• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AuNP aggregation-induced quantitative colorimetric aptasensing of sulfadimethoxine with a smartphone

    2022-07-11 03:39:20XiolingZhngLeWngXiochunLiXiujunLi
    Chinese Chemical Letters 2022年6期

    Xioling Zhng,Le Wng,Xiochun Li,?,Xiujun Li

    a College of Biomedical Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    b Department of Chemistry and Biochemistry,University of Texas at El Paso,El Paso,Texas 79968,United States

    Keywords:Smartphone AuNP aggregation Quantitative colorimetric assay Antibiotics Aptamer biosensor Sulfadimethoxine

    ABSTRACT A gold nanoparticle (AuNP) aggregation-induced colorimetric aptasensing method for quantitative detection of sulfadimethoxine (SDM) with a smartphone was developed.AuNPs were complexed with aptamers which protected AuNPs from aggregating in high-concentration salt solutions.In the presence of SDM,SDM bound with the aptamer on the surface of AuNPs with higher affinity,which competitively desorbed the aptamer from the AuNP surface and resulted in AuNPs aggregation,accompanied with a color change from red to purple-blue.The R,G and B values of images taken by a smartphone camera were analyzed with an app on the smartphone,and were utilized for quantitative analysis of SDM.Under the optimized conditions,the colorimetric aptasensing method using a smartphone showed high sensitivity for SDM,with the limit of detection of 0.023 ppm,lower than the allowed maximum SDM residue limit.This study provides a simple,fast,and easy to read method for on-site quantitative biochemical and cellular analysis.

    Antibiotics are widely used for treatment of human and animal diseases caused by pathogenic microorganisms and have played an important role in protecting human health and treatment of diseases.For instance,sulfonamides (e.g.,sulfadimethoxine,SDM)are a class of antibiotics that are broadly effective antibacterials to treat bacterial infections in human and animals.However,uncontrolled and incorrect use of sulfonamides antibiotics can lead to residues in food and environment,resulting in serious threats to human health [1].The European Commission and China have adopted a maximum SDM residue limit of 100 ng/mL (~0.1 ppm)in foodstuffs of animal origin [2–5].For accurate and sensitive detection of SDM residues in food,a variety of methods have been developed for the detection of SDM antibiotics,including highperformance liquid chromatography (HPLC) [6–8],capillary electrophoresis (CE) [9],enzyme-linked immunosorbent assay (ELISA)[10,11]and surface plasmon resonance (SPR) [12].However,these methods are complicated and time-consuming,and require expensive equipment or highly trained personnel.Simple and rapid methods for on-site quantitative detection of sulfonamide antibiotics with high sensitivity and specificity are greatly needed.

    Aptamers are DNA-or RNA-based oligonucleotide segments used for binding to various targets such as small ions,antibiotics,proteins,and cells with high affinity and specificity [13,14].Compared with antibodies used in immunosorbent methods,aptamers are easy to synthesize,modify,and can be preserved for long a term.Aptamers have been successfully used as excellent recognition probes in various bioanalytical applications such as molecular dynamics [15,16]and diseases diagnosis [17–20].Apatmers specific to SDM were reported [21],and have been successfully applied to the detection of SDM,combined with photoelectrochemical and colorimetric detection methods [5,22–24].However,bulky and costly equipment is still required for the quantitative aptasensing of SDM.

    Gold nanoparticles (AuNPs) have been widely used in bioassays as carriers or signal reporters owing to their unique physicochemical properties such as UV-vis absorption,fluorescence,impedance and excellent biocompatibility.In particular,the aggregation of AuNPs [25]and the corresponding change in UV-vis absorption spectra have enabled extensive applications in the detection of enzyme activity [26],nucleic acids [27],ions [28]and other biomolecules [29].Due to high simplicity,cost-effectiveness,and detection of its colorimetric signals with the naked eye [30–34],aptamer-functionalized AuNP biosensors were developed for the colorimetric detection of SDM [5,22].However,the UV-vis spectroscopic quantitative detection still relies on a spectrophotometer[5,22],which limits its application for on-site detection.

    Owing to the powerful imaging function of modern smartphone cameras,smartphone-based analytical techniques have also attracted increasing attention [35–38].For example,Hong and Chang reported a smartphone app that digitizes the color of a colorimetric sensor array for the semi-quantitative detection of multiple biomarkers in urine based on their difference colors under the indoor fluorescent light and the outside sunlight [35].Lopez-Ruizet al.reported the smartphone-based simultaneous pH and nitrite colorimetric determination based on the H (hue) and S (saturation) coordinates of HSV colors in the presence of corresponding color indicators on paper-based microfluidic devices [36].Current smartphone-based colorimetric assays mostly target intrinsic colors of analytes or simple color reactions after the addition of color indicators such as pH indicators.Combined with nucleic acid probe and AuNPs,Xuet al.developed a smartphone-based on-site nucleic acid testing platform in point-of-care settings [38].

    In this work,we developed a new smartphone-based colorimetric aptasensing method based on AuNP aggregation for simple but quantitative detection of SDM.In the presence of SDM,the aptamer bond with the target SDM,and the aptamers were desorbed from the surface of AuNPs.As a result,the AuNPs were aggregated in high salt media,with a concomitant red-to-blue color change.The R,G and B value of images taken by a smartphone camera were analyzed by an app for quantitative bioanalysis,the R value showed good linear relationship with the concentrations of SDM,with the limit of detection (LOD) of 0.023 ppm,which was lower than the maximum SDM residue limit (~0.1 ppm) allowed by the European Commission and China.However,in the absence of SDM,no AuNP aggregation as well as color changes occurred.This smartphone-based colorimetric aptasensing method enables simple,direct,and quantitative detection of antibiotics,without using costly and bulky equipment,especially for resource-limited settings such as on-site and field detection.

    The smartphone-based colorimetric aptasensing method for quantitative detection of SDM is based on the target-triggered AuNP aggregation,while using the SDM-specific aptamer as the recognition element,and analyzed R,G,or B values from captured images for quantitative analysis.Fig.1 shows the principle of the smartphone-based colorimetric aptasensing method.As illustrated in Fig.1a,in the absence of SDM,the aggregation of AuNPs can be induced by high-concentration salt.However,when adding the aptamer,the aptamer can be easily adsorbed on the surface of AuNPs by the electrostatic interaction between the bases of ssDNA of aptamer and AuNPs,which prevents the strong van der Waals attraction and enhances the stability of AuNPs.Thus,no AuNP aggregation happens,the color of AuNPs still remains red and the absorption wavelength maximum stays at 522 nm in the UV-vis spectra.Upon the addition of SDM,the aptamer binds to SDM with higher affinity,which induces the adsorbed aptamers to be detached from AuNPs and leads to the aggregation of AuNPs.During this process,the color changes from red to purple-blue.As shown in Fig.1b,a smartphone is arranged to capture images and analyze their R,G or B values to determine the concentration of SDM.The transmission electron microscopy (TEM) images in Fig.1c show the morphology changes of AuNPs before and after the aggregation.

    AuNPs were prepared by citrate reduction of HAuCl4.The AuNPs were prepared at room temperature by adding 1.0 mL of a 1%sodium citrate solution to 0.01% of 100 mL HAuCl4with vigorous stirring.After 1 min,1.0 mL 0.075% of NaBH4(dissolved in 1%sodium citrate solution) was added.The mixture was not stopped from stirring until its color turned red.The average diameter of AuNPs showed by TEM was about 10 nm (Fig.1c).The concentration of the AuNPs was about 1.3 nmol/L,which was determined according to Beer’s law by using the extinction coefficient of 6.15 × 107L mol?1cm?1for 10 nm AuNPs in diameter at 450 nm[39].The prepared dispersed AuNPs solution was very stable for several months.

    Fig.1.Principle (a) and setup (b) of quantitative colorimetric detection of SDM based on AuNP aggregation with a smartphone.(c) TEM images of dispersed AuNPs and aggregated AuNPs induced by the target in high-concentration of NaCl solutions(0.04 mol/L).

    Prior to the colorimetric aptasensing of the target,the effects of several key factors were investigated and optimized,including the concentration of NaCl and the concentration of the aptamer.AuNPs can aggregate in high-concentration NaCl solutions and the concentrations of NaCl solutions influence the degree of aggregation.Therefore,the salt concentration (NaCl) is particularly important and firstly investigated.The spectra changes of the mixture after adding different concentrations of NaCl were shown in Fig.2a.Since high-concentration NaCl can induce the aggregation of AuNPs and the aggregated AuNPs show weaker absorbance at 522 nm compared with the dispersed AuNPs,with the increase of the NaCl concentrations,the absorption peak at 522 nm,a presentative peak for dispersed AuNPs,kept decreasing.As shown in Fig.2b,when the NaCl concentration was greater than 0.04 mol/L,the absorbance at 522 nm did not change significantly,which indicates that almost all of AuNPs were aggregated.Therefore,0.04 mol/L of NaCl was determined as the optimal salt concentration in our assay system.

    Since SDM competes with AuNPs for binding to aptamers,the concentration of the aptamer affects the aggregation of AuNPs.If the aptamer concentration is too high,when NaCl is added to the solution,less aggregation of AuNPs will be observed,and this will affect the detection of SDM.Hence,the aptamer concentration was also optimized.The spectra changes of the mixture with different concentrations of the aptamer is shown in Fig.3.

    Fig.2.The effect of different concentrations of NaCl on AuNPs aggregation.(a) The absorbance spectra of AuNPs solutions in different concentrations of NaCl.(b) UV-vis absorbance of AuNPs at 522 nm with different concentrations of NaCl.

    Fig.3.Optimization of aptamer concentrations.(a) The absorbance spectra of AuNPs solutions at various concentrations of the aptamer.(b) UV-vis absorbance of AuNP solutions at 522 nm along with the changes of aptamer concentrations.NaCl concentration,0.04 mol/L.

    The absorbance at 522 nm increased with the increased concentrations of the aptamer over the range from 0 to 1.0 μmol/L,which indicates that the aptamer was adsorbed to the AuNPs surface and inhibited the aggregation of AuNPs.However,the absorbance plateaued when the concentration of the aptamer was higher than 0.5 μmol/L.Thus,0.5 μmol/L aptamer was determined as the optimal aptamer concentration.

    After condition optimization,different concentrations of the target SDM were mixed with the AuNP/aptamer solutions and measured using the AuNPs-aggregation based colorimetric aptasensing method with a smartphone.Compared with AuNPs,SDM possesses a higher affinity to the aptamer.Therefore,the presence of the SDM can desorb the aptamer from AuNPs,which further leads to the aggregation of the AuNPs in the presence of high-concentration NaCl.As shown in images taken by a smartphone camera in Fig.4a,after the addition of SDM,an obvious color change from red to purple blue was observed with the increase of the concentration of SDM from 0 to 5 ppm.

    The R,G,B values of these images were further analyzed by a smartphone app and the relationships between the R,G,B value and the concentration of SDM were investigated.Fig.S1 (Supporting information) shows that the R values decreased with the increasing concentrations of SDM in the concentration range of 0–1.0 ppm.When the concentration of SDM was higher than 1.0 ppm,the R values increased slightly and then became plateaued.Since the solution shows a color change from red to purple-blue,this nonmonotonic variation of R value can be attributed to the hue change of the solution.G and B values show a similar relationship with the concentrations of SDM.As shown in Fig.4b,linear relationships were derived between the R,G and B values and the concentrations of SDM in the range of 0–0.6 ppm,respectively.The linear regression equations for R,G,and B curves arey=?121.26C+139.75,y=?102.90C+112.55,andy=?100.01C+150.49,whereCrepresents the concentration of SDM (ppm),yrepresents R,G and B values,respectively.Their corresponding squared correlation coefficients (R2) are 0.9921,0.9791,and 0.9963,respectively.The Rvs.Ccurve exhibits the largest slope of the fitted lines,indicating the highest sensitivity among R,G,and B.Therefore,the R value was utilized to quantify the concentration of SDM.In addition,the limit of detection (LOD) was calculated to be 0.023 ppm based on the 3σmethod,which is lower than maximum residue limit of ~0.1 ppm in foodstuffs of animal origin.The comparison of the LOD of SDM in this study with other methods is summarized in Table S1 (Supporting information).It can be seen that although our method provides a higher LOD than that from some costly instruments,it has a comparable or even lower LOD than other label-free aptasensor methods even using spectrophotometers.Since this smartphone-based quantitative aptasensing method does not require conventional costly instruments,and thus provides a simple,fast,and easy to read method for on-site SDM analysis with high sensitivity.

    Fig.4.(a) Images of the assay solutions taken by a smartphone camera with different concentrations of SDM.(b) The linear correlation between R,G and B values and SDM concentrations from 0 to 0.6 ppm,respectively.(c) Specificity investigation of the colorimetric aptasensing method,compared to various antibiotics (3.5 μmol/L),including chloramphenicol (CHL),ampicillin (AMP),tetracycline (TET),cephradine (CEP),oxcytetracycline dehydrate (OTC),ofloxacin (OFL),sulfadimethoxine (SDM),and Blank.For a better presentation (i.e.,positive peaks for the target,relative to other antibiotics),the corrected R value that is defined as 255 minus the R value of different antibiotics assay solutions was used in (c).

    The specificity of the method was also investigated.100 μL of various concentrations of other antibiotics (3.5 μmol/L) were added to the above AuNPs/aptamer solutions and measured using the colorimetric aptasensing method,following the same protocol for the measurement of SDM.As shown in Fig.4c,only SDM resulted in significant changes in corrected R values,and no noticeable color changes were observed in all other antibiotic solutions.Furthermore,their UV-vis spectra were recorded and shown in Fig.S2 (Supporting information).Similarly,only SDM led to a significant wavelength shift,an indication of different status of AuNPs from the dispersed status to aggregated status,while all other antibiotics only resulted in negligible changes in wavelength shift,further confirming the high specificity of our method.

    In summary,we developed a smartphone-based colorimetric aptasensing method based on AuNP aggregation for quantitative detection of SDM at the point of care.Aptamer-AuNPs were used to combine the high selectivity and affinity of aptamers and the spectroscopic advantages of AuNPs to allow for simple,rapid and sensitive detection of SDM.The red-to-blue color change of AuNPs in the presence of SDM was captured by a smartphone camera and the R Value was digitalized for quantitative detection of SDM.The LOD was calculated to be 0.023 ppm,lower than the maximum SDM residue limit.This colorimetric aptasensing method provides a powerful tool for on-site screening of antibiotic residues.By changing different aptamers [40–42]and combining with microfluidic platforms [43–45],this smartphone-based colorimetric method has great potential for simple and quantitative biochemical and cellular analysis at various low-resource settings such as on-site detection [46–50].

    Supplementary material

    Supplementary material related to this article such as more detailed experimental sections can be found,in the online version at

    Declaration of competing interest

    A China Patent (ZL 201710957744.6) was granted on December 22,2020 for which the inventors are Xiaochun Li,Le Wang,Xiaoliang Zhang and Hua-Zhong Yu.The patent covers the method of AuNPs aggregation-based quantitative colorimetric aptasensing of sulfadimethoxine with a smartphone described herein.The inventors have begun dialogues with a number of biotech companies to explore its commercialization.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21874098 and 61775157),and Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,Key R&D plan of Shanxi Province (International cooperation) (No.201903D421053),Key R&D Plan of Shanxi Province(high technologies field,No.201903D121158),and the U.S.NSF(Nos.IIP2122712 and IIP 2052347),CPRIT (No.RP210165),and DOT(No.CARTEEH).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.061.

    夫妻性生交免费视频一级片| 久久久精品欧美日韩精品| 99久久精品国产国产毛片| 国产91av在线免费观看| 天天一区二区日本电影三级| 亚洲成人精品中文字幕电影| 免费观看性生交大片5| 国产淫片久久久久久久久| 国产乱人偷精品视频| 国产伦在线观看视频一区| 91久久精品电影网| 国产成人精品婷婷| 久久久久网色| 麻豆一二三区av精品| 永久网站在线| 亚洲怡红院男人天堂| 国产黄片视频在线免费观看| 亚洲av电影不卡..在线观看| 一个人看的www免费观看视频| 日本午夜av视频| 超碰av人人做人人爽久久| 18禁裸乳无遮挡免费网站照片| 女人被狂操c到高潮| 一级av片app| 看黄色毛片网站| 国产亚洲精品av在线| 美女脱内裤让男人舔精品视频| 男人舔女人下体高潮全视频| videossex国产| 久久人人爽人人片av| 国产一级毛片在线| 欧美丝袜亚洲另类| 免费黄色在线免费观看| 国产一级毛片在线| 99久久成人亚洲精品观看| 一级毛片aaaaaa免费看小| 色5月婷婷丁香| h日本视频在线播放| 免费看av在线观看网站| 国产精品伦人一区二区| 免费看日本二区| 久久人妻av系列| 日韩欧美在线乱码| 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看| 中文欧美无线码| www.色视频.com| 久久久久久伊人网av| 国产精品久久视频播放| 亚洲在线自拍视频| 亚洲av日韩在线播放| 亚洲熟妇中文字幕五十中出| 久久精品夜色国产| 精品少妇黑人巨大在线播放 | 亚洲最大成人手机在线| 精品国内亚洲2022精品成人| 波多野结衣高清无吗| 久久精品综合一区二区三区| 少妇人妻精品综合一区二区| 18+在线观看网站| 午夜日本视频在线| 精品免费久久久久久久清纯| 又爽又黄a免费视频| 插逼视频在线观看| 亚洲内射少妇av| 人妻少妇偷人精品九色| 国产欧美日韩精品一区二区| 神马国产精品三级电影在线观看| 少妇裸体淫交视频免费看高清| 久久久国产成人精品二区| 国产成人一区二区在线| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久av不卡| 中文字幕人妻熟人妻熟丝袜美| 波野结衣二区三区在线| 亚洲av福利一区| 成人av在线播放网站| 可以在线观看毛片的网站| 日本-黄色视频高清免费观看| 日韩精品青青久久久久久| 亚洲欧洲日产国产| 亚洲aⅴ乱码一区二区在线播放| 人妻系列 视频| 日日摸夜夜添夜夜添av毛片| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 十八禁国产超污无遮挡网站| 男女啪啪激烈高潮av片| 精品免费久久久久久久清纯| 亚洲国产精品国产精品| 欧美三级亚洲精品| 久久久久久大精品| 高清毛片免费看| 夫妻性生交免费视频一级片| 男女边吃奶边做爰视频| 桃色一区二区三区在线观看| 老司机影院毛片| 高清日韩中文字幕在线| 最近手机中文字幕大全| 男人狂女人下面高潮的视频| 国产亚洲91精品色在线| 99在线人妻在线中文字幕| 观看美女的网站| 大香蕉97超碰在线| 一级黄片播放器| 99热这里只有精品一区| 国产又色又爽无遮挡免| 中文亚洲av片在线观看爽| 村上凉子中文字幕在线| 亚洲熟妇中文字幕五十中出| 国产精品久久久久久av不卡| 亚洲一区高清亚洲精品| 成人欧美大片| 欧美日韩综合久久久久久| 亚洲真实伦在线观看| 精品久久久久久久久av| 插阴视频在线观看视频| 女的被弄到高潮叫床怎么办| 少妇的逼水好多| 国产精品国产三级专区第一集| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播| 人体艺术视频欧美日本| av又黄又爽大尺度在线免费看 | 成人美女网站在线观看视频| 亚洲自拍偷在线| 99国产精品一区二区蜜桃av| 啦啦啦韩国在线观看视频| 又粗又爽又猛毛片免费看| 免费观看人在逋| 国产精品久久电影中文字幕| 亚洲中文字幕一区二区三区有码在线看| 久久久久久久午夜电影| 国产精品久久久久久久久免| 我的老师免费观看完整版| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 一级毛片电影观看 | 成人毛片a级毛片在线播放| 狂野欧美激情性xxxx在线观看| 国产精品伦人一区二区| 永久免费av网站大全| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免| 三级国产精品欧美在线观看| 久久6这里有精品| 老女人水多毛片| 91午夜精品亚洲一区二区三区| 搡老妇女老女人老熟妇| 99热精品在线国产| 国产亚洲5aaaaa淫片| 丝袜美腿在线中文| 少妇的逼水好多| 五月伊人婷婷丁香| 性色avwww在线观看| 亚洲丝袜综合中文字幕| 免费播放大片免费观看视频在线观看 | 亚洲丝袜综合中文字幕| 老司机影院成人| 特大巨黑吊av在线直播| 久久亚洲国产成人精品v| 亚洲欧洲国产日韩| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av涩爱| 亚洲怡红院男人天堂| 成人性生交大片免费视频hd| 精品久久久久久久人妻蜜臀av| 免费看a级黄色片| 国产成人a∨麻豆精品| 亚洲在线自拍视频| 少妇人妻一区二区三区视频| 亚洲最大成人手机在线| 内射极品少妇av片p| 国产精品一及| 女人被狂操c到高潮| 人体艺术视频欧美日本| 免费观看人在逋| 国产大屁股一区二区在线视频| 国产爱豆传媒在线观看| 少妇猛男粗大的猛烈进出视频 | 国产淫片久久久久久久久| 内射极品少妇av片p| 日韩欧美三级三区| 成年免费大片在线观看| 日本黄大片高清| 成人漫画全彩无遮挡| 日本三级黄在线观看| 1000部很黄的大片| 国产黄色小视频在线观看| videos熟女内射| 国产三级中文精品| 一本久久精品| 国产伦一二天堂av在线观看| 国产国拍精品亚洲av在线观看| 久久精品久久久久久久性| 在线a可以看的网站| 国国产精品蜜臀av免费| 99久久成人亚洲精品观看| 日韩精品青青久久久久久| 久久6这里有精品| 国产精品电影一区二区三区| 日韩制服骚丝袜av| 男人狂女人下面高潮的视频| 国产乱人视频| 大香蕉97超碰在线| 国产精品1区2区在线观看.| 国产精品日韩av在线免费观看| 午夜精品国产一区二区电影 | 国产又色又爽无遮挡免| 九九久久精品国产亚洲av麻豆| 51国产日韩欧美| 国产精品1区2区在线观看.| 久久久精品94久久精品| 国产综合懂色| 少妇被粗大猛烈的视频| 国产精品一二三区在线看| 在线天堂最新版资源| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 午夜a级毛片| 三级毛片av免费| 一个人看的www免费观看视频| 丰满乱子伦码专区| 成人美女网站在线观看视频| 精品一区二区免费观看| 免费看日本二区| 永久免费av网站大全| 国产免费视频播放在线视频 | 亚洲精品日韩在线中文字幕| 日本欧美国产在线视频| 网址你懂的国产日韩在线| 国产精品日韩av在线免费观看| 亚洲精品一区蜜桃| 亚洲国产精品sss在线观看| 亚洲四区av| 一个人看视频在线观看www免费| 亚洲怡红院男人天堂| 好男人视频免费观看在线| 男人和女人高潮做爰伦理| 嫩草影院精品99| 美女cb高潮喷水在线观看| 丝袜喷水一区| 久久鲁丝午夜福利片| 男女下面进入的视频免费午夜| 一二三四中文在线观看免费高清| 日本三级黄在线观看| 久久鲁丝午夜福利片| 精品久久久久久久久亚洲| 最近中文字幕高清免费大全6| 国产精品久久电影中文字幕| 小说图片视频综合网站| 亚洲精品色激情综合| 好男人在线观看高清免费视频| 一级爰片在线观看| 永久免费av网站大全| or卡值多少钱| 午夜激情福利司机影院| 国产午夜精品论理片| 搡女人真爽免费视频火全软件| 18禁裸乳无遮挡免费网站照片| 国产探花在线观看一区二区| 国产精品综合久久久久久久免费| 男女国产视频网站| 精品99又大又爽又粗少妇毛片| 欧美一区二区精品小视频在线| 色播亚洲综合网| 一级爰片在线观看| 神马国产精品三级电影在线观看| 欧美xxxx黑人xx丫x性爽| 国产高清三级在线| 国产又色又爽无遮挡免| 欧美97在线视频| 寂寞人妻少妇视频99o| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品伦人一区二区| 国产毛片a区久久久久| 久久这里只有精品中国| 毛片女人毛片| 天堂av国产一区二区熟女人妻| 日日啪夜夜撸| 免费观看性生交大片5| 日本三级黄在线观看| 国产成人精品久久久久久| 色哟哟·www| 在线免费观看不下载黄p国产| 91狼人影院| 国产不卡一卡二| 久久久久网色| 国产精品一区二区性色av| 亚洲五月天丁香| 伊人久久精品亚洲午夜| 亚洲av电影在线观看一区二区三区 | 观看美女的网站| 欧美变态另类bdsm刘玥| 五月玫瑰六月丁香| 国产成人精品一,二区| 国产伦精品一区二区三区视频9| 免费黄色在线免费观看| 国产精品一区二区在线观看99 | 观看美女的网站| 亚洲一区高清亚洲精品| 看片在线看免费视频| 精品人妻偷拍中文字幕| 又粗又硬又长又爽又黄的视频| 在线免费十八禁| 国产成人午夜福利电影在线观看| 老司机福利观看| 国产免费男女视频| 久久婷婷人人爽人人干人人爱| 丰满少妇做爰视频| 麻豆一二三区av精品| 五月伊人婷婷丁香| 男人和女人高潮做爰伦理| 尾随美女入室| 在线免费观看的www视频| 精品无人区乱码1区二区| www.av在线官网国产| 日韩欧美三级三区| 久久精品夜色国产| 伦理电影大哥的女人| 国产精品人妻久久久影院| 青春草国产在线视频| 九草在线视频观看| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 国产免费福利视频在线观看| 美女内射精品一级片tv| 国产黄片美女视频| 国产精品久久久久久av不卡| .国产精品久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲在久久综合| 国产亚洲最大av| 免费一级毛片在线播放高清视频| 一边亲一边摸免费视频| 十八禁国产超污无遮挡网站| 亚洲国产欧美在线一区| 免费观看精品视频网站| 有码 亚洲区| 精品国内亚洲2022精品成人| 亚洲欧洲日产国产| 免费人成在线观看视频色| 日韩三级伦理在线观看| 成人综合一区亚洲| 男女边吃奶边做爰视频| 人人妻人人看人人澡| 国产精品三级大全| 一级爰片在线观看| 精华霜和精华液先用哪个| 一本一本综合久久| 中文字幕av在线有码专区| 亚洲欧美精品专区久久| 男女视频在线观看网站免费| 日本三级黄在线观看| 久久热精品热| 男女视频在线观看网站免费| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 丰满少妇做爰视频| 中文字幕av在线有码专区| 亚州av有码| 欧美3d第一页| 夜夜看夜夜爽夜夜摸| 18禁在线播放成人免费| 国产亚洲av片在线观看秒播厂 | 看免费成人av毛片| 少妇的逼好多水| 久久精品国产亚洲av天美| 22中文网久久字幕| 99久久无色码亚洲精品果冻| 国产亚洲精品av在线| 色吧在线观看| 国产91av在线免费观看| 2021天堂中文幕一二区在线观| 18禁在线无遮挡免费观看视频| 亚洲欧美成人精品一区二区| 国产亚洲91精品色在线| 久久精品国产鲁丝片午夜精品| 日韩欧美精品v在线| 色视频www国产| 久久精品人妻少妇| 欧美xxxx性猛交bbbb| 三级国产精品欧美在线观看| 一个人观看的视频www高清免费观看| 欧美日本视频| 黄片wwwwww| 国产av在哪里看| 欧美成人a在线观看| 中文字幕av在线有码专区| 色综合亚洲欧美另类图片| 51国产日韩欧美| 成人亚洲欧美一区二区av| 欧美性猛交黑人性爽| 天堂影院成人在线观看| 国产av在哪里看| 亚洲va在线va天堂va国产| 伦精品一区二区三区| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 午夜福利高清视频| 插阴视频在线观看视频| 国产精品99久久久久久久久| 天堂√8在线中文| 久久久久久久国产电影| 久久欧美精品欧美久久欧美| 2021少妇久久久久久久久久久| 看免费成人av毛片| a级毛片免费高清观看在线播放| 九九爱精品视频在线观看| 亚洲真实伦在线观看| 美女cb高潮喷水在线观看| 高清视频免费观看一区二区 | 久久精品综合一区二区三区| 国产淫语在线视频| 97超视频在线观看视频| 欧美成人免费av一区二区三区| 国产亚洲5aaaaa淫片| 我要看日韩黄色一级片| 69av精品久久久久久| 黄色欧美视频在线观看| 国产三级在线视频| 丰满少妇做爰视频| 久久精品国产亚洲av涩爱| 久久精品综合一区二区三区| 成年av动漫网址| 欧美日本亚洲视频在线播放| 精品欧美国产一区二区三| 国内精品一区二区在线观看| 欧美一区二区亚洲| 日韩一区二区视频免费看| 久久久久久久久久黄片| 国产av一区在线观看免费| 亚洲欧美成人综合另类久久久 | 国产精品一区二区性色av| 男插女下体视频免费在线播放| 三级男女做爰猛烈吃奶摸视频| 日日摸夜夜添夜夜爱| 九草在线视频观看| 欧美zozozo另类| 不卡视频在线观看欧美| 嫩草影院新地址| 麻豆一二三区av精品| 亚洲国产欧美人成| 精品国内亚洲2022精品成人| 精品午夜福利在线看| 亚洲在线观看片| 最新中文字幕久久久久| 中文字幕免费在线视频6| 成人国产麻豆网| 久久久久久久国产电影| 午夜福利在线在线| 日韩高清综合在线| 能在线免费看毛片的网站| 欧美高清成人免费视频www| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 久久99蜜桃精品久久| 一级黄片播放器| 久久久久久九九精品二区国产| 久久久色成人| 你懂的网址亚洲精品在线观看 | 汤姆久久久久久久影院中文字幕 | 又粗又硬又长又爽又黄的视频| 激情 狠狠 欧美| 亚洲三级黄色毛片| 亚洲怡红院男人天堂| 久久草成人影院| 日本与韩国留学比较| 成人性生交大片免费视频hd| 最近中文字幕2019免费版| 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 亚洲国产欧美人成| 国产探花在线观看一区二区| 国产精品人妻久久久影院| 国产综合懂色| 亚洲综合色惰| 精品久久久久久久久久久久久| 在线观看一区二区三区| 国产精品蜜桃在线观看| 午夜日本视频在线| 最近2019中文字幕mv第一页| 日韩av不卡免费在线播放| 国产成人aa在线观看| 国产爱豆传媒在线观看| 国产精品一区www在线观看| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡免费网站照片| av福利片在线观看| 亚洲婷婷狠狠爱综合网| 在线观看66精品国产| 美女内射精品一级片tv| 色网站视频免费| 日韩欧美精品免费久久| 欧美区成人在线视频| 欧美成人一区二区免费高清观看| 国产精品一区二区在线观看99 | 只有这里有精品99| 亚洲怡红院男人天堂| 亚洲人成网站在线播| 午夜a级毛片| 国产精品久久电影中文字幕| 国产精品,欧美在线| 夜夜爽夜夜爽视频| or卡值多少钱| 国产精品蜜桃在线观看| 成人国产麻豆网| 国产亚洲av片在线观看秒播厂 | 国产一级毛片七仙女欲春2| 日韩欧美精品免费久久| 国产极品精品免费视频能看的| 亚洲四区av| 在线观看av片永久免费下载| 日本与韩国留学比较| 中文天堂在线官网| 少妇熟女欧美另类| 久久久亚洲精品成人影院| 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说 | 看片在线看免费视频| 国产亚洲最大av| 国产伦在线观看视频一区| 亚洲av一区综合| 少妇熟女aⅴ在线视频| 卡戴珊不雅视频在线播放| .国产精品久久| 男插女下体视频免费在线播放| 身体一侧抽搐| 成人av在线播放网站| 婷婷色麻豆天堂久久 | 国产三级在线视频| 嘟嘟电影网在线观看| 国产一区二区在线观看日韩| 亚洲人成网站在线播| 亚洲av男天堂| 丝袜喷水一区| 久久人人爽人人爽人人片va| 国产精品野战在线观看| 91久久精品国产一区二区三区| 亚洲成av人片在线播放无| 我要搜黄色片| 亚洲国产精品合色在线| 91精品伊人久久大香线蕉| 在线a可以看的网站| 午夜福利视频1000在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美色视频一区免费| 日韩一本色道免费dvd| 三级国产精品片| 亚洲精品日韩av片在线观看| 欧美成人免费av一区二区三区| 精品午夜福利在线看| 看免费成人av毛片| 亚洲欧美一区二区三区国产| 国产成人91sexporn| 91精品一卡2卡3卡4卡| 亚洲欧美清纯卡通| 美女大奶头视频| 成人一区二区视频在线观看| 日韩av在线大香蕉| 午夜日本视频在线| 丝袜喷水一区| 国产高清有码在线观看视频| 精品人妻偷拍中文字幕| 久久草成人影院| 亚洲av成人精品一二三区| av在线老鸭窝| 国产精品国产高清国产av| 丰满乱子伦码专区| av在线亚洲专区| 一级毛片久久久久久久久女| 色5月婷婷丁香| 嫩草影院新地址| 久久久久久久久久久免费av| 亚洲国产最新在线播放| 成人毛片60女人毛片免费| 国产中年淑女户外野战色| 哪个播放器可以免费观看大片| 日本三级黄在线观看| 五月玫瑰六月丁香| 少妇的逼水好多| 国产高清有码在线观看视频| 一级黄色大片毛片| 国产精品久久久久久精品电影小说 | 岛国毛片在线播放| 亚洲综合精品二区| 欧美一区二区精品小视频在线| 国产69精品久久久久777片| 欧美日韩精品成人综合77777| 高清在线视频一区二区三区 | 少妇人妻精品综合一区二区| 精品国产三级普通话版| 亚洲av中文字字幕乱码综合| 18禁裸乳无遮挡免费网站照片| 哪个播放器可以免费观看大片| 看片在线看免费视频| 久久久久九九精品影院| 黄片wwwwww| 亚洲精华国产精华液的使用体验| 免费观看的影片在线观看| 3wmmmm亚洲av在线观看| 国产精品人妻久久久久久| 午夜精品在线福利| 男女下面进入的视频免费午夜| 在线播放无遮挡| 毛片女人毛片| 久久这里只有精品中国| 欧美+日韩+精品| 亚洲人与动物交配视频| 97超视频在线观看视频| 成年版毛片免费区| 啦啦啦啦在线视频资源| 国产一区二区亚洲精品在线观看| 小说图片视频综合网站|