• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of BiOBr0.25I0.75 for synergy photoreduction Cr(VI) and capture Cr(III) over wide pH range

    2022-07-11 03:39:16LixiJiXinTnYnfngLiYizhongZhngShiqinCoWiZhouXingHungLqunLiuToYu
    Chinese Chemical Letters 2022年6期

    Lixi Ji,Xin Tn,,Ynfng Li,Yizhong Zhng,Shiqin Co,Wi Zhou,?,Xing Hung,Lqun Liu,To Yu

    a School of Environmental Science and Engineering,Tianjin University,Tianjin 300350,China

    b School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China

    c School of Science,Tianjin University,Tianjin 300350,China

    d School of Science,Tibet University,Lhasa 850000,China

    e School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China

    Keywords:Adsorption Photoreduction BiOBr0.25I0.75 Chromium

    ABSTRACT Conversion of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) is an effective way to reduce its environmental risk,especially via photoreduction process.However,over a wide range of pH values,it is still a great challenge to achieve a high removal rate,and the disposal of produced Cr(III) should be concerned.In this work,we implemented a high removal rate at 98% for Cr(VI) and total chromium(Cr(T)) over a wide pH range (4–10) through the synergistic effect of adsorption,photoreduction and immobilization on the surface of BiOBr0.25I0.75.The substitution of bromine by iodine reduced the adsorption energy of Cr(VI) on BiOBr0.25I0.75,promoting the adsorption of Cr(VI).Meanwhile,the introduced iodine upshifted the conduction band (CB),enhancing the reduction ability for Cr(VI) to Cr(III).The negative surface of BiOBr0.25I0.75 can capture Cr(III),achieving a high removal rate for Cr(T).The pH-independent feature for Cr(VI) and Cr(III) removal make BiOBr0.25I0.75 a potential material for chromium-containing wastewater treatment.This work provides an effective strategy for removing chromium over a wide pH range.

    Hexavalent chromium (Cr(VI)),generated from leather tanning,paint production and electroplating,has attracted more attention for its high solubility,mobility,and carcinogenicity [1–5].Photoreduction Cr(VI) to trivalent chromium (Cr(III)) exhibits great advantages regarding its lower energy consumption,higher efficiency and lower toxicity of Cr(III) [6–10].However,the drawback of photoreduction is that it can only be realized under acidic conditions.The removal of Cr(VI) under neutral and alkaline conditions is still a challenge,and immobilization of Cr(III) generated by photoreduction process should be paid attention due to its potential hazards.

    Previous researches have reported on the photoreduction of Cr(VI) under acidic conditions,which exhibits an efficient removal rate [11–13].Wanget al.[14]achieved the efficient removal of Cr(VI) by amine-CdS/MoO3at pH 2 through the synergy of adsorption and photoreduction,but the efficiency decreased significantly at pH 4.Yuanet al.[15]reported highly efficient sunlight-driven reduction of Cr(VI) by TiO2@NH2-MIL-88B (Fe) heterostructures at pH 7,resulting from the high photoelectron-hole separation and migration efficiency.Consider that the combination of adsorption and photocatalytic reaction could avoid treating trace level pollutants and benefit its application [16],researchers also took into the immobilization of Cr(III) after photoreduction process.Liuet al.[17]reported the simultaneous removal of Cr(VI) and Cr(III) with TiO2and titanate nanotubes at pH 5,in which TiO2acted as photocatalyst and titanate nanotubes can adsorbed Cr(III) after photoreduction.Liet al.[18]realized the highest concurrent photoreduction Cr(VI) and adsorption Cr(III) by Mn3O4@ZnO/Mn3O4at pH 6,with the synergy photocatalysis on Mn3O4@ZnO and adsorption on Mn3O4.Nevertheless,the researches for Cr(VI) removal and Cr(III)capture under alkaline conditions are barely reported,and the relationship between pH and chromium removal has not been systematically studied.It is urgent to seek a material that can remove chromium within a wide pH range.

    Recently,several researches have demonstrated that BiOBr exhibits favorable photoreduction from Cr(VI) to Cr(III) in acidic conditions [19–23].As a layer structured semiconductor,BiOBr has been paid more attention for its visible light response,satisfactory optical properties and high chemical stability [24–26].Shanget al.[27]reported the enhanced photocatalytic reduction of Cr(VI)at pH 2 with Bi24O31Br10,which is caused by the variation of Bi 6p and Br 4s orbitals hybridization and uplifting of the conduction band (CB).By ion exchange and Z-scheme heterojunction construction,Longet al.[28]prepared BiOBr-Bi2S3with high photoreduction performance for Cr(VI),and the contribution of adsorption plays an important role in the removal of Cr(VI).Based on our recent research,BiOBr can realize enhanced adsorption of Cr(VI) under neutral and alkaline conditions through anion exchange.Meanwhile,the zeta potential of BiOBr is negative at pH 2 to 12,which will facilitate the adsorption of positively charged ions through electrostatic attraction [29].These indicate that BiOBr is expected to remove both Cr(VI) and Cr(III) within a wide pH rangeviathe synergy of adsorption and photoreduction.

    Fig.1.(a) XRD patterns of BiOBr1-xIx.(b) Zoomed-in view of XRD patterns at 2θ=8°–12°.(c) Raman spectra of BiOBr1-xIx.(d) N2 adsorption-desorption isotherms and (e)the corresponding pore size distribution of BiOBr1-xIx.

    In this study,by introducing iodine into BiOBr,we devised a series of solid solution BiOBr1-xIxby a solvothermal method.The molar ratio of Br/I was regulated to achieve the higher specific surface area,the lower adsorption energy of Cr(VI) on BiOBr1-xIx,and more efficient electrons and holes transport.X-ray diffraction (XRD),N2adsorption-desorption isotherms,X-ray photoelectron spectroscopy(XPS),electrochemical test and DFT calculation were used to illustrate the variation of crystal structure and energy band structure.The experiments for both Cr(VI) and Cr(III) removal efficiency were conducted in a wide pH range,and the mechanism was proposed accordingly.

    The crystal structure is very important information for layered materials prepared in this work.Different crystals will provide different active sites,which determines the performance of adsorption and conversion.Here,the crystalline phases of materials were determined by XRD as was shown in Fig.1a.The BiOBr sample is well indexed to tetragonal BiOBr (JCPDS PDF #09-0393) with characteristic peaks at 2θ=10.9°,25.2°,31.7° and 32.2°,which corresponds to the (001),(101),(102) and (110) plane,respectively[21,30].With the percentage of introduced iodine increases,the typical peaks of BiOBr shift to a lower 2θvalue,which can be seen clearly in Fig.1b.The introduction of iodine causes lattice distortion of BiOBr,which changes the lattice parameters and causes the shift of diffraction peaks.Fig.1c shows the Raman spectra of BiOBr1-xIx.For pure BiOBr,the signals at 55 cm?1and 108 cm?1are assigned to theA1ginternal Bi–Br stretching mode [31].After iodine introducing,the signals for Bi–Br disappear gradually.Two new peaks at around 84 cm?1and 148 cm?1are observed,which are corresponded toA1gandEginternal Bi–I stretching modes,respectively [32],indicating the existence of iodine in BiOBr1-xIxand the interaction of Bi and I.The peaks shift in XRD and Raman indicate the successful formation of solid solution BiOBr1-xIx.

    Introducing iodine also contributes to the variation of specific surface area and pore size.Figs.1d and e show the N2adsorptiondesorption isotherms and the corresponding pore size distribution of BiOBr1-xIx.All the materials show type IV isotherms with H3 hysteresis loop,indicating the pile of nanosheets.With the percentage increase of iodine introducing,the specific surface areas of the materials increase from 15.69 m2/g (BiOBr) to 76.73 m2/g (BiOBr0.25I0.75).And more mesoporous can be observed for solid solution BiOBr1-xIx.The higher specific surface area and more mesoporous will give more chance for the interaction of materials and Cr(VI),which is beneficial to adsorption and photoreduction.

    Fig.2 shows the scanning electron microscopy (SEM) and highresolution transmission electron microscopy (HRTEM) images of BiOBr,BiOBr0.25I0.75and BiOI.From SEM images we can see that all the samples are composed of nanosheets for their unique layered structure.For BiOBr,a microsphere composed of thick and dense nanosheets with a diameter of 4.3 μm can be observed (Fig.2a).The spherical structure is destroyed for solid solution BiOBr1-xIx,instead,plenty of nanosheets stacks irregularly in BiOBr0.25I0.75and BiOI (Figs.2b and c).According to the magnified images in Figs.2d-f,compared with BiOBr,the nanosheets in BiOBr0.25I0.75and BiOI are loosely packed,indicating the high specific surface areas and more exposed active sites,which is in accordance with N2adsorption-desorption isotherms results.

    Fig.2.SEM images of BiOBr (a,d),BiOBr0.25I0.75 (b,e),and BiOI (c,f).HRTEM images of BiOBr (g),BiOBr0.25I0.75 (h),and BiOI (i).(j) EDS mapping of BiOBr0.25I0.75.

    HRTEM was conducted to study the changes of lattice fringes of BiOBr,BiOBr0.25I0.75and BiOI (Figs.2g-i).The lattice fringes for BiOBr,BiOBr0.25I0.75and BiOI are 0.28 nm,0.29 nm and 0.30 nm,respectively,which can be indexed into (102) crystal plane.The energy disperse spectroscopy (EDS) mapping of BiOBr0.25I0.75elucidates the homogeneous distribution of Bi,O,Br and I (Fig.2j).

    As we know,the CB of BiOBr is contributed by Bi 6p,O 2p and Br 4p orbits,and the valance band (VB) mainly consists of Br 4p and O 2p orbits [33,34].The introduction of iodine will decrease the contribution of Br 4p orbit and increase the contribution of I 5p orbit,thus regulate the electronic and band structure of BiOBr.Fig.3a shows the ultraviolet–visible (UV–vis) reflectance absorption spectra of BiOBr1-xIxsamples.With the increasing percentage of iodine,the absorption edge red shifts from 400 nm to 500 nm,indicating the enhanced light absorption for BiOBr1-xIx.To determine the VB and CB of BiOBr,BiOBr0.25I0.75and BiOI,the XPS spectra and Mott–Schottky plots were conducted.Fig.3b shows the VB position of BiOBr,BiOBr0.25I0.75and BiOI are 1.77 eV,1.62 eV,1.36 eV.The flat band potential of BiOBr,BiOBr0.25I0.75and BiOI can be obtained by Mott-Schottky tests (Fig.3c).The flat band potential(Efb) of BiOBr,BiOBr0.25I0.75and BiOI are ?0.74 eV,?0.83 eV,?1.01 eV versus the saturated calomel electrode (SCE).The positive value indicates that BiOBr,BiOBr0.25I0.75and BiOI are n-type semiconductors [20,35,36].Efbis equal to Fermi level (Ef),and the potential of CB is more negative by ~?0.2 eV thanEf.Thus,the corresponding CB potentials of BiOBr,BiOBr0.25I0.75and BiOI are ?0.70 eV,?0.79 eV and ?0.97 eV versus normal hydrogen electrodes.According to the VB and CB,Fig.3d illustrates the schematic band positions of BiOBr1-xIx.The introduction of iodine uplifts the VB and CB,promoting the visible light absorption and enhances the reduction ability.

    The different electronegativity of bromine and iodine will changes the electron cloud density,leading to binding energy shift of solid solution BiOBr1-xIx.XPS analyses were performed to explore the chemical states and binding energy of the materials.The signals of Bi,O,Br and I are detected in the survey spectra of BiOBr,BiOI,and BiOBr0.25I0.75,respectively (Fig.4a).To clearly explore the chemical states and binding energy,the high-resolution XPS spectra of Br 3d,Bi 4f and O 1s are shown in Figs.4b-d.For BiOBr,the Br 3d can be divided into two peaks at 68.1 eV and 69.1 eV,which are assigned to Br 3d5/2and Br 3d3/2[37,38].A shift of 0.3 eV to high binding energy can be observed for BiOBr0.25I0.75,which is caused by interaction of Br and I.The electronegativity of iodine is weaker than that of bromine.Introducing iodine will cause the decrease of electron cloud density around Br,leading to the shift to high binding energy.The Bi 4f spectrum of BiOBr displays a pair of peaks at 159.1 eV and 164.4 eV,corresponding to Bi 4f7/2and Bi 4f5/2of Bi3+[39,40].For BiOBr0.25I0.75and BiOI,the peaks have a shift of 0.1–0.2 eV to high binding energy.

    The O 1s peak can be divided into three peaks at 529.7 eV,531.1 eV and 532.5 eV in BiOBr.The first two peaks are lattice oxygen and structural water,respectively,and the third one corresponds to the presence of oxygen vacancies [41].The oxygenterminated crystal surface easily reacts with ethylene glycol,leaving some oxygen vacancies on the surface of BiOBr [42,43].For solid solution BiOBr0.25I0.75,the signal for oxygen vacancy disappears.The emergence of iodine may prohibit the reaction between oxygen-terminated and ethylene glycol,reducing the formation of oxygen vacancy.The result is in accordance with electron spinparamagnetic resonance (ESR) (Fig.S1 in Supporting information)[44,45].

    The performance of the samples was evaluated by adsorption and photoreduction Cr(VI).Considering the effect of pH on Cr(VI) removal,the experiments were conducted at pH 2,3,5,7 and 9.Fig.S2 (Supporting information) shows photoreduction of Cr(VI) by BiOBr1-xIxat pH 2 and pH 3.Among all the materials,BiOBr0.25I0.75shows the highest for Cr(VI),and exceeds most photocatalysts in previous research.It is not surprising for efficient removal of Cr(VI) at pH 2 and 3.In our work,we paid more attention to Cr(VI) removal in a wide pH range (pH 4 to 10).In Fig.5a,at pH 5,the materials show different adsorption capacities in dark condition.During adsorption process,Cr(VI) concentration decreases slightly with BiOBr,whereas nearly 60% Cr(VI) are removed with BiOBr0.25I0.75.With light irradiation,99% Cr(VI) can be removed with BiOBr0.25I0.75in 60 min,while BiOBr can only remove 44% Cr(VI) in the same time,indicating the enhanced adsorption and photoreduction efficiency for Cr(VI) by solid solution BiOBr0.25I0.75.At pH 7 and 9 Figs.5b and c),the adsorption capacities increase obviously,while the photoreduction efficiency decreases.The mechanism for the enhancement of adsorption capacity will be discussed in the next part.The decrease of photoreduction efficiency is due to the different species of Cr(VI) under acidic conditions and basic conditions,leading to different reduction reactions.Under acidic conditions,Cr2O72?and HCrO4?are the main species,and they can be easily reduced to Cr(III) according to Eqs.1 and 2 [1,2,46].Under neutral and basic conditions,CrO42?is the dominate specie.The reduction reaction is according to Eq.3.The decreased reduction efficiency for Cr(VI) is caused by the decrease of reduction potential and the formed Cr(OH)3precipitation,which will seal the active site [46–48].Though the opposite tendency of adsorption and photoreduction performance at different pH values,the removal rate of Cr(VI) maintains 98% at pH 2 to 10 (Fig.5e),indicating the favorable synergistic effect of adsorption and photoreduction for Cr(VI).

    Fig.3.(a) UV–vis diffuses reflectance spectra of BiOBr1-xIx.(b) XPS-VB spectra and (c) Mott-Schottky spectra of BiOBr,BiOBr0.25I0.75 and BiOI.(d) Energy band structure of BiOBr1-xIx.

    Fig.4.(a) XPS survey spectra of BiOBr,BiOBr0.25I0.75 and BiOI samples.High resolution XPS spectra of (b) Br 3d,(c) Bi 4f and (d) O 1s.

    Except for Cr(VI),Cr(III) generated should be pay attention for its potential threat [49].Fig.5d shows the concentration variation of total chromium (Cr(T)),Cr(VI) and Cr(III) at pH 2,5,7 and 9 by BiOBr0.25I0.75.At pH 5,with light illumination,the concentration variations of Cr(T) and Cr(VI) are overlapped.There is no Cr(III)accumulation in solution,indicating that Cr(III) generated by photoreduction process is captured on the surface of BiOBr0.25I0.75.The conditions at pH 7 and 9 are the same as pH 5.The variation tendency of Cr(T) and Cr(VI) is overlapped and Cr(III) cannot be detected in solution.That means BiOBr0.25I0.75can effectively capture Cr(III) after photoreduction process.Due to the strong competition of H+,Cr(III) cannot be immobilized at pH 2.From Fig.5f,the removal of Cr(T) reaches up to 98% by BiOBr0.25I0.75at pH 4 to 10,indicating BiOBr0.25I0.75is a promising material to remove Cr(T).

    The favorable removal of Cr(VI) on BiOBr0.25I0.75can be analyzed from adsorption and photocatalysis performance.The excellent adsorption of Cr(VI) on BiOBr0.25I0.75is caused by its large specific surface area and more mesoporous,which are beneficial for the diffusion of Cr(VI) and the contact of Cr(VI) and photocatalyst.DFT calculations are a better method to analyze the reaction path or calculate the adsorption energy,which has wide application environmental research [50].To further verify the enhanced adsorption of Cr(VI) on BiOBr0.25I0.75,the adsorption energies of Cr(VI) on BiOBr1-xIxare calculated by DFT calculations.In Fig.6a,the adsorption energies of Cr(VI) on BiOBr1-xIxare negative than BiOBr,and the adsorption energy decreases with I content percentage increases,indicating the favorable adsorption capacity.According to previous research,the mechanism for Cr(VI) adsorption is anion exchange between Cr(VI) species (HCrO4?,CrO42?) and X?(X=Br,I) [29,51,52].To verify the adsorption mechanism,Fig.6b shows the concentration variation of Cr(VI),Br?and I?at different pH values.From pH 2 to 11,with the decrease of Cr(VI) in solution,the concentration of Br?and I?increase,indicating the anion exchange between Cr(VI) species (HCrO4?,CrO42?) and X?(X=Br,I).

    Fig.5.The adsorption and photoreduction of Cr(VI) by BiOBr1-xIx at (a) pH 5,(b) pH 7,and (c) pH 9.(d) Removal of Cr(T),Cr(VI) and Cr(III) by BiOBr0.25I0.75 at pH 2,5,7,9.(e) Effect of pHi on the removal of Cr(VI) and (f) Cr(T) by BiOBr0.25I0.75.(Experimental conditions: dose of materials,1 g/L;initial concentration of Cr(VI),20 mg/L;experiment temperature: 25 °C).

    Fig.6.(a) The adsorption energy of HCrO4?and CrO42?on BiOBr1-xIx (the adsorption for HCrO4?is in purple and the adsorption for CrO42?is in orange).(b) Released Br?and I?and remaining Cr(VI) in solution as a function of pHi.(c) The pH values before and after adsorption.(d) The adsorption energy of CrO42?on the surface and interlayer Bi sites.

    The pH values after adsorption were detected to further analyze the adsorption process.In Fig.6c,the pH values decrease after adsorption,which is caused by the anion exchange between OH?and X?(X=Br,I).The release of X?(X=Br,I) facilitates the adsorption of Cr(VI).In order to determine the adsorption site,the adsorption energies of CrO42?on BiOBr0.25I0.75were calculated on surface Bi site and interlayer Bi site.In Fig.6d,the adsorption energies on surface Bi site (?8.64 eV) is much smaller than interlayer Bi site (4.03 eV),thus CrO42?will be connected on surface Bi site after anion exchange.

    For photoreduction process,the separation and transport efficiency of electrons and holes are very important.The separation and transfer efficiency of electrons and holes were analyzed by electrochemical test and photoluminescence (PL).Fig.7a shows the visible-light photocurrent responses of BiOBr,BiOBr0.25I0.75and BiOI.With light illumination,BiOBr0.25I0.75presents a distinctly higher current density,about 2-4 times than that of BiOBr and BiOI,which indicates more efficient separation and transfer of photoinduced electrons and holes.Fig.7b shows the electrochemical impedance of the samples.The model consists of the chargetransfer resistanceRtin parallel with the double-layer capacitance (CPE).The fitting results were calculated on the basis of model in inset in Fig.7b.The smaller arc radius andRt(4.360 MΩ) of BiOBr0.25I0.75manifest its higher interfacial charge transfer and separation.The results demonstrate that the introduction of iodine is beneficial for the efficient photogenerated charge carrier separation and transfer.To support of this,PL was conducted to investigate the recombination of electrons and holes (Fig.7c).Compared with pure BiOBr and BiOI,BiOBr0.25I0.75shows distinct quenching of PL intensity,indicating the lower recombination of electrons and holes.Efficient electrons and holes separation and transfer make more electrons can participate the reduction reaction,thus promoting the photocatalytic reduction of Cr(VI) by BiOBr0.25I0.75.

    Fig.7.(a) Transient photocurrent responses,(b) electrochemical impedance spectra,and (c) photoluminescence spectra of BiOBr,BiOBr0.25I0.75 and BiOI.

    Fig.8.The calculated electronic density of states of (a) BiOBr,(b) BiOBr0.25I0.75,(c) BiOI.Electron density distribution of BiOBr0.25I0.75 after CrO42?adsorption in (d) acidic,(e) neutral and (f) alkaline conditions (charge accumulation is in yellow and depletion in blue).

    The energy band structure of semiconductor is another factor that affects photoreduction performance,because the position of CB will determine the reduction ability of material,which will influence the efficiency of Cr(VI) removal.In order to verify the contribution of iodine in CB,Figs.8a-c and Fig.S4 (Supporting information) show the electronic density of states (DOS) of BiOBr1-xIx.For pure BiOBr,the CB consists of Bi 6p and Br 4p orbits.After iodine introducing,the contribution of Br 4p orbit decreases and the contribution of I 5d orbit increases,making the upshift of CBM,enhancing the photoreduction ability.Figs.8d-f show the electron density distribution of BiOBr0.25I0.75after CrO42?adsorption in acidic,neutral and alkaline conditions.The transfer of electrons from CrO42?to Bi site can be observed after adsorption,which creates an electron-rich microenvironment,facilitating the reduction process.

    Based on our analysis and discussion,Cr(VI) is reduced to Cr(III)within a wide pH range through adsorption and photoreduction.The produced Cr(III) should be immobilized further due to its potential hazard.The highlight of our work is the photoreduciton of Cr(VI) and immobilization of Cr(III) in a wide pH range.To verify the capture of Cr(III),Figs.9a-d show XPS results of BiOBr0.25I0.75after Cr(VI) photoreduction process,and the process for adsorption and photoreduction of Cr(VI) and immobilization of Cr(III) at different pH values is proposed (Fig.9e).Different mechanisms lead to different contributions of adsorption and photoreduction.In acidic conditions,photoreduction is the main reason for Cr(VI) removal.At pH 2 and 5,Cr(VI) is reduced to Cr(III) easily,and the generated Cr(III) is adsorbed on the surface of BiOBr0.25I0.75at pH 5,which can be verified by the high resolution of Cr 2p spectrum (Fig.9b).The peaks at 576.8 and 586.5 eV can be assigned to Cr(III) [53–55].The negative surface of BiOBr0.25I0.75facilitates the adsorption of Cr(III) through electrostatic attraction (Fig.S5 in Supporting information).With pH increases,the generated and adsorbed Cr(III)decreases from 53.2% to 38.1% (at pH 7) and 39.5% (at pH 9).This is because adsorption is the main reason for Cr(VI) removal under neutral and alkaline conditions (Figs.9c and d).A small quantity of Cr(VI) are reduced to Cr(III) and captured on the surface of BiOBr0.25I0.75.At pH 2,after photoreduction process,there is no Cr(III) accumulation on the surface of BiOBr0.25I0.75due to the strong competition between H+and Cr(III) (Fig.9a).This is not the key point of our research.With the synergy of adsorption,photoreduction and immobilization,we successfully achieve efficient Cr(VI) and Cr(III) removal in a wide pH range.

    In summary,the removal of Cr(VI) and immobilization of Cr(III) within a wide pH range are achieved by solid solution BiOBr0.25I0.75.The removal mechanism is different at different pH values.Photoreduction is the main reason for Cr(VI) removal under acidic conditions,while adsorption contributes more under neutral and alkaline conditions And BiOBr0.25I0.75can efficiently capture Cr(III) at pH 4 to 10.Our research suggests that BiOBr0.25I0.75is a potential material for water treatment,especially for chromiumcontaining wastewater in a wide pH range.

    Fig.9.High resolution of Cr 2p spectrum after photoreduction by BiOBr0.25I0.75 at (a) pH 2,(b) pH 5,(c) pH 7,and (d) pH 9.(e) Process for the removal of chromium on BiOBr0.25I0.75

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Natural Science Foundation of Tianjin (No.18JCYBJC17700),the National Natural Science Foundation of China (Nos.21406164,21466035 and 22066022).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.09.043.

    国产成人免费观看mmmm| 国产精品国产三级专区第一集| 啦啦啦在线免费观看视频4| 亚洲国产中文字幕在线视频| 精品国产一区二区久久| 亚洲人成77777在线视频| 久久国产精品男人的天堂亚洲| 男人舔女人的私密视频| 国产一级毛片在线| 亚洲欧美激情在线| 少妇猛男粗大的猛烈进出视频| 夫妻午夜视频| 亚洲人成电影免费在线| 午夜福利视频在线观看免费| 中文字幕最新亚洲高清| 丝袜美腿诱惑在线| 97在线人人人人妻| 一级毛片我不卡| 亚洲欧美日韩高清在线视频 | 亚洲欧美精品综合一区二区三区| 日韩一卡2卡3卡4卡2021年| 午夜福利,免费看| 午夜激情av网站| 2018国产大陆天天弄谢| 五月开心婷婷网| 一级黄片播放器| 一本色道久久久久久精品综合| 你懂的网址亚洲精品在线观看| 欧美av亚洲av综合av国产av| 美女国产高潮福利片在线看| 国产亚洲午夜精品一区二区久久| 亚洲一卡2卡3卡4卡5卡精品中文| 永久免费av网站大全| 欧美黑人精品巨大| 国产无遮挡羞羞视频在线观看| 一区二区三区四区激情视频| 视频区图区小说| www.av在线官网国产| 日韩制服丝袜自拍偷拍| 真人做人爱边吃奶动态| 99香蕉大伊视频| 亚洲av电影在线进入| 国产深夜福利视频在线观看| 最近手机中文字幕大全| 99久久精品国产亚洲精品| av网站免费在线观看视频| 成人国产一区最新在线观看 | 亚洲欧洲国产日韩| 久久久久精品人妻al黑| av线在线观看网站| 国产激情久久老熟女| 超色免费av| 成年动漫av网址| 亚洲欧美清纯卡通| 性少妇av在线| 天天影视国产精品| 母亲3免费完整高清在线观看| 亚洲第一av免费看| 亚洲成国产人片在线观看| 欧美xxⅹ黑人| 一区二区日韩欧美中文字幕| 欧美日韩av久久| 成人影院久久| 欧美人与性动交α欧美精品济南到| 精品国产一区二区三区久久久樱花| 一级黄色大片毛片| 黄色片一级片一级黄色片| 国产成人一区二区在线| 激情视频va一区二区三区| 高清不卡的av网站| 日本一区二区免费在线视频| av有码第一页| 精品人妻熟女毛片av久久网站| 91精品伊人久久大香线蕉| 超色免费av| 捣出白浆h1v1| 亚洲五月色婷婷综合| 女人被躁到高潮嗷嗷叫费观| 精品第一国产精品| 精品一区二区三区四区五区乱码 | 成人午夜精彩视频在线观看| 水蜜桃什么品种好| 极品人妻少妇av视频| 久久99一区二区三区| 国产伦理片在线播放av一区| 纯流量卡能插随身wifi吗| 国产成人精品久久二区二区免费| 欧美日韩亚洲国产一区二区在线观看 | 99热网站在线观看| 日本a在线网址| av有码第一页| 精品国产一区二区三区四区第35| 国产日韩欧美视频二区| 9191精品国产免费久久| 99热国产这里只有精品6| 香蕉丝袜av| 黄片小视频在线播放| 黑人巨大精品欧美一区二区蜜桃| 久久久久网色| 国产片内射在线| 欧美人与性动交α欧美精品济南到| 国产熟女欧美一区二区| 美女中出高潮动态图| 久久久久久免费高清国产稀缺| 久久国产亚洲av麻豆专区| 一级片'在线观看视频| 国产精品国产三级专区第一集| 久久天堂一区二区三区四区| 欧美在线黄色| 欧美+亚洲+日韩+国产| 人人澡人人妻人| 精品欧美一区二区三区在线| 国产精品 国内视频| 老汉色av国产亚洲站长工具| 国产欧美日韩一区二区三区在线| 高清欧美精品videossex| 1024视频免费在线观看| 啦啦啦 在线观看视频| 国产免费又黄又爽又色| 丝袜在线中文字幕| 国产99久久九九免费精品| 日本一区二区免费在线视频| 国产免费福利视频在线观看| 午夜福利乱码中文字幕| 欧美亚洲日本最大视频资源| av国产久精品久网站免费入址| 日本午夜av视频| 久久国产精品大桥未久av| 亚洲精品美女久久久久99蜜臀 | 国产主播在线观看一区二区 | 成人国产一区最新在线观看 | 日本欧美视频一区| 女人被躁到高潮嗷嗷叫费观| 国产精品熟女久久久久浪| 我的亚洲天堂| 男人操女人黄网站| 狠狠婷婷综合久久久久久88av| 久久av网站| 男女午夜视频在线观看| 水蜜桃什么品种好| 老司机亚洲免费影院| 男男h啪啪无遮挡| 99九九在线精品视频| 91精品国产国语对白视频| 成人影院久久| 久久久久久久久免费视频了| 精品少妇久久久久久888优播| 国产精品一区二区免费欧美 | 免费高清在线观看视频在线观看| a级毛片在线看网站| 黑丝袜美女国产一区| 国产一区有黄有色的免费视频| 另类精品久久| 不卡av一区二区三区| 亚洲成人手机| 青青草视频在线视频观看| 亚洲av成人精品一二三区| 自拍欧美九色日韩亚洲蝌蚪91| 五月开心婷婷网| 深夜精品福利| 少妇被粗大的猛进出69影院| 蜜桃国产av成人99| 一区二区三区四区激情视频| 一边亲一边摸免费视频| 18禁黄网站禁片午夜丰满| 欧美日韩成人在线一区二区| 亚洲av日韩在线播放| 日韩熟女老妇一区二区性免费视频| 亚洲欧美色中文字幕在线| 精品国产国语对白av| 脱女人内裤的视频| svipshipincom国产片| 欧美日韩视频精品一区| 永久免费av网站大全| 狠狠婷婷综合久久久久久88av| 国产亚洲欧美在线一区二区| 国产主播在线观看一区二区 | www.av在线官网国产| 男女无遮挡免费网站观看| videos熟女内射| 老熟女久久久| 欧美成人午夜精品| 日日摸夜夜添夜夜爱| 一级毛片 在线播放| 成年人免费黄色播放视频| 亚洲精品第二区| 国产精品 国内视频| av国产久精品久网站免费入址| av国产精品久久久久影院| 精品免费久久久久久久清纯 | 欧美 日韩 精品 国产| 美国免费a级毛片| 免费在线观看日本一区| 亚洲精品国产一区二区精华液| 免费人妻精品一区二区三区视频| 国产在线免费精品| 久热这里只有精品99| 国产爽快片一区二区三区| 亚洲欧美中文字幕日韩二区| 午夜日韩欧美国产| 国产成人a∨麻豆精品| 精品高清国产在线一区| 精品福利观看| 脱女人内裤的视频| 搡老乐熟女国产| 免费观看av网站的网址| 亚洲,欧美,日韩| 一二三四社区在线视频社区8| 黑人巨大精品欧美一区二区蜜桃| 秋霞在线观看毛片| 少妇 在线观看| 水蜜桃什么品种好| 曰老女人黄片| 一边摸一边抽搐一进一出视频| 热99国产精品久久久久久7| 好男人视频免费观看在线| 国产精品 欧美亚洲| 婷婷丁香在线五月| 日韩大片免费观看网站| 99热网站在线观看| 国产成人av教育| 青草久久国产| a级毛片在线看网站| 一级片免费观看大全| 男女免费视频国产| 亚洲精品久久久久久婷婷小说| 久久人妻福利社区极品人妻图片 | 日本wwww免费看| xxx大片免费视频| 亚洲国产精品一区三区| 91精品伊人久久大香线蕉| 超碰成人久久| 亚洲熟女毛片儿| 国产高清视频在线播放一区 | 久久精品久久久久久久性| 黑人巨大精品欧美一区二区蜜桃| 国产免费又黄又爽又色| 亚洲男人天堂网一区| 黑丝袜美女国产一区| 色精品久久人妻99蜜桃| 欧美日韩一级在线毛片| 国产男人的电影天堂91| 伦理电影免费视频| 高清不卡的av网站| 亚洲精品日本国产第一区| 一区二区三区激情视频| 极品少妇高潮喷水抽搐| 在线观看免费视频网站a站| 黄片小视频在线播放| 国产男女超爽视频在线观看| 国产精品久久久久久人妻精品电影 | 久久中文字幕一级| 一级,二级,三级黄色视频| 免费观看a级毛片全部| 国产成人欧美在线观看 | 18禁裸乳无遮挡动漫免费视频| 亚洲欧洲日产国产| 亚洲欧美一区二区三区久久| 九色亚洲精品在线播放| 好男人电影高清在线观看| 赤兔流量卡办理| 波野结衣二区三区在线| 一级,二级,三级黄色视频| 久久精品久久久久久噜噜老黄| 大片电影免费在线观看免费| 男女边吃奶边做爰视频| 亚洲,一卡二卡三卡| 久久人人爽av亚洲精品天堂| 午夜久久久在线观看| 丝袜美足系列| 韩国高清视频一区二区三区| av在线老鸭窝| 国产精品国产av在线观看| 看十八女毛片水多多多| 老鸭窝网址在线观看| 制服诱惑二区| 精品久久久久久电影网| 国产激情久久老熟女| 欧美少妇被猛烈插入视频| 高潮久久久久久久久久久不卡| 91九色精品人成在线观看| 免费在线观看视频国产中文字幕亚洲 | 色精品久久人妻99蜜桃| 午夜老司机福利片| 久久久精品94久久精品| 男男h啪啪无遮挡| 一级黄色大片毛片| videos熟女内射| 国产91精品成人一区二区三区 | 操美女的视频在线观看| 久久国产精品人妻蜜桃| 99国产精品一区二区三区| 一级黄色大片毛片| 亚洲国产欧美日韩在线播放| 欧美av亚洲av综合av国产av| 久久久久精品人妻al黑| 亚洲黑人精品在线| 色综合欧美亚洲国产小说| 国产精品熟女久久久久浪| 精品人妻1区二区| 亚洲第一青青草原| 大陆偷拍与自拍| 麻豆av在线久日| 国产成人免费观看mmmm| 青青草视频在线视频观看| 黄片小视频在线播放| 美女脱内裤让男人舔精品视频| 视频在线观看一区二区三区| 日韩大片免费观看网站| 黄色怎么调成土黄色| 免费日韩欧美在线观看| 午夜福利视频在线观看免费| av视频免费观看在线观看| 国产高清不卡午夜福利| 免费人妻精品一区二区三区视频| 少妇人妻久久综合中文| 久久午夜综合久久蜜桃| 热99国产精品久久久久久7| 999久久久国产精品视频| 久久久精品免费免费高清| 天天添夜夜摸| 1024视频免费在线观看| av片东京热男人的天堂| 国产日韩一区二区三区精品不卡| a级毛片黄视频| 涩涩av久久男人的天堂| 一本一本久久a久久精品综合妖精| 国产亚洲精品久久久久5区| 黄色片一级片一级黄色片| 激情五月婷婷亚洲| 老司机深夜福利视频在线观看 | 久久99热这里只频精品6学生| 亚洲专区国产一区二区| 精品亚洲成a人片在线观看| 高清视频免费观看一区二区| 交换朋友夫妻互换小说| 一区二区三区精品91| 十分钟在线观看高清视频www| 青青草视频在线视频观看| 美女国产高潮福利片在线看| 亚洲精品一区蜜桃| 亚洲精品美女久久久久99蜜臀 | 欧美另类一区| 啦啦啦在线免费观看视频4| 少妇 在线观看| 在线观看一区二区三区激情| 90打野战视频偷拍视频| 国产精品成人在线| 亚洲国产欧美在线一区| 丰满少妇做爰视频| 亚洲av在线观看美女高潮| 黑丝袜美女国产一区| 国产精品成人在线| 国产精品三级大全| 手机成人av网站| 极品少妇高潮喷水抽搐| 国产免费现黄频在线看| 日韩伦理黄色片| 欧美久久黑人一区二区| 亚洲五月色婷婷综合| av欧美777| 日本a在线网址| 色婷婷av一区二区三区视频| 在线观看免费高清a一片| 国产无遮挡羞羞视频在线观看| 亚洲精品久久成人aⅴ小说| 99精国产麻豆久久婷婷| 欧美精品一区二区免费开放| 中文字幕最新亚洲高清| 97精品久久久久久久久久精品| 久久精品aⅴ一区二区三区四区| 精品国产乱码久久久久久男人| 国产国语露脸激情在线看| 在线观看免费高清a一片| 少妇粗大呻吟视频| 久久精品aⅴ一区二区三区四区| 国产亚洲精品久久久久5区| 国产一区二区在线观看av| 在线观看免费高清a一片| 91字幕亚洲| 亚洲av电影在线进入| 精品国产一区二区久久| 两个人看的免费小视频| 国产亚洲一区二区精品| 国产又色又爽无遮挡免| 精品福利永久在线观看| 国产精品免费大片| 一边摸一边抽搐一进一出视频| 国产日韩欧美在线精品| 男女之事视频高清在线观看 | 七月丁香在线播放| 亚洲欧美清纯卡通| 亚洲成人免费av在线播放| 90打野战视频偷拍视频| 久久久精品国产亚洲av高清涩受| 一级毛片女人18水好多 | 麻豆av在线久日| 搡老乐熟女国产| 亚洲欧美激情在线| 熟女av电影| 国产精品偷伦视频观看了| 久久99热这里只频精品6学生| 午夜精品国产一区二区电影| 国产免费现黄频在线看| 桃花免费在线播放| 色婷婷久久久亚洲欧美| 国产野战对白在线观看| 日本a在线网址| 久久久精品94久久精品| 亚洲中文字幕日韩| 熟女av电影| 操出白浆在线播放| 精品高清国产在线一区| 国产高清视频在线播放一区 | 日韩视频在线欧美| 性色av乱码一区二区三区2| 伦理电影免费视频| 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 最新在线观看一区二区三区 | 久久人人97超碰香蕉20202| 你懂的网址亚洲精品在线观看| 777米奇影视久久| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品乱久久久久久| 又黄又粗又硬又大视频| 美女中出高潮动态图| 最近最新中文字幕大全免费视频 | 婷婷成人精品国产| videosex国产| 国产97色在线日韩免费| 又紧又爽又黄一区二区| 欧美黄色片欧美黄色片| 国产欧美日韩综合在线一区二区| 午夜免费鲁丝| 999久久久国产精品视频| 亚洲人成77777在线视频| 777米奇影视久久| 热re99久久国产66热| 亚洲欧美一区二区三区国产| 国产爽快片一区二区三区| 两个人免费观看高清视频| 成在线人永久免费视频| 欧美人与性动交α欧美精品济南到| 各种免费的搞黄视频| 久久精品久久精品一区二区三区| 下体分泌物呈黄色| 精品人妻1区二区| 国产91精品成人一区二区三区 | 久久人妻熟女aⅴ| 99热国产这里只有精品6| 青春草亚洲视频在线观看| 久久精品亚洲熟妇少妇任你| 黑人巨大精品欧美一区二区蜜桃| 高清视频免费观看一区二区| 久久久久网色| av线在线观看网站| 国产精品 国内视频| av在线播放精品| 亚洲第一av免费看| 两性夫妻黄色片| 亚洲国产最新在线播放| 18禁国产床啪视频网站| 一区二区av电影网| 亚洲五月色婷婷综合| 国产一区二区激情短视频 | 国产欧美日韩综合在线一区二区| 免费日韩欧美在线观看| 欧美激情 高清一区二区三区| 一级毛片 在线播放| 激情视频va一区二区三区| 99国产综合亚洲精品| 国产一区二区 视频在线| av线在线观看网站| 嫁个100分男人电影在线观看 | 两个人免费观看高清视频| 久久精品成人免费网站| 黄片播放在线免费| 中文字幕制服av| 欧美黄色片欧美黄色片| 男女无遮挡免费网站观看| 精品国产一区二区三区四区第35| 欧美97在线视频| 深夜精品福利| 七月丁香在线播放| 纯流量卡能插随身wifi吗| 你懂的网址亚洲精品在线观看| 中文字幕最新亚洲高清| 亚洲国产精品国产精品| 国产精品国产三级专区第一集| 丝袜美足系列| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆| 亚洲精品在线美女| 免费观看av网站的网址| 国精品久久久久久国模美| 一区福利在线观看| 黄色片一级片一级黄色片| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 一级毛片电影观看| 新久久久久国产一级毛片| 久久精品亚洲av国产电影网| 美国免费a级毛片| 蜜桃在线观看..| 一本—道久久a久久精品蜜桃钙片| 久久久久久免费高清国产稀缺| 欧美xxⅹ黑人| 精品少妇久久久久久888优播| 日本欧美视频一区| 日韩伦理黄色片| 亚洲欧美日韩另类电影网站| 免费观看av网站的网址| 日日摸夜夜添夜夜爱| 午夜福利一区二区在线看| 国产麻豆69| 欧美日韩精品网址| 99国产精品免费福利视频| 成人黄色视频免费在线看| 国产老妇伦熟女老妇高清| 九草在线视频观看| 国产亚洲午夜精品一区二区久久| 国产日韩欧美视频二区| 18禁国产床啪视频网站| 啦啦啦在线观看免费高清www| 亚洲自偷自拍图片 自拍| 欧美黑人精品巨大| 日韩av在线免费看完整版不卡| 99久久99久久久精品蜜桃| 18禁国产床啪视频网站| 精品欧美一区二区三区在线| 亚洲国产成人一精品久久久| 又大又爽又粗| 又黄又粗又硬又大视频| www.av在线官网国产| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人国产一区在线观看 | 脱女人内裤的视频| 1024香蕉在线观看| 国产亚洲欧美精品永久| 99久久人妻综合| 波多野结衣一区麻豆| 啦啦啦啦在线视频资源| 男女下面插进去视频免费观看| 亚洲中文日韩欧美视频| 一二三四社区在线视频社区8| 99国产精品一区二区蜜桃av | 一级毛片 在线播放| 中文字幕亚洲精品专区| 大香蕉久久成人网| www日本在线高清视频| 亚洲成av片中文字幕在线观看| 亚洲综合色网址| www.自偷自拍.com| 超色免费av| 国产熟女欧美一区二区| 成人影院久久| 精品一区二区三卡| 在线av久久热| 人人妻,人人澡人人爽秒播 | 国产亚洲午夜精品一区二区久久| 日本91视频免费播放| 一区二区av电影网| 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 国产精品久久久久久精品电影小说| 亚洲成色77777| 亚洲情色 制服丝袜| 午夜福利一区二区在线看| 色综合欧美亚洲国产小说| 丁香六月天网| 少妇人妻 视频| 在线亚洲精品国产二区图片欧美| 成人手机av| 亚洲欧美一区二区三区国产| 亚洲一码二码三码区别大吗| 大片免费播放器 马上看| www.999成人在线观看| 激情五月婷婷亚洲| 精品视频人人做人人爽| 各种免费的搞黄视频| 国产在线一区二区三区精| 久久精品久久久久久噜噜老黄| 国产一级毛片在线| 美女大奶头黄色视频| 一本综合久久免费| 午夜福利在线免费观看网站| 少妇猛男粗大的猛烈进出视频| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看 | 免费女性裸体啪啪无遮挡网站| 丝袜美足系列| 天天添夜夜摸| 欧美日韩国产mv在线观看视频| 90打野战视频偷拍视频| 精品高清国产在线一区| 国产精品.久久久| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| av国产精品久久久久影院| 亚洲,欧美,日韩| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区| 国产精品一区二区免费欧美 | 在线观看一区二区三区激情| 可以免费在线观看a视频的电影网站| 亚洲国产精品国产精品| 操出白浆在线播放| 每晚都被弄得嗷嗷叫到高潮| 国产熟女午夜一区二区三区| 亚洲精品国产av蜜桃| 国产一区二区三区av在线| 亚洲精品中文字幕在线视频| 18在线观看网站| 免费看av在线观看网站|