• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer

    2022-07-11 03:39:22SifengMoXiohongHuYumiTnkLinZhouChenhnPengNhokoKsiHizuruNkjimShungoKtoKtsumiUchiym
    Chinese Chemical Letters 2022年6期

    Sifeng Mo,Xiohong Hu,Yumi Tnk,Lin Zhou,Chenhn Peng,Nhoko Ksi,Hizuru Nkjim,Shungo Kto,Ktsumi Uchiym

    a Department of Applied Chemistry,Graduate School of Urban Environmental Sciences,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    b University Education Center,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    Keywords:Microchip Valve Flow control NIPPAm Chemo-mechanical switch Thermo-responsive polymer

    ABSTRACT Microfluidic devices have become a powerful tool for chemical and biologic applications.To control different functional parts on the microchip,valve plays a key role in the device.In conventional methods,physio-mechanical valves are usually used on microfluidic chip.Herein,we reported a chemo-mechanical switchable valve on microfluidic chip by using a thermally responsive block copolymer.The wettability changes of capillary with copolymer modification on inner surface were investigated to verify the function as a valve.Capillaries with modification of poly-(N-isopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAm-co-HFIPA)) with a 20% HFIPA was demonstrated capable of control aqueous solution stop or go through.Then short capillaries with copolymer modification were integrated in microchannels as valves.With the temperature changing around lower critical solution temperature (LCST),the integrated chemo-mechanical switchable valve exhibited excellent “OPEN–CLOSE’’behavior for microflow control.After optimization of the block copolymer sequences and molar ratio,a switching time as low as 20 s was achieved.The developed micro valve was demonstrated effective for flow control on microchip.

    Microfluidic chip developed from 1990s has been widely used for sample pretreatment [1,2],immunoassay [3-5],chemical synthesis [6,7],cell analysis [8-10].Valve,as one of the key function parts,helps to control microflow in microfluidic device in desirable sequence [11,12].Various types of valves have been integrated in microchannels,including shut-off valve [13],normally closed valve [14,15],monolithic elastomer valves [16],and surface tension plug [17].Limited to the large size,most of the valves were difficult to integrate into channels on microscale [13–15].Surface tension plug was easy to integrate in microchannel,but it is not reversible.Recent years,Smart valves have attracted considerable attentions for dynamically controlling microflow transport [18,19].Micro/nano structured channels modified with stimuli-responsive polymers are frequently be designed as switchable smart valves[20].

    Poly(N-isopropylacrylamide) (PNIPAAm) has been reported as an excellent thermal responsive polymer that owns a lower critical solution temperature (LCST) [21].The LCST could be adjust as wish when designing different copolymer with PNIPAAm [22,23].Surface grafted with the polymer could change its hydrophilicity as the environment temperature changes[24].Most studies have focused on surface property change and drug release [25,26].However,the design of a practical switchable valve based on PNIPAAm on microchip for temperature controlling the transportation of microflow remains challenging.

    In this work,we report on a switchable valve integrated on microfluidic chip by using a thermally responsive block copolymer for temperature controlling the transportation of microflow.As illustrated in Fig.1a,a T-shaped microfluidic chip was designed with two functional switchable valve (Valve 1 and Valve 2) in the two branch channels.The two branch channels with two individual valve were positioned on two individual thermoelectric cooler for temperature control.By adjusting the temperatures of the two thermoelectric cooler,the injected flow could be controlled to flow left or flow right only.The results suggested the valve could switch in short time (20 s).The switchable valve was fabricated by grafting a thermally responsive block copolymer brush poly-(Nisopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAmco-HFIPA)) on the inner side of glass capillaries which were then integrated in the micro channels (Fig.1b).As demonstrated in other reports,PNIPAAm was never hydrophobic whenever the temperature was above or below the LCST [27].Therefore,HFIPA was added to adjust hydrophilicity and hydrophobicity while PNIPAAm governed the thermal properties.In design,high molecule ratio of HFIPA would cause a higher contact angel (CA) that mean higher hydrophobicity.On the modified surface,the C=O and N?H groups of the PNIPPAm and (P(NIPAAm-co-HFIPA) parts generated intermolecular hydrogen bonding with water molecules,which would enhance the hydrophilicity (Fig.1b).In contrast,the C?F groups of the (P(NIPAAm-co-HFIPA) part would result in hydrophobic (Fig.1b).When the temperature (T) was below the LCST (Fig.1c),the polymer brush had a stretched state where the inter-molecule hydrogen bonding between C=O/N?H and water molecules contributed to the hydrophilic property.As a result,the aqueous solution could pass the channel easily,where the valve state was defined as “OPEN”.In contrast,at the temperature above the LCST,the inner surface of the valve became hydrophobic because of the intra-molecule hydrogen bonding between C=O and N-H while C=O and N?H group difficult to interact with water molecules.The valve with hydrophobic inner surface would stop aqueous solution to go through the valve,where the valve state was defined as “CLOSE” (Fig.1d).Therefore,the valve state could be controlled by temperature to control the flow stream in the microchannels.

    Fig.1.Chemo-mechanical switchable valve on microfluidic chip for flow control.(a) Illustration of the integrated device with switchable valves.(b) Structure of the copolymer brush.(c) Valve at the “OPEN” state when temperature was below the LCST.(d) Valve at the “CLOSE” state when temperature was below the LCST.

    To graft the P(NIPAAm-co-HFIPA to the substrate,the substrate(capillary or glass plate) was first cleaned and modified to generate –OH groups on the surface.Then,the substrate was aminated by treating with 3-aminopropyltrimethoxysilane (APTMS) and amidated by treatment with 2-bromoisobutyryl bromide (BBiB).In polymerization process,the substrate was reacted with NIPAAm solution for 1 h at 60 °C.The reaction would allow to proceed from another 1 h at 60 °C after addition of HFIPA.The entire polymerization details are described in Supporting Information and Fig.S1 (Supporting information).Energy-dispersive X-ray spectroscopy(EDX) was used to investigated the surface chemical composites.Compare to the Energy-dispersive X-ray spectroscopy (EDX) analysis of bare slide glass (Fig.2a),the element contents of carbon and nitrogen (Fig.2b) increased significantly after amine functionalization.The peak relative to bromine (Fig.2c) from BBiB was observed after amidation.After polymerization,the peak relative to fluorine (Fig.2d) from HFIPA was observed.The results indicated that the polymerization of P(NIPAAm-co-HFIPA) on the substrate was achieved.

    To confirm the function of the valve,the surface tension of polymerization substrate should have sufficient change between hydrophilicity and hydrophobicity.For achievement of the “OPEN”state,the water contact angle need to be below 90°.Meanwhile,the water contact angle need to be above 90° after switch to achieve the state of “CLOSE”.To improve the switch function of the valve,HFIPA was added in the polymerization process to ensure the water CA to be above 90° when the temperature was higher than LCST.Before applying to glass capillary,the optimization of HFIPA ratio was carried out by polymerize the copolymer on slide glass substrate.The water CA on the prepared substrate was measured by a self-assembled system under conditions of saturated humidity (Fig.S2 in Supporting information).A thermoelectric cooler (ECE-F15P-D12,OHM Electric Co.,Ltd.,Japan) was used to control the temperature during measurements.After 5 μL of deionized water was dropped onto the substrate surface and became stable,Image of the water droplet on substrate were recorded by a Dino-Lite digital microscope.The water CA were measured according to half angle formula (Fig.S3 in Supporting information).For one substrate,the water CAs at different positon were measured,and the water CA angle of the substrate was determined to be the average.

    As shown in Fig.3a,the water CA of the substrate raised with the increasing ratio of HFIPA.When the HFIPA ratio reached 20%,the water CA was below 90° (69.2° ± 1.2°) at 20 °C and above 90°(96.0° ± 1.1°) at 40 °C.The ratio of HFIPA was optimized as 20%.Moreover,the response time was also investigated.The substrate placed on the temperature control plate with a temperature of 20°C,the water CA was measured.Then,the substrate with droplet was moved carefully to another temperature plate with a temperature of 40 °C,and the water CA was recording with different time.The water CA increased quickly with the passage of time increases,and reach a maximum after 20 s (Fig.3b).The results suggested that the copolymer with 20% HFIPA was suitable for valve manufacture.Satisfactorily,the response time was as short as 20 s,which was capable of flow control in microchannels.

    After optimization of HFIPA ratio,the polymerization was applied to Square-Miniature Hollow Glass Tubing.The glass capillary owned a square inner diameter of 500 μm and a square outer diameter of 700 μm (Fig.S4 in Supporting information).The glass capillaries were modified using the same polymerization as before a HFIPA ratio of 20%.In the experiment,the modified capillaries were inserted in water with different temperature.Image was obtained using a digital camera when the height (H) of water in the capillary became stable.

    As shown in Fig.4a,when the temperature of water was kept at 20 °C that was lower than the LCST (TLCST),Hwas negative value because of the hydrophobic inner surface as we discussed before (Fig.4a).TheHdropped as raising the temperature of the environment water.With the decrease of the temperature,the height of water in capillary reached a maximum (1.1 ± 0.2 mm) at the temperature of 20°C and kept constant (Fig.4b).TheHwith positive value mean that the water could be injected the capillary easily in further experiments.With the increase of the temperature,the height of water in capillary reached a minimum (?6.1 ± 0.2) at 40 °C and kept constant then (Fig.4b).As the temperature increased from 10 °C to 50 °C,the H changed from positive values to negative values(Fig.4c).TheHwith negative value mean that the water would be difficult to be injected into and go through the capillary in further experiments.All those results indicated that the capillary with polymerization of P(NIPAAm-co-HFIPA) was ready for use as valve in microchannel.

    Fig.2.Characterization of the substrate with each polymerization step by EDX.(a) Bare slide glass.(b) Substrate after amine functionalization.(c) Substrate after Amidation.(d) Substrate after polymerization.

    Fig.3.Optimization of the copolymer on slide glass.(a) Water CA on slide glass polymerized with different ratios of HFIPA (0,10%,20%).(b) The water CA at different heating time on a temperature control plate of 40 °C.

    The microfluidic chip was designed with “T” shape.All channels were with a width of 700 μm and a height of 700 μm.The Microfluidic chip was fabricated using polydimethylsiloxane (PDMS)by standard soft lithography and replica molding techniques as previous report [28].Before the PDMS layer with channel was irreversibly sealed with another PDMS as substrate layer by oxygen plasma treatment (Electro-technic products,Inc.,Japan),two individual capillaries with polymerization function as valves were placed in the two downstream microchannels (Fig.S5 in Supporting information).The two downstream microchannel parts were placed on two individual thermoelectric coolers for temperature control.In all the application experiments,temperature of 20 °C was used to turn the valve to “OPEN” state,while temperature of 40 °C was used to turn the valve to “CLOSE” state.When the left thermoelectric cooler was set at 20 °C and the right one was set at 40 °C,an aqueous solution containing 200 μmol/L Rhodamine 6G at a speed of 1000 μL/h was injected into the microchannel.The results showed that the injected solution flowed into the left downstream microchannel which no solution flowed into the right downstream microchannel (Fig.4d).Instead,the injection solution flowed right (Fig.4e) when thermoelectric cooler was set at 40 °C.All those results demonstrated that the valve state could turn to“OPEN” and “CLOSE” conveniently by changing the temperature.In further applications,the total system will include cell culture part,valve part,and assay part.Each part can be controlled with desirable temperature.Therefore,the temperature in the valve part will not limit the temperature requirements in assay part.The reported valve made from polymer brush,thus it could work for limited times in real sample detection because of the adsorptions of metabolites from cells.The property of the valve depended on brush density and molecule ratio of HFIPA.By changing the percent of HFIPA,the LCST could be adjusted to meet the requirements of different applications.

    Fig.4.Conformation of the hydrophobicity and hydrophilicity switch in polymerized glass and application as a valve in microchannel.(a) The height of water (H)inside the capillary at 20 °C.(b) The height of water (H) inside the capillary at 40°C.(c) The H at different temperatures.(d) Flow direction when Valve 1 was “OPEN”and Valve 2 was “CLOSE”.(e) Flow direction when Valve 1 was “CLOSE” and Valve 2 was “OPEN”.

    In summary,we have developed a switchable valve that is capable of integrating in microchannel for control flow stream using a thermally responsive block copolymer.The ratio of HFIPA at 20% in the P(NIPAAm-co-HFIPA) was demonstrated to be optimal.The water contact angle changed from 69oto 96owhen then temperature changed from 20 °C to 40 °C.The integrated valve in microchannel showed excellent performance on flow control.The method provides a potential approach for valve manufacture on microfluidic chip,which will be much benefit for integration of various function parts.In further applications,every channel with valve could connect with a functional assay channel where different metabolites from cells could been analyzed.The valve channel could also connect with mass spectrometer.By controlling the valve,metabolites at different time could be collected and detected.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgment

    We acknowledge the financial support from JSPS KAKENHI Grants (Nos.JP21K14653,JP20K22555 and JP20K05557).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.065.

    亚洲aⅴ乱码一区二区在线播放 | 人人妻人人澡人人看| 久久草成人影院| 国产亚洲av嫩草精品影院| 亚洲第一欧美日韩一区二区三区| 久久精品国产清高在天天线| 一级黄色大片毛片| 级片在线观看| 一边摸一边抽搐一进一小说| 亚洲aⅴ乱码一区二区在线播放 | 91麻豆精品激情在线观看国产| 精品无人区乱码1区二区| 在线观看66精品国产| 在线国产一区二区在线| 亚洲成av人片免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美成人性av电影在线观看| 超碰成人久久| 国产亚洲av嫩草精品影院| 国产三级黄色录像| 99国产精品一区二区蜜桃av| 老司机福利观看| 欧美成人免费av一区二区三区| 十八禁人妻一区二区| 国产精品98久久久久久宅男小说| 国产熟女xx| 色哟哟哟哟哟哟| 国产熟女午夜一区二区三区| 亚洲男人天堂网一区| 日韩中文字幕欧美一区二区| 99久久99久久久精品蜜桃| 久久草成人影院| x7x7x7水蜜桃| 亚洲天堂国产精品一区在线| 国产精品亚洲av一区麻豆| ponron亚洲| 久久亚洲真实| 国产亚洲av高清不卡| 国产熟女午夜一区二区三区| 午夜a级毛片| 人妻久久中文字幕网| 90打野战视频偷拍视频| 老汉色av国产亚洲站长工具| 国产精品一区二区免费欧美| 村上凉子中文字幕在线| 日韩一卡2卡3卡4卡2021年| 无遮挡黄片免费观看| 成人永久免费在线观看视频| 一边摸一边抽搐一进一出视频| 看片在线看免费视频| 大陆偷拍与自拍| 国产午夜福利久久久久久| 黄片播放在线免费| 久久久久久亚洲精品国产蜜桃av| 18禁黄网站禁片午夜丰满| 久久伊人香网站| 老司机午夜福利在线观看视频| tocl精华| 搡老妇女老女人老熟妇| 国产精品,欧美在线| 一a级毛片在线观看| 久久香蕉国产精品| 美女国产高潮福利片在线看| 人人澡人人妻人| 两个人看的免费小视频| 99久久综合精品五月天人人| 亚洲成a人片在线一区二区| 久久精品人人爽人人爽视色| 激情在线观看视频在线高清| 精品国产乱子伦一区二区三区| 黄色视频,在线免费观看| 久久久久久人人人人人| 一区在线观看完整版| 国产精品影院久久| 免费无遮挡裸体视频| 免费在线观看亚洲国产| 欧美成狂野欧美在线观看| 久久亚洲精品不卡| 亚洲成人久久性| 亚洲自拍偷在线| 天堂√8在线中文| 久久中文字幕一级| 亚洲精品美女久久久久99蜜臀| 麻豆成人av在线观看| 老司机深夜福利视频在线观看| 9色porny在线观看| 午夜久久久久精精品| 黄色视频不卡| 久久中文字幕人妻熟女| 男女午夜视频在线观看| 国产亚洲欧美精品永久| 欧美日韩亚洲综合一区二区三区_| 精品不卡国产一区二区三区| 亚洲第一电影网av| 最近最新中文字幕大全电影3 | 国产精品国产高清国产av| 老汉色av国产亚洲站长工具| 在线观看免费视频网站a站| av在线播放免费不卡| 欧美在线黄色| 久久狼人影院| 亚洲狠狠婷婷综合久久图片| 久久久国产成人精品二区| 91精品国产国语对白视频| www.自偷自拍.com| 日本欧美视频一区| 岛国视频午夜一区免费看| 亚洲精品一卡2卡三卡4卡5卡| 一级毛片高清免费大全| 久久久久久久久中文| 欧美成狂野欧美在线观看| 久久精品国产99精品国产亚洲性色 | 久久久久久久久免费视频了| 亚洲五月色婷婷综合| 黄色女人牲交| 啪啪无遮挡十八禁网站| 久久久久久亚洲精品国产蜜桃av| 精品卡一卡二卡四卡免费| 国产精品综合久久久久久久免费 | 极品人妻少妇av视频| 亚洲午夜理论影院| av在线天堂中文字幕| 欧美+亚洲+日韩+国产| 日韩成人在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 国产精品亚洲一级av第二区| 午夜视频精品福利| 妹子高潮喷水视频| 亚洲第一av免费看| 禁无遮挡网站| 免费一级毛片在线播放高清视频 | 一边摸一边抽搐一进一小说| 精品国产美女av久久久久小说| 亚洲成人久久性| 亚洲国产高清在线一区二区三 | 国产亚洲av嫩草精品影院| 可以在线观看的亚洲视频| 日日摸夜夜添夜夜添小说| 久久精品91蜜桃| 长腿黑丝高跟| 禁无遮挡网站| 国产麻豆成人av免费视频| 免费搜索国产男女视频| 黄色视频,在线免费观看| 少妇裸体淫交视频免费看高清 | 两人在一起打扑克的视频| 一区二区三区国产精品乱码| 在线观看免费视频日本深夜| 视频在线观看一区二区三区| 亚洲人成77777在线视频| 亚洲成国产人片在线观看| 99久久精品国产亚洲精品| 91九色精品人成在线观看| 啦啦啦免费观看视频1| 19禁男女啪啪无遮挡网站| 久久久久久久午夜电影| 亚洲av日韩精品久久久久久密| 亚洲精品美女久久久久99蜜臀| 欧美午夜高清在线| 神马国产精品三级电影在线观看 | 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 丝袜人妻中文字幕| 亚洲人成伊人成综合网2020| 18禁黄网站禁片午夜丰满| 一区二区三区精品91| 男人的好看免费观看在线视频 | 亚洲avbb在线观看| 日韩三级视频一区二区三区| 精品乱码久久久久久99久播| 国产真人三级小视频在线观看| 亚洲男人天堂网一区| 在线观看免费午夜福利视频| 亚洲自偷自拍图片 自拍| 久久人人精品亚洲av| 深夜精品福利| 琪琪午夜伦伦电影理论片6080| 久久久国产精品麻豆| 欧美日本中文国产一区发布| 亚洲人成77777在线视频| 51午夜福利影视在线观看| 成人国产一区最新在线观看| 欧美日本视频| 国产一级毛片七仙女欲春2 | 又黄又爽又免费观看的视频| 精品第一国产精品| 欧美中文综合在线视频| 手机成人av网站| 国产精品免费一区二区三区在线| 国产精华一区二区三区| 国产精品电影一区二区三区| 天天躁夜夜躁狠狠躁躁| 免费看美女性在线毛片视频| 精品日产1卡2卡| 一级黄色大片毛片| www.999成人在线观看| 欧美人与性动交α欧美精品济南到| 91精品国产国语对白视频| 亚洲欧美日韩无卡精品| 久久亚洲真实| 黄片播放在线免费| 精品电影一区二区在线| 色综合站精品国产| 久久精品国产亚洲av高清一级| 一级片免费观看大全| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩高清在线视频| 久久久久国内视频| or卡值多少钱| 国产精品免费一区二区三区在线| 亚洲狠狠婷婷综合久久图片| 久久久久九九精品影院| 国产区一区二久久| 老司机在亚洲福利影院| 久久香蕉国产精品| 两人在一起打扑克的视频| 黄色毛片三级朝国网站| 国产精品乱码一区二三区的特点 | 日韩国内少妇激情av| 日韩一卡2卡3卡4卡2021年| av在线天堂中文字幕| 亚洲av熟女| 天堂影院成人在线观看| 搡老岳熟女国产| 日韩高清综合在线| 国产av一区在线观看免费| 亚洲色图综合在线观看| 久久热在线av| 丁香六月欧美| 97人妻天天添夜夜摸| 亚洲专区中文字幕在线| 精品一品国产午夜福利视频| 视频区欧美日本亚洲| 一个人免费在线观看的高清视频| 久久久久久大精品| 欧美在线一区亚洲| 国产av精品麻豆| 香蕉丝袜av| 中文字幕另类日韩欧美亚洲嫩草| 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| 性色av乱码一区二区三区2| 男女下面插进去视频免费观看| 男人的好看免费观看在线视频 | 美女扒开内裤让男人捅视频| 亚洲av电影不卡..在线观看| 淫妇啪啪啪对白视频| 久热这里只有精品99| 国产午夜精品久久久久久| 久久久久国内视频| 搞女人的毛片| 日韩三级视频一区二区三区| 国产高清videossex| 国产99白浆流出| 国产蜜桃级精品一区二区三区| 视频在线观看一区二区三区| 国产精品av久久久久免费| 免费看十八禁软件| 满18在线观看网站| 精品欧美国产一区二区三| 国产精品永久免费网站| 神马国产精品三级电影在线观看 | 他把我摸到了高潮在线观看| 久久久久九九精品影院| 在线播放国产精品三级| 亚洲国产欧美网| 九色亚洲精品在线播放| 日本五十路高清| 国产成人av激情在线播放| 亚洲少妇的诱惑av| 亚洲色图 男人天堂 中文字幕| 成人国产综合亚洲| 国产精品久久久久久精品电影 | 婷婷精品国产亚洲av在线| 国产欧美日韩精品亚洲av| 亚洲第一av免费看| 男女做爰动态图高潮gif福利片 | 在线观看日韩欧美| 久久精品亚洲熟妇少妇任你| 亚洲精品美女久久av网站| 老司机福利观看| 欧美+亚洲+日韩+国产| 久久久久国内视频| 9热在线视频观看99| 国产精品免费一区二区三区在线| 欧美成人一区二区免费高清观看 | 亚洲无线在线观看| 国产男靠女视频免费网站| 久久精品影院6| 欧美成狂野欧美在线观看| 老司机深夜福利视频在线观看| 日本 av在线| 亚洲五月天丁香| 久久久国产成人精品二区| 欧美国产日韩亚洲一区| 亚洲中文日韩欧美视频| 国产精品1区2区在线观看.| 久久国产精品男人的天堂亚洲| 精品一品国产午夜福利视频| 丁香六月欧美| 精品久久蜜臀av无| 人人澡人人妻人| 一级a爱视频在线免费观看| 国产在线观看jvid| 国产精品九九99| 成年人黄色毛片网站| 美女扒开内裤让男人捅视频| 少妇熟女aⅴ在线视频| 99国产精品免费福利视频| 亚洲国产中文字幕在线视频| 久久狼人影院| 一区二区三区精品91| 中文字幕久久专区| 少妇粗大呻吟视频| 女人被躁到高潮嗷嗷叫费观| 国产又爽黄色视频| 亚洲av日韩精品久久久久久密| 欧美日韩瑟瑟在线播放| 男女午夜视频在线观看| 在线观看日韩欧美| 在线观看www视频免费| 免费搜索国产男女视频| 老司机在亚洲福利影院| 一个人免费在线观看的高清视频| 性欧美人与动物交配| 老熟妇乱子伦视频在线观看| 国产主播在线观看一区二区| а√天堂www在线а√下载| 女人被狂操c到高潮| 又黄又粗又硬又大视频| 神马国产精品三级电影在线观看 | 亚洲情色 制服丝袜| 国产一区在线观看成人免费| 亚洲成国产人片在线观看| 妹子高潮喷水视频| 淫秽高清视频在线观看| 国产麻豆69| 国产1区2区3区精品| 成人av一区二区三区在线看| 在线观看日韩欧美| 日本 欧美在线| 最新在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 一级作爱视频免费观看| 少妇粗大呻吟视频| 国产极品粉嫩免费观看在线| 午夜福利高清视频| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区mp4| 国产成人精品在线电影| av片东京热男人的天堂| 一级毛片女人18水好多| 黄色毛片三级朝国网站| 精品国产超薄肉色丝袜足j| 亚洲激情在线av| 满18在线观看网站| 女人被狂操c到高潮| 手机成人av网站| 99热只有精品国产| 欧美大码av| 在线观看免费视频网站a站| 欧美日韩福利视频一区二区| 欧美久久黑人一区二区| 国产成人欧美| videosex国产| 在线av久久热| 国语自产精品视频在线第100页| 国产欧美日韩一区二区三| 欧美乱妇无乱码| 熟女少妇亚洲综合色aaa.| 亚洲国产精品合色在线| 一区福利在线观看| 1024视频免费在线观看| 国产成人免费无遮挡视频| 亚洲国产看品久久| 很黄的视频免费| 好男人电影高清在线观看| 国产国语露脸激情在线看| 一级a爱视频在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 少妇的丰满在线观看| 啦啦啦观看免费观看视频高清 | 国产精品久久久久久人妻精品电影| 国产人伦9x9x在线观看| 日本黄色视频三级网站网址| 在线观看免费日韩欧美大片| 亚洲一区二区三区色噜噜| 成年人黄色毛片网站| 动漫黄色视频在线观看| av在线天堂中文字幕| 高潮久久久久久久久久久不卡| 久久欧美精品欧美久久欧美| 狠狠狠狠99中文字幕| 黄色a级毛片大全视频| 国产三级在线视频| 久久久久国内视频| 久久 成人 亚洲| 亚洲第一av免费看| 久久精品成人免费网站| 高潮久久久久久久久久久不卡| 国产真人三级小视频在线观看| 日本vs欧美在线观看视频| 侵犯人妻中文字幕一二三四区| 久久亚洲精品不卡| 久久香蕉激情| 黑人操中国人逼视频| 欧美日韩黄片免| 人人妻人人爽人人添夜夜欢视频| 久久亚洲真实| 欧美另类亚洲清纯唯美| 无限看片的www在线观看| 久久久久亚洲av毛片大全| 亚洲九九香蕉| www.精华液| 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 最近最新中文字幕大全电影3 | 久久中文看片网| 午夜福利视频1000在线观看 | 久久婷婷成人综合色麻豆| 久久中文字幕人妻熟女| 亚洲精品美女久久久久99蜜臀| 久久精品国产清高在天天线| 欧美色视频一区免费| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 国产亚洲精品久久久久5区| 午夜久久久久精精品| 国产不卡一卡二| 午夜久久久在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 两个人视频免费观看高清| 中文字幕最新亚洲高清| 成人国产一区最新在线观看| 亚洲av熟女| 怎么达到女性高潮| 国产三级在线视频| 老鸭窝网址在线观看| 久久人人爽av亚洲精品天堂| 97碰自拍视频| 高清黄色对白视频在线免费看| 99精品在免费线老司机午夜| 看免费av毛片| 成人av一区二区三区在线看| 中文字幕另类日韩欧美亚洲嫩草| 精品日产1卡2卡| 丝袜在线中文字幕| 黄频高清免费视频| 中文字幕最新亚洲高清| 此物有八面人人有两片| 一本久久中文字幕| 欧美久久黑人一区二区| 免费在线观看影片大全网站| or卡值多少钱| 欧美日韩亚洲国产一区二区在线观看| 午夜福利高清视频| 欧美在线一区亚洲| 宅男免费午夜| 亚洲精华国产精华精| 久久人妻av系列| 91字幕亚洲| 99国产综合亚洲精品| 欧美中文综合在线视频| 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 色老头精品视频在线观看| 久久精品91无色码中文字幕| 国产成人欧美| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| a在线观看视频网站| 窝窝影院91人妻| 人人妻人人澡欧美一区二区 | 国产亚洲欧美在线一区二区| 亚洲一区高清亚洲精品| 变态另类成人亚洲欧美熟女 | 日韩中文字幕欧美一区二区| 国产极品粉嫩免费观看在线| 亚洲熟女毛片儿| 亚洲九九香蕉| 91大片在线观看| 国产三级在线视频| 亚洲欧美一区二区三区黑人| 首页视频小说图片口味搜索| 亚洲精品一卡2卡三卡4卡5卡| 亚洲第一青青草原| av片东京热男人的天堂| 激情在线观看视频在线高清| 国产av精品麻豆| 国产激情欧美一区二区| 日韩精品青青久久久久久| 黑丝袜美女国产一区| 老司机福利观看| 午夜精品国产一区二区电影| 国产精品久久久久久人妻精品电影| 女人爽到高潮嗷嗷叫在线视频| 国产真人三级小视频在线观看| 国产精品 国内视频| 一区二区三区国产精品乱码| 午夜福利欧美成人| 精品国产美女av久久久久小说| 国产极品粉嫩免费观看在线| 国产一区在线观看成人免费| 午夜免费鲁丝| 国产精品av久久久久免费| 国产熟女xx| 久久久久久久午夜电影| 欧美一级毛片孕妇| 在线观看66精品国产| 性色av乱码一区二区三区2| 正在播放国产对白刺激| 久久国产精品男人的天堂亚洲| 香蕉国产在线看| 国产精品98久久久久久宅男小说| 色综合站精品国产| www国产在线视频色| 午夜两性在线视频| av在线天堂中文字幕| 黄片播放在线免费| 天堂动漫精品| 午夜福利影视在线免费观看| 亚洲精品久久国产高清桃花| 国产精品影院久久| 日本在线视频免费播放| 亚洲中文av在线| 老熟妇乱子伦视频在线观看| 久久久国产成人免费| 国产视频一区二区在线看| 久久久精品欧美日韩精品| 日日爽夜夜爽网站| 他把我摸到了高潮在线观看| 国产精品亚洲av一区麻豆| 亚洲精品中文字幕在线视频| 国产成人精品久久二区二区91| 99国产精品99久久久久| 国产精品久久久久久精品电影 | 亚洲精品中文字幕一二三四区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人欧美在线观看| 亚洲午夜理论影院| 午夜福利18| 亚洲七黄色美女视频| 女人爽到高潮嗷嗷叫在线视频| 黑丝袜美女国产一区| 国产日韩一区二区三区精品不卡| 国产精品久久久av美女十八| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 国产色视频综合| 成人国产综合亚洲| 女性生殖器流出的白浆| 制服人妻中文乱码| 国产野战对白在线观看| 女警被强在线播放| 亚洲专区中文字幕在线| 在线观看免费日韩欧美大片| netflix在线观看网站| 99在线人妻在线中文字幕| 欧美成人免费av一区二区三区| 天天添夜夜摸| 国产精品秋霞免费鲁丝片| av欧美777| 男男h啪啪无遮挡| av超薄肉色丝袜交足视频| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 涩涩av久久男人的天堂| 97超级碰碰碰精品色视频在线观看| 亚洲国产欧美日韩在线播放| 精品欧美国产一区二区三| 女同久久另类99精品国产91| 男女下面插进去视频免费观看| 亚洲av五月六月丁香网| 国产精品一区二区三区四区久久 | www.www免费av| 日本黄色视频三级网站网址| 男人操女人黄网站| 国产精品综合久久久久久久免费 | 91大片在线观看| 国产精品久久久人人做人人爽| 欧洲精品卡2卡3卡4卡5卡区| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 老汉色∧v一级毛片| a在线观看视频网站| 久久久久久人人人人人| 国产极品粉嫩免费观看在线| 少妇粗大呻吟视频| 在线观看免费午夜福利视频| 午夜精品国产一区二区电影| 无人区码免费观看不卡| 色综合欧美亚洲国产小说| 99re在线观看精品视频| 久久久国产成人精品二区| 国产野战对白在线观看| 国产成人欧美在线观看| 在线观看免费视频网站a站| 国产成人欧美在线观看| 精品国产一区二区三区四区第35| 熟女少妇亚洲综合色aaa.| 国产av一区二区精品久久| 亚洲第一青青草原| 国产aⅴ精品一区二区三区波| 一进一出好大好爽视频| 国产aⅴ精品一区二区三区波| 国产精品,欧美在线| 亚洲欧美日韩高清在线视频| 深夜精品福利| 精品国内亚洲2022精品成人| 亚洲精品美女久久av网站| 亚洲精品av麻豆狂野| 亚洲性夜色夜夜综合| 国产伦一二天堂av在线观看|