• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of BiOBr0.25I0.75 for synergy photoreduction Cr(VI) and capture Cr(III) over wide pH range

    2022-07-11 03:39:16LixiJiXinTnYnfngLiYizhongZhngShiqinCoWiZhouXingHungLqunLiuToYu
    Chinese Chemical Letters 2022年6期

    Lixi Ji,Xin Tn,,Ynfng Li,Yizhong Zhng,Shiqin Co,Wi Zhou,?,Xing Hung,Lqun Liu,To Yu

    a School of Environmental Science and Engineering,Tianjin University,Tianjin 300350,China

    b School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China

    c School of Science,Tianjin University,Tianjin 300350,China

    d School of Science,Tibet University,Lhasa 850000,China

    e School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China

    Keywords:Adsorption Photoreduction BiOBr0.25I0.75 Chromium

    ABSTRACT Conversion of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) is an effective way to reduce its environmental risk,especially via photoreduction process.However,over a wide range of pH values,it is still a great challenge to achieve a high removal rate,and the disposal of produced Cr(III) should be concerned.In this work,we implemented a high removal rate at 98% for Cr(VI) and total chromium(Cr(T)) over a wide pH range (4–10) through the synergistic effect of adsorption,photoreduction and immobilization on the surface of BiOBr0.25I0.75.The substitution of bromine by iodine reduced the adsorption energy of Cr(VI) on BiOBr0.25I0.75,promoting the adsorption of Cr(VI).Meanwhile,the introduced iodine upshifted the conduction band (CB),enhancing the reduction ability for Cr(VI) to Cr(III).The negative surface of BiOBr0.25I0.75 can capture Cr(III),achieving a high removal rate for Cr(T).The pH-independent feature for Cr(VI) and Cr(III) removal make BiOBr0.25I0.75 a potential material for chromium-containing wastewater treatment.This work provides an effective strategy for removing chromium over a wide pH range.

    Hexavalent chromium (Cr(VI)),generated from leather tanning,paint production and electroplating,has attracted more attention for its high solubility,mobility,and carcinogenicity [1–5].Photoreduction Cr(VI) to trivalent chromium (Cr(III)) exhibits great advantages regarding its lower energy consumption,higher efficiency and lower toxicity of Cr(III) [6–10].However,the drawback of photoreduction is that it can only be realized under acidic conditions.The removal of Cr(VI) under neutral and alkaline conditions is still a challenge,and immobilization of Cr(III) generated by photoreduction process should be paid attention due to its potential hazards.

    Previous researches have reported on the photoreduction of Cr(VI) under acidic conditions,which exhibits an efficient removal rate [11–13].Wanget al.[14]achieved the efficient removal of Cr(VI) by amine-CdS/MoO3at pH 2 through the synergy of adsorption and photoreduction,but the efficiency decreased significantly at pH 4.Yuanet al.[15]reported highly efficient sunlight-driven reduction of Cr(VI) by TiO2@NH2-MIL-88B (Fe) heterostructures at pH 7,resulting from the high photoelectron-hole separation and migration efficiency.Consider that the combination of adsorption and photocatalytic reaction could avoid treating trace level pollutants and benefit its application [16],researchers also took into the immobilization of Cr(III) after photoreduction process.Liuet al.[17]reported the simultaneous removal of Cr(VI) and Cr(III) with TiO2and titanate nanotubes at pH 5,in which TiO2acted as photocatalyst and titanate nanotubes can adsorbed Cr(III) after photoreduction.Liet al.[18]realized the highest concurrent photoreduction Cr(VI) and adsorption Cr(III) by Mn3O4@ZnO/Mn3O4at pH 6,with the synergy photocatalysis on Mn3O4@ZnO and adsorption on Mn3O4.Nevertheless,the researches for Cr(VI) removal and Cr(III)capture under alkaline conditions are barely reported,and the relationship between pH and chromium removal has not been systematically studied.It is urgent to seek a material that can remove chromium within a wide pH range.

    Recently,several researches have demonstrated that BiOBr exhibits favorable photoreduction from Cr(VI) to Cr(III) in acidic conditions [19–23].As a layer structured semiconductor,BiOBr has been paid more attention for its visible light response,satisfactory optical properties and high chemical stability [24–26].Shanget al.[27]reported the enhanced photocatalytic reduction of Cr(VI)at pH 2 with Bi24O31Br10,which is caused by the variation of Bi 6p and Br 4s orbitals hybridization and uplifting of the conduction band (CB).By ion exchange and Z-scheme heterojunction construction,Longet al.[28]prepared BiOBr-Bi2S3with high photoreduction performance for Cr(VI),and the contribution of adsorption plays an important role in the removal of Cr(VI).Based on our recent research,BiOBr can realize enhanced adsorption of Cr(VI) under neutral and alkaline conditions through anion exchange.Meanwhile,the zeta potential of BiOBr is negative at pH 2 to 12,which will facilitate the adsorption of positively charged ions through electrostatic attraction [29].These indicate that BiOBr is expected to remove both Cr(VI) and Cr(III) within a wide pH rangeviathe synergy of adsorption and photoreduction.

    Fig.1.(a) XRD patterns of BiOBr1-xIx.(b) Zoomed-in view of XRD patterns at 2θ=8°–12°.(c) Raman spectra of BiOBr1-xIx.(d) N2 adsorption-desorption isotherms and (e)the corresponding pore size distribution of BiOBr1-xIx.

    In this study,by introducing iodine into BiOBr,we devised a series of solid solution BiOBr1-xIxby a solvothermal method.The molar ratio of Br/I was regulated to achieve the higher specific surface area,the lower adsorption energy of Cr(VI) on BiOBr1-xIx,and more efficient electrons and holes transport.X-ray diffraction (XRD),N2adsorption-desorption isotherms,X-ray photoelectron spectroscopy(XPS),electrochemical test and DFT calculation were used to illustrate the variation of crystal structure and energy band structure.The experiments for both Cr(VI) and Cr(III) removal efficiency were conducted in a wide pH range,and the mechanism was proposed accordingly.

    The crystal structure is very important information for layered materials prepared in this work.Different crystals will provide different active sites,which determines the performance of adsorption and conversion.Here,the crystalline phases of materials were determined by XRD as was shown in Fig.1a.The BiOBr sample is well indexed to tetragonal BiOBr (JCPDS PDF #09-0393) with characteristic peaks at 2θ=10.9°,25.2°,31.7° and 32.2°,which corresponds to the (001),(101),(102) and (110) plane,respectively[21,30].With the percentage of introduced iodine increases,the typical peaks of BiOBr shift to a lower 2θvalue,which can be seen clearly in Fig.1b.The introduction of iodine causes lattice distortion of BiOBr,which changes the lattice parameters and causes the shift of diffraction peaks.Fig.1c shows the Raman spectra of BiOBr1-xIx.For pure BiOBr,the signals at 55 cm?1and 108 cm?1are assigned to theA1ginternal Bi–Br stretching mode [31].After iodine introducing,the signals for Bi–Br disappear gradually.Two new peaks at around 84 cm?1and 148 cm?1are observed,which are corresponded toA1gandEginternal Bi–I stretching modes,respectively [32],indicating the existence of iodine in BiOBr1-xIxand the interaction of Bi and I.The peaks shift in XRD and Raman indicate the successful formation of solid solution BiOBr1-xIx.

    Introducing iodine also contributes to the variation of specific surface area and pore size.Figs.1d and e show the N2adsorptiondesorption isotherms and the corresponding pore size distribution of BiOBr1-xIx.All the materials show type IV isotherms with H3 hysteresis loop,indicating the pile of nanosheets.With the percentage increase of iodine introducing,the specific surface areas of the materials increase from 15.69 m2/g (BiOBr) to 76.73 m2/g (BiOBr0.25I0.75).And more mesoporous can be observed for solid solution BiOBr1-xIx.The higher specific surface area and more mesoporous will give more chance for the interaction of materials and Cr(VI),which is beneficial to adsorption and photoreduction.

    Fig.2 shows the scanning electron microscopy (SEM) and highresolution transmission electron microscopy (HRTEM) images of BiOBr,BiOBr0.25I0.75and BiOI.From SEM images we can see that all the samples are composed of nanosheets for their unique layered structure.For BiOBr,a microsphere composed of thick and dense nanosheets with a diameter of 4.3 μm can be observed (Fig.2a).The spherical structure is destroyed for solid solution BiOBr1-xIx,instead,plenty of nanosheets stacks irregularly in BiOBr0.25I0.75and BiOI (Figs.2b and c).According to the magnified images in Figs.2d-f,compared with BiOBr,the nanosheets in BiOBr0.25I0.75and BiOI are loosely packed,indicating the high specific surface areas and more exposed active sites,which is in accordance with N2adsorption-desorption isotherms results.

    Fig.2.SEM images of BiOBr (a,d),BiOBr0.25I0.75 (b,e),and BiOI (c,f).HRTEM images of BiOBr (g),BiOBr0.25I0.75 (h),and BiOI (i).(j) EDS mapping of BiOBr0.25I0.75.

    HRTEM was conducted to study the changes of lattice fringes of BiOBr,BiOBr0.25I0.75and BiOI (Figs.2g-i).The lattice fringes for BiOBr,BiOBr0.25I0.75and BiOI are 0.28 nm,0.29 nm and 0.30 nm,respectively,which can be indexed into (102) crystal plane.The energy disperse spectroscopy (EDS) mapping of BiOBr0.25I0.75elucidates the homogeneous distribution of Bi,O,Br and I (Fig.2j).

    As we know,the CB of BiOBr is contributed by Bi 6p,O 2p and Br 4p orbits,and the valance band (VB) mainly consists of Br 4p and O 2p orbits [33,34].The introduction of iodine will decrease the contribution of Br 4p orbit and increase the contribution of I 5p orbit,thus regulate the electronic and band structure of BiOBr.Fig.3a shows the ultraviolet–visible (UV–vis) reflectance absorption spectra of BiOBr1-xIxsamples.With the increasing percentage of iodine,the absorption edge red shifts from 400 nm to 500 nm,indicating the enhanced light absorption for BiOBr1-xIx.To determine the VB and CB of BiOBr,BiOBr0.25I0.75and BiOI,the XPS spectra and Mott–Schottky plots were conducted.Fig.3b shows the VB position of BiOBr,BiOBr0.25I0.75and BiOI are 1.77 eV,1.62 eV,1.36 eV.The flat band potential of BiOBr,BiOBr0.25I0.75and BiOI can be obtained by Mott-Schottky tests (Fig.3c).The flat band potential(Efb) of BiOBr,BiOBr0.25I0.75and BiOI are ?0.74 eV,?0.83 eV,?1.01 eV versus the saturated calomel electrode (SCE).The positive value indicates that BiOBr,BiOBr0.25I0.75and BiOI are n-type semiconductors [20,35,36].Efbis equal to Fermi level (Ef),and the potential of CB is more negative by ~?0.2 eV thanEf.Thus,the corresponding CB potentials of BiOBr,BiOBr0.25I0.75and BiOI are ?0.70 eV,?0.79 eV and ?0.97 eV versus normal hydrogen electrodes.According to the VB and CB,Fig.3d illustrates the schematic band positions of BiOBr1-xIx.The introduction of iodine uplifts the VB and CB,promoting the visible light absorption and enhances the reduction ability.

    The different electronegativity of bromine and iodine will changes the electron cloud density,leading to binding energy shift of solid solution BiOBr1-xIx.XPS analyses were performed to explore the chemical states and binding energy of the materials.The signals of Bi,O,Br and I are detected in the survey spectra of BiOBr,BiOI,and BiOBr0.25I0.75,respectively (Fig.4a).To clearly explore the chemical states and binding energy,the high-resolution XPS spectra of Br 3d,Bi 4f and O 1s are shown in Figs.4b-d.For BiOBr,the Br 3d can be divided into two peaks at 68.1 eV and 69.1 eV,which are assigned to Br 3d5/2and Br 3d3/2[37,38].A shift of 0.3 eV to high binding energy can be observed for BiOBr0.25I0.75,which is caused by interaction of Br and I.The electronegativity of iodine is weaker than that of bromine.Introducing iodine will cause the decrease of electron cloud density around Br,leading to the shift to high binding energy.The Bi 4f spectrum of BiOBr displays a pair of peaks at 159.1 eV and 164.4 eV,corresponding to Bi 4f7/2and Bi 4f5/2of Bi3+[39,40].For BiOBr0.25I0.75and BiOI,the peaks have a shift of 0.1–0.2 eV to high binding energy.

    The O 1s peak can be divided into three peaks at 529.7 eV,531.1 eV and 532.5 eV in BiOBr.The first two peaks are lattice oxygen and structural water,respectively,and the third one corresponds to the presence of oxygen vacancies [41].The oxygenterminated crystal surface easily reacts with ethylene glycol,leaving some oxygen vacancies on the surface of BiOBr [42,43].For solid solution BiOBr0.25I0.75,the signal for oxygen vacancy disappears.The emergence of iodine may prohibit the reaction between oxygen-terminated and ethylene glycol,reducing the formation of oxygen vacancy.The result is in accordance with electron spinparamagnetic resonance (ESR) (Fig.S1 in Supporting information)[44,45].

    The performance of the samples was evaluated by adsorption and photoreduction Cr(VI).Considering the effect of pH on Cr(VI) removal,the experiments were conducted at pH 2,3,5,7 and 9.Fig.S2 (Supporting information) shows photoreduction of Cr(VI) by BiOBr1-xIxat pH 2 and pH 3.Among all the materials,BiOBr0.25I0.75shows the highest for Cr(VI),and exceeds most photocatalysts in previous research.It is not surprising for efficient removal of Cr(VI) at pH 2 and 3.In our work,we paid more attention to Cr(VI) removal in a wide pH range (pH 4 to 10).In Fig.5a,at pH 5,the materials show different adsorption capacities in dark condition.During adsorption process,Cr(VI) concentration decreases slightly with BiOBr,whereas nearly 60% Cr(VI) are removed with BiOBr0.25I0.75.With light irradiation,99% Cr(VI) can be removed with BiOBr0.25I0.75in 60 min,while BiOBr can only remove 44% Cr(VI) in the same time,indicating the enhanced adsorption and photoreduction efficiency for Cr(VI) by solid solution BiOBr0.25I0.75.At pH 7 and 9 Figs.5b and c),the adsorption capacities increase obviously,while the photoreduction efficiency decreases.The mechanism for the enhancement of adsorption capacity will be discussed in the next part.The decrease of photoreduction efficiency is due to the different species of Cr(VI) under acidic conditions and basic conditions,leading to different reduction reactions.Under acidic conditions,Cr2O72?and HCrO4?are the main species,and they can be easily reduced to Cr(III) according to Eqs.1 and 2 [1,2,46].Under neutral and basic conditions,CrO42?is the dominate specie.The reduction reaction is according to Eq.3.The decreased reduction efficiency for Cr(VI) is caused by the decrease of reduction potential and the formed Cr(OH)3precipitation,which will seal the active site [46–48].Though the opposite tendency of adsorption and photoreduction performance at different pH values,the removal rate of Cr(VI) maintains 98% at pH 2 to 10 (Fig.5e),indicating the favorable synergistic effect of adsorption and photoreduction for Cr(VI).

    Fig.3.(a) UV–vis diffuses reflectance spectra of BiOBr1-xIx.(b) XPS-VB spectra and (c) Mott-Schottky spectra of BiOBr,BiOBr0.25I0.75 and BiOI.(d) Energy band structure of BiOBr1-xIx.

    Fig.4.(a) XPS survey spectra of BiOBr,BiOBr0.25I0.75 and BiOI samples.High resolution XPS spectra of (b) Br 3d,(c) Bi 4f and (d) O 1s.

    Except for Cr(VI),Cr(III) generated should be pay attention for its potential threat [49].Fig.5d shows the concentration variation of total chromium (Cr(T)),Cr(VI) and Cr(III) at pH 2,5,7 and 9 by BiOBr0.25I0.75.At pH 5,with light illumination,the concentration variations of Cr(T) and Cr(VI) are overlapped.There is no Cr(III)accumulation in solution,indicating that Cr(III) generated by photoreduction process is captured on the surface of BiOBr0.25I0.75.The conditions at pH 7 and 9 are the same as pH 5.The variation tendency of Cr(T) and Cr(VI) is overlapped and Cr(III) cannot be detected in solution.That means BiOBr0.25I0.75can effectively capture Cr(III) after photoreduction process.Due to the strong competition of H+,Cr(III) cannot be immobilized at pH 2.From Fig.5f,the removal of Cr(T) reaches up to 98% by BiOBr0.25I0.75at pH 4 to 10,indicating BiOBr0.25I0.75is a promising material to remove Cr(T).

    The favorable removal of Cr(VI) on BiOBr0.25I0.75can be analyzed from adsorption and photocatalysis performance.The excellent adsorption of Cr(VI) on BiOBr0.25I0.75is caused by its large specific surface area and more mesoporous,which are beneficial for the diffusion of Cr(VI) and the contact of Cr(VI) and photocatalyst.DFT calculations are a better method to analyze the reaction path or calculate the adsorption energy,which has wide application environmental research [50].To further verify the enhanced adsorption of Cr(VI) on BiOBr0.25I0.75,the adsorption energies of Cr(VI) on BiOBr1-xIxare calculated by DFT calculations.In Fig.6a,the adsorption energies of Cr(VI) on BiOBr1-xIxare negative than BiOBr,and the adsorption energy decreases with I content percentage increases,indicating the favorable adsorption capacity.According to previous research,the mechanism for Cr(VI) adsorption is anion exchange between Cr(VI) species (HCrO4?,CrO42?) and X?(X=Br,I) [29,51,52].To verify the adsorption mechanism,Fig.6b shows the concentration variation of Cr(VI),Br?and I?at different pH values.From pH 2 to 11,with the decrease of Cr(VI) in solution,the concentration of Br?and I?increase,indicating the anion exchange between Cr(VI) species (HCrO4?,CrO42?) and X?(X=Br,I).

    Fig.5.The adsorption and photoreduction of Cr(VI) by BiOBr1-xIx at (a) pH 5,(b) pH 7,and (c) pH 9.(d) Removal of Cr(T),Cr(VI) and Cr(III) by BiOBr0.25I0.75 at pH 2,5,7,9.(e) Effect of pHi on the removal of Cr(VI) and (f) Cr(T) by BiOBr0.25I0.75.(Experimental conditions: dose of materials,1 g/L;initial concentration of Cr(VI),20 mg/L;experiment temperature: 25 °C).

    Fig.6.(a) The adsorption energy of HCrO4?and CrO42?on BiOBr1-xIx (the adsorption for HCrO4?is in purple and the adsorption for CrO42?is in orange).(b) Released Br?and I?and remaining Cr(VI) in solution as a function of pHi.(c) The pH values before and after adsorption.(d) The adsorption energy of CrO42?on the surface and interlayer Bi sites.

    The pH values after adsorption were detected to further analyze the adsorption process.In Fig.6c,the pH values decrease after adsorption,which is caused by the anion exchange between OH?and X?(X=Br,I).The release of X?(X=Br,I) facilitates the adsorption of Cr(VI).In order to determine the adsorption site,the adsorption energies of CrO42?on BiOBr0.25I0.75were calculated on surface Bi site and interlayer Bi site.In Fig.6d,the adsorption energies on surface Bi site (?8.64 eV) is much smaller than interlayer Bi site (4.03 eV),thus CrO42?will be connected on surface Bi site after anion exchange.

    For photoreduction process,the separation and transport efficiency of electrons and holes are very important.The separation and transfer efficiency of electrons and holes were analyzed by electrochemical test and photoluminescence (PL).Fig.7a shows the visible-light photocurrent responses of BiOBr,BiOBr0.25I0.75and BiOI.With light illumination,BiOBr0.25I0.75presents a distinctly higher current density,about 2-4 times than that of BiOBr and BiOI,which indicates more efficient separation and transfer of photoinduced electrons and holes.Fig.7b shows the electrochemical impedance of the samples.The model consists of the chargetransfer resistanceRtin parallel with the double-layer capacitance (CPE).The fitting results were calculated on the basis of model in inset in Fig.7b.The smaller arc radius andRt(4.360 MΩ) of BiOBr0.25I0.75manifest its higher interfacial charge transfer and separation.The results demonstrate that the introduction of iodine is beneficial for the efficient photogenerated charge carrier separation and transfer.To support of this,PL was conducted to investigate the recombination of electrons and holes (Fig.7c).Compared with pure BiOBr and BiOI,BiOBr0.25I0.75shows distinct quenching of PL intensity,indicating the lower recombination of electrons and holes.Efficient electrons and holes separation and transfer make more electrons can participate the reduction reaction,thus promoting the photocatalytic reduction of Cr(VI) by BiOBr0.25I0.75.

    Fig.7.(a) Transient photocurrent responses,(b) electrochemical impedance spectra,and (c) photoluminescence spectra of BiOBr,BiOBr0.25I0.75 and BiOI.

    Fig.8.The calculated electronic density of states of (a) BiOBr,(b) BiOBr0.25I0.75,(c) BiOI.Electron density distribution of BiOBr0.25I0.75 after CrO42?adsorption in (d) acidic,(e) neutral and (f) alkaline conditions (charge accumulation is in yellow and depletion in blue).

    The energy band structure of semiconductor is another factor that affects photoreduction performance,because the position of CB will determine the reduction ability of material,which will influence the efficiency of Cr(VI) removal.In order to verify the contribution of iodine in CB,Figs.8a-c and Fig.S4 (Supporting information) show the electronic density of states (DOS) of BiOBr1-xIx.For pure BiOBr,the CB consists of Bi 6p and Br 4p orbits.After iodine introducing,the contribution of Br 4p orbit decreases and the contribution of I 5d orbit increases,making the upshift of CBM,enhancing the photoreduction ability.Figs.8d-f show the electron density distribution of BiOBr0.25I0.75after CrO42?adsorption in acidic,neutral and alkaline conditions.The transfer of electrons from CrO42?to Bi site can be observed after adsorption,which creates an electron-rich microenvironment,facilitating the reduction process.

    Based on our analysis and discussion,Cr(VI) is reduced to Cr(III)within a wide pH range through adsorption and photoreduction.The produced Cr(III) should be immobilized further due to its potential hazard.The highlight of our work is the photoreduciton of Cr(VI) and immobilization of Cr(III) in a wide pH range.To verify the capture of Cr(III),Figs.9a-d show XPS results of BiOBr0.25I0.75after Cr(VI) photoreduction process,and the process for adsorption and photoreduction of Cr(VI) and immobilization of Cr(III) at different pH values is proposed (Fig.9e).Different mechanisms lead to different contributions of adsorption and photoreduction.In acidic conditions,photoreduction is the main reason for Cr(VI) removal.At pH 2 and 5,Cr(VI) is reduced to Cr(III) easily,and the generated Cr(III) is adsorbed on the surface of BiOBr0.25I0.75at pH 5,which can be verified by the high resolution of Cr 2p spectrum (Fig.9b).The peaks at 576.8 and 586.5 eV can be assigned to Cr(III) [53–55].The negative surface of BiOBr0.25I0.75facilitates the adsorption of Cr(III) through electrostatic attraction (Fig.S5 in Supporting information).With pH increases,the generated and adsorbed Cr(III)decreases from 53.2% to 38.1% (at pH 7) and 39.5% (at pH 9).This is because adsorption is the main reason for Cr(VI) removal under neutral and alkaline conditions (Figs.9c and d).A small quantity of Cr(VI) are reduced to Cr(III) and captured on the surface of BiOBr0.25I0.75.At pH 2,after photoreduction process,there is no Cr(III) accumulation on the surface of BiOBr0.25I0.75due to the strong competition between H+and Cr(III) (Fig.9a).This is not the key point of our research.With the synergy of adsorption,photoreduction and immobilization,we successfully achieve efficient Cr(VI) and Cr(III) removal in a wide pH range.

    In summary,the removal of Cr(VI) and immobilization of Cr(III) within a wide pH range are achieved by solid solution BiOBr0.25I0.75.The removal mechanism is different at different pH values.Photoreduction is the main reason for Cr(VI) removal under acidic conditions,while adsorption contributes more under neutral and alkaline conditions And BiOBr0.25I0.75can efficiently capture Cr(III) at pH 4 to 10.Our research suggests that BiOBr0.25I0.75is a potential material for water treatment,especially for chromiumcontaining wastewater in a wide pH range.

    Fig.9.High resolution of Cr 2p spectrum after photoreduction by BiOBr0.25I0.75 at (a) pH 2,(b) pH 5,(c) pH 7,and (d) pH 9.(e) Process for the removal of chromium on BiOBr0.25I0.75

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Natural Science Foundation of Tianjin (No.18JCYBJC17700),the National Natural Science Foundation of China (Nos.21406164,21466035 and 22066022).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.043.

    国产97色在线日韩免费| 国产成人一区二区在线| 人妻一区二区av| 成人毛片a级毛片在线播放| 人人妻人人澡人人看| 激情五月婷婷亚洲| 亚洲一区中文字幕在线| 男女午夜视频在线观看| 女人久久www免费人成看片| 亚洲精品视频女| 国产亚洲欧美精品永久| 最近手机中文字幕大全| 波多野结衣av一区二区av| 女人久久www免费人成看片| 免费人妻精品一区二区三区视频| 丰满迷人的少妇在线观看| 丝袜脚勾引网站| 少妇精品久久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 各种免费的搞黄视频| 毛片一级片免费看久久久久| 极品少妇高潮喷水抽搐| 狠狠婷婷综合久久久久久88av| 久久久久精品久久久久真实原创| 美女福利国产在线| 亚洲伊人色综图| 国产在线免费精品| 国产成人91sexporn| 天堂8中文在线网| 亚洲欧美日韩另类电影网站| 国产午夜精品一二区理论片| 一区二区三区精品91| 欧美精品av麻豆av| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 高清黄色对白视频在线免费看| 久久这里只有精品19| 卡戴珊不雅视频在线播放| 丝袜在线中文字幕| 在线精品无人区一区二区三| 久久精品亚洲av国产电影网| 综合色丁香网| 香蕉精品网在线| 亚洲男人天堂网一区| 视频在线观看一区二区三区| 人人澡人人妻人| 欧美成人午夜精品| 久久精品国产亚洲av涩爱| 两性夫妻黄色片| 亚洲情色 制服丝袜| 麻豆精品久久久久久蜜桃| 日韩电影二区| 汤姆久久久久久久影院中文字幕| 久久综合国产亚洲精品| 亚洲精品在线美女| 99国产精品免费福利视频| 青草久久国产| 观看美女的网站| 国产亚洲一区二区精品| 亚洲精品美女久久av网站| 国产精品一国产av| 男男h啪啪无遮挡| 熟妇人妻不卡中文字幕| 色网站视频免费| 国产成人免费观看mmmm| 亚洲精品日本国产第一区| 国产成人精品一,二区| 伦精品一区二区三区| 久久久精品94久久精品| 久久av网站| 精品一品国产午夜福利视频| 熟女av电影| 亚洲男人天堂网一区| 香蕉丝袜av| 国产黄频视频在线观看| 一区在线观看完整版| 久久久精品国产亚洲av高清涩受| 午夜久久久在线观看| 男女国产视频网站| 精品卡一卡二卡四卡免费| 亚洲精品在线美女| 免费少妇av软件| 国产在线免费精品| 亚洲激情五月婷婷啪啪| 国产精品秋霞免费鲁丝片| 精品一区在线观看国产| 色播在线永久视频| 国产乱来视频区| av在线老鸭窝| 国产在线视频一区二区| 天天操日日干夜夜撸| 国产欧美日韩综合在线一区二区| 天美传媒精品一区二区| 午夜91福利影院| 热re99久久精品国产66热6| 日本欧美视频一区| 不卡视频在线观看欧美| 亚洲成色77777| 伦理电影大哥的女人| 国产成人午夜福利电影在线观看| 在线天堂中文资源库| 大话2 男鬼变身卡| 久久久久视频综合| 五月天丁香电影| 美女午夜性视频免费| 男女啪啪激烈高潮av片| 看免费av毛片| 免费黄频网站在线观看国产| 免费观看在线日韩| 国产激情久久老熟女| 日韩一区二区三区影片| 在线精品无人区一区二区三| 日韩不卡一区二区三区视频在线| 精品国产国语对白av| 免费黄频网站在线观看国产| 亚洲精品,欧美精品| 精品少妇久久久久久888优播| 久久久久久久大尺度免费视频| 久久精品人人爽人人爽视色| 国产精品欧美亚洲77777| 亚洲三区欧美一区| 欧美最新免费一区二区三区| 多毛熟女@视频| 日韩中文字幕欧美一区二区 | 一区二区三区乱码不卡18| 乱人伦中国视频| 国产有黄有色有爽视频| 黑人猛操日本美女一级片| 人妻系列 视频| 亚洲精品美女久久av网站| 日韩一卡2卡3卡4卡2021年| 热99国产精品久久久久久7| 日韩精品免费视频一区二区三区| 99香蕉大伊视频| 精品国产国语对白av| 久久国产精品男人的天堂亚洲| 一级,二级,三级黄色视频| 在线观看美女被高潮喷水网站| 成年av动漫网址| 国产精品av久久久久免费| 高清av免费在线| 一级a爱视频在线免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 热re99久久国产66热| 久久久a久久爽久久v久久| 边亲边吃奶的免费视频| 亚洲国产精品一区三区| av在线老鸭窝| 亚洲美女黄色视频免费看| 色视频在线一区二区三区| 亚洲伊人色综图| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| 国产精品麻豆人妻色哟哟久久| a级毛片在线看网站| 丰满迷人的少妇在线观看| 久久久久久人妻| 久久精品国产亚洲av高清一级| 丰满乱子伦码专区| 亚洲av在线观看美女高潮| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 国产又爽黄色视频| 哪个播放器可以免费观看大片| 亚洲欧美一区二区三区久久| 久久精品熟女亚洲av麻豆精品| 亚洲美女黄色视频免费看| 午夜日韩欧美国产| 久久精品aⅴ一区二区三区四区 | 激情视频va一区二区三区| videosex国产| 激情五月婷婷亚洲| 在线观看人妻少妇| 大香蕉久久成人网| 91精品伊人久久大香线蕉| 免费少妇av软件| 成人手机av| 亚洲欧美一区二区三区久久| av视频免费观看在线观看| 一区在线观看完整版| 春色校园在线视频观看| 国产一区二区三区综合在线观看| 欧美国产精品一级二级三级| 自线自在国产av| 天天操日日干夜夜撸| 久久久久久久精品精品| 国产一区有黄有色的免费视频| 2022亚洲国产成人精品| 午夜福利影视在线免费观看| 成年人免费黄色播放视频| 爱豆传媒免费全集在线观看| 如何舔出高潮| 亚洲激情五月婷婷啪啪| 夜夜骑夜夜射夜夜干| 久久亚洲国产成人精品v| 日本vs欧美在线观看视频| 狂野欧美激情性bbbbbb| 99精国产麻豆久久婷婷| 男女国产视频网站| 亚洲国产毛片av蜜桃av| 黄片无遮挡物在线观看| 99久国产av精品国产电影| 18禁国产床啪视频网站| 国产综合精华液| 国产乱人偷精品视频| 亚洲一区二区三区欧美精品| 中文字幕精品免费在线观看视频| 亚洲第一青青草原| 777米奇影视久久| 亚洲av综合色区一区| 大陆偷拍与自拍| 久久久久人妻精品一区果冻| 欧美97在线视频| 午夜av观看不卡| 免费在线观看视频国产中文字幕亚洲 | 大话2 男鬼变身卡| 色播在线永久视频| 老汉色av国产亚洲站长工具| 国产精品欧美亚洲77777| 成年av动漫网址| 日韩人妻精品一区2区三区| av在线播放精品| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻熟女乱码| 久久精品夜色国产| 日本-黄色视频高清免费观看| 日韩成人av中文字幕在线观看| 国产成人精品一,二区| 国产熟女午夜一区二区三区| 水蜜桃什么品种好| 亚洲成人av在线免费| 中国国产av一级| 精品人妻一区二区三区麻豆| 免费在线观看黄色视频的| 黄色视频在线播放观看不卡| 欧美日韩一区二区视频在线观看视频在线| av在线播放精品| 午夜免费观看性视频| 亚洲欧洲国产日韩| 久热久热在线精品观看| 亚洲av国产av综合av卡| 久久久久精品性色| 中文字幕人妻丝袜制服| 亚洲婷婷狠狠爱综合网| 精品人妻熟女毛片av久久网站| 久久久国产一区二区| 女的被弄到高潮叫床怎么办| 欧美精品人与动牲交sv欧美| 夜夜骑夜夜射夜夜干| 欧美日本中文国产一区发布| 男女边吃奶边做爰视频| 国产成人精品一,二区| 欧美日韩精品成人综合77777| 97人妻天天添夜夜摸| 久久久久久久久久人人人人人人| 免费观看性生交大片5| 精品一区二区三卡| 久久久久久伊人网av| 久久久精品区二区三区| 男女啪啪激烈高潮av片| 亚洲一区中文字幕在线| av.在线天堂| av国产精品久久久久影院| 秋霞伦理黄片| 在线观看三级黄色| 国产野战对白在线观看| 日韩制服骚丝袜av| 国产精品蜜桃在线观看| 婷婷色麻豆天堂久久| 一本久久精品| 亚洲国产日韩一区二区| 欧美少妇被猛烈插入视频| 亚洲av在线观看美女高潮| 老鸭窝网址在线观看| 9191精品国产免费久久| 国产白丝娇喘喷水9色精品| 国产亚洲最大av| 一个人免费看片子| 一区二区av电影网| 啦啦啦啦在线视频资源| 母亲3免费完整高清在线观看 | 老汉色av国产亚洲站长工具| 丰满迷人的少妇在线观看| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 飞空精品影院首页| 日本av免费视频播放| 亚洲欧美一区二区三区国产| 欧美精品一区二区大全| 在现免费观看毛片| 欧美xxⅹ黑人| 亚洲精品国产av成人精品| 看免费成人av毛片| 久久久久久久久免费视频了| 国产又色又爽无遮挡免| www.精华液| 涩涩av久久男人的天堂| 日韩一卡2卡3卡4卡2021年| 香蕉精品网在线| 免费高清在线观看视频在线观看| 亚洲五月色婷婷综合| 亚洲av日韩在线播放| 精品少妇内射三级| 精品酒店卫生间| 久久人人爽av亚洲精品天堂| 18禁国产床啪视频网站| 搡老乐熟女国产| 成年女人在线观看亚洲视频| 2018国产大陆天天弄谢| 欧美97在线视频| 99久久中文字幕三级久久日本| 成年av动漫网址| 午夜av观看不卡| 人妻系列 视频| av网站免费在线观看视频| 欧美 亚洲 国产 日韩一| 国产成人精品在线电影| 精品少妇内射三级| 国产精品一区二区在线观看99| av国产精品久久久久影院| 午夜福利,免费看| 伦理电影免费视频| 亚洲精华国产精华液的使用体验| 久久久精品94久久精品| 久久毛片免费看一区二区三区| 中文精品一卡2卡3卡4更新| 新久久久久国产一级毛片| 成人国产麻豆网| 国产成人欧美| 国产熟女午夜一区二区三区| 纯流量卡能插随身wifi吗| 亚洲精品,欧美精品| 一级a爱视频在线免费观看| 交换朋友夫妻互换小说| 欧美日韩精品网址| 亚洲精品视频女| 亚洲国产精品成人久久小说| 天天操日日干夜夜撸| 免费日韩欧美在线观看| 永久网站在线| 日本欧美国产在线视频| 永久网站在线| 亚洲一区中文字幕在线| 精品人妻偷拍中文字幕| 国产精品免费视频内射| 亚洲精品视频女| 国产成人aa在线观看| 欧美精品一区二区大全| 国产成人aa在线观看| 中文天堂在线官网| 在线免费观看不下载黄p国产| 精品福利永久在线观看| 日韩 亚洲 欧美在线| 男女免费视频国产| 9热在线视频观看99| 亚洲欧美精品自产自拍| av女优亚洲男人天堂| 国产成人精品久久二区二区91 | 建设人人有责人人尽责人人享有的| 电影成人av| a级毛片黄视频| 在线天堂最新版资源| 观看美女的网站| 中文字幕制服av| 亚洲四区av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品,欧美精品| videossex国产| 亚洲精华国产精华液的使用体验| 久久精品久久久久久噜噜老黄| 侵犯人妻中文字幕一二三四区| 丝袜美腿诱惑在线| 国产成人av激情在线播放| 韩国av在线不卡| 人妻一区二区av| 中国国产av一级| 伊人久久大香线蕉亚洲五| 亚洲激情五月婷婷啪啪| 日韩中文字幕欧美一区二区 | 久久av网站| 国产视频首页在线观看| 午夜福利,免费看| 久久久久久久久免费视频了| 欧美激情极品国产一区二区三区| 好男人视频免费观看在线| videosex国产| 春色校园在线视频观看| 欧美日韩综合久久久久久| 久久综合国产亚洲精品| 亚洲国产欧美日韩在线播放| 九色亚洲精品在线播放| 久久久欧美国产精品| 亚洲天堂av无毛| 免费日韩欧美在线观看| 波野结衣二区三区在线| 久久久久久久久免费视频了| 久久精品熟女亚洲av麻豆精品| 99热网站在线观看| 青春草国产在线视频| 高清黄色对白视频在线免费看| 午夜日韩欧美国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99热国产这里只有精品6| 丝袜美足系列| 久久婷婷青草| 亚洲欧美成人综合另类久久久| 超碰97精品在线观看| 日本av免费视频播放| 女人被躁到高潮嗷嗷叫费观| 极品人妻少妇av视频| 国产亚洲av片在线观看秒播厂| 精品久久蜜臀av无| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区 | 久久久久久久大尺度免费视频| 成人国产麻豆网| 十八禁高潮呻吟视频| 久久久久视频综合| 国产av一区二区精品久久| 国产精品三级大全| 中文字幕人妻丝袜一区二区 | 欧美成人午夜免费资源| 一级毛片 在线播放| 天天影视国产精品| 欧美另类一区| 亚洲精品美女久久av网站| 亚洲精品av麻豆狂野| 黑丝袜美女国产一区| 国产精品久久久久成人av| 欧美精品一区二区大全| 性色av一级| 欧美bdsm另类| 国产亚洲精品第一综合不卡| 男女边吃奶边做爰视频| 久久精品国产亚洲av涩爱| 毛片一级片免费看久久久久| 寂寞人妻少妇视频99o| av女优亚洲男人天堂| 汤姆久久久久久久影院中文字幕| 黄色 视频免费看| 精品一区二区三区四区五区乱码 | 欧美日韩国产mv在线观看视频| 亚洲第一区二区三区不卡| 在线 av 中文字幕| 国产精品偷伦视频观看了| 国产精品蜜桃在线观看| 亚洲一级一片aⅴ在线观看| 日韩精品免费视频一区二区三区| 人人澡人人妻人| 久久久久久久久久久免费av| 最近2019中文字幕mv第一页| 中文天堂在线官网| 成人二区视频| 99久久中文字幕三级久久日本| 国产色婷婷99| 久久人人爽av亚洲精品天堂| a级片在线免费高清观看视频| 国产成人av激情在线播放| 亚洲经典国产精华液单| www日本在线高清视频| 亚洲一区二区三区欧美精品| 纯流量卡能插随身wifi吗| 桃花免费在线播放| 赤兔流量卡办理| 免费观看性生交大片5| 最近中文字幕2019免费版| 老司机影院成人| 久久99精品国语久久久| 韩国精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 成人漫画全彩无遮挡| av有码第一页| 中文乱码字字幕精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产爽快片一区二区三区| 日日撸夜夜添| 国产午夜精品一二区理论片| 一二三四中文在线观看免费高清| 天堂中文最新版在线下载| 久久人人爽人人片av| 99热国产这里只有精品6| 午夜影院在线不卡| 9色porny在线观看| 免费高清在线观看日韩| 国产成人aa在线观看| 日本午夜av视频| 久久久a久久爽久久v久久| 国产亚洲最大av| 女人久久www免费人成看片| 免费日韩欧美在线观看| 国产黄频视频在线观看| 在线亚洲精品国产二区图片欧美| 中文字幕色久视频| 亚洲精品一二三| 亚洲成人手机| 国产精品 国内视频| 18禁动态无遮挡网站| 各种免费的搞黄视频| 1024香蕉在线观看| av卡一久久| av网站免费在线观看视频| 香蕉精品网在线| 中文字幕色久视频| 欧美+日韩+精品| 亚洲综合精品二区| 欧美日韩成人在线一区二区| 亚洲av在线观看美女高潮| 男女边吃奶边做爰视频| 伦理电影大哥的女人| av女优亚洲男人天堂| 欧美人与性动交α欧美精品济南到 | 夫妻性生交免费视频一级片| 国产精品免费视频内射| 日本wwww免费看| 秋霞伦理黄片| 午夜福利视频精品| 日韩一本色道免费dvd| 国产欧美日韩一区二区三区在线| 日韩中文字幕视频在线看片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 1024香蕉在线观看| 午夜91福利影院| 亚洲av国产av综合av卡| 久久精品国产鲁丝片午夜精品| 欧美少妇被猛烈插入视频| 国产精品.久久久| 国产 精品1| 免费播放大片免费观看视频在线观看| 日韩一区二区视频免费看| 亚洲,一卡二卡三卡| 亚洲av日韩在线播放| 老汉色∧v一级毛片| 国产精品人妻久久久影院| 亚洲久久久国产精品| 2021少妇久久久久久久久久久| 中文欧美无线码| 午夜福利视频在线观看免费| 亚洲国产精品一区三区| 欧美日韩一区二区视频在线观看视频在线| 性色av一级| 日韩三级伦理在线观看| 精品人妻熟女毛片av久久网站| 日本欧美国产在线视频| 69精品国产乱码久久久| 青春草视频在线免费观看| 国产av国产精品国产| 纵有疾风起免费观看全集完整版| 欧美日韩亚洲高清精品| 日本猛色少妇xxxxx猛交久久| 五月开心婷婷网| 国产黄色视频一区二区在线观看| 亚洲美女视频黄频| 精品视频人人做人人爽| 国产高清国产精品国产三级| 十八禁网站网址无遮挡| 亚洲国产av新网站| 王馨瑶露胸无遮挡在线观看| 欧美+日韩+精品| 欧美少妇被猛烈插入视频| 日韩欧美一区视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 热re99久久国产66热| 大陆偷拍与自拍| 欧美国产精品va在线观看不卡| 亚洲av欧美aⅴ国产| 国产成人aa在线观看| 一区二区三区精品91| 如何舔出高潮| 日本wwww免费看| tube8黄色片| 国产精品欧美亚洲77777| 亚洲精华国产精华液的使用体验| 9色porny在线观看| 看免费成人av毛片| 大片免费播放器 马上看| 欧美日韩一区二区视频在线观看视频在线| www日本在线高清视频| 亚洲一区二区三区欧美精品| 亚洲av综合色区一区| 最新中文字幕久久久久| 免费黄频网站在线观看国产| 一边亲一边摸免费视频| 久久毛片免费看一区二区三区| 天堂8中文在线网| 亚洲经典国产精华液单| 最近手机中文字幕大全| 天天躁夜夜躁狠狠久久av| 三级国产精品片| 日韩中字成人| 新久久久久国产一级毛片| 高清av免费在线| 成人免费观看视频高清| 侵犯人妻中文字幕一二三四区| 十分钟在线观看高清视频www| 不卡视频在线观看欧美| 日韩 亚洲 欧美在线| 色吧在线观看| 国产在线视频一区二区| 最近2019中文字幕mv第一页| 成人国产av品久久久| 天堂中文最新版在线下载| 三上悠亚av全集在线观看| 国产高清国产精品国产三级| 欧美xxⅹ黑人| 黑人巨大精品欧美一区二区蜜桃| 搡老乐熟女国产| 亚洲av日韩在线播放| 99久久人妻综合| 综合色丁香网| 久久久亚洲精品成人影院| 久久久a久久爽久久v久久| 国精品久久久久久国模美| 亚洲精品久久久久久婷婷小说| 久久国产精品男人的天堂亚洲|