• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rigid chelating dicarbene ligands based on naphthyridine-fused bisimidazolium salts

    2022-07-11 03:39:08YanLiuZhijieSheQinzeZhengXuesongZhengTianbaoWangGeGao
    Chinese Chemical Letters 2022年6期

    Yan Liu,Zhijie She,Qinze Zheng,Xuesong Zheng,Tianbao Wang,Ge Gao

    Key Laboratory of Green Chemistry and Technology of Ministry of Education,College of Chemistry,Sichuan University,Chengdu,610064,China

    Keywords:NHC Dicarbene ligand Naphthyridine Phenanthroline

    ABSTRACT Naphthyridine-fused bisimidazolium salts were designed and synthesized for the first time.The study of the Cu(II) and Pd(II) complexes demonstrated that the deprotonated dicarbene ligands are rigid chelating C,C-ligands with strong electron-donating ability in analogy with the classic phenanthroline N,N-ligands.

    1,10-Phenanthroline (phen,A,Fig.1) is a tricyclic and planar nitrogen-containing heteroarene [1].It has relatively weakσdonating ability due to its electron-poor characteristic.However,this drawback is largely compensated by its hydrophobicity,two rigid pre-organized nitrogen atoms with a perfect cone angle,andπ-acceptor nature.Therefore,it still exerts strong and entropically favored metal binding.Phen has become a classic chelating bidentate N,N-ligand,and together with its various derivatives been widely serving in coordination chemistry,supramolecular chemistry,transition metal catalysis,and photoactive materials [2,3].On the other hand,N-heterocyclic carbenes (NHCs) are strongσ-donors and weakπ-acceptors [4–7].Since the synthesis and isolation of the first stable NHC,1,3-di(adamantyl)imidazol-2-ylidene,by Arguengoet al.in 1991 [8],a plethora of different NHCs have been continuously created and extensively studied,resulting in enormous attractive applications [9–14].Imidazolium salts are the most commonly used precursors to construct multidentate NHC ligands due to their easy access and stability.In 1995,Herrmannet al.first showcased the catalytic activity of a Pd(II) complex formed by a methylene-bridged dicarbene ligand (B,Fig.1) in the Heck coupling of aryl halides.Unfortunately,complex decomposition was witnessed in solution above 70 °C,probably related to the flexibility of the ligand [15].

    It was not until 15 years later that a rigid tricyclic bidentrate NHC ligand named vegi [16]was synthesized based on pyridazine by the group of Kunz to be a C,C-analogue of phen (C,Fig.1).Due to the contracted five-membered imidazolium moieties,the two carbene sites is fixed in a distance of 2.97 ?A with a wider cone angle in comparison with the two nitrogen atoms in phen,and the molecule is planar.The vegi ligand acted as a chelating C,C-ligand to form mononuclear complexes with alkali metals [17]as well as common transition metals such as Rh(I) and Ir(I) [16,18,19].However,it acted as a bridging ligand with coinage metals Ag(I),Cu(I)and Au(I) to form the corresponding binuclear complexes [16,20],implying it is still relatively flexible [21].To attain a phen analogue with a smaller cone angle,Monkowiuset al.later introduced a mixed C,N-ligand (D,Fig.1) in 2012 [22].It formed chelating Pd(II)and Rh(I) complexes [23,24],but acted as a monodentate C-ligand for Ag(I),Au(I),Au(III) and Cu(I) [22,25].Interestingly,nonorbitalbased dispersion-type interactions were found between the nitrogen and Au atoms in the Au(III) complexes [22].

    Due to our continuous interests in novel azolium compounds as functional materials and ligands [26–32],our design of a C,Canalogue of phen ligand (1,Fig.1) is based on the following considerations: 1) two rigid and pre-organized NHC sites to exert strongerσ-donating ability than phen;2) a tetracyclic over tricylic system with a smaller cone angle than C and D to reinforce chelating metal coordination;3) different R groups as wingtips to fine tune the metal coordinating environment.Herein,we present the synthesis of naphthyridine-fused bisimidazolium salts 1·2HCl.The deprotonated dicarbene coordinates Cu(I) to afford a mononuclear Cu(II) complex in tetrahedron geometry,suggesting its strongσ-donating and suitable chelating ability.It coordinates Pd(II) to form a distorted square planar complex,which surpasses its counterparts,the rigid N,N-ligand and flexible C,C-ligand in the Suzuki cross-coupling reactions.

    The precursors 1·2HCl could be easily obtained following a three-step procedure starting from 2,7-dimethyl-1,8-naphthyridine(Scheme 1).The two methyl groups were first transformed into the formyl groups by oxidation using selenium dioxide.The dicarbaldehyde then reacted with different primary amines to form diimines.Finally,cyclization of diimines with paraformaldehyde followed by treatment with a dioxane solution of hydrochloride(4 mol/L) afforded the designed precursors 1·2HCl in nice yields,which were isolated and purified by column chromatography on silica gel.Their structures were characterized by NMR and high resolution mass spectroscopy (HRMS).The1H NMR spectra showed that their protons on the precarbene sites are significantly acidic as they appear in low field at 11.05 (DMSO–d6),12.14 (DMSO–d6),and 10.90 (CD3OH) ppm for 1a-c,respectively.Meanwhile,the protons on the pre-abnormal carbene sites are in high field at 8.98,8.85,and 8.56 ppm,respectively.The large differences (up to 3.29 ppm)implied that the formation of carbenes by deprotonation of 1·2HCl in the presence of a base should be less interfered by the formation of abnormal carbenes.

    Fig.1.Structures of phen (A) and bidentate NHC ligands: flexible C,C-ligand (B);vegi (C);mixed C,N-ligand (D) and rigid C,C-ligand (1).

    Scheme 2.Top: Synthesis of the Cu(II) complex 2.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 2.Hydrogen atoms are omitted for clarity.

    The single crystals of 1a·2HCl were cultivated in mixed dichloromethane (DCM)/methanol at room temperature and the structure was resolved by the X-ray diffraction analysis as shown in Fig.2.The aza[4]helicene structure renders 1a·2HCl nonplanar and the two imidazolium rings twist about 18.4°.The distance between the two precarbene carbons (C1 and C10) is 3.093 ?A.This long distance is caused by repulsion between the two hydrogens on C1 and C10,and is expected to be significantly reduced after deprotonation.Moreover,the two mesityl groups sit almost orthogonally to the imidazolium planes with dihedral angles of 73.7° and 71.2°,respectively,providing a very nice shielding for the carbene sites.It is worth noting that the same protection by the aryl groups is not presented in the vegi ligand [21].

    Fig.2.ORTEP plot (50% probability thermal ellipsoids) of 1a·2HCl.

    Fig.3.HOMO/LUMO energies of phen (A),methylene-bridged dicarbene (B),vegi(C),C,N-ligand (D) and rigid dicarbene (1a) at the B3LYP/6–31g(d,p) level.

    Preparation of the free dicarbene 1a by deprotonation of 1a·2HCl with base in DMSO was conducted.The reaction system was darkened immediately and decomposed gradually in the presence of a strong base such astBuOK,tBuONa,KHDMS,NaHDMS,and LiHDMS.When a weak base (NaOAc or Et3N) was used,the reaction system remained unchanged over time.Anin situ1H NMR spectrum showed that the peak of the C1/C10 protons disappeared after 30 min from addition of NaH,indicating the formation of the free dicarbene 1a (see Supporting information for details).Unfortunately,decomposition of the free dicarbene occurred while13C NMR data were being collected.

    To obtain more information about the free dicarbene 1a,DFT calculations was carried out at the B3LYP/6–31 g(d,p) level.The optimized structure of 1a is consistent with the crystal structure of the 1a·2HCl (Fig.S1 in the Supporting information).The distance between the two carbene atoms (C1 and C10) is shortened to 2.89 ?A,which is smaller than that in the vegi ligand (2.97 ?A)[16],but still larger than the N–N distance in phen (2.744 ?A) [33].Moreover,the two imidazolium rings also twist less in 16.2°.The molecular orbital (MO) analysis showed that the carbeneσorbitals overlap with each other in HOMO-3,revealing high electron density between the two carbene sites.The HOMO/LUMO energies of 1a were calculated to be ?4.53/?1.08 eV (Fig.S2 in Supporting information).In comparison,the HOMO/LUMO energies of phen,methylene-bridged dicarbene ligand,vegi [16],and C,N-ligand were also calculated to be ?6.25/?1.42,?5.62/?0.04,?5.20/?1.01,and?5.37/?1.34 eV,respectively (Fig.3).It is clear to see that 1a has a much higher HOMO energy than the other ligands and a smallest energy gap between LUMO and HOMO.The significantly elevated HOMO energy level suggested the strong electron donating ability of 1a.

    The coordination behavior of dicarbene 1 toward copper was then evaluated.The [Cu(I)(phen)2X]complexes are extensively investigated as emitters in OLEDs and photosensitizers in photocatalysis [34–39].We therefore wanted to use 1a·2HCl to mimic a similar Cu(I) complex.1a·2HCl did not react with CuCl in the absence of a base.When NaH was used,a new compound was isolated.However,the1H NMR spectrum showed no signal,indicating that it was a paramagnetic compound.Fortunately,single crystals were obtained in mixed DCM/methanol to show a structure of [Cu(II)1aCl2](2,68% yield).We also conducted a reaction of 1a·2HCl with CuCl2in the presence oftBuOK,and 2 was formed in 80% yield (Scheme 2).These results demonstrated the strong electron donating ability of 1a,which inevitably led to oxidation of the coordinated Cu(I) to Cu(II) during workup.Complex 2 adopts a distorted tetrahedral geometry with a bite angle (C1-Cu1-C10) of 90.7° and a dihedral angle between the C1-Cu1-C10 and Cl1-Cu1-Cl2 planes of 77°.The Cu center is slightly off the ligand plane.It is noted that the coordinated dicarbene ligand is almost planar as the dihedral angle between the two imidazolium rings is significantly reduced to only 7.6°,resulting in an even shortened C1-C10 distance of 2.762 ?A,which is very close to the N–N distance in the phen ligand.It needs to point out that while three-and fourcoordinated Cu(I) complexes of phen ligands are common,fourcoordinate Cu(II) complexes are not typical [40,41].In our case,however,only a four-coordinate Cu(II) complex was formed no matter a Cu(I) or Cu(II) salt was used.This difference is probably related to their different electron-donating abilities.Therefore,ligand 1 can be considered as the C,C-analogues of the phen ligands with enhanced electron-donating ability.

    To compare with the rigid phen N,N-ligand A and flexible dicarbene C,C-ligand B,coordination of Pd(OAc)2with the rigid dicarbene 1a-b was conducted in the absence of a base to directly afford the corresponding [Pd(II)1aCl2](3a) and [Pd(II)1bCl2](3b)in 90% and 95% yields,respectively.The structure of 3b was resolved by the single crystal X-ray diffraction analysis (Scheme 3).Complex 3b rests in a distorted square planar geometry with the dicarbene plane (C1-C13-C10) bent out of the coordinating plane(C1-Pd1-C10) in 34.9° due to the steric hindrance of the adjacent butyl groups,which resembles very much the corresponding phen[42,43]and flexible dicarbene complexes [44,45].The angle of Cl1-Pd1-Cl2 is 87.3°,similar to that in the corresponding phen complex(86.8°).However,the bite angle of C1-Pd1-C10 is 86.3°,larger than the bite angle of N-Pd-N (80.6°).In addition,a dihedral angle of 10.4° is found between the C1-Pd1-C10 plane and the Cl1-Pd1-Cl2 plane.The rigid skeleton is forced in a boat-shaped conformation,resulting in a dihedral angle of the two imidazolium rings of 29.6°and a further shortened C1-C10 distance of 2.704 ?A from 2.The bond lengthens of C1-Pd and C10-Pd are 1.977 ?A equally,which fall into the common range of NHC-Pd bonds.

    Scheme 3.Top: Synthesis of the Pd(II) complexes 3.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 3b.Hydrogen atoms are omitted for clarity.

    Scheme 4.Oxidation of the Pd(II) complex 3b and the corresponding products 5–7.Conditions: in the presence of (a) 1 equiv.,(b) 2 equiv.and (c) 4 equiv.of PhICl2.

    In addition to the classic Heck,Negishi and Suzuki reactions involving a Pd(0)/Pd(II) catalytic cycle,reactions involving an alternative Pd(II)/Pd(IV) cycle have been actively pursued in the past decades.Well-defined Pd(IV) complexes are helpful to understand the catalytic process,but the synthesis is still elusive [46].In consideration of the rigid backbone and strong electron-donating ability of the dicarbene 1,possible access to a proposed Pd(IV)complex 4 by oxidation of the Pd(II) complex 3 was attempted(Scheme 4).The oxidation of 3a with 1 equiv.of PhICl2resulted in no reaction at all.However,the oxidation of 3b under the same conditions unexpectedly delivered a chloro–substituted product 5 in 70% yield.When 2 equiv.of PhICl2was used,a dichlorosubstituted product 6 was obtained in 96% yield.Increasing the amount of the oxidant to 4 equiv.led to further dearomatization of the naphthyridine backbone and gave a tetrachloro-substituted product 7 in 92% yield.Products 5–7 were fully characterized by NMR and HRMS,and the structure of 7 was also confirmed by the single crystal X-ray diffraction analysis.There was no Pd(IV) product identified in any reaction system.

    Finally,the usefulness of the rigid chelating dicarbene 1 as a ligand in transition metal catalyzed reactions was preliminarily evaluated by the catalytic activity of 3a in the Suzuki coupling reactions of a series of representative aryl bromides with aryl boronic acids.Two Pd(II) complexes with a flexible dicarbene ligand (8)and a rigid phen ligand (9) were also prepared (see the Supporting information) and used as comparative catalysts.As can be seen in Table 1,in the presence of 0.5 mol% catalyst and 2 equiv.of Cs2CO3as a base,3a in general performed better than 8 and 9.When electron-deficient and sterically hindered substrates were employed,the reactions ran slower and 3a exhibited much improved catalytic activity than its counterparts (Table 1,entries 2,3 and 6–8).When weaker base NaOAc was employed,3a still worked fine while the performances of 8 and 9 dropped a lot (Table 1,entry 9).When the reactions were conducted with a lower catalyst loading,in water or at room temperature,the desired product was obtained in moderate yield by using 3a,but poor yield was attained by using 8 and 9 (Table 1,entries 10–12).For less activep-chlorotoluene,3a showed a lower efficiency under the standard conditions,while 8 and 9 were ineffective at all.The reaction was much improved when 5 mol% 3a was used (Table 1,entries 13 and 14).These results demonstrated the beneficial effect of the rigid and strongly electron-donating C,C-ligand 1 in the Pdcatalyzed Suzuki coupling reaction.

    Table 1 Evaluation of the catalytic activity of 3a by the Suzuki coupling reaction.a

    In summary,we have successfully prepared novel naphthyridine-fused bisimidazolium salts 1·2HCl by a straightforward three-step procedure.Although the whole molecules are nonplanar due to the aza[4]helicene skeleton,the deprotonated dicarbenes 1 acted as rigid C,C-chelating bidentate ligands formed very similar Cu(II) and Pd(II) complexes as the classic N,N-ligand phen.Differently,however,only a Cu(II) complex was obtained whenever a Cu(I) or Cu(II) source was used.Moreover,the Pd(II)complex exhibited higher catalytic activity than the Pd(II) complexes with a rigid phen ligand and a flexible dicarbene ligand as preliminarily evaluated by the Suzuki coupling reaction.These specific features are believed in related to the combination of a strong electron-donating ability and a rigid chelating skeleton of 1 as designed.These novel rigid dicarbene ligands are attractive in metal coordination for catalysis and optoelectronic materials [47].Further investigations are now going on in our laboratory.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We appreciate the financial support from the National Natural Science Foundation of China (No.21772134) and the Fundamental Research Funds for the Central Universities (No.20826041D4117).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.069.

    夜夜躁狠狠躁天天躁| 韩国精品一区二区三区| 99国产精品免费福利视频| 国产伦人伦偷精品视频| 操美女的视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美日韩另类电影网站| 午夜福利欧美成人| 久久久精品欧美日韩精品| 久久精品亚洲av国产电影网| 国产av一区在线观看免费| netflix在线观看网站| 亚洲精品中文字幕在线视频| 国产91精品成人一区二区三区| 亚洲国产精品一区二区三区在线| 在线观看日韩欧美| 欧美日韩福利视频一区二区| 日本一区二区免费在线视频| 免费不卡黄色视频| 亚洲第一欧美日韩一区二区三区| 亚洲第一欧美日韩一区二区三区| 老司机午夜福利在线观看视频| 久久久国产成人免费| 亚洲av美国av| 欧美性长视频在线观看| 午夜福利在线观看吧| 午夜精品国产一区二区电影| 多毛熟女@视频| 亚洲精品美女久久av网站| 国产乱人伦免费视频| 国产国语露脸激情在线看| 成年人免费黄色播放视频| 韩国精品一区二区三区| 宅男免费午夜| 99在线人妻在线中文字幕| 日韩av在线大香蕉| 久久久久国产一级毛片高清牌| 色播在线永久视频| www.自偷自拍.com| 国产av一区二区精品久久| www.999成人在线观看| 男女下面进入的视频免费午夜 | 在线看a的网站| 久久香蕉国产精品| 国产免费av片在线观看野外av| av欧美777| 老熟妇仑乱视频hdxx| 在线观看免费视频日本深夜| 亚洲熟女毛片儿| 在线观看www视频免费| 午夜免费成人在线视频| 婷婷六月久久综合丁香| 日本免费一区二区三区高清不卡 | 久久精品国产综合久久久| 九色亚洲精品在线播放| 亚洲国产欧美日韩在线播放| 男人舔女人的私密视频| 一进一出抽搐gif免费好疼 | 精品午夜福利视频在线观看一区| 人人妻人人添人人爽欧美一区卜| 看片在线看免费视频| 最新美女视频免费是黄的| 高潮久久久久久久久久久不卡| 亚洲va日本ⅴa欧美va伊人久久| 国产精品乱码一区二三区的特点 | 午夜成年电影在线免费观看| 日本撒尿小便嘘嘘汇集6| 久久久久久久久久久久大奶| 日本a在线网址| 国内毛片毛片毛片毛片毛片| 国产精品免费一区二区三区在线| 另类亚洲欧美激情| 国产三级在线视频| 黄网站色视频无遮挡免费观看| av免费在线观看网站| 色婷婷久久久亚洲欧美| 韩国精品一区二区三区| 国产精品九九99| 午夜精品久久久久久毛片777| 亚洲情色 制服丝袜| 电影成人av| 国产成人av教育| 欧美中文日本在线观看视频| 丁香六月欧美| 欧美激情久久久久久爽电影 | 最好的美女福利视频网| 久久久精品欧美日韩精品| 美女 人体艺术 gogo| 9色porny在线观看| 黄网站色视频无遮挡免费观看| 国产av一区二区精品久久| 18禁美女被吸乳视频| 成人国语在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲成人免费av在线播放| 天天添夜夜摸| 精品一区二区三区四区五区乱码| 国产亚洲欧美98| 黑人猛操日本美女一级片| 欧美久久黑人一区二区| 一区二区三区国产精品乱码| 精品卡一卡二卡四卡免费| 中文字幕精品免费在线观看视频| 亚洲一区中文字幕在线| 亚洲伊人色综图| 欧美激情极品国产一区二区三区| 欧美乱妇无乱码| av天堂久久9| 色婷婷久久久亚洲欧美| 色在线成人网| 亚洲av日韩精品久久久久久密| 欧美乱妇无乱码| 夫妻午夜视频| 激情在线观看视频在线高清| 在线观看一区二区三区激情| 亚洲精品粉嫩美女一区| 欧美日韩视频精品一区| av天堂久久9| 国产精品98久久久久久宅男小说| 亚洲少妇的诱惑av| 国产在线观看jvid| 国产欧美日韩一区二区三| 一二三四社区在线视频社区8| 大陆偷拍与自拍| 免费女性裸体啪啪无遮挡网站| 在线观看午夜福利视频| 久久香蕉激情| 日本wwww免费看| 亚洲一区高清亚洲精品| 欧美日韩亚洲国产一区二区在线观看| 国产人伦9x9x在线观看| 国产高清国产精品国产三级| 亚洲avbb在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品永久免费网站| 在线播放国产精品三级| 91大片在线观看| 欧美成人午夜精品| 一边摸一边做爽爽视频免费| 亚洲av成人不卡在线观看播放网| 黄色女人牲交| 亚洲男人天堂网一区| 黄网站色视频无遮挡免费观看| 色综合婷婷激情| 中文亚洲av片在线观看爽| 老司机靠b影院| 国产一区在线观看成人免费| 久久久国产精品麻豆| 国产精华一区二区三区| 夫妻午夜视频| 成年版毛片免费区| 午夜影院日韩av| 他把我摸到了高潮在线观看| 精品免费久久久久久久清纯| 大香蕉久久成人网| 可以免费在线观看a视频的电影网站| 丰满迷人的少妇在线观看| 欧美国产精品va在线观看不卡| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 99国产精品一区二区蜜桃av| 成年女人毛片免费观看观看9| 亚洲午夜理论影院| 国产精品1区2区在线观看.| 乱人伦中国视频| 日本精品一区二区三区蜜桃| 人成视频在线观看免费观看| 久久久国产成人免费| 亚洲在线自拍视频| 又紧又爽又黄一区二区| 妹子高潮喷水视频| 老熟妇乱子伦视频在线观看| 一进一出抽搐gif免费好疼 | 成年人黄色毛片网站| 人人妻人人添人人爽欧美一区卜| 国产亚洲精品综合一区在线观看 | www.自偷自拍.com| 午夜福利,免费看| 1024香蕉在线观看| 一区二区三区精品91| 国产av一区在线观看免费| 无限看片的www在线观看| www日本在线高清视频| 亚洲精品一区av在线观看| 欧美激情 高清一区二区三区| 欧美日本中文国产一区发布| 亚洲色图 男人天堂 中文字幕| 国产激情久久老熟女| 久久久久久久久中文| 夜夜看夜夜爽夜夜摸 | 最近最新免费中文字幕在线| 国产区一区二久久| 亚洲av片天天在线观看| 18禁观看日本| 久久中文看片网| 久久久精品欧美日韩精品| 免费在线观看黄色视频的| 搡老熟女国产l中国老女人| 精品电影一区二区在线| 精品国产美女av久久久久小说| 亚洲一区二区三区欧美精品| 成人18禁高潮啪啪吃奶动态图| 女性被躁到高潮视频| 日韩精品青青久久久久久| 欧美午夜高清在线| 日本免费a在线| x7x7x7水蜜桃| 成人18禁高潮啪啪吃奶动态图| 在线观看舔阴道视频| 色哟哟哟哟哟哟| 国产xxxxx性猛交| 91av网站免费观看| 国产成人欧美在线观看| 国产亚洲精品综合一区在线观看 | 国产精品国产av在线观看| 日本免费a在线| 中文字幕色久视频| 色老头精品视频在线观看| 午夜免费成人在线视频| 国产午夜精品久久久久久| 97超级碰碰碰精品色视频在线观看| 窝窝影院91人妻| 99国产精品一区二区三区| 欧美亚洲日本最大视频资源| 18禁国产床啪视频网站| 亚洲aⅴ乱码一区二区在线播放 | 最近最新中文字幕大全电影3 | 日韩三级视频一区二区三区| 午夜福利在线观看吧| 91大片在线观看| 美女国产高潮福利片在线看| 99re在线观看精品视频| 大陆偷拍与自拍| 操出白浆在线播放| 亚洲精品av麻豆狂野| 国产精品98久久久久久宅男小说| 村上凉子中文字幕在线| 性色av乱码一区二区三区2| 97超级碰碰碰精品色视频在线观看| 一区二区三区国产精品乱码| 激情视频va一区二区三区| 91精品三级在线观看| 青草久久国产| 天堂影院成人在线观看| 国产精品亚洲一级av第二区| e午夜精品久久久久久久| 亚洲久久久国产精品| 男人操女人黄网站| 午夜成年电影在线免费观看| 黄网站色视频无遮挡免费观看| 巨乳人妻的诱惑在线观看| 国产成人精品久久二区二区91| 在线av久久热| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美一级毛片孕妇| 欧美乱码精品一区二区三区| 神马国产精品三级电影在线观看 | 亚洲中文av在线| 无人区码免费观看不卡| 黄色怎么调成土黄色| 国产一区二区三区视频了| 午夜免费观看网址| 成人黄色视频免费在线看| 真人做人爱边吃奶动态| 黄网站色视频无遮挡免费观看| 天天影视国产精品| 午夜福利免费观看在线| 久久久国产成人免费| 欧美大码av| 侵犯人妻中文字幕一二三四区| 国产又色又爽无遮挡免费看| 午夜亚洲福利在线播放| e午夜精品久久久久久久| 成人永久免费在线观看视频| 午夜影院日韩av| cao死你这个sao货| 黄片播放在线免费| 韩国精品一区二区三区| 日本免费a在线| svipshipincom国产片| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久 | 成人亚洲精品av一区二区 | 国产一区二区激情短视频| 别揉我奶头~嗯~啊~动态视频| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区蜜桃| 在线天堂中文资源库| 日本wwww免费看| 中文字幕精品免费在线观看视频| 亚洲成人精品中文字幕电影 | 精品久久久久久电影网| 咕卡用的链子| 国产精品免费一区二区三区在线| 国产区一区二久久| 国产乱人伦免费视频| 亚洲视频免费观看视频| 夜夜爽天天搞| 久久人人爽av亚洲精品天堂| 麻豆久久精品国产亚洲av | 中文字幕最新亚洲高清| 在线观看66精品国产| 岛国视频午夜一区免费看| a在线观看视频网站| 久久午夜综合久久蜜桃| 老司机靠b影院| 19禁男女啪啪无遮挡网站| 69精品国产乱码久久久| 日日爽夜夜爽网站| 在线观看一区二区三区激情| 午夜免费激情av| 国产精品电影一区二区三区| 波多野结衣高清无吗| 亚洲一码二码三码区别大吗| 久久久国产成人精品二区 | 交换朋友夫妻互换小说| 久久人妻av系列| 波多野结衣高清无吗| 亚洲精华国产精华精| 国产精品电影一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美免费精品| 国产成人av教育| 在线十欧美十亚洲十日本专区| 美女午夜性视频免费| 麻豆av在线久日| 久久影院123| 亚洲国产欧美日韩在线播放| 久久久久久大精品| 少妇的丰满在线观看| 亚洲色图av天堂| 美女高潮喷水抽搐中文字幕| 久久午夜亚洲精品久久| 一本综合久久免费| 久久精品国产亚洲av香蕉五月| 欧美精品一区二区免费开放| 真人做人爱边吃奶动态| 亚洲精品在线观看二区| 精品免费久久久久久久清纯| svipshipincom国产片| 亚洲精品国产区一区二| 亚洲av日韩精品久久久久久密| 久久草成人影院| 一边摸一边做爽爽视频免费| 91成年电影在线观看| 精品日产1卡2卡| 女同久久另类99精品国产91| 久久久久久久午夜电影 | 99久久人妻综合| 久久久久久久久久久久大奶| 夜夜躁狠狠躁天天躁| 久久久久亚洲av毛片大全| 亚洲aⅴ乱码一区二区在线播放 | 高清欧美精品videossex| 国产亚洲精品第一综合不卡| 69av精品久久久久久| 欧美最黄视频在线播放免费 | 精品国产乱码久久久久久男人| 少妇的丰满在线观看| 激情在线观看视频在线高清| 欧美激情 高清一区二区三区| 日韩一卡2卡3卡4卡2021年| 又黄又爽又免费观看的视频| 老汉色av国产亚洲站长工具| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| 免费高清在线观看日韩| 婷婷六月久久综合丁香| 满18在线观看网站| xxx96com| 亚洲国产精品999在线| 91国产中文字幕| netflix在线观看网站| 久久精品国产亚洲av香蕉五月| 欧美日韩视频精品一区| 欧美日韩瑟瑟在线播放| 琪琪午夜伦伦电影理论片6080| 日本vs欧美在线观看视频| 欧美乱色亚洲激情| 精品一区二区三卡| 国产黄色免费在线视频| 国产成人av激情在线播放| 韩国精品一区二区三区| 69av精品久久久久久| 高潮久久久久久久久久久不卡| 最好的美女福利视频网| 免费看十八禁软件| 午夜日韩欧美国产| 欧美激情 高清一区二区三区| 国产高清videossex| 午夜免费观看网址| 50天的宝宝边吃奶边哭怎么回事| 在线天堂中文资源库| 窝窝影院91人妻| 国产一区二区在线av高清观看| 人妻丰满熟妇av一区二区三区| 亚洲av美国av| 国产激情欧美一区二区| 精品久久久久久久毛片微露脸| 国产亚洲精品综合一区在线观看 | 人妻制服诱惑在线中文字幕| 欧美成人a在线观看| 亚洲色图av天堂| 亚洲精品影视一区二区三区av| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人巨大hd| 国产精品1区2区在线观看.| 欧美xxxx黑人xx丫x性爽| 国产精品亚洲一级av第二区| 一本一本综合久久| 中文字幕av成人在线电影| 午夜激情福利司机影院| 日韩成人在线观看一区二区三区| 极品教师在线视频| 在线观看一区二区三区| 国产大屁股一区二区在线视频| 99热只有精品国产| 亚洲三级黄色毛片| a级毛片免费高清观看在线播放| 亚洲中文日韩欧美视频| 一个人免费在线观看电影| 黄色配什么色好看| 99riav亚洲国产免费| 国产亚洲精品久久久久久毛片| 18禁裸乳无遮挡免费网站照片| 欧美区成人在线视频| a在线观看视频网站| 999久久久精品免费观看国产| 一级作爱视频免费观看| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 欧美三级亚洲精品| 亚洲人与动物交配视频| 日韩成人在线观看一区二区三区| 欧美极品一区二区三区四区| 国产91精品成人一区二区三区| 国产成人a区在线观看| 精品午夜福利在线看| av专区在线播放| 成年女人永久免费观看视频| 欧美+日韩+精品| 亚洲aⅴ乱码一区二区在线播放| 免费av不卡在线播放| 亚洲精品久久国产高清桃花| 成人av一区二区三区在线看| 国产中年淑女户外野战色| 午夜免费成人在线视频| 欧美极品一区二区三区四区| 黄片小视频在线播放| 人妻丰满熟妇av一区二区三区| 九色成人免费人妻av| 18+在线观看网站| 51午夜福利影视在线观看| 看十八女毛片水多多多| 午夜精品在线福利| av天堂在线播放| 婷婷丁香在线五月| 丰满人妻一区二区三区视频av| 看免费av毛片| 超碰av人人做人人爽久久| 天天一区二区日本电影三级| 99riav亚洲国产免费| 亚洲成人久久性| xxxwww97欧美| 中文字幕人成人乱码亚洲影| 国产成人欧美在线观看| 国产av在哪里看| x7x7x7水蜜桃| 2021天堂中文幕一二区在线观| 免费看日本二区| 久久久成人免费电影| 啦啦啦观看免费观看视频高清| or卡值多少钱| 免费无遮挡裸体视频| 俺也久久电影网| 悠悠久久av| 桃色一区二区三区在线观看| 国产主播在线观看一区二区| 免费观看精品视频网站| 免费大片18禁| 一个人看的www免费观看视频| 欧美乱妇无乱码| 午夜福利在线在线| 亚洲不卡免费看| www.999成人在线观看| 亚洲成av人片在线播放无| 亚洲aⅴ乱码一区二区在线播放| 成人特级黄色片久久久久久久| 久久午夜亚洲精品久久| 久久人人精品亚洲av| 久久伊人香网站| 精品午夜福利在线看| 国产亚洲精品av在线| 99久久无色码亚洲精品果冻| 亚洲中文字幕一区二区三区有码在线看| 一级作爱视频免费观看| 美女免费视频网站| 国产在线精品亚洲第一网站| 极品教师在线免费播放| 一级黄色大片毛片| 51国产日韩欧美| 亚洲精品日韩av片在线观看| 天堂影院成人在线观看| 淫秽高清视频在线观看| 国产精品一区二区三区四区免费观看 | 日本与韩国留学比较| 别揉我奶头 嗯啊视频| 久久精品影院6| 特级一级黄色大片| 男插女下体视频免费在线播放| 男人舔奶头视频| 精品久久久久久成人av| 床上黄色一级片| 伊人久久精品亚洲午夜| 成年人黄色毛片网站| 日本与韩国留学比较| 99久久成人亚洲精品观看| 哪里可以看免费的av片| 少妇熟女aⅴ在线视频| 午夜免费激情av| 国产精品影院久久| 蜜桃久久精品国产亚洲av| 亚洲18禁久久av| 国产伦一二天堂av在线观看| 97热精品久久久久久| 亚洲精品亚洲一区二区| 久久伊人香网站| 亚洲国产欧美人成| 看十八女毛片水多多多| 国产精品美女特级片免费视频播放器| 美女大奶头视频| 精品久久久久久久久久免费视频| 超碰av人人做人人爽久久| 午夜两性在线视频| 国产亚洲欧美98| 国产精品,欧美在线| 欧美高清成人免费视频www| 亚洲精华国产精华精| 好男人电影高清在线观看| 99热这里只有精品一区| 女生性感内裤真人,穿戴方法视频| 欧美激情久久久久久爽电影| 国产真实乱freesex| 久久精品国产自在天天线| 精品国内亚洲2022精品成人| 女人十人毛片免费观看3o分钟| 免费在线观看影片大全网站| 人妻久久中文字幕网| 九色成人免费人妻av| 黄色一级大片看看| 久99久视频精品免费| 精品国产三级普通话版| 赤兔流量卡办理| 18美女黄网站色大片免费观看| 久久欧美精品欧美久久欧美| 国产在视频线在精品| 欧美性猛交╳xxx乱大交人| 欧美区成人在线视频| 两人在一起打扑克的视频| 丰满人妻一区二区三区视频av| 一本综合久久免费| 成年人黄色毛片网站| 搡老岳熟女国产| 亚洲三级黄色毛片| 亚洲国产精品成人综合色| 好男人电影高清在线观看| www.熟女人妻精品国产| 黄色视频,在线免费观看| 国产精品久久久久久久电影| 欧美中文日本在线观看视频| 免费高清视频大片| av中文乱码字幕在线| 国产久久久一区二区三区| 露出奶头的视频| 国产精品亚洲一级av第二区| 亚洲一区高清亚洲精品| 一二三四社区在线视频社区8| 欧美激情久久久久久爽电影| 日韩 亚洲 欧美在线| 久久久成人免费电影| 国产熟女xx| 男插女下体视频免费在线播放| 亚洲国产精品sss在线观看| 脱女人内裤的视频| 久久6这里有精品| 好男人电影高清在线观看| 精品人妻一区二区三区麻豆 | 午夜福利在线在线| 老女人水多毛片| 国产伦人伦偷精品视频| 一区二区三区高清视频在线| 直男gayav资源| 欧美一区二区亚洲| 麻豆久久精品国产亚洲av| 国产精品久久电影中文字幕| 国产一区二区三区在线臀色熟女| 日本黄色视频三级网站网址| 色综合欧美亚洲国产小说| 欧美性猛交黑人性爽| 久久国产精品影院| 97超级碰碰碰精品色视频在线观看| 亚洲自偷自拍三级| 白带黄色成豆腐渣| 97超级碰碰碰精品色视频在线观看| 亚洲自偷自拍三级| 亚洲色图av天堂| 两人在一起打扑克的视频| 一二三四社区在线视频社区8| 国产乱人伦免费视频| 在线看三级毛片| 深夜精品福利| 国产白丝娇喘喷水9色精品| 99热这里只有是精品在线观看 | 99久久精品一区二区三区| 免费看美女性在线毛片视频|