryl bromide (BBiB).In polymerization process,the substrate was reacted with NIPAAm solution for 1 h at 60 °C.The reaction would allow to proceed from another 1 h at 60 °C after addition of HFIPA.The entire polymerization details are described in Supporting Information and Fig.S1 (Supporting information).Energy-dispersive X-ray spectroscopy(EDX) was used to investigated the surface chemical composites.Compare to the Energy-dispersive X-ray spectroscopy (EDX) analysis of bare slide glass (Fig.2a),the element contents of carbon and nitrogen (Fig.2b) increased significantly after amine functionalization.The peak relative to bromine (Fig.2c) from BBiB was observed after amidation.After polymerization,the peak relative to fluorine (Fig.2d) from HFIPA was observed.The results indicated that the polymerization of P(NIPAAm-co-HFIPA) on the substrate was achieved.

    To confirm the function of the valve,the surface tension of polymerization substrate should have sufficient change between hydrophilicity and hydrophobicity.For achievement of the “OPEN”state,the water contact angle need to be below 90°.Meanwhile,the water contact angle need to be above 90° after switch to achieve the state of “CLOSE”.To improve the switch function of the valve,HFIPA was added in the polymerization process to ensure the water CA to be above 90° when the temperature was higher than LCST.Before applying to glass capillary,the optimization of HFIPA ratio was carried out by polymerize the copolymer on slide glass substrate.The water CA on the prepared substrate was measured by a self-assembled system under conditions of saturated humidity (Fig.S2 in Supporting information).A thermoelectric cooler (ECE-F15P-D12,OHM Electric Co.,Ltd.,Japan) was used to control the temperature during measurements.After 5 μL of deionized water was dropped onto the substrate surface and became stable,Image of the water droplet on substrate were recorded by a Dino-Lite digital microscope.The water CA were measured according to half angle formula (Fig.S3 in Supporting information).For one substrate,the water CAs at different positon were measured,and the water CA angle of the substrate was determined to be the average.

    As shown in Fig.3a,the water CA of the substrate raised with the increasing ratio of HFIPA.When the HFIPA ratio reached 20%,the water CA was below 90° (69.2° ± 1.2°) at 20 °C and above 90°(96.0° ± 1.1°) at 40 °C.The ratio of HFIPA was optimized as 20%.Moreover,the response time was also investigated.The substrate placed on the temperature control plate with a temperature of 20°C,the water CA was measured.Then,the substrate with droplet was moved carefully to another temperature plate with a temperature of 40 °C,and the water CA was recording with different time.The water CA increased quickly with the passage of time increases,and reach a maximum after 20 s (Fig.3b).The results suggested that the copolymer with 20% HFIPA was suitable for valve manufacture.Satisfactorily,the response time was as short as 20 s,which was capable of flow control in microchannels.

    After optimization of HFIPA ratio,the polymerization was applied to Square-Miniature Hollow Glass Tubing.The glass capillary owned a square inner diameter of 500 μm and a square outer diameter of 700 μm (Fig.S4 in Supporting information).The glass capillaries were modified using the same polymerization as before a HFIPA ratio of 20%.In the experiment,the modified capillaries were inserted in water with different temperature.Image was obtained using a digital camera when the height (H) of water in the capillary became stable.

    As shown in Fig.4a,when the temperature of water was kept at 20 °C that was lower than the LCST (TLCST),Hwas negative value because of the hydrophobic inner surface as we discussed before (Fig.4a).TheHdropped as raising the temperature of the environment water.With the decrease of the temperature,the height of water in capillary reached a maximum (1.1 ± 0.2 mm) at the temperature of 20°C and kept constant (Fig.4b).TheHwith positive value mean that the water could be injected the capillary easily in further experiments.With the increase of the temperature,the height of water in capillary reached a minimum (?6.1 ± 0.2) at 40 °C and kept constant then (Fig.4b).As the temperature increased from 10 °C to 50 °C,the H changed from positive values to negative values(Fig.4c).TheHwith negative value mean that the water would be difficult to be injected into and go through the capillary in further experiments.All those results indicated that the capillary with polymerization of P(NIPAAm-co-HFIPA) was ready for use as valve in microchannel.

    Fig.2.Characterization of the substrate with each polymerization step by EDX.(a) Bare slide glass.(b) Substrate after amine functionalization.(c) Substrate after Amidation.(d) Substrate after polymerization.

    Fig.3.Optimization of the copolymer on slide glass.(a) Water CA on slide glass polymerized with different ratios of HFIPA (0,10%,20%).(b) The water CA at different heating time on a temperature control plate of 40 °C.

    The microfluidic chip was designed with “T” shape.All channels were with a width of 700 μm and a height of 700 μm.The Microfluidic chip was fabricated using polydimethylsiloxane (PDMS)by standard soft lithography and replica molding techniques as previous report [28].Before the PDMS layer with channel was irreversibly sealed with another PDMS as substrate layer by oxygen plasma treatment (Electro-technic products,Inc.,Japan),two individual capillaries with polymerization function as valves were placed in the two downstream microchannels (Fig.S5 in Supporting information).The two downstream microchannel parts were placed on two individual thermoelectric coolers for temperature control.In all the application experiments,temperature of 20 °C was used to turn the valve to “OPEN” state,while temperature of 40 °C was used to turn the valve to “CLOSE” state.When the left thermoelectric cooler was set at 20 °C and the right one was set at 40 °C,an aqueous solution containing 200 μmol/L Rhodamine 6G at a speed of 1000 μL/h was injected into the microchannel.The results showed that the injected solution flowed into the left downstream microchannel which no solution flowed into the right downstream microchannel (Fig.4d).Instead,the injection solution flowed right (Fig.4e) when thermoelectric cooler was set at 40 °C.All those results demonstrated that the valve state could turn to“OPEN” and “CLOSE” conveniently by changing the temperature.In further applications,the total system will include cell culture part,valve part,and assay part.Each part can be controlled with desirable temperature.Therefore,the temperature in the valve part will not limit the temperature requirements in assay part.The reported valve made from polymer brush,thus it could work for limited times in real sample detection because of the adsorptions of metabolites from cells.The property of the valve depended on brush density and molecule ratio of HFIPA.By changing the percent of HFIPA,the LCST could be adjusted to meet the requirements of different applications.

    Fig.4.Conformation of the hydrophobicity and hydrophilicity switch in polymerized glass and application as a valve in microchannel.(a) The height of water (H)inside the capillary at 20 °C.(b) The height of water (H) inside the capillary at 40°C.(c) The H at different temperatures.(d) Flow direction when Valve 1 was “OPEN”and Valve 2 was “CLOSE”.(e) Flow direction when Valve 1 was “CLOSE” and Valve 2 was “OPEN”.

    In summary,we have developed a switchable valve that is capable of integrating in microchannel for control flow stream using a thermally responsive block copolymer.The ratio of HFIPA at 20% in the P(NIPAAm-co-HFIPA) was demonstrated to be optimal.The water contact angle changed from 69oto 96owhen then temperature changed from 20 °C to 40 °C.The integrated valve in microchannel showed excellent performance on flow control.The method provides a potential approach for valve manufacture on microfluidic chip,which will be much benefit for integration of various function parts.In further applications,every channel with valve could connect with a functional assay channel where different metabolites from cells could been analyzed.The valve channel could also connect with mass spectrometer.By controlling the valve,metabolites at different time could be collected and detected.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgment

    We acknowledge the financial support from JSPS KAKENHI Grants (Nos.JP21K14653,JP20K22555 and JP20K05557).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.065.

    国产精品偷伦视频观看了| 免费观看a级毛片全部| 高清午夜精品一区二区三区| 插阴视频在线观看视频| 亚洲精品日韩在线中文字幕| 伦理电影大哥的女人| 亚洲国产精品999| 伦精品一区二区三区| 丝瓜视频免费看黄片| 欧美日韩av久久| 国产亚洲午夜精品一区二区久久| 国产 一区精品| 国产日韩一区二区三区精品不卡 | 欧美精品一区二区大全| 日韩精品免费视频一区二区三区 | 免费黄网站久久成人精品| 黑人欧美特级aaaaaa片| 欧美日韩视频精品一区| 大片电影免费在线观看免费| 蜜桃国产av成人99| 久久久亚洲精品成人影院| 亚洲欧美一区二区三区国产| 久久99精品国语久久久| 亚洲精华国产精华液的使用体验| 亚洲欧美色中文字幕在线| 制服诱惑二区| 精品人妻在线不人妻| 中文字幕人妻熟人妻熟丝袜美| 韩国高清视频一区二区三区| 精品久久久精品久久久| 欧美最新免费一区二区三区| 欧美变态另类bdsm刘玥| 国产亚洲午夜精品一区二区久久| 嘟嘟电影网在线观看| 18禁在线播放成人免费| 亚洲av欧美aⅴ国产| 久久久久久久国产电影| 亚洲精品第二区| 亚洲五月色婷婷综合| 麻豆乱淫一区二区| 亚洲精品成人av观看孕妇| av电影中文网址| 啦啦啦视频在线资源免费观看| √禁漫天堂资源中文www| 成人毛片60女人毛片免费| 人人妻人人添人人爽欧美一区卜| 黄色欧美视频在线观看| 中国三级夫妇交换| 中文字幕久久专区| 18禁动态无遮挡网站| 亚洲精品一区蜜桃| 午夜影院在线不卡| av视频免费观看在线观看| 国产又色又爽无遮挡免| 久久久国产一区二区| 一级a做视频免费观看| 国产亚洲最大av| xxxhd国产人妻xxx| 丰满少妇做爰视频| 免费日韩欧美在线观看| 亚洲色图综合在线观看| 亚洲欧美日韩卡通动漫| 国产高清有码在线观看视频| av在线播放精品| 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月天网| 极品人妻少妇av视频| 久热这里只有精品99| 亚洲精品国产色婷婷电影| 久久99一区二区三区| 最近2019中文字幕mv第一页| 成人国产麻豆网| 亚洲成人一二三区av| 国产男人的电影天堂91| 国产精品秋霞免费鲁丝片| 欧美日韩精品成人综合77777| 99热网站在线观看| 少妇的逼好多水| 国产成人av激情在线播放 | 国产男人的电影天堂91| 亚洲国产精品专区欧美| 汤姆久久久久久久影院中文字幕| 中文字幕制服av| 777米奇影视久久| 午夜福利,免费看| 成年人午夜在线观看视频| 观看美女的网站| 亚洲婷婷狠狠爱综合网| 成年人午夜在线观看视频| 另类精品久久| 精品人妻一区二区三区麻豆| 久热这里只有精品99| 国产在线一区二区三区精| 最近中文字幕高清免费大全6| 国产av精品麻豆| 久久久久久久国产电影| 日日摸夜夜添夜夜爱| 国产成人精品无人区| 欧美激情极品国产一区二区三区 | 国产成人av激情在线播放 | 最后的刺客免费高清国语| 最近的中文字幕免费完整| 亚洲精品456在线播放app| 狠狠精品人妻久久久久久综合| 成年av动漫网址| 曰老女人黄片| av不卡在线播放| 国产免费视频播放在线视频| 我的女老师完整版在线观看| 蜜桃在线观看..| 建设人人有责人人尽责人人享有的| 国产精品欧美亚洲77777| 国产有黄有色有爽视频| 美女脱内裤让男人舔精品视频| 精品人妻偷拍中文字幕| 免费播放大片免费观看视频在线观看| 大片电影免费在线观看免费| 日本爱情动作片www.在线观看| 老司机影院成人| 亚洲精品456在线播放app| 少妇精品久久久久久久| 日韩在线高清观看一区二区三区| 日韩成人伦理影院| 妹子高潮喷水视频| 最新中文字幕久久久久| www.av在线官网国产| 亚洲欧美中文字幕日韩二区| 国产精品成人在线| 考比视频在线观看| 美女cb高潮喷水在线观看| 大片电影免费在线观看免费| 亚洲欧洲精品一区二区精品久久久 | 国产在线免费精品| 亚洲成人av在线免费| videosex国产| 国产不卡av网站在线观看| 18禁观看日本| 国产黄片视频在线免费观看| 国产成人aa在线观看| 肉色欧美久久久久久久蜜桃| 丰满饥渴人妻一区二区三| 日本爱情动作片www.在线观看| 一本久久精品| 婷婷成人精品国产| 久久久精品免费免费高清| 九九在线视频观看精品| 国产熟女午夜一区二区三区 | 亚洲第一av免费看| 人人妻人人澡人人爽人人夜夜| 18+在线观看网站| 成人二区视频| 一边亲一边摸免费视频| freevideosex欧美| 国产男女超爽视频在线观看| 欧美一级a爱片免费观看看| 热99国产精品久久久久久7| 国产精品偷伦视频观看了| av网站免费在线观看视频| 日韩熟女老妇一区二区性免费视频| 精品人妻偷拍中文字幕| 成人国产av品久久久| 99re6热这里在线精品视频| 亚洲在久久综合| 色5月婷婷丁香| 亚洲精品乱码久久久v下载方式| 人妻人人澡人人爽人人| 免费久久久久久久精品成人欧美视频 | av一本久久久久| 多毛熟女@视频| 免费高清在线观看视频在线观看| 91午夜精品亚洲一区二区三区| 精品午夜福利在线看| 91久久精品国产一区二区成人| 日韩一区二区三区影片| 免费人成在线观看视频色| 狠狠婷婷综合久久久久久88av| 日本午夜av视频| 欧美三级亚洲精品| 亚洲欧美色中文字幕在线| 欧美xxxx性猛交bbbb| 搡老乐熟女国产| 国产一区二区在线观看日韩| 国产精品.久久久| 国产色婷婷99| 国产成人freesex在线| 两个人的视频大全免费| 一级片'在线观看视频| 亚洲欧美日韩卡通动漫| 妹子高潮喷水视频| 在线观看一区二区三区激情| 91精品一卡2卡3卡4卡| 久久久久久久久久久免费av| 欧美三级亚洲精品| 日韩中字成人| 永久网站在线| 国产成人freesex在线| 久久这里有精品视频免费| 国产在线一区二区三区精| a 毛片基地| 91精品国产国语对白视频| 一级二级三级毛片免费看| 你懂的网址亚洲精品在线观看| 久久精品人人爽人人爽视色| 熟女电影av网| 人妻夜夜爽99麻豆av| 日韩人妻高清精品专区| 日产精品乱码卡一卡2卡三| 超色免费av| 哪个播放器可以免费观看大片| 久久精品国产自在天天线| 亚洲欧美成人综合另类久久久| 国产伦精品一区二区三区视频9| 国产一区二区三区综合在线观看 | 国产av精品麻豆| 国产精品久久久久久精品电影小说| 欧美日韩在线观看h| 日韩视频在线欧美| 在现免费观看毛片| 99久久综合免费| 亚洲av电影在线观看一区二区三区| 久久久精品94久久精品| 国产精品女同一区二区软件| 精品久久久精品久久久| 高清毛片免费看| 亚洲人成网站在线观看播放| av.在线天堂| 日韩不卡一区二区三区视频在线| 久久久久视频综合| 中文字幕人妻丝袜制服| 久久亚洲国产成人精品v| 美女中出高潮动态图| 新久久久久国产一级毛片| 国产高清有码在线观看视频| 热99国产精品久久久久久7| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区久久| 欧美另类一区| 青春草亚洲视频在线观看| av国产久精品久网站免费入址| 日韩一区二区三区影片| 欧美精品高潮呻吟av久久| 另类亚洲欧美激情| 欧美最新免费一区二区三区| 欧美日韩视频精品一区| 国产精品人妻久久久影院| 大片免费播放器 马上看| 国产精品国产三级国产专区5o| 亚洲av成人精品一区久久| 十八禁网站网址无遮挡| 亚洲精品视频女| 自拍欧美九色日韩亚洲蝌蚪91| 91在线精品国自产拍蜜月| 九色亚洲精品在线播放| 国产精品蜜桃在线观看| 久久久午夜欧美精品| 黄色毛片三级朝国网站| 热99久久久久精品小说推荐| 自拍欧美九色日韩亚洲蝌蚪91| 欧美亚洲日本最大视频资源| av网站免费在线观看视频| 卡戴珊不雅视频在线播放| 免费人成在线观看视频色| 国产极品粉嫩免费观看在线 | videosex国产| 伦理电影免费视频| 久久久久久久国产电影| 国产精品成人在线| 老司机亚洲免费影院| 久久鲁丝午夜福利片| 又粗又硬又长又爽又黄的视频| 午夜精品国产一区二区电影| 欧美亚洲 丝袜 人妻 在线| 精品少妇内射三级| 99久久人妻综合| 久久久久久久久久人人人人人人| 国产成人精品久久久久久| 在线观看免费视频网站a站| 波野结衣二区三区在线| 蜜臀久久99精品久久宅男| 欧美日韩视频高清一区二区三区二| 亚洲图色成人| 国产精品久久久久久久电影| 亚洲伊人久久精品综合| 99久久综合免费| tube8黄色片| 纵有疾风起免费观看全集完整版| 免费av中文字幕在线| 久久99热6这里只有精品| 亚洲精品美女久久av网站| 久久精品久久久久久噜噜老黄| 久久午夜福利片| 国产日韩欧美在线精品| 日韩人妻高清精品专区| 欧美性感艳星| 18禁观看日本| av.在线天堂| 欧美少妇被猛烈插入视频| 天堂俺去俺来也www色官网| 九草在线视频观看| 少妇人妻久久综合中文| 老司机影院成人| 蜜桃在线观看..| 少妇被粗大猛烈的视频| 一级毛片我不卡| 精品一区二区三卡| 久久久久久久久久人人人人人人| 桃花免费在线播放| 2021少妇久久久久久久久久久| 精品人妻在线不人妻| 91aial.com中文字幕在线观看| 卡戴珊不雅视频在线播放| 午夜福利视频在线观看免费| 欧美精品人与动牲交sv欧美| 久久人人爽av亚洲精品天堂| 高清毛片免费看| 亚洲欧美一区二区三区黑人 | 成年女人在线观看亚洲视频| 视频在线观看一区二区三区| 777米奇影视久久| 在线观看免费高清a一片| 免费黄色在线免费观看| 日本91视频免费播放| 国产毛片在线视频| 国产熟女欧美一区二区| 国产精品偷伦视频观看了| 中文精品一卡2卡3卡4更新| 久久99热这里只频精品6学生| 成年人午夜在线观看视频| 精品人妻一区二区三区麻豆| 午夜免费观看性视频| 久久毛片免费看一区二区三区| 伊人久久精品亚洲午夜| 国产在线视频一区二区| 成年美女黄网站色视频大全免费 | av卡一久久| av不卡在线播放| 97精品久久久久久久久久精品| 热99久久久久精品小说推荐| 中文欧美无线码| 免费大片18禁| 欧美成人精品欧美一级黄| 久久久久久久久久久免费av| 色哟哟·www| 天天影视国产精品| 日韩制服骚丝袜av| 精品人妻一区二区三区麻豆| 国产成人91sexporn| 99热这里只有精品一区| 国产极品粉嫩免费观看在线 | 久久免费观看电影| 欧美xxxx性猛交bbbb| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品电影小说| 精品熟女少妇av免费看| 美女cb高潮喷水在线观看| .国产精品久久| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 欧美性感艳星| 蜜桃在线观看..| 一级毛片电影观看| 两个人免费观看高清视频| 黑人高潮一二区| 午夜精品国产一区二区电影| 看非洲黑人一级黄片| 欧美亚洲日本最大视频资源| 精品久久久久久久久亚洲| 亚洲成人一二三区av| 大香蕉久久成人网| 性色av一级| 这个男人来自地球电影免费观看 | 亚洲熟女精品中文字幕| 国产一级毛片在线| 少妇丰满av| 晚上一个人看的免费电影| 国产午夜精品久久久久久一区二区三区| 日韩一区二区三区影片| 黄片无遮挡物在线观看| 嘟嘟电影网在线观看| 亚洲色图 男人天堂 中文字幕 | 999精品在线视频| 91aial.com中文字幕在线观看| 青春草国产在线视频| 国产黄色免费在线视频| 性色av一级| 国产午夜精品久久久久久一区二区三区| 国产精品国产三级国产专区5o| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 久久久亚洲精品成人影院| 人妻少妇偷人精品九色| 亚洲av欧美aⅴ国产| 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说| 国产日韩欧美视频二区| 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 亚洲美女搞黄在线观看| 日本vs欧美在线观看视频| 亚洲图色成人| 一本色道久久久久久精品综合| 免费黄频网站在线观看国产| 亚洲一级一片aⅴ在线观看| 一个人免费看片子| 亚洲内射少妇av| 午夜免费观看性视频| 丰满乱子伦码专区| 欧美+日韩+精品| 国产综合精华液| 国产在线视频一区二区| 99久久综合免费| 人体艺术视频欧美日本| 美女cb高潮喷水在线观看| 日本黄大片高清| 亚洲国产色片| freevideosex欧美| 丝袜在线中文字幕| 久久久午夜欧美精品| 久久99热6这里只有精品| 中文欧美无线码| 国产精品蜜桃在线观看| 亚洲国产av影院在线观看| 国产精品久久久久久久久免| 最新中文字幕久久久久| 久久久国产欧美日韩av| 国产精品三级大全| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 大话2 男鬼变身卡| 国产 精品1| 国产精品国产三级专区第一集| 国产69精品久久久久777片| 亚洲精品日韩av片在线观看| 亚洲av在线观看美女高潮| 亚洲国产精品一区三区| 人人澡人人妻人| 免费人成在线观看视频色| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级国产专区5o| 午夜福利在线观看免费完整高清在| 久久 成人 亚洲| 考比视频在线观看| 日韩三级伦理在线观看| 精品99又大又爽又粗少妇毛片| 蜜臀久久99精品久久宅男| 中文乱码字字幕精品一区二区三区| 久久女婷五月综合色啪小说| 在线观看国产h片| 久久久国产欧美日韩av| 日韩伦理黄色片| 99热这里只有是精品在线观看| 国产成人精品无人区| 好男人视频免费观看在线| 欧美激情国产日韩精品一区| 大片电影免费在线观看免费| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| 老司机亚洲免费影院| 老司机影院毛片| 一区二区三区四区激情视频| 欧美老熟妇乱子伦牲交| 一级a做视频免费观看| 欧美一级a爱片免费观看看| 最近最新中文字幕免费大全7| 精品99又大又爽又粗少妇毛片| 国产精品无大码| 少妇熟女欧美另类| 天天操日日干夜夜撸| av在线观看视频网站免费| 免费观看性生交大片5| 99久久精品一区二区三区| 亚州av有码| 999精品在线视频| 这个男人来自地球电影免费观看 | 丰满乱子伦码专区| 91成人精品电影| 日韩中字成人| 在线观看www视频免费| 亚洲av国产av综合av卡| 男男h啪啪无遮挡| 亚洲婷婷狠狠爱综合网| 91精品一卡2卡3卡4卡| 在线观看三级黄色| 国产乱人偷精品视频| 成人黄色视频免费在线看| 狂野欧美白嫩少妇大欣赏| 人妻夜夜爽99麻豆av| 一本大道久久a久久精品| 免费高清在线观看日韩| 啦啦啦视频在线资源免费观看| 人人妻人人爽人人添夜夜欢视频| 精品久久国产蜜桃| av线在线观看网站| 欧美日韩精品成人综合77777| 妹子高潮喷水视频| 汤姆久久久久久久影院中文字幕| 精品人妻熟女av久视频| 我的老师免费观看完整版| 国模一区二区三区四区视频| 久久久国产精品麻豆| 日本爱情动作片www.在线观看| 亚洲无线观看免费| 搡老乐熟女国产| 国产不卡av网站在线观看| 黑人猛操日本美女一级片| 赤兔流量卡办理| 久久人人爽av亚洲精品天堂| 亚洲久久久国产精品| 9色porny在线观看| 亚洲精华国产精华液的使用体验| 一边亲一边摸免费视频| tube8黄色片| 人体艺术视频欧美日本| 搡老乐熟女国产| 久久这里有精品视频免费| 大片电影免费在线观看免费| 中文字幕久久专区| 我的老师免费观看完整版| 女人精品久久久久毛片| 亚洲av在线观看美女高潮| 久久精品久久久久久噜噜老黄| 蜜桃国产av成人99| 街头女战士在线观看网站| 国产日韩欧美视频二区| freevideosex欧美| 国产日韩欧美视频二区| 蜜臀久久99精品久久宅男| 青春草国产在线视频| 国产精品国产三级专区第一集| 久久精品国产亚洲网站| 国产极品天堂在线| 少妇熟女欧美另类| 亚洲精品,欧美精品| 性色av一级| 亚洲天堂av无毛| 91精品国产九色| 观看av在线不卡| 纯流量卡能插随身wifi吗| 26uuu在线亚洲综合色| 国产深夜福利视频在线观看| 亚洲国产av新网站| 中文字幕免费在线视频6| 欧美人与性动交α欧美精品济南到 | 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 人妻少妇偷人精品九色| 日韩人妻高清精品专区| 高清毛片免费看| 97在线视频观看| 看十八女毛片水多多多| 日韩 亚洲 欧美在线| 亚洲欧美成人综合另类久久久| 日韩一区二区视频免费看| 久久国产亚洲av麻豆专区| 国产免费一级a男人的天堂| 特大巨黑吊av在线直播| 国产精品免费大片| 五月开心婷婷网| 最近2019中文字幕mv第一页| 九九久久精品国产亚洲av麻豆| 国产午夜精品一二区理论片| 99九九在线精品视频| 18在线观看网站| 新久久久久国产一级毛片| 一级二级三级毛片免费看| 高清午夜精品一区二区三区| 久久久精品区二区三区| 黑人高潮一二区| 欧美日本中文国产一区发布| 亚洲国产色片| 亚洲av成人精品一二三区| 热99久久久久精品小说推荐| 人妻人人澡人人爽人人| 欧美日韩在线观看h| 日韩视频在线欧美| 91久久精品国产一区二区成人| 久久免费观看电影| 97在线人人人人妻| 国产综合精华液| 久久99一区二区三区| 美女视频免费永久观看网站| 日韩av免费高清视频| 精品酒店卫生间| 亚洲欧美一区二区三区国产| 亚洲伊人久久精品综合| 久久av网站| av不卡在线播放| 国产一区二区在线观看日韩| 中文字幕久久专区| 制服人妻中文乱码| 十八禁网站网址无遮挡| 久久 成人 亚洲| 日本免费在线观看一区| 下体分泌物呈黄色| 日本av免费视频播放| 国产淫语在线视频| 18禁在线无遮挡免费观看视频| av在线观看视频网站免费| 免费少妇av软件| 在线观看免费高清a一片| 2022亚洲国产成人精品| 一个人免费看片子| 亚洲欧美日韩卡通动漫| 亚洲av国产av综合av卡| 国产高清三级在线| 久久青草综合色| 男女啪啪激烈高潮av片| 久久久a久久爽久久v久久| 亚洲,一卡二卡三卡| 这个男人来自地球电影免费观看 | 高清av免费在线| 免费av不卡在线播放| 国产无遮挡羞羞视频在线观看| 大片电影免费在线观看免费| 波野结衣二区三区在线|