• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rigid chelating dicarbene ligands based on naphthyridine-fused bisimidazolium salts

    2022-07-11 03:39:08YanLiuZhijieSheQinzeZhengXuesongZhengTianbaoWangGeGao
    Chinese Chemical Letters 2022年6期

    Yan Liu,Zhijie She,Qinze Zheng,Xuesong Zheng,Tianbao Wang,Ge Gao

    Key Laboratory of Green Chemistry and Technology of Ministry of Education,College of Chemistry,Sichuan University,Chengdu,610064,China

    Keywords:NHC Dicarbene ligand Naphthyridine Phenanthroline

    ABSTRACT Naphthyridine-fused bisimidazolium salts were designed and synthesized for the first time.The study of the Cu(II) and Pd(II) complexes demonstrated that the deprotonated dicarbene ligands are rigid chelating C,C-ligands with strong electron-donating ability in analogy with the classic phenanthroline N,N-ligands.

    1,10-Phenanthroline (phen,A,Fig.1) is a tricyclic and planar nitrogen-containing heteroarene [1].It has relatively weakσdonating ability due to its electron-poor characteristic.However,this drawback is largely compensated by its hydrophobicity,two rigid pre-organized nitrogen atoms with a perfect cone angle,andπ-acceptor nature.Therefore,it still exerts strong and entropically favored metal binding.Phen has become a classic chelating bidentate N,N-ligand,and together with its various derivatives been widely serving in coordination chemistry,supramolecular chemistry,transition metal catalysis,and photoactive materials [2,3].On the other hand,N-heterocyclic carbenes (NHCs) are strongσ-donors and weakπ-acceptors [4–7].Since the synthesis and isolation of the first stable NHC,1,3-di(adamantyl)imidazol-2-ylidene,by Arguengoet al.in 1991 [8],a plethora of different NHCs have been continuously created and extensively studied,resulting in enormous attractive applications [9–14].Imidazolium salts are the most commonly used precursors to construct multidentate NHC ligands due to their easy access and stability.In 1995,Herrmannet al.first showcased the catalytic activity of a Pd(II) complex formed by a methylene-bridged dicarbene ligand (B,Fig.1) in the Heck coupling of aryl halides.Unfortunately,complex decomposition was witnessed in solution above 70 °C,probably related to the flexibility of the ligand [15].

    It was not until 15 years later that a rigid tricyclic bidentrate NHC ligand named vegi [16]was synthesized based on pyridazine by the group of Kunz to be a C,C-analogue of phen (C,Fig.1).Due to the contracted five-membered imidazolium moieties,the two carbene sites is fixed in a distance of 2.97 ?A with a wider cone angle in comparison with the two nitrogen atoms in phen,and the molecule is planar.The vegi ligand acted as a chelating C,C-ligand to form mononuclear complexes with alkali metals [17]as well as common transition metals such as Rh(I) and Ir(I) [16,18,19].However,it acted as a bridging ligand with coinage metals Ag(I),Cu(I)and Au(I) to form the corresponding binuclear complexes [16,20],implying it is still relatively flexible [21].To attain a phen analogue with a smaller cone angle,Monkowiuset al.later introduced a mixed C,N-ligand (D,Fig.1) in 2012 [22].It formed chelating Pd(II)and Rh(I) complexes [23,24],but acted as a monodentate C-ligand for Ag(I),Au(I),Au(III) and Cu(I) [22,25].Interestingly,nonorbitalbased dispersion-type interactions were found between the nitrogen and Au atoms in the Au(III) complexes [22].

    Due to our continuous interests in novel azolium compounds as functional materials and ligands [26–32],our design of a C,Canalogue of phen ligand (1,Fig.1) is based on the following considerations: 1) two rigid and pre-organized NHC sites to exert strongerσ-donating ability than phen;2) a tetracyclic over tricylic system with a smaller cone angle than C and D to reinforce chelating metal coordination;3) different R groups as wingtips to fine tune the metal coordinating environment.Herein,we present the synthesis of naphthyridine-fused bisimidazolium salts 1·2HCl.The deprotonated dicarbene coordinates Cu(I) to afford a mononuclear Cu(II) complex in tetrahedron geometry,suggesting its strongσ-donating and suitable chelating ability.It coordinates Pd(II) to form a distorted square planar complex,which surpasses its counterparts,the rigid N,N-ligand and flexible C,C-ligand in the Suzuki cross-coupling reactions.

    The precursors 1·2HCl could be easily obtained following a three-step procedure starting from 2,7-dimethyl-1,8-naphthyridine(Scheme 1).The two methyl groups were first transformed into the formyl groups by oxidation using selenium dioxide.The dicarbaldehyde then reacted with different primary amines to form diimines.Finally,cyclization of diimines with paraformaldehyde followed by treatment with a dioxane solution of hydrochloride(4 mol/L) afforded the designed precursors 1·2HCl in nice yields,which were isolated and purified by column chromatography on silica gel.Their structures were characterized by NMR and high resolution mass spectroscopy (HRMS).The1H NMR spectra showed that their protons on the precarbene sites are significantly acidic as they appear in low field at 11.05 (DMSO–d6),12.14 (DMSO–d6),and 10.90 (CD3OH) ppm for 1a-c,respectively.Meanwhile,the protons on the pre-abnormal carbene sites are in high field at 8.98,8.85,and 8.56 ppm,respectively.The large differences (up to 3.29 ppm)implied that the formation of carbenes by deprotonation of 1·2HCl in the presence of a base should be less interfered by the formation of abnormal carbenes.

    Fig.1.Structures of phen (A) and bidentate NHC ligands: flexible C,C-ligand (B);vegi (C);mixed C,N-ligand (D) and rigid C,C-ligand (1).

    Scheme 2.Top: Synthesis of the Cu(II) complex 2.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 2.Hydrogen atoms are omitted for clarity.

    The single crystals of 1a·2HCl were cultivated in mixed dichloromethane (DCM)/methanol at room temperature and the structure was resolved by the X-ray diffraction analysis as shown in Fig.2.The aza[4]helicene structure renders 1a·2HCl nonplanar and the two imidazolium rings twist about 18.4°.The distance between the two precarbene carbons (C1 and C10) is 3.093 ?A.This long distance is caused by repulsion between the two hydrogens on C1 and C10,and is expected to be significantly reduced after deprotonation.Moreover,the two mesityl groups sit almost orthogonally to the imidazolium planes with dihedral angles of 73.7° and 71.2°,respectively,providing a very nice shielding for the carbene sites.It is worth noting that the same protection by the aryl groups is not presented in the vegi ligand [21].

    Fig.2.ORTEP plot (50% probability thermal ellipsoids) of 1a·2HCl.

    Fig.3.HOMO/LUMO energies of phen (A),methylene-bridged dicarbene (B),vegi(C),C,N-ligand (D) and rigid dicarbene (1a) at the B3LYP/6–31g(d,p) level.

    Preparation of the free dicarbene 1a by deprotonation of 1a·2HCl with base in DMSO was conducted.The reaction system was darkened immediately and decomposed gradually in the presence of a strong base such astBuOK,tBuONa,KHDMS,NaHDMS,and LiHDMS.When a weak base (NaOAc or Et3N) was used,the reaction system remained unchanged over time.Anin situ1H NMR spectrum showed that the peak of the C1/C10 protons disappeared after 30 min from addition of NaH,indicating the formation of the free dicarbene 1a (see Supporting information for details).Unfortunately,decomposition of the free dicarbene occurred while13C NMR data were being collected.

    To obtain more information about the free dicarbene 1a,DFT calculations was carried out at the B3LYP/6–31 g(d,p) level.The optimized structure of 1a is consistent with the crystal structure of the 1a·2HCl (Fig.S1 in the Supporting information).The distance between the two carbene atoms (C1 and C10) is shortened to 2.89 ?A,which is smaller than that in the vegi ligand (2.97 ?A)[16],but still larger than the N–N distance in phen (2.744 ?A) [33].Moreover,the two imidazolium rings also twist less in 16.2°.The molecular orbital (MO) analysis showed that the carbeneσorbitals overlap with each other in HOMO-3,revealing high electron density between the two carbene sites.The HOMO/LUMO energies of 1a were calculated to be ?4.53/?1.08 eV (Fig.S2 in Supporting information).In comparison,the HOMO/LUMO energies of phen,methylene-bridged dicarbene ligand,vegi [16],and C,N-ligand were also calculated to be ?6.25/?1.42,?5.62/?0.04,?5.20/?1.01,and?5.37/?1.34 eV,respectively (Fig.3).It is clear to see that 1a has a much higher HOMO energy than the other ligands and a smallest energy gap between LUMO and HOMO.The significantly elevated HOMO energy level suggested the strong electron donating ability of 1a.

    The coordination behavior of dicarbene 1 toward copper was then evaluated.The [Cu(I)(phen)2X]complexes are extensively investigated as emitters in OLEDs and photosensitizers in photocatalysis [34–39].We therefore wanted to use 1a·2HCl to mimic a similar Cu(I) complex.1a·2HCl did not react with CuCl in the absence of a base.When NaH was used,a new compound was isolated.However,the1H NMR spectrum showed no signal,indicating that it was a paramagnetic compound.Fortunately,single crystals were obtained in mixed DCM/methanol to show a structure of [Cu(II)1aCl2](2,68% yield).We also conducted a reaction of 1a·2HCl with CuCl2in the presence oftBuOK,and 2 was formed in 80% yield (Scheme 2).These results demonstrated the strong electron donating ability of 1a,which inevitably led to oxidation of the coordinated Cu(I) to Cu(II) during workup.Complex 2 adopts a distorted tetrahedral geometry with a bite angle (C1-Cu1-C10) of 90.7° and a dihedral angle between the C1-Cu1-C10 and Cl1-Cu1-Cl2 planes of 77°.The Cu center is slightly off the ligand plane.It is noted that the coordinated dicarbene ligand is almost planar as the dihedral angle between the two imidazolium rings is significantly reduced to only 7.6°,resulting in an even shortened C1-C10 distance of 2.762 ?A,which is very close to the N–N distance in the phen ligand.It needs to point out that while three-and fourcoordinated Cu(I) complexes of phen ligands are common,fourcoordinate Cu(II) complexes are not typical [40,41].In our case,however,only a four-coordinate Cu(II) complex was formed no matter a Cu(I) or Cu(II) salt was used.This difference is probably related to their different electron-donating abilities.Therefore,ligand 1 can be considered as the C,C-analogues of the phen ligands with enhanced electron-donating ability.

    To compare with the rigid phen N,N-ligand A and flexible dicarbene C,C-ligand B,coordination of Pd(OAc)2with the rigid dicarbene 1a-b was conducted in the absence of a base to directly afford the corresponding [Pd(II)1aCl2](3a) and [Pd(II)1bCl2](3b)in 90% and 95% yields,respectively.The structure of 3b was resolved by the single crystal X-ray diffraction analysis (Scheme 3).Complex 3b rests in a distorted square planar geometry with the dicarbene plane (C1-C13-C10) bent out of the coordinating plane(C1-Pd1-C10) in 34.9° due to the steric hindrance of the adjacent butyl groups,which resembles very much the corresponding phen[42,43]and flexible dicarbene complexes [44,45].The angle of Cl1-Pd1-Cl2 is 87.3°,similar to that in the corresponding phen complex(86.8°).However,the bite angle of C1-Pd1-C10 is 86.3°,larger than the bite angle of N-Pd-N (80.6°).In addition,a dihedral angle of 10.4° is found between the C1-Pd1-C10 plane and the Cl1-Pd1-Cl2 plane.The rigid skeleton is forced in a boat-shaped conformation,resulting in a dihedral angle of the two imidazolium rings of 29.6°and a further shortened C1-C10 distance of 2.704 ?A from 2.The bond lengthens of C1-Pd and C10-Pd are 1.977 ?A equally,which fall into the common range of NHC-Pd bonds.

    Scheme 3.Top: Synthesis of the Pd(II) complexes 3.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 3b.Hydrogen atoms are omitted for clarity.

    Scheme 4.Oxidation of the Pd(II) complex 3b and the corresponding products 5–7.Conditions: in the presence of (a) 1 equiv.,(b) 2 equiv.and (c) 4 equiv.of PhICl2.

    In addition to the classic Heck,Negishi and Suzuki reactions involving a Pd(0)/Pd(II) catalytic cycle,reactions involving an alternative Pd(II)/Pd(IV) cycle have been actively pursued in the past decades.Well-defined Pd(IV) complexes are helpful to understand the catalytic process,but the synthesis is still elusive [46].In consideration of the rigid backbone and strong electron-donating ability of the dicarbene 1,possible access to a proposed Pd(IV)complex 4 by oxidation of the Pd(II) complex 3 was attempted(Scheme 4).The oxidation of 3a with 1 equiv.of PhICl2resulted in no reaction at all.However,the oxidation of 3b under the same conditions unexpectedly delivered a chloro–substituted product 5 in 70% yield.When 2 equiv.of PhICl2was used,a dichlorosubstituted product 6 was obtained in 96% yield.Increasing the amount of the oxidant to 4 equiv.led to further dearomatization of the naphthyridine backbone and gave a tetrachloro-substituted product 7 in 92% yield.Products 5–7 were fully characterized by NMR and HRMS,and the structure of 7 was also confirmed by the single crystal X-ray diffraction analysis.There was no Pd(IV) product identified in any reaction system.

    Finally,the usefulness of the rigid chelating dicarbene 1 as a ligand in transition metal catalyzed reactions was preliminarily evaluated by the catalytic activity of 3a in the Suzuki coupling reactions of a series of representative aryl bromides with aryl boronic acids.Two Pd(II) complexes with a flexible dicarbene ligand (8)and a rigid phen ligand (9) were also prepared (see the Supporting information) and used as comparative catalysts.As can be seen in Table 1,in the presence of 0.5 mol% catalyst and 2 equiv.of Cs2CO3as a base,3a in general performed better than 8 and 9.When electron-deficient and sterically hindered substrates were employed,the reactions ran slower and 3a exhibited much improved catalytic activity than its counterparts (Table 1,entries 2,3 and 6–8).When weaker base NaOAc was employed,3a still worked fine while the performances of 8 and 9 dropped a lot (Table 1,entry 9).When the reactions were conducted with a lower catalyst loading,in water or at room temperature,the desired product was obtained in moderate yield by using 3a,but poor yield was attained by using 8 and 9 (Table 1,entries 10–12).For less activep-chlorotoluene,3a showed a lower efficiency under the standard conditions,while 8 and 9 were ineffective at all.The reaction was much improved when 5 mol% 3a was used (Table 1,entries 13 and 14).These results demonstrated the beneficial effect of the rigid and strongly electron-donating C,C-ligand 1 in the Pdcatalyzed Suzuki coupling reaction.

    Table 1 Evaluation of the catalytic activity of 3a by the Suzuki coupling reaction.a

    In summary,we have successfully prepared novel naphthyridine-fused bisimidazolium salts 1·2HCl by a straightforward three-step procedure.Although the whole molecules are nonplanar due to the aza[4]helicene skeleton,the deprotonated dicarbenes 1 acted as rigid C,C-chelating bidentate ligands formed very similar Cu(II) and Pd(II) complexes as the classic N,N-ligand phen.Differently,however,only a Cu(II) complex was obtained whenever a Cu(I) or Cu(II) source was used.Moreover,the Pd(II)complex exhibited higher catalytic activity than the Pd(II) complexes with a rigid phen ligand and a flexible dicarbene ligand as preliminarily evaluated by the Suzuki coupling reaction.These specific features are believed in related to the combination of a strong electron-donating ability and a rigid chelating skeleton of 1 as designed.These novel rigid dicarbene ligands are attractive in metal coordination for catalysis and optoelectronic materials [47].Further investigations are now going on in our laboratory.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We appreciate the financial support from the National Natural Science Foundation of China (No.21772134) and the Fundamental Research Funds for the Central Universities (No.20826041D4117).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.069.

    亚洲国产欧美日韩在线播放| 老司机深夜福利视频在线观看 | 亚洲av日韩在线播放| 欧美日韩视频精品一区| 成人黄色视频免费在线看| 国产一区二区三区av在线| 久久免费观看电影| 最新的欧美精品一区二区| 国产成人欧美在线观看 | 中国国产av一级| 男人爽女人下面视频在线观看| 亚洲精品一区蜜桃| 国产三级黄色录像| tocl精华| 人人澡人人妻人| 黄色视频在线播放观看不卡| 欧美97在线视频| 国产一区二区激情短视频 | 在线观看人妻少妇| 免费高清在线观看日韩| 99久久国产精品久久久| 精品国产乱子伦一区二区三区 | 亚洲伊人久久精品综合| 久久久久久久精品精品| 另类精品久久| 欧美黑人欧美精品刺激| 欧美日韩成人在线一区二区| 欧美精品av麻豆av| 久热爱精品视频在线9| 久久精品aⅴ一区二区三区四区| 欧美xxⅹ黑人| 亚洲av男天堂| av电影中文网址| av线在线观看网站| 午夜福利免费观看在线| 热99re8久久精品国产| av在线播放精品| 欧美亚洲日本最大视频资源| 99国产精品免费福利视频| 亚洲av国产av综合av卡| 夫妻午夜视频| 久久国产精品影院| 久久毛片免费看一区二区三区| av超薄肉色丝袜交足视频| 一级片'在线观看视频| 欧美国产精品va在线观看不卡| 午夜福利视频在线观看免费| 少妇裸体淫交视频免费看高清 | 狠狠精品人妻久久久久久综合| 精品少妇黑人巨大在线播放| 波多野结衣一区麻豆| 国产成人av激情在线播放| 久久久久久免费高清国产稀缺| 91麻豆精品激情在线观看国产 | 精品人妻1区二区| 色94色欧美一区二区| 女警被强在线播放| 午夜福利视频精品| 韩国精品一区二区三区| 大陆偷拍与自拍| 极品人妻少妇av视频| 制服诱惑二区| 久久久久久久精品精品| 亚洲精品国产av蜜桃| 岛国毛片在线播放| 成年人黄色毛片网站| 人人澡人人妻人| 国产一级毛片在线| 岛国毛片在线播放| 亚洲伊人久久精品综合| 高清欧美精品videossex| 久久久国产欧美日韩av| 性色av乱码一区二区三区2| 久久久久视频综合| 日韩免费高清中文字幕av| videos熟女内射| 黑丝袜美女国产一区| 精品久久久久久电影网| 亚洲欧美清纯卡通| 免费少妇av软件| 欧美精品一区二区大全| 高清在线国产一区| 久久久精品区二区三区| 亚洲精品美女久久av网站| 免费观看a级毛片全部| 啦啦啦在线免费观看视频4| 久久久久久久国产电影| 亚洲人成77777在线视频| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| 91成人精品电影| 91av网站免费观看| 欧美另类亚洲清纯唯美| 国产日韩欧美视频二区| 19禁男女啪啪无遮挡网站| 操出白浆在线播放| 亚洲欧美一区二区三区久久| 国产又爽黄色视频| 麻豆av在线久日| 91大片在线观看| 激情视频va一区二区三区| 精品少妇黑人巨大在线播放| 日韩制服骚丝袜av| 又黄又粗又硬又大视频| avwww免费| 色精品久久人妻99蜜桃| 国产成人av激情在线播放| 久久久久久久大尺度免费视频| 国产在线免费精品| 国产97色在线日韩免费| 欧美日韩精品网址| 亚洲国产精品999| 波多野结衣一区麻豆| 美女福利国产在线| 亚洲国产毛片av蜜桃av| a级毛片在线看网站| 男女高潮啪啪啪动态图| 欧美亚洲日本最大视频资源| 精品久久久久久久毛片微露脸 | 久久久久久久国产电影| 免费观看av网站的网址| 高清在线国产一区| 亚洲国产成人一精品久久久| 美女脱内裤让男人舔精品视频| 一本—道久久a久久精品蜜桃钙片| 老司机影院成人| 国产av一区二区精品久久| 青草久久国产| 欧美日韩国产mv在线观看视频| av在线老鸭窝| 十八禁人妻一区二区| 高清av免费在线| 青春草亚洲视频在线观看| 久久99热这里只频精品6学生| 国产1区2区3区精品| 久久精品国产a三级三级三级| 日韩欧美免费精品| 国产精品 欧美亚洲| 亚洲精品第二区| 亚洲av美国av| 欧美日韩福利视频一区二区| 国产在视频线精品| 日韩欧美一区视频在线观看| 91国产中文字幕| 亚洲精品av麻豆狂野| 亚洲精品一区蜜桃| 永久免费av网站大全| 黑人猛操日本美女一级片| 97精品久久久久久久久久精品| 91精品三级在线观看| 老司机午夜十八禁免费视频| 国产精品1区2区在线观看. | 亚洲全国av大片| 男女之事视频高清在线观看| 中文字幕最新亚洲高清| 老熟女久久久| 永久免费av网站大全| 国产精品一区二区免费欧美 | 国产成人啪精品午夜网站| 国产亚洲一区二区精品| 亚洲性夜色夜夜综合| 国产精品欧美亚洲77777| 蜜桃国产av成人99| 久久人妻福利社区极品人妻图片| 男女国产视频网站| 三上悠亚av全集在线观看| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 亚洲全国av大片| 高清黄色对白视频在线免费看| 中国国产av一级| 老熟女久久久| 久久精品成人免费网站| 99九九在线精品视频| 日韩精品免费视频一区二区三区| 后天国语完整版免费观看| 欧美日韩国产mv在线观看视频| 日韩欧美一区视频在线观看| 国产成人av教育| 在线十欧美十亚洲十日本专区| 亚洲男人天堂网一区| 夜夜夜夜夜久久久久| 亚洲专区国产一区二区| 精品久久久久久久毛片微露脸 | 一个人免费看片子| 国产精品成人在线| 亚洲自偷自拍图片 自拍| 黄片小视频在线播放| 少妇人妻久久综合中文| 精品少妇一区二区三区视频日本电影| 天天添夜夜摸| 正在播放国产对白刺激| 999久久久国产精品视频| 大型av网站在线播放| 淫妇啪啪啪对白视频 | 一进一出抽搐动态| 下体分泌物呈黄色| av有码第一页| 伦理电影免费视频| 99国产极品粉嫩在线观看| 色精品久久人妻99蜜桃| 丰满少妇做爰视频| 久久亚洲国产成人精品v| 香蕉丝袜av| www.熟女人妻精品国产| 91字幕亚洲| 永久免费av网站大全| av在线播放精品| 日韩 欧美 亚洲 中文字幕| 欧美日韩成人在线一区二区| 亚洲专区字幕在线| 亚洲成av片中文字幕在线观看| e午夜精品久久久久久久| 麻豆乱淫一区二区| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 啦啦啦免费观看视频1| 大香蕉久久成人网| 亚洲欧美一区二区三区久久| 人人妻人人爽人人添夜夜欢视频| 日韩中文字幕视频在线看片| 丝袜在线中文字幕| 欧美精品一区二区大全| 黑人操中国人逼视频| 欧美变态另类bdsm刘玥| 国产欧美日韩综合在线一区二区| 国产精品一区二区精品视频观看| 国产精品一区二区在线观看99| 欧美国产精品一级二级三级| 十八禁高潮呻吟视频| 国产精品偷伦视频观看了| av电影中文网址| 一本一本久久a久久精品综合妖精| 国产区一区二久久| 亚洲国产成人一精品久久久| 天天操日日干夜夜撸| 窝窝影院91人妻| 午夜免费观看性视频| 亚洲一卡2卡3卡4卡5卡精品中文| a 毛片基地| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利乱码中文字幕| 极品人妻少妇av视频| 一区二区三区激情视频| 大型av网站在线播放| 亚洲精品av麻豆狂野| 午夜福利一区二区在线看| 日韩一卡2卡3卡4卡2021年| 天堂俺去俺来也www色官网| 免费高清在线观看日韩| 精品一区二区三区av网在线观看 | 国产一卡二卡三卡精品| 一本色道久久久久久精品综合| 另类精品久久| 啪啪无遮挡十八禁网站| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 狂野欧美激情性xxxx| 亚洲国产欧美日韩在线播放| 免费看十八禁软件| 又黄又粗又硬又大视频| 国产成人精品在线电影| 人人澡人人妻人| 国产精品香港三级国产av潘金莲| 日本撒尿小便嘘嘘汇集6| 午夜两性在线视频| 久久人妻熟女aⅴ| 亚洲精品av麻豆狂野| 国产不卡av网站在线观看| 国产精品亚洲av一区麻豆| 欧美日韩亚洲高清精品| 国产成人影院久久av| 超碰成人久久| 国产成人精品在线电影| 国精品久久久久久国模美| 国产欧美日韩一区二区三 | 三上悠亚av全集在线观看| 亚洲精品久久久久久婷婷小说| 亚洲va日本ⅴa欧美va伊人久久 | 国产高清videossex| 在线观看www视频免费| 欧美黑人精品巨大| 欧美精品一区二区大全| 欧美少妇被猛烈插入视频| 丝袜脚勾引网站| 久久毛片免费看一区二区三区| 久久九九热精品免费| 国产成人av激情在线播放| 亚洲伊人色综图| 亚洲七黄色美女视频| 多毛熟女@视频| 热re99久久精品国产66热6| 成年动漫av网址| 日韩欧美免费精品| 老司机午夜福利在线观看视频 | 亚洲第一欧美日韩一区二区三区 | 国产av国产精品国产| 久久精品aⅴ一区二区三区四区| 日韩大片免费观看网站| 欧美+亚洲+日韩+国产| 中文欧美无线码| 下体分泌物呈黄色| 国产福利在线免费观看视频| 不卡av一区二区三区| 久久国产精品大桥未久av| 黑人欧美特级aaaaaa片| 国产精品久久久人人做人人爽| 精品欧美一区二区三区在线| 涩涩av久久男人的天堂| 精品国产一区二区久久| 天天躁夜夜躁狠狠躁躁| 69精品国产乱码久久久| 免费在线观看影片大全网站| 成人黄色视频免费在线看| 欧美成人午夜精品| 丝袜人妻中文字幕| 亚洲五月色婷婷综合| 亚洲av日韩在线播放| 国产在视频线精品| 国内毛片毛片毛片毛片毛片| 国产免费一区二区三区四区乱码| 日韩熟女老妇一区二区性免费视频| 我的亚洲天堂| 99精品欧美一区二区三区四区| svipshipincom国产片| 日韩 欧美 亚洲 中文字幕| 成人国产av品久久久| h视频一区二区三区| 大码成人一级视频| 一个人免费看片子| 中文字幕色久视频| 欧美精品高潮呻吟av久久| 亚洲av男天堂| 在线观看人妻少妇| 少妇的丰满在线观看| 精品人妻一区二区三区麻豆| 日韩一卡2卡3卡4卡2021年| 伊人久久大香线蕉亚洲五| 麻豆国产av国片精品| 999久久久精品免费观看国产| 亚洲精品久久久久久婷婷小说| 一级a爱视频在线免费观看| 亚洲黑人精品在线| 我要看黄色一级片免费的| 免费高清在线观看日韩| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 高清av免费在线| 啦啦啦免费观看视频1| 日韩中文字幕视频在线看片| 欧美av亚洲av综合av国产av| 精品欧美一区二区三区在线| 亚洲国产看品久久| 亚洲avbb在线观看| 欧美黑人精品巨大| √禁漫天堂资源中文www| 午夜福利乱码中文字幕| www.熟女人妻精品国产| 18禁国产床啪视频网站| 精品熟女少妇八av免费久了| 国产精品国产三级国产专区5o| 久久久久网色| 纵有疾风起免费观看全集完整版| 免费日韩欧美在线观看| 久久99一区二区三区| 亚洲专区字幕在线| 久久人妻熟女aⅴ| 欧美人与性动交α欧美软件| 亚洲一码二码三码区别大吗| av免费在线观看网站| 色精品久久人妻99蜜桃| 国产精品1区2区在线观看. | 欧美黑人欧美精品刺激| 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 久久99热这里只频精品6学生| 精品人妻熟女毛片av久久网站| 欧美久久黑人一区二区| 啦啦啦 在线观看视频| 丁香六月欧美| 国产欧美亚洲国产| 美女福利国产在线| 国产有黄有色有爽视频| 老司机亚洲免费影院| 狠狠狠狠99中文字幕| 欧美性长视频在线观看| 亚洲av欧美aⅴ国产| av免费在线观看网站| 免费看十八禁软件| 蜜桃国产av成人99| 国产精品秋霞免费鲁丝片| 亚洲精品一区蜜桃| 91麻豆av在线| 一区二区日韩欧美中文字幕| 久久国产精品人妻蜜桃| 日韩,欧美,国产一区二区三区| 日日夜夜操网爽| 国产亚洲欧美在线一区二区| 99九九在线精品视频| 黄色视频,在线免费观看| 日韩免费高清中文字幕av| 狠狠婷婷综合久久久久久88av| 热99国产精品久久久久久7| 久久99一区二区三区| 在线 av 中文字幕| 日韩大码丰满熟妇| 国产高清视频在线播放一区 | 亚洲精品久久成人aⅴ小说| 日本猛色少妇xxxxx猛交久久| 欧美在线黄色| 国产高清国产精品国产三级| 99国产精品免费福利视频| 日日爽夜夜爽网站| 香蕉丝袜av| 岛国在线观看网站| 亚洲人成电影观看| 免费在线观看影片大全网站| 日本vs欧美在线观看视频| 一个人免费看片子| 欧美少妇被猛烈插入视频| 国产伦理片在线播放av一区| 亚洲色图综合在线观看| 精品国产一区二区三区久久久樱花| 国产成+人综合+亚洲专区| 亚洲欧美精品自产自拍| 狂野欧美激情性bbbbbb| 久久九九热精品免费| 三上悠亚av全集在线观看| 性少妇av在线| 亚洲国产看品久久| 国产一区二区 视频在线| 在线天堂中文资源库| 99国产精品99久久久久| 亚洲欧美精品自产自拍| 国产视频一区二区在线看| 香蕉国产在线看| 国产欧美日韩一区二区三区在线| 成人国语在线视频| 欧美黑人精品巨大| 久久久久久久精品精品| 最近中文字幕2019免费版| 欧美激情久久久久久爽电影 | 久久人人爽av亚洲精品天堂| 90打野战视频偷拍视频| 色老头精品视频在线观看| 免费看十八禁软件| 久久久久久久大尺度免费视频| 老熟妇仑乱视频hdxx| 美女主播在线视频| 91成人精品电影| 日本猛色少妇xxxxx猛交久久| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 久久久国产精品麻豆| 免费在线观看视频国产中文字幕亚洲 | 久久久久久久久免费视频了| 国产精品一区二区在线观看99| 亚洲va日本ⅴa欧美va伊人久久 | 法律面前人人平等表现在哪些方面 | 免费久久久久久久精品成人欧美视频| 悠悠久久av| 亚洲国产欧美一区二区综合| 在线十欧美十亚洲十日本专区| 91成年电影在线观看| 两个人看的免费小视频| 亚洲成人免费av在线播放| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av片在线观看秒播厂| www.精华液| 99re6热这里在线精品视频| 国产成人精品久久二区二区免费| 69av精品久久久久久 | 91精品三级在线观看| 精品国产国语对白av| 亚洲欧美一区二区三区黑人| 国产亚洲av高清不卡| 最黄视频免费看| 一个人免费看片子| 制服人妻中文乱码| 亚洲人成77777在线视频| 亚洲午夜精品一区,二区,三区| 久久性视频一级片| 女人高潮潮喷娇喘18禁视频| 欧美少妇被猛烈插入视频| 欧美日本中文国产一区发布| 两性午夜刺激爽爽歪歪视频在线观看 | 五月天丁香电影| 国产黄色免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产中文字幕在线视频| 日韩,欧美,国产一区二区三区| 夜夜骑夜夜射夜夜干| 母亲3免费完整高清在线观看| 啦啦啦啦在线视频资源| 日韩大片免费观看网站| 久久亚洲国产成人精品v| 亚洲av片天天在线观看| 亚洲av欧美aⅴ国产| 亚洲国产欧美日韩在线播放| 久久久久国产一级毛片高清牌| 亚洲,欧美精品.| 精品国产国语对白av| av超薄肉色丝袜交足视频| 久久久久久久大尺度免费视频| 老司机午夜福利在线观看视频 | 美女脱内裤让男人舔精品视频| 国产精品1区2区在线观看. | 叶爱在线成人免费视频播放| 久久人人爽人人片av| 国产麻豆69| 日韩精品免费视频一区二区三区| 窝窝影院91人妻| 久久精品国产亚洲av高清一级| 妹子高潮喷水视频| 成人国语在线视频| 深夜精品福利| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜脚勾引网站| 美女主播在线视频| 精品视频人人做人人爽| 日日摸夜夜添夜夜添小说| 69av精品久久久久久 | 亚洲av日韩精品久久久久久密| 欧美精品啪啪一区二区三区 | 国产视频一区二区在线看| 韩国精品一区二区三区| 中文精品一卡2卡3卡4更新| 91精品三级在线观看| 超碰成人久久| 麻豆国产av国片精品| 巨乳人妻的诱惑在线观看| 91大片在线观看| 叶爱在线成人免费视频播放| 国产精品一二三区在线看| 女人精品久久久久毛片| 人妻一区二区av| 高清欧美精品videossex| 久久九九热精品免费| 国产精品麻豆人妻色哟哟久久| 天堂8中文在线网| 国产有黄有色有爽视频| 精品国产超薄肉色丝袜足j| 成人国语在线视频| 国产精品二区激情视频| 老司机影院成人| 99精品久久久久人妻精品| 精品国产一区二区三区四区第35| 久久青草综合色| 人成视频在线观看免费观看| 伊人久久大香线蕉亚洲五| 男女国产视频网站| 美女脱内裤让男人舔精品视频| 韩国高清视频一区二区三区| 精品久久蜜臀av无| 亚洲精品粉嫩美女一区| 国产精品久久久久久精品电影小说| 黄片大片在线免费观看| 欧美av亚洲av综合av国产av| 亚洲精品久久午夜乱码| 交换朋友夫妻互换小说| 黑人巨大精品欧美一区二区蜜桃| av天堂久久9| 中文字幕人妻丝袜制服| 免费在线观看影片大全网站| 日本猛色少妇xxxxx猛交久久| 久久精品人人爽人人爽视色| 国产日韩欧美视频二区| 亚洲精品乱久久久久久| 国产欧美亚洲国产| 狂野欧美激情性bbbbbb| 桃花免费在线播放| www.999成人在线观看| 欧美性长视频在线观看| 在线观看免费午夜福利视频| 欧美黑人精品巨大| 亚洲欧美一区二区三区久久| 两性夫妻黄色片| 日韩 欧美 亚洲 中文字幕| 久久国产亚洲av麻豆专区| 亚洲精品日韩在线中文字幕| 国产日韩欧美亚洲二区| 亚洲情色 制服丝袜| 满18在线观看网站| 嫩草影视91久久| 成人18禁高潮啪啪吃奶动态图| 精品免费久久久久久久清纯 | 亚洲精品国产区一区二| 亚洲精品国产一区二区精华液| 国产成人精品在线电影| 在线观看www视频免费| 一级片'在线观看视频| 亚洲av电影在线进入| 精品国产超薄肉色丝袜足j| 久久久国产一区二区| 人人妻人人澡人人爽人人夜夜| 一区二区三区激情视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品成人久久小说| 精品久久久久久电影网| 亚洲成av片中文字幕在线观看| 老司机在亚洲福利影院| 日韩制服骚丝袜av| 99国产精品免费福利视频| 水蜜桃什么品种好| 国产一区二区在线观看av| 亚洲成av片中文字幕在线观看| 老司机在亚洲福利影院| 最新在线观看一区二区三区| 法律面前人人平等表现在哪些方面 | 亚洲国产精品一区三区| 高清黄色对白视频在线免费看| 99久久人妻综合| 黄色怎么调成土黄色| 麻豆av在线久日| 亚洲第一av免费看|