• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer

    2022-07-11 03:39:22SifengMoXiohongHuYumiTnkLinZhouChenhnPengNhokoKsiHizuruNkjimShungoKtoKtsumiUchiym
    Chinese Chemical Letters 2022年6期

    Sifeng Mo,Xiohong Hu,Yumi Tnk,Lin Zhou,Chenhn Peng,Nhoko Ksi,Hizuru Nkjim,Shungo Kto,Ktsumi Uchiym

    a Department of Applied Chemistry,Graduate School of Urban Environmental Sciences,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    b University Education Center,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan

    Keywords:Microchip Valve Flow control NIPPAm Chemo-mechanical switch Thermo-responsive polymer

    ABSTRACT Microfluidic devices have become a powerful tool for chemical and biologic applications.To control different functional parts on the microchip,valve plays a key role in the device.In conventional methods,physio-mechanical valves are usually used on microfluidic chip.Herein,we reported a chemo-mechanical switchable valve on microfluidic chip by using a thermally responsive block copolymer.The wettability changes of capillary with copolymer modification on inner surface were investigated to verify the function as a valve.Capillaries with modification of poly-(N-isopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAm-co-HFIPA)) with a 20% HFIPA was demonstrated capable of control aqueous solution stop or go through.Then short capillaries with copolymer modification were integrated in microchannels as valves.With the temperature changing around lower critical solution temperature (LCST),the integrated chemo-mechanical switchable valve exhibited excellent “OPEN–CLOSE’’behavior for microflow control.After optimization of the block copolymer sequences and molar ratio,a switching time as low as 20 s was achieved.The developed micro valve was demonstrated effective for flow control on microchip.

    Microfluidic chip developed from 1990s has been widely used for sample pretreatment [1,2],immunoassay [3-5],chemical synthesis [6,7],cell analysis [8-10].Valve,as one of the key function parts,helps to control microflow in microfluidic device in desirable sequence [11,12].Various types of valves have been integrated in microchannels,including shut-off valve [13],normally closed valve [14,15],monolithic elastomer valves [16],and surface tension plug [17].Limited to the large size,most of the valves were difficult to integrate into channels on microscale [13–15].Surface tension plug was easy to integrate in microchannel,but it is not reversible.Recent years,Smart valves have attracted considerable attentions for dynamically controlling microflow transport [18,19].Micro/nano structured channels modified with stimuli-responsive polymers are frequently be designed as switchable smart valves[20].

    Poly(N-isopropylacrylamide) (PNIPAAm) has been reported as an excellent thermal responsive polymer that owns a lower critical solution temperature (LCST) [21].The LCST could be adjust as wish when designing different copolymer with PNIPAAm [22,23].Surface grafted with the polymer could change its hydrophilicity as the environment temperature changes[24].Most studies have focused on surface property change and drug release [25,26].However,the design of a practical switchable valve based on PNIPAAm on microchip for temperature controlling the transportation of microflow remains challenging.

    In this work,we report on a switchable valve integrated on microfluidic chip by using a thermally responsive block copolymer for temperature controlling the transportation of microflow.As illustrated in Fig.1a,a T-shaped microfluidic chip was designed with two functional switchable valve (Valve 1 and Valve 2) in the two branch channels.The two branch channels with two individual valve were positioned on two individual thermoelectric cooler for temperature control.By adjusting the temperatures of the two thermoelectric cooler,the injected flow could be controlled to flow left or flow right only.The results suggested the valve could switch in short time (20 s).The switchable valve was fabricated by grafting a thermally responsive block copolymer brush poly-(Nisopropylacrylamide-co-hexafluoroisopropyl acrylate) (P(NIPAAmco-HFIPA)) on the inner side of glass capillaries which were then integrated in the micro channels (Fig.1b).As demonstrated in other reports,PNIPAAm was never hydrophobic whenever the temperature was above or below the LCST [27].Therefore,HFIPA was added to adjust hydrophilicity and hydrophobicity while PNIPAAm governed the thermal properties.In design,high molecule ratio of HFIPA would cause a higher contact angel (CA) that mean higher hydrophobicity.On the modified surface,the C=O and N?H groups of the PNIPPAm and (P(NIPAAm-co-HFIPA) parts generated intermolecular hydrogen bonding with water molecules,which would enhance the hydrophilicity (Fig.1b).In contrast,the C?F groups of the (P(NIPAAm-co-HFIPA) part would result in hydrophobic (Fig.1b).When the temperature (T) was below the LCST (Fig.1c),the polymer brush had a stretched state where the inter-molecule hydrogen bonding between C=O/N?H and water molecules contributed to the hydrophilic property.As a result,the aqueous solution could pass the channel easily,where the valve state was defined as “OPEN”.In contrast,at the temperature above the LCST,the inner surface of the valve became hydrophobic because of the intra-molecule hydrogen bonding between C=O and N-H while C=O and N?H group difficult to interact with water molecules.The valve with hydrophobic inner surface would stop aqueous solution to go through the valve,where the valve state was defined as “CLOSE” (Fig.1d).Therefore,the valve state could be controlled by temperature to control the flow stream in the microchannels.

    Fig.1.Chemo-mechanical switchable valve on microfluidic chip for flow control.(a) Illustration of the integrated device with switchable valves.(b) Structure of the copolymer brush.(c) Valve at the “OPEN” state when temperature was below the LCST.(d) Valve at the “CLOSE” state when temperature was below the LCST.

    To graft the P(NIPAAm-co-HFIPA to the substrate,the substrate(capillary or glass plate) was first cleaned and modified to generate –OH groups on the surface.Then,the substrate was aminated by treating with 3-aminopropyltrimethoxysilane (APTMS) and amidated by treatment with 2-bromoisobutyryl bromide (BBiB).In polymerization process,the substrate was reacted with NIPAAm solution for 1 h at 60 °C.The reaction would allow to proceed from another 1 h at 60 °C after addition of HFIPA.The entire polymerization details are described in Supporting Information and Fig.S1 (Supporting information).Energy-dispersive X-ray spectroscopy(EDX) was used to investigated the surface chemical composites.Compare to the Energy-dispersive X-ray spectroscopy (EDX) analysis of bare slide glass (Fig.2a),the element contents of carbon and nitrogen (Fig.2b) increased significantly after amine functionalization.The peak relative to bromine (Fig.2c) from BBiB was observed after amidation.After polymerization,the peak relative to fluorine (Fig.2d) from HFIPA was observed.The results indicated that the polymerization of P(NIPAAm-co-HFIPA) on the substrate was achieved.

    To confirm the function of the valve,the surface tension of polymerization substrate should have sufficient change between hydrophilicity and hydrophobicity.For achievement of the “OPEN”state,the water contact angle need to be below 90°.Meanwhile,the water contact angle need to be above 90° after switch to achieve the state of “CLOSE”.To improve the switch function of the valve,HFIPA was added in the polymerization process to ensure the water CA to be above 90° when the temperature was higher than LCST.Before applying to glass capillary,the optimization of HFIPA ratio was carried out by polymerize the copolymer on slide glass substrate.The water CA on the prepared substrate was measured by a self-assembled system under conditions of saturated humidity (Fig.S2 in Supporting information).A thermoelectric cooler (ECE-F15P-D12,OHM Electric Co.,Ltd.,Japan) was used to control the temperature during measurements.After 5 μL of deionized water was dropped onto the substrate surface and became stable,Image of the water droplet on substrate were recorded by a Dino-Lite digital microscope.The water CA were measured according to half angle formula (Fig.S3 in Supporting information).For one substrate,the water CAs at different positon were measured,and the water CA angle of the substrate was determined to be the average.

    As shown in Fig.3a,the water CA of the substrate raised with the increasing ratio of HFIPA.When the HFIPA ratio reached 20%,the water CA was below 90° (69.2° ± 1.2°) at 20 °C and above 90°(96.0° ± 1.1°) at 40 °C.The ratio of HFIPA was optimized as 20%.Moreover,the response time was also investigated.The substrate placed on the temperature control plate with a temperature of 20°C,the water CA was measured.Then,the substrate with droplet was moved carefully to another temperature plate with a temperature of 40 °C,and the water CA was recording with different time.The water CA increased quickly with the passage of time increases,and reach a maximum after 20 s (Fig.3b).The results suggested that the copolymer with 20% HFIPA was suitable for valve manufacture.Satisfactorily,the response time was as short as 20 s,which was capable of flow control in microchannels.

    After optimization of HFIPA ratio,the polymerization was applied to Square-Miniature Hollow Glass Tubing.The glass capillary owned a square inner diameter of 500 μm and a square outer diameter of 700 μm (Fig.S4 in Supporting information).The glass capillaries were modified using the same polymerization as before a HFIPA ratio of 20%.In the experiment,the modified capillaries were inserted in water with different temperature.Image was obtained using a digital camera when the height (H) of water in the capillary became stable.

    As shown in Fig.4a,when the temperature of water was kept at 20 °C that was lower than the LCST (TLCST),Hwas negative value because of the hydrophobic inner surface as we discussed before (Fig.4a).TheHdropped as raising the temperature of the environment water.With the decrease of the temperature,the height of water in capillary reached a maximum (1.1 ± 0.2 mm) at the temperature of 20°C and kept constant (Fig.4b).TheHwith positive value mean that the water could be injected the capillary easily in further experiments.With the increase of the temperature,the height of water in capillary reached a minimum (?6.1 ± 0.2) at 40 °C and kept constant then (Fig.4b).As the temperature increased from 10 °C to 50 °C,the H changed from positive values to negative values(Fig.4c).TheHwith negative value mean that the water would be difficult to be injected into and go through the capillary in further experiments.All those results indicated that the capillary with polymerization of P(NIPAAm-co-HFIPA) was ready for use as valve in microchannel.

    Fig.2.Characterization of the substrate with each polymerization step by EDX.(a) Bare slide glass.(b) Substrate after amine functionalization.(c) Substrate after Amidation.(d) Substrate after polymerization.

    Fig.3.Optimization of the copolymer on slide glass.(a) Water CA on slide glass polymerized with different ratios of HFIPA (0,10%,20%).(b) The water CA at different heating time on a temperature control plate of 40 °C.

    The microfluidic chip was designed with “T” shape.All channels were with a width of 700 μm and a height of 700 μm.The Microfluidic chip was fabricated using polydimethylsiloxane (PDMS)by standard soft lithography and replica molding techniques as previous report [28].Before the PDMS layer with channel was irreversibly sealed with another PDMS as substrate layer by oxygen plasma treatment (Electro-technic products,Inc.,Japan),two individual capillaries with polymerization function as valves were placed in the two downstream microchannels (Fig.S5 in Supporting information).The two downstream microchannel parts were placed on two individual thermoelectric coolers for temperature control.In all the application experiments,temperature of 20 °C was used to turn the valve to “OPEN” state,while temperature of 40 °C was used to turn the valve to “CLOSE” state.When the left thermoelectric cooler was set at 20 °C and the right one was set at 40 °C,an aqueous solution containing 200 μmol/L Rhodamine 6G at a speed of 1000 μL/h was injected into the microchannel.The results showed that the injected solution flowed into the left downstream microchannel which no solution flowed into the right downstream microchannel (Fig.4d).Instead,the injection solution flowed right (Fig.4e) when thermoelectric cooler was set at 40 °C.All those results demonstrated that the valve state could turn to“OPEN” and “CLOSE” conveniently by changing the temperature.In further applications,the total system will include cell culture part,valve part,and assay part.Each part can be controlled with desirable temperature.Therefore,the temperature in the valve part will not limit the temperature requirements in assay part.The reported valve made from polymer brush,thus it could work for limited times in real sample detection because of the adsorptions of metabolites from cells.The property of the valve depended on brush density and molecule ratio of HFIPA.By changing the percent of HFIPA,the LCST could be adjusted to meet the requirements of different applications.

    Fig.4.Conformation of the hydrophobicity and hydrophilicity switch in polymerized glass and application as a valve in microchannel.(a) The height of water (H)inside the capillary at 20 °C.(b) The height of water (H) inside the capillary at 40°C.(c) The H at different temperatures.(d) Flow direction when Valve 1 was “OPEN”and Valve 2 was “CLOSE”.(e) Flow direction when Valve 1 was “CLOSE” and Valve 2 was “OPEN”.

    In summary,we have developed a switchable valve that is capable of integrating in microchannel for control flow stream using a thermally responsive block copolymer.The ratio of HFIPA at 20% in the P(NIPAAm-co-HFIPA) was demonstrated to be optimal.The water contact angle changed from 69oto 96owhen then temperature changed from 20 °C to 40 °C.The integrated valve in microchannel showed excellent performance on flow control.The method provides a potential approach for valve manufacture on microfluidic chip,which will be much benefit for integration of various function parts.In further applications,every channel with valve could connect with a functional assay channel where different metabolites from cells could been analyzed.The valve channel could also connect with mass spectrometer.By controlling the valve,metabolites at different time could be collected and detected.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgment

    We acknowledge the financial support from JSPS KAKENHI Grants (Nos.JP21K14653,JP20K22555 and JP20K05557).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.065.

    一本综合久久免费| www.999成人在线观看| 亚洲av电影在线进入| 桃红色精品国产亚洲av| 制服人妻中文乱码| 一区二区三区激情视频| 午夜福利,免费看| 中亚洲国语对白在线视频| 国产单亲对白刺激| 老司机深夜福利视频在线观看| 欧美+亚洲+日韩+国产| 亚洲熟妇中文字幕五十中出| 后天国语完整版免费观看| 亚洲精品国产一区二区精华液| 国产伦一二天堂av在线观看| 欧美av亚洲av综合av国产av| 日本a在线网址| 一级作爱视频免费观看| 欧美日韩福利视频一区二区| 在线天堂中文资源库| 国产精品,欧美在线| 国产高清有码在线观看视频 | 一本综合久久免费| 亚洲成人免费电影在线观看| 午夜影院日韩av| 亚洲精品久久成人aⅴ小说| 国产黄a三级三级三级人| 久久香蕉国产精品| 在线观看午夜福利视频| 欧美日韩福利视频一区二区| 女人被狂操c到高潮| 午夜成年电影在线免费观看| 久久热在线av| 老司机午夜十八禁免费视频| 午夜福利在线观看吧| 日日干狠狠操夜夜爽| 午夜亚洲福利在线播放| 久久精品国产亚洲av香蕉五月| 一级a爱片免费观看的视频| 18禁观看日本| 亚洲精品国产区一区二| 夜夜看夜夜爽夜夜摸| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久av网站| 两性夫妻黄色片| 久久国产精品人妻蜜桃| 精品国产亚洲在线| 十八禁网站免费在线| 性色av乱码一区二区三区2| 欧美激情高清一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产色视频综合| 中文字幕另类日韩欧美亚洲嫩草| 18禁国产床啪视频网站| 久热这里只有精品99| 午夜免费成人在线视频| 午夜精品国产一区二区电影| 午夜激情av网站| 日韩欧美在线二视频| 午夜精品在线福利| 一进一出好大好爽视频| 亚洲色图av天堂| 天堂影院成人在线观看| 丝袜人妻中文字幕| 国产亚洲av嫩草精品影院| 多毛熟女@视频| 黄色成人免费大全| 久热这里只有精品99| 18美女黄网站色大片免费观看| 黄色丝袜av网址大全| 国产亚洲av高清不卡| 宅男免费午夜| 久久性视频一级片| 免费一级毛片在线播放高清视频 | 给我免费播放毛片高清在线观看| cao死你这个sao货| 免费在线观看亚洲国产| 中文字幕精品免费在线观看视频| 日韩中文字幕欧美一区二区| 亚洲国产精品sss在线观看| 在线免费观看的www视频| 成人亚洲精品一区在线观看| 大陆偷拍与自拍| 久久中文看片网| 欧美午夜高清在线| 亚洲视频免费观看视频| 久久国产精品男人的天堂亚洲| 91字幕亚洲| 欧美日本亚洲视频在线播放| 国产一区二区三区视频了| 在线观看www视频免费| 在线观看www视频免费| 亚洲成人精品中文字幕电影| 母亲3免费完整高清在线观看| 亚洲第一电影网av| 身体一侧抽搐| 久久人妻熟女aⅴ| 成人亚洲精品av一区二区| 欧美日韩精品网址| 黄片小视频在线播放| tocl精华| 午夜福利影视在线免费观看| 国产av一区二区精品久久| 日韩高清综合在线| 成人精品一区二区免费| av在线播放免费不卡| av超薄肉色丝袜交足视频| 亚洲精品国产色婷婷电影| 欧美激情久久久久久爽电影 | 欧美性长视频在线观看| 黑人操中国人逼视频| 少妇 在线观看| 久久欧美精品欧美久久欧美| 国产精品免费一区二区三区在线| 淫秽高清视频在线观看| 欧美色视频一区免费| 亚洲情色 制服丝袜| 色播在线永久视频| 国产精品国产高清国产av| 在线观看午夜福利视频| 女性生殖器流出的白浆| 在线观看午夜福利视频| 亚洲精品国产一区二区精华液| 一区二区三区国产精品乱码| 在线观看免费视频日本深夜| 精品一品国产午夜福利视频| 黄色女人牲交| 大陆偷拍与自拍| 叶爱在线成人免费视频播放| 麻豆av在线久日| 午夜老司机福利片| 欧美日韩一级在线毛片| 亚洲,欧美精品.| 国产高清激情床上av| 叶爱在线成人免费视频播放| av在线播放免费不卡| 欧美激情 高清一区二区三区| 在线永久观看黄色视频| 欧美激情 高清一区二区三区| 国产午夜精品久久久久久| 长腿黑丝高跟| 国产一区二区三区综合在线观看| or卡值多少钱| 国产亚洲av嫩草精品影院| 99国产精品99久久久久| 国产真人三级小视频在线观看| 亚洲精品久久国产高清桃花| 亚洲av成人一区二区三| 黄色女人牲交| 国产区一区二久久| 久久久久久免费高清国产稀缺| av有码第一页| 色av中文字幕| 好男人电影高清在线观看| 一夜夜www| 国产高清videossex| 夜夜看夜夜爽夜夜摸| 久久精品人人爽人人爽视色| 国产精品亚洲av一区麻豆| 亚洲中文日韩欧美视频| 18禁观看日本| 亚洲激情在线av| 美女免费视频网站| 男女下面进入的视频免费午夜 | 精品人妻在线不人妻| 精品国产乱码久久久久久男人| 亚洲成国产人片在线观看| 久久精品亚洲精品国产色婷小说| 亚洲av成人不卡在线观看播放网| 久久精品人人爽人人爽视色| bbb黄色大片| 午夜免费鲁丝| 男人舔女人的私密视频| 变态另类丝袜制服| 后天国语完整版免费观看| 香蕉久久夜色| 美女 人体艺术 gogo| 高潮久久久久久久久久久不卡| 精品不卡国产一区二区三区| 日韩欧美一区视频在线观看| 欧美在线一区亚洲| 亚洲男人的天堂狠狠| 国产精品乱码一区二三区的特点 | 女人被狂操c到高潮| 国产熟女xx| 波多野结衣高清无吗| 日韩欧美国产在线观看| 亚洲国产日韩欧美精品在线观看 | 一级黄色大片毛片| 国产精品综合久久久久久久免费 | 禁无遮挡网站| 最近最新中文字幕大全电影3 | 精品久久久久久久久久免费视频| 亚洲国产高清在线一区二区三 | 亚洲三区欧美一区| 国产野战对白在线观看| 亚洲精品美女久久av网站| а√天堂www在线а√下载| 午夜老司机福利片| 在线播放国产精品三级| 国产精品98久久久久久宅男小说| 欧美国产日韩亚洲一区| 一本综合久久免费| 男女午夜视频在线观看| 久久精品影院6| 亚洲五月婷婷丁香| 亚洲一码二码三码区别大吗| www.www免费av| 国产日韩一区二区三区精品不卡| 99国产精品一区二区三区| av免费在线观看网站| 久久精品国产清高在天天线| 久久精品91无色码中文字幕| 91麻豆av在线| 午夜福利成人在线免费观看| 国产成人免费无遮挡视频| 中文字幕色久视频| av天堂久久9| 亚洲精品国产一区二区精华液| 久久 成人 亚洲| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜理论影院| 欧美精品啪啪一区二区三区| 无限看片的www在线观看| 999精品在线视频| 亚洲成人精品中文字幕电影| 免费在线观看完整版高清| 亚洲精品中文字幕一二三四区| 亚洲精品久久国产高清桃花| 免费不卡黄色视频| 看免费av毛片| 久久久久久免费高清国产稀缺| 亚洲美女黄片视频| 欧美激情高清一区二区三区| 久久国产精品人妻蜜桃| av欧美777| 欧美色视频一区免费| 一级毛片高清免费大全| 自线自在国产av| 国产精品av久久久久免费| 午夜亚洲福利在线播放| 亚洲片人在线观看| 亚洲中文av在线| 十八禁人妻一区二区| 亚洲人成伊人成综合网2020| 制服人妻中文乱码| 777久久人妻少妇嫩草av网站| 午夜精品国产一区二区电影| 午夜免费观看网址| 亚洲aⅴ乱码一区二区在线播放 | 国产男靠女视频免费网站| 在线免费观看的www视频| 人成视频在线观看免费观看| 日韩有码中文字幕| 热re99久久国产66热| 色在线成人网| 国产精品久久久久久人妻精品电影| 熟女少妇亚洲综合色aaa.| 一级a爱视频在线免费观看| 亚洲视频免费观看视频| 真人一进一出gif抽搐免费| www.精华液| 日本在线视频免费播放| 欧美最黄视频在线播放免费| 国产1区2区3区精品| 又黄又爽又免费观看的视频| 欧美av亚洲av综合av国产av| 免费高清在线观看日韩| 波多野结衣一区麻豆| 精品午夜福利视频在线观看一区| 欧美日韩瑟瑟在线播放| 国产亚洲精品久久久久久毛片| 一a级毛片在线观看| 51午夜福利影视在线观看| 国内精品久久久久久久电影| 亚洲自偷自拍图片 自拍| 精品人妻在线不人妻| 69av精品久久久久久| 97超级碰碰碰精品色视频在线观看| 丰满人妻熟妇乱又伦精品不卡| av免费在线观看网站| 欧美日本中文国产一区发布| 国产精品 国内视频| av天堂久久9| 国产精品99久久99久久久不卡| 怎么达到女性高潮| 手机成人av网站| 国产又色又爽无遮挡免费看| 黄频高清免费视频| 一进一出抽搐动态| 99久久99久久久精品蜜桃| 此物有八面人人有两片| 国产蜜桃级精品一区二区三区| 一边摸一边抽搐一进一小说| 亚洲天堂国产精品一区在线| 一区二区三区高清视频在线| 波多野结衣av一区二区av| 高清毛片免费观看视频网站| 一级黄色大片毛片| 欧美成人一区二区免费高清观看 | 日韩av在线大香蕉| 日韩精品中文字幕看吧| 久久精品国产亚洲av高清一级| 99久久99久久久精品蜜桃| АⅤ资源中文在线天堂| 高潮久久久久久久久久久不卡| 他把我摸到了高潮在线观看| 亚洲第一电影网av| 精品国产美女av久久久久小说| 亚洲第一欧美日韩一区二区三区| 涩涩av久久男人的天堂| 极品人妻少妇av视频| 一进一出抽搐gif免费好疼| 久久精品91无色码中文字幕| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 国产成+人综合+亚洲专区| 国产精品久久久久久精品电影 | 久久午夜综合久久蜜桃| 日韩欧美国产一区二区入口| 最近最新免费中文字幕在线| 亚洲午夜理论影院| 中文字幕人妻丝袜一区二区| 成人国语在线视频| 久久久久久人人人人人| 又大又爽又粗| 国产亚洲精品av在线| 国产精品久久久人人做人人爽| 可以在线观看的亚洲视频| 搞女人的毛片| 亚洲精品美女久久久久99蜜臀| 国产国语露脸激情在线看| 天天一区二区日本电影三级 | 制服人妻中文乱码| 99国产精品一区二区三区| 亚洲自拍偷在线| 青草久久国产| 欧美精品啪啪一区二区三区| 亚洲男人天堂网一区| 久久久精品国产亚洲av高清涩受| 两性午夜刺激爽爽歪歪视频在线观看 | 啪啪无遮挡十八禁网站| 中文字幕久久专区| 欧美黑人精品巨大| 久99久视频精品免费| 9热在线视频观看99| 国产精品一区二区三区四区久久 | 好男人在线观看高清免费视频 | 757午夜福利合集在线观看| 88av欧美| 日本在线视频免费播放| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品成人免费网站| 少妇熟女aⅴ在线视频| 国产精品九九99| 国产日韩一区二区三区精品不卡| 在线观看一区二区三区| 久久久国产成人免费| 国产成+人综合+亚洲专区| 亚洲,欧美精品.| 女人精品久久久久毛片| 黑人巨大精品欧美一区二区mp4| 亚洲av日韩精品久久久久久密| √禁漫天堂资源中文www| 日韩精品青青久久久久久| 69av精品久久久久久| 精品国产乱子伦一区二区三区| 男女下面进入的视频免费午夜 | 久久精品国产亚洲av高清一级| 久久国产亚洲av麻豆专区| 一区福利在线观看| 欧美中文日本在线观看视频| 不卡一级毛片| 99riav亚洲国产免费| 两性午夜刺激爽爽歪歪视频在线观看 | 日本一区二区免费在线视频| 老熟妇乱子伦视频在线观看| 精品国产乱码久久久久久男人| 制服人妻中文乱码| 亚洲国产看品久久| 最新在线观看一区二区三区| 国产精品综合久久久久久久免费 | 精品第一国产精品| 日韩成人在线观看一区二区三区| 午夜精品久久久久久毛片777| 国产精品亚洲一级av第二区| 高清黄色对白视频在线免费看| 国产熟女xx| 国产午夜精品久久久久久| 成人三级做爰电影| 精品电影一区二区在线| 丝袜人妻中文字幕| 精品福利观看| 国产精品爽爽va在线观看网站 | av网站免费在线观看视频| 欧美久久黑人一区二区| 久久久久久人人人人人| 亚洲av第一区精品v没综合| 久久久久久久久中文| 欧美黑人欧美精品刺激| 免费不卡黄色视频| 天天躁夜夜躁狠狠躁躁| 一区二区三区精品91| 一边摸一边抽搐一进一出视频| 国产91精品成人一区二区三区| 精品无人区乱码1区二区| 少妇 在线观看| 男女之事视频高清在线观看| 脱女人内裤的视频| 97人妻精品一区二区三区麻豆 | 久久久水蜜桃国产精品网| e午夜精品久久久久久久| 精品不卡国产一区二区三区| 国产精品av久久久久免费| 一级毛片女人18水好多| av天堂在线播放| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品国产精品久久久不卡| svipshipincom国产片| 神马国产精品三级电影在线观看 | 国产又色又爽无遮挡免费看| av片东京热男人的天堂| 不卡av一区二区三区| 欧美大码av| 国产主播在线观看一区二区| 国产成人欧美在线观看| 日韩免费av在线播放| 视频在线观看一区二区三区| 美国免费a级毛片| 国产一区二区三区在线臀色熟女| 色尼玛亚洲综合影院| 久久国产乱子伦精品免费另类| 母亲3免费完整高清在线观看| 国产精品乱码一区二三区的特点 | 国产在线精品亚洲第一网站| 美女扒开内裤让男人捅视频| 久久精品亚洲熟妇少妇任你| 视频区欧美日本亚洲| 成人18禁高潮啪啪吃奶动态图| 免费看a级黄色片| 淫秽高清视频在线观看| 最新美女视频免费是黄的| 久久久国产欧美日韩av| 久99久视频精品免费| 亚洲欧美日韩另类电影网站| 久久久精品欧美日韩精品| 精品久久久久久久久久免费视频| 国产亚洲精品第一综合不卡| 99riav亚洲国产免费| 国产精品国产高清国产av| 成在线人永久免费视频| 久久久久久久久免费视频了| 国产主播在线观看一区二区| 可以免费在线观看a视频的电影网站| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 免费在线观看完整版高清| 麻豆一二三区av精品| 黄频高清免费视频| 变态另类成人亚洲欧美熟女 | 国产亚洲精品第一综合不卡| 多毛熟女@视频| 亚洲av成人av| 又黄又粗又硬又大视频| 日韩高清综合在线| 韩国精品一区二区三区| 色av中文字幕| www.999成人在线观看| 黑人操中国人逼视频| 亚洲国产精品成人综合色| 精品国产超薄肉色丝袜足j| 久久久精品国产亚洲av高清涩受| 久久狼人影院| 久久青草综合色| 免费看美女性在线毛片视频| 精品不卡国产一区二区三区| 99久久国产精品久久久| 一区福利在线观看| 99精品在免费线老司机午夜| 日本a在线网址| 亚洲熟女毛片儿| 亚洲人成电影免费在线| 国产一区在线观看成人免费| 欧美久久黑人一区二区| 99国产综合亚洲精品| av免费在线观看网站| 午夜精品久久久久久毛片777| 色在线成人网| 精品第一国产精品| av在线天堂中文字幕| 国产精品1区2区在线观看.| 香蕉国产在线看| 午夜影院日韩av| 伦理电影免费视频| 女性生殖器流出的白浆| 成年版毛片免费区| 69精品国产乱码久久久| 国产在线观看jvid| 欧美一级a爱片免费观看看 | 欧美日韩中文字幕国产精品一区二区三区 | 女同久久另类99精品国产91| 99久久国产精品久久久| 婷婷六月久久综合丁香| 黄片播放在线免费| 国产精品日韩av在线免费观看 | 青草久久国产| 国产野战对白在线观看| 久久国产精品人妻蜜桃| 亚洲九九香蕉| 女同久久另类99精品国产91| 日韩一卡2卡3卡4卡2021年| 国产av一区二区精品久久| 窝窝影院91人妻| 国产成人精品久久二区二区91| 身体一侧抽搐| 国产成人欧美在线观看| 亚洲成av片中文字幕在线观看| 久久精品国产综合久久久| 日本 欧美在线| 精品一区二区三区视频在线观看免费| 操美女的视频在线观看| 国产精品,欧美在线| 在线国产一区二区在线| 视频在线观看一区二区三区| 99国产极品粉嫩在线观看| 黄色丝袜av网址大全| 国产成人精品在线电影| 精品不卡国产一区二区三区| 性少妇av在线| 国产主播在线观看一区二区| 中文字幕高清在线视频| a级毛片在线看网站| 999久久久国产精品视频| 亚洲国产中文字幕在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 婷婷精品国产亚洲av在线| 亚洲第一电影网av| 久久久精品欧美日韩精品| 女同久久另类99精品国产91| 两人在一起打扑克的视频| 欧美老熟妇乱子伦牲交| 国产亚洲精品一区二区www| www.www免费av| 国产三级在线视频| 久久人妻av系列| 制服丝袜大香蕉在线| 国产一区二区三区视频了| 欧美一级毛片孕妇| 亚洲av成人av| 亚洲av五月六月丁香网| 女警被强在线播放| 他把我摸到了高潮在线观看| 美国免费a级毛片| 久久性视频一级片| 搡老岳熟女国产| 免费在线观看日本一区| 满18在线观看网站| 男人舔女人的私密视频| 国产人伦9x9x在线观看| 制服丝袜大香蕉在线| 麻豆久久精品国产亚洲av| 亚洲av电影不卡..在线观看| videosex国产| 久久香蕉精品热| 欧美中文日本在线观看视频| 99在线人妻在线中文字幕| 色老头精品视频在线观看| 18禁黄网站禁片午夜丰满| 精品国产美女av久久久久小说| 香蕉久久夜色| 波多野结衣一区麻豆| 男女下面进入的视频免费午夜 | 国产乱人伦免费视频| 非洲黑人性xxxx精品又粗又长| 宅男免费午夜| 色婷婷久久久亚洲欧美| 99久久国产精品久久久| 国产精品,欧美在线| 亚洲va日本ⅴa欧美va伊人久久| 精品熟女少妇八av免费久了| 丰满的人妻完整版| 好看av亚洲va欧美ⅴa在| 好男人在线观看高清免费视频 | 久久久久国内视频| 成人三级黄色视频| 久久国产亚洲av麻豆专区| 久久久久国内视频| 国产在线观看jvid| 真人做人爱边吃奶动态| 久久久久九九精品影院| 亚洲国产精品999在线| 日日爽夜夜爽网站| 丝袜人妻中文字幕| 搡老岳熟女国产| 一级毛片高清免费大全| 桃红色精品国产亚洲av| 午夜福利欧美成人| 黑人操中国人逼视频| 真人一进一出gif抽搐免费| 精品人妻在线不人妻| 国产精品亚洲美女久久久| 精品欧美国产一区二区三| av欧美777| 香蕉久久夜色| 欧美日韩福利视频一区二区| 91麻豆精品激情在线观看国产| 亚洲在线自拍视频| 成在线人永久免费视频| 国语自产精品视频在线第100页| 真人一进一出gif抽搐免费| 99国产极品粉嫩在线观看| 法律面前人人平等表现在哪些方面| 变态另类丝袜制服| 国产精品乱码一区二三区的特点 |