• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rigid chelating dicarbene ligands based on naphthyridine-fused bisimidazolium salts

    2022-07-11 03:39:08YanLiuZhijieSheQinzeZhengXuesongZhengTianbaoWangGeGao
    Chinese Chemical Letters 2022年6期

    Yan Liu,Zhijie She,Qinze Zheng,Xuesong Zheng,Tianbao Wang,Ge Gao

    Key Laboratory of Green Chemistry and Technology of Ministry of Education,College of Chemistry,Sichuan University,Chengdu,610064,China

    Keywords:NHC Dicarbene ligand Naphthyridine Phenanthroline

    ABSTRACT Naphthyridine-fused bisimidazolium salts were designed and synthesized for the first time.The study of the Cu(II) and Pd(II) complexes demonstrated that the deprotonated dicarbene ligands are rigid chelating C,C-ligands with strong electron-donating ability in analogy with the classic phenanthroline N,N-ligands.

    1,10-Phenanthroline (phen,A,Fig.1) is a tricyclic and planar nitrogen-containing heteroarene [1].It has relatively weakσdonating ability due to its electron-poor characteristic.However,this drawback is largely compensated by its hydrophobicity,two rigid pre-organized nitrogen atoms with a perfect cone angle,andπ-acceptor nature.Therefore,it still exerts strong and entropically favored metal binding.Phen has become a classic chelating bidentate N,N-ligand,and together with its various derivatives been widely serving in coordination chemistry,supramolecular chemistry,transition metal catalysis,and photoactive materials [2,3].On the other hand,N-heterocyclic carbenes (NHCs) are strongσ-donors and weakπ-acceptors [4–7].Since the synthesis and isolation of the first stable NHC,1,3-di(adamantyl)imidazol-2-ylidene,by Arguengoet al.in 1991 [8],a plethora of different NHCs have been continuously created and extensively studied,resulting in enormous attractive applications [9–14].Imidazolium salts are the most commonly used precursors to construct multidentate NHC ligands due to their easy access and stability.In 1995,Herrmannet al.first showcased the catalytic activity of a Pd(II) complex formed by a methylene-bridged dicarbene ligand (B,Fig.1) in the Heck coupling of aryl halides.Unfortunately,complex decomposition was witnessed in solution above 70 °C,probably related to the flexibility of the ligand [15].

    It was not until 15 years later that a rigid tricyclic bidentrate NHC ligand named vegi [16]was synthesized based on pyridazine by the group of Kunz to be a C,C-analogue of phen (C,Fig.1).Due to the contracted five-membered imidazolium moieties,the two carbene sites is fixed in a distance of 2.97 ?A with a wider cone angle in comparison with the two nitrogen atoms in phen,and the molecule is planar.The vegi ligand acted as a chelating C,C-ligand to form mononuclear complexes with alkali metals [17]as well as common transition metals such as Rh(I) and Ir(I) [16,18,19].However,it acted as a bridging ligand with coinage metals Ag(I),Cu(I)and Au(I) to form the corresponding binuclear complexes [16,20],implying it is still relatively flexible [21].To attain a phen analogue with a smaller cone angle,Monkowiuset al.later introduced a mixed C,N-ligand (D,Fig.1) in 2012 [22].It formed chelating Pd(II)and Rh(I) complexes [23,24],but acted as a monodentate C-ligand for Ag(I),Au(I),Au(III) and Cu(I) [22,25].Interestingly,nonorbitalbased dispersion-type interactions were found between the nitrogen and Au atoms in the Au(III) complexes [22].

    Due to our continuous interests in novel azolium compounds as functional materials and ligands [26–32],our design of a C,Canalogue of phen ligand (1,Fig.1) is based on the following considerations: 1) two rigid and pre-organized NHC sites to exert strongerσ-donating ability than phen;2) a tetracyclic over tricylic system with a smaller cone angle than C and D to reinforce chelating metal coordination;3) different R groups as wingtips to fine tune the metal coordinating environment.Herein,we present the synthesis of naphthyridine-fused bisimidazolium salts 1·2HCl.The deprotonated dicarbene coordinates Cu(I) to afford a mononuclear Cu(II) complex in tetrahedron geometry,suggesting its strongσ-donating and suitable chelating ability.It coordinates Pd(II) to form a distorted square planar complex,which surpasses its counterparts,the rigid N,N-ligand and flexible C,C-ligand in the Suzuki cross-coupling reactions.

    The precursors 1·2HCl could be easily obtained following a three-step procedure starting from 2,7-dimethyl-1,8-naphthyridine(Scheme 1).The two methyl groups were first transformed into the formyl groups by oxidation using selenium dioxide.The dicarbaldehyde then reacted with different primary amines to form diimines.Finally,cyclization of diimines with paraformaldehyde followed by treatment with a dioxane solution of hydrochloride(4 mol/L) afforded the designed precursors 1·2HCl in nice yields,which were isolated and purified by column chromatography on silica gel.Their structures were characterized by NMR and high resolution mass spectroscopy (HRMS).The1H NMR spectra showed that their protons on the precarbene sites are significantly acidic as they appear in low field at 11.05 (DMSO–d6),12.14 (DMSO–d6),and 10.90 (CD3OH) ppm for 1a-c,respectively.Meanwhile,the protons on the pre-abnormal carbene sites are in high field at 8.98,8.85,and 8.56 ppm,respectively.The large differences (up to 3.29 ppm)implied that the formation of carbenes by deprotonation of 1·2HCl in the presence of a base should be less interfered by the formation of abnormal carbenes.

    Fig.1.Structures of phen (A) and bidentate NHC ligands: flexible C,C-ligand (B);vegi (C);mixed C,N-ligand (D) and rigid C,C-ligand (1).

    Scheme 2.Top: Synthesis of the Cu(II) complex 2.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 2.Hydrogen atoms are omitted for clarity.

    The single crystals of 1a·2HCl were cultivated in mixed dichloromethane (DCM)/methanol at room temperature and the structure was resolved by the X-ray diffraction analysis as shown in Fig.2.The aza[4]helicene structure renders 1a·2HCl nonplanar and the two imidazolium rings twist about 18.4°.The distance between the two precarbene carbons (C1 and C10) is 3.093 ?A.This long distance is caused by repulsion between the two hydrogens on C1 and C10,and is expected to be significantly reduced after deprotonation.Moreover,the two mesityl groups sit almost orthogonally to the imidazolium planes with dihedral angles of 73.7° and 71.2°,respectively,providing a very nice shielding for the carbene sites.It is worth noting that the same protection by the aryl groups is not presented in the vegi ligand [21].

    Fig.2.ORTEP plot (50% probability thermal ellipsoids) of 1a·2HCl.

    Fig.3.HOMO/LUMO energies of phen (A),methylene-bridged dicarbene (B),vegi(C),C,N-ligand (D) and rigid dicarbene (1a) at the B3LYP/6–31g(d,p) level.

    Preparation of the free dicarbene 1a by deprotonation of 1a·2HCl with base in DMSO was conducted.The reaction system was darkened immediately and decomposed gradually in the presence of a strong base such astBuOK,tBuONa,KHDMS,NaHDMS,and LiHDMS.When a weak base (NaOAc or Et3N) was used,the reaction system remained unchanged over time.Anin situ1H NMR spectrum showed that the peak of the C1/C10 protons disappeared after 30 min from addition of NaH,indicating the formation of the free dicarbene 1a (see Supporting information for details).Unfortunately,decomposition of the free dicarbene occurred while13C NMR data were being collected.

    To obtain more information about the free dicarbene 1a,DFT calculations was carried out at the B3LYP/6–31 g(d,p) level.The optimized structure of 1a is consistent with the crystal structure of the 1a·2HCl (Fig.S1 in the Supporting information).The distance between the two carbene atoms (C1 and C10) is shortened to 2.89 ?A,which is smaller than that in the vegi ligand (2.97 ?A)[16],but still larger than the N–N distance in phen (2.744 ?A) [33].Moreover,the two imidazolium rings also twist less in 16.2°.The molecular orbital (MO) analysis showed that the carbeneσorbitals overlap with each other in HOMO-3,revealing high electron density between the two carbene sites.The HOMO/LUMO energies of 1a were calculated to be ?4.53/?1.08 eV (Fig.S2 in Supporting information).In comparison,the HOMO/LUMO energies of phen,methylene-bridged dicarbene ligand,vegi [16],and C,N-ligand were also calculated to be ?6.25/?1.42,?5.62/?0.04,?5.20/?1.01,and?5.37/?1.34 eV,respectively (Fig.3).It is clear to see that 1a has a much higher HOMO energy than the other ligands and a smallest energy gap between LUMO and HOMO.The significantly elevated HOMO energy level suggested the strong electron donating ability of 1a.

    The coordination behavior of dicarbene 1 toward copper was then evaluated.The [Cu(I)(phen)2X]complexes are extensively investigated as emitters in OLEDs and photosensitizers in photocatalysis [34–39].We therefore wanted to use 1a·2HCl to mimic a similar Cu(I) complex.1a·2HCl did not react with CuCl in the absence of a base.When NaH was used,a new compound was isolated.However,the1H NMR spectrum showed no signal,indicating that it was a paramagnetic compound.Fortunately,single crystals were obtained in mixed DCM/methanol to show a structure of [Cu(II)1aCl2](2,68% yield).We also conducted a reaction of 1a·2HCl with CuCl2in the presence oftBuOK,and 2 was formed in 80% yield (Scheme 2).These results demonstrated the strong electron donating ability of 1a,which inevitably led to oxidation of the coordinated Cu(I) to Cu(II) during workup.Complex 2 adopts a distorted tetrahedral geometry with a bite angle (C1-Cu1-C10) of 90.7° and a dihedral angle between the C1-Cu1-C10 and Cl1-Cu1-Cl2 planes of 77°.The Cu center is slightly off the ligand plane.It is noted that the coordinated dicarbene ligand is almost planar as the dihedral angle between the two imidazolium rings is significantly reduced to only 7.6°,resulting in an even shortened C1-C10 distance of 2.762 ?A,which is very close to the N–N distance in the phen ligand.It needs to point out that while three-and fourcoordinated Cu(I) complexes of phen ligands are common,fourcoordinate Cu(II) complexes are not typical [40,41].In our case,however,only a four-coordinate Cu(II) complex was formed no matter a Cu(I) or Cu(II) salt was used.This difference is probably related to their different electron-donating abilities.Therefore,ligand 1 can be considered as the C,C-analogues of the phen ligands with enhanced electron-donating ability.

    To compare with the rigid phen N,N-ligand A and flexible dicarbene C,C-ligand B,coordination of Pd(OAc)2with the rigid dicarbene 1a-b was conducted in the absence of a base to directly afford the corresponding [Pd(II)1aCl2](3a) and [Pd(II)1bCl2](3b)in 90% and 95% yields,respectively.The structure of 3b was resolved by the single crystal X-ray diffraction analysis (Scheme 3).Complex 3b rests in a distorted square planar geometry with the dicarbene plane (C1-C13-C10) bent out of the coordinating plane(C1-Pd1-C10) in 34.9° due to the steric hindrance of the adjacent butyl groups,which resembles very much the corresponding phen[42,43]and flexible dicarbene complexes [44,45].The angle of Cl1-Pd1-Cl2 is 87.3°,similar to that in the corresponding phen complex(86.8°).However,the bite angle of C1-Pd1-C10 is 86.3°,larger than the bite angle of N-Pd-N (80.6°).In addition,a dihedral angle of 10.4° is found between the C1-Pd1-C10 plane and the Cl1-Pd1-Cl2 plane.The rigid skeleton is forced in a boat-shaped conformation,resulting in a dihedral angle of the two imidazolium rings of 29.6°and a further shortened C1-C10 distance of 2.704 ?A from 2.The bond lengthens of C1-Pd and C10-Pd are 1.977 ?A equally,which fall into the common range of NHC-Pd bonds.

    Scheme 3.Top: Synthesis of the Pd(II) complexes 3.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 3b.Hydrogen atoms are omitted for clarity.

    Scheme 4.Oxidation of the Pd(II) complex 3b and the corresponding products 5–7.Conditions: in the presence of (a) 1 equiv.,(b) 2 equiv.and (c) 4 equiv.of PhICl2.

    In addition to the classic Heck,Negishi and Suzuki reactions involving a Pd(0)/Pd(II) catalytic cycle,reactions involving an alternative Pd(II)/Pd(IV) cycle have been actively pursued in the past decades.Well-defined Pd(IV) complexes are helpful to understand the catalytic process,but the synthesis is still elusive [46].In consideration of the rigid backbone and strong electron-donating ability of the dicarbene 1,possible access to a proposed Pd(IV)complex 4 by oxidation of the Pd(II) complex 3 was attempted(Scheme 4).The oxidation of 3a with 1 equiv.of PhICl2resulted in no reaction at all.However,the oxidation of 3b under the same conditions unexpectedly delivered a chloro–substituted product 5 in 70% yield.When 2 equiv.of PhICl2was used,a dichlorosubstituted product 6 was obtained in 96% yield.Increasing the amount of the oxidant to 4 equiv.led to further dearomatization of the naphthyridine backbone and gave a tetrachloro-substituted product 7 in 92% yield.Products 5–7 were fully characterized by NMR and HRMS,and the structure of 7 was also confirmed by the single crystal X-ray diffraction analysis.There was no Pd(IV) product identified in any reaction system.

    Finally,the usefulness of the rigid chelating dicarbene 1 as a ligand in transition metal catalyzed reactions was preliminarily evaluated by the catalytic activity of 3a in the Suzuki coupling reactions of a series of representative aryl bromides with aryl boronic acids.Two Pd(II) complexes with a flexible dicarbene ligand (8)and a rigid phen ligand (9) were also prepared (see the Supporting information) and used as comparative catalysts.As can be seen in Table 1,in the presence of 0.5 mol% catalyst and 2 equiv.of Cs2CO3as a base,3a in general performed better than 8 and 9.When electron-deficient and sterically hindered substrates were employed,the reactions ran slower and 3a exhibited much improved catalytic activity than its counterparts (Table 1,entries 2,3 and 6–8).When weaker base NaOAc was employed,3a still worked fine while the performances of 8 and 9 dropped a lot (Table 1,entry 9).When the reactions were conducted with a lower catalyst loading,in water or at room temperature,the desired product was obtained in moderate yield by using 3a,but poor yield was attained by using 8 and 9 (Table 1,entries 10–12).For less activep-chlorotoluene,3a showed a lower efficiency under the standard conditions,while 8 and 9 were ineffective at all.The reaction was much improved when 5 mol% 3a was used (Table 1,entries 13 and 14).These results demonstrated the beneficial effect of the rigid and strongly electron-donating C,C-ligand 1 in the Pdcatalyzed Suzuki coupling reaction.

    Table 1 Evaluation of the catalytic activity of 3a by the Suzuki coupling reaction.a

    In summary,we have successfully prepared novel naphthyridine-fused bisimidazolium salts 1·2HCl by a straightforward three-step procedure.Although the whole molecules are nonplanar due to the aza[4]helicene skeleton,the deprotonated dicarbenes 1 acted as rigid C,C-chelating bidentate ligands formed very similar Cu(II) and Pd(II) complexes as the classic N,N-ligand phen.Differently,however,only a Cu(II) complex was obtained whenever a Cu(I) or Cu(II) source was used.Moreover,the Pd(II)complex exhibited higher catalytic activity than the Pd(II) complexes with a rigid phen ligand and a flexible dicarbene ligand as preliminarily evaluated by the Suzuki coupling reaction.These specific features are believed in related to the combination of a strong electron-donating ability and a rigid chelating skeleton of 1 as designed.These novel rigid dicarbene ligands are attractive in metal coordination for catalysis and optoelectronic materials [47].Further investigations are now going on in our laboratory.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We appreciate the financial support from the National Natural Science Foundation of China (No.21772134) and the Fundamental Research Funds for the Central Universities (No.20826041D4117).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.069.

    一级片免费观看大全| 亚洲va日本ⅴa欧美va伊人久久| 色尼玛亚洲综合影院| 美女 人体艺术 gogo| 国产成人一区二区三区免费视频网站| 国产av一区在线观看免费| 正在播放国产对白刺激| 看免费av毛片| 在线十欧美十亚洲十日本专区| www.自偷自拍.com| 久久久久久九九精品二区国产 | 日本三级黄在线观看| 无限看片的www在线观看| 亚洲 国产 在线| 欧美av亚洲av综合av国产av| 男女之事视频高清在线观看| e午夜精品久久久久久久| 熟女少妇亚洲综合色aaa.| 亚洲一区二区三区不卡视频| 久久国产乱子伦精品免费另类| av有码第一页| 美女 人体艺术 gogo| 成人欧美大片| 欧美+亚洲+日韩+国产| 免费高清视频大片| 欧美色视频一区免费| 欧洲精品卡2卡3卡4卡5卡区| 首页视频小说图片口味搜索| 国产精品综合久久久久久久免费| 亚洲全国av大片| 三级男女做爰猛烈吃奶摸视频| 国产精品 国内视频| 国产黄色小视频在线观看| 精品免费久久久久久久清纯| 午夜老司机福利片| 午夜日韩欧美国产| 97碰自拍视频| 亚洲人成77777在线视频| 嫁个100分男人电影在线观看| 美女 人体艺术 gogo| 日本三级黄在线观看| 亚洲自偷自拍图片 自拍| 老熟妇仑乱视频hdxx| 亚洲国产看品久久| 日韩欧美免费精品| 99久久综合精品五月天人人| 91九色精品人成在线观看| 一区二区三区激情视频| 91麻豆精品激情在线观看国产| 两个人视频免费观看高清| 在线观看日韩欧美| 一区二区三区国产精品乱码| 人人妻,人人澡人人爽秒播| 国产午夜精品久久久久久| 日本一二三区视频观看| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 1024香蕉在线观看| 男插女下体视频免费在线播放| 成人三级做爰电影| 777久久人妻少妇嫩草av网站| 精华霜和精华液先用哪个| 舔av片在线| 免费在线观看黄色视频的| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久久毛片| av欧美777| 亚洲欧美一区二区三区黑人| 国产成人啪精品午夜网站| 亚洲av五月六月丁香网| 少妇被粗大的猛进出69影院| 嫁个100分男人电影在线观看| 中文字幕最新亚洲高清| 悠悠久久av| 99热只有精品国产| 亚洲人成电影免费在线| 国产亚洲精品av在线| www.自偷自拍.com| 俄罗斯特黄特色一大片| 色av中文字幕| 中文亚洲av片在线观看爽| 欧美午夜高清在线| 麻豆国产av国片精品| 亚洲欧美日韩高清在线视频| 日韩免费av在线播放| 亚洲熟妇熟女久久| x7x7x7水蜜桃| 久久久久国产精品人妻aⅴ院| 国产精品久久久av美女十八| 精品久久久久久久末码| 午夜精品一区二区三区免费看| 一区二区三区激情视频| 亚洲av日韩精品久久久久久密| 亚洲人成电影免费在线| 熟妇人妻久久中文字幕3abv| 国产主播在线观看一区二区| 日本一二三区视频观看| 中文字幕av在线有码专区| 伊人久久大香线蕉亚洲五| videosex国产| 亚洲欧美精品综合久久99| 99国产精品一区二区三区| 18禁黄网站禁片免费观看直播| 精品免费久久久久久久清纯| 一本精品99久久精品77| 国产高清视频在线播放一区| 久久中文字幕人妻熟女| 亚洲国产精品久久男人天堂| 精品一区二区三区视频在线观看免费| 久久久久久国产a免费观看| 久久久精品国产亚洲av高清涩受| 欧美绝顶高潮抽搐喷水| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人综合色| 亚洲男人的天堂狠狠| 欧美精品亚洲一区二区| 国产欧美日韩一区二区精品| 国产午夜精品论理片| 国产野战对白在线观看| 制服丝袜大香蕉在线| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 亚洲精品美女久久久久99蜜臀| 99在线视频只有这里精品首页| 高清在线国产一区| 亚洲一区二区三区色噜噜| www.999成人在线观看| 1024手机看黄色片| 一本综合久久免费| 香蕉av资源在线| 国产精华一区二区三区| 香蕉久久夜色| 久久天堂一区二区三区四区| 黄色片一级片一级黄色片| 日韩欧美在线乱码| 日韩欧美一区二区三区在线观看| 国产真实乱freesex| 看片在线看免费视频| 97碰自拍视频| 老鸭窝网址在线观看| 久久久久精品国产欧美久久久| 女同久久另类99精品国产91| 视频区欧美日本亚洲| xxxwww97欧美| 国产精品99久久99久久久不卡| 欧美午夜高清在线| 久久久久性生活片| 一二三四在线观看免费中文在| 久久精品国产清高在天天线| 黄色片一级片一级黄色片| 国产精品亚洲美女久久久| www日本黄色视频网| 99久久无色码亚洲精品果冻| 亚洲精品av麻豆狂野| 波多野结衣高清无吗| 久久中文字幕一级| 国产精品一区二区免费欧美| 亚洲真实伦在线观看| 亚洲av第一区精品v没综合| 法律面前人人平等表现在哪些方面| 精品不卡国产一区二区三区| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 久久婷婷成人综合色麻豆| 久久久久久国产a免费观看| 久久久国产成人精品二区| 手机成人av网站| 国产91精品成人一区二区三区| 真人一进一出gif抽搐免费| 午夜日韩欧美国产| 亚洲成人国产一区在线观看| 亚洲欧美激情综合另类| 亚洲国产高清在线一区二区三| 亚洲国产欧美人成| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利高清视频| 69av精品久久久久久| 一本精品99久久精品77| 国产野战对白在线观看| 亚洲成av人片免费观看| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器 | 久久中文看片网| 欧美人与性动交α欧美精品济南到| 日韩欧美在线乱码| 免费在线观看完整版高清| 黄色片一级片一级黄色片| 成人国产综合亚洲| 一个人免费在线观看的高清视频| 国产精品 欧美亚洲| 亚洲中文字幕一区二区三区有码在线看 | 久久香蕉国产精品| 亚洲国产中文字幕在线视频| www.自偷自拍.com| 黄片大片在线免费观看| 无限看片的www在线观看| 国产蜜桃级精品一区二区三区| 欧美色视频一区免费| 久久精品国产综合久久久| 亚洲国产看品久久| 女警被强在线播放| 日本成人三级电影网站| 亚洲国产欧美人成| 最新美女视频免费是黄的| 伊人久久大香线蕉亚洲五| 69av精品久久久久久| 啦啦啦观看免费观看视频高清| 免费看a级黄色片| 一个人观看的视频www高清免费观看 | 欧美极品一区二区三区四区| 精品电影一区二区在线| 1024视频免费在线观看| 国产午夜精品论理片| 亚洲成人国产一区在线观看| 欧美成人免费av一区二区三区| 日韩中文字幕欧美一区二区| 亚洲欧美一区二区三区黑人| 久久久久久久久中文| 国产高清激情床上av| 99在线视频只有这里精品首页| 日本熟妇午夜| 久久久国产精品麻豆| 国产成人啪精品午夜网站| 999久久久国产精品视频| 一夜夜www| 亚洲欧美日韩高清在线视频| 在线永久观看黄色视频| 国产v大片淫在线免费观看| 亚洲 欧美 日韩 在线 免费| 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 国产欧美日韩一区二区三| 很黄的视频免费| 变态另类成人亚洲欧美熟女| 日韩欧美免费精品| 一区二区三区国产精品乱码| 深夜精品福利| www.精华液| 久久久久久人人人人人| 日本一二三区视频观看| 国产精品一区二区精品视频观看| 一个人免费在线观看电影 | 亚洲中文字幕一区二区三区有码在线看 | 欧美成人一区二区免费高清观看| 国产伦在线观看视频一区| 美女黄网站色视频| 欧美极品一区二区三区四区| 久久人人精品亚洲av| 最近手机中文字幕大全| 欧美激情久久久久久爽电影| 美女xxoo啪啪120秒动态图| 别揉我奶头 嗯啊视频| 一个人看视频在线观看www免费| 熟妇人妻久久中文字幕3abv| 国产高清不卡午夜福利| 国产精品综合久久久久久久免费| 亚洲高清免费不卡视频| 看免费成人av毛片| 一级二级三级毛片免费看| 国产又黄又爽又无遮挡在线| 色噜噜av男人的天堂激情| 日韩 亚洲 欧美在线| 美女高潮的动态| 色哟哟哟哟哟哟| 一区二区三区四区激情视频 | 少妇裸体淫交视频免费看高清| 亚洲欧美日韩高清在线视频| 丰满人妻一区二区三区视频av| 热99re8久久精品国产| 国产老妇女一区| 日韩成人av中文字幕在线观看| 一级毛片aaaaaa免费看小| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品国产亚洲av天美| 久久久午夜欧美精品| 毛片女人毛片| 日本黄色视频三级网站网址| 嫩草影院入口| 国产精品国产高清国产av| 亚洲无线在线观看| 青春草视频在线免费观看| www日本黄色视频网| 韩国av在线不卡| 精品一区二区三区人妻视频| 亚洲最大成人手机在线| 国产老妇女一区| 一区二区三区四区激情视频 | 一区二区三区免费毛片| 欧美激情久久久久久爽电影| av在线播放精品| 中文字幕av在线有码专区| 国产高清视频在线观看网站| 久久精品国产鲁丝片午夜精品| 免费观看a级毛片全部| 一级黄片播放器| 日本黄大片高清| 国产成人a∨麻豆精品| 国产精品99久久久久久久久| 免费看美女性在线毛片视频| 91精品一卡2卡3卡4卡| 精品午夜福利在线看| 校园春色视频在线观看| 日本色播在线视频| 性欧美人与动物交配| 久久欧美精品欧美久久欧美| 国产精品美女特级片免费视频播放器| 欧美日韩一区二区视频在线观看视频在线 | 国产一级毛片在线| 亚洲真实伦在线观看| 午夜爱爱视频在线播放| 我的老师免费观看完整版| 18禁在线无遮挡免费观看视频| 一个人看视频在线观看www免费| 国产精品爽爽va在线观看网站| 久久久久久久亚洲中文字幕| 99久久中文字幕三级久久日本| 蜜桃久久精品国产亚洲av| 日本色播在线视频| 青春草国产在线视频 | 麻豆成人av视频| 国产成人福利小说| 国产伦精品一区二区三区四那| 亚洲一级一片aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 欧美xxxx性猛交bbbb| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久精品电影| 一级av片app| 神马国产精品三级电影在线观看| 久久久国产成人免费| 午夜福利在线观看免费完整高清在 | 亚洲成av人片在线播放无| 长腿黑丝高跟| 日韩大尺度精品在线看网址| 一边亲一边摸免费视频| 国产精品野战在线观看| 九九热线精品视视频播放| 欧美一级a爱片免费观看看| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 久久精品久久久久久噜噜老黄 | 国产精品国产高清国产av| 校园人妻丝袜中文字幕| 亚洲在久久综合| 免费大片18禁| 欧美+日韩+精品| 噜噜噜噜噜久久久久久91| 亚洲av中文字字幕乱码综合| 亚洲18禁久久av| 亚洲人成网站高清观看| 亚洲一级一片aⅴ在线观看| 日韩欧美国产在线观看| 99热网站在线观看| 国产色爽女视频免费观看| 免费电影在线观看免费观看| 老女人水多毛片| 高清日韩中文字幕在线| 亚洲av成人精品一区久久| 爱豆传媒免费全集在线观看| 亚洲在线观看片| 亚洲一级一片aⅴ在线观看| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 黄片wwwwww| 中出人妻视频一区二区| 国产精品无大码| 久久久国产成人精品二区| 国产精品无大码| 久久精品国产99精品国产亚洲性色| 蜜臀久久99精品久久宅男| 美女 人体艺术 gogo| 亚洲精品自拍成人| 日韩一区二区三区影片| 美女大奶头视频| 国产单亲对白刺激| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 精品久久久久久久久亚洲| 午夜福利成人在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久久中文| 久久久久久大精品| 中文资源天堂在线| 观看美女的网站| 国产精品乱码一区二三区的特点| 毛片一级片免费看久久久久| 亚洲成人av在线免费| 欧美xxxx黑人xx丫x性爽| 欧美区成人在线视频| 性色avwww在线观看| 人体艺术视频欧美日本| 午夜精品在线福利| 22中文网久久字幕| 桃色一区二区三区在线观看| 婷婷色综合大香蕉| 高清毛片免费看| 丰满的人妻完整版| 真实男女啪啪啪动态图| 少妇的逼好多水| 一级毛片aaaaaa免费看小| 久久久久久久午夜电影| 亚洲国产日韩欧美精品在线观看| 在线观看美女被高潮喷水网站| 久久久久久久久久成人| 少妇裸体淫交视频免费看高清| 国产精品乱码一区二三区的特点| 美女内射精品一级片tv| 免费观看在线日韩| 狂野欧美白嫩少妇大欣赏| 日产精品乱码卡一卡2卡三| 99热全是精品| 看非洲黑人一级黄片| 一卡2卡三卡四卡精品乱码亚洲| 婷婷六月久久综合丁香| 久久久a久久爽久久v久久| 精品午夜福利在线看| 美女被艹到高潮喷水动态| 日韩强制内射视频| 少妇熟女aⅴ在线视频| av视频在线观看入口| 婷婷精品国产亚洲av| 亚洲婷婷狠狠爱综合网| 国产精品1区2区在线观看.| 久久综合国产亚洲精品| 国产精品99久久久久久久久| 亚洲高清免费不卡视频| 身体一侧抽搐| 少妇人妻精品综合一区二区 | 麻豆成人午夜福利视频| 亚洲av中文av极速乱| 成人二区视频| 国产成人91sexporn| 日本一本二区三区精品| 男女边吃奶边做爰视频| 久久久久免费精品人妻一区二区| 欧美一区二区亚洲| 一个人看的www免费观看视频| 午夜免费激情av| 一区二区三区高清视频在线| 啦啦啦啦在线视频资源| 日韩制服骚丝袜av| 联通29元200g的流量卡| 免费看美女性在线毛片视频| 婷婷精品国产亚洲av| 久久国内精品自在自线图片| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区| 日韩制服骚丝袜av| 啦啦啦韩国在线观看视频| 精品久久国产蜜桃| 欧美日韩国产亚洲二区| 久久韩国三级中文字幕| av在线蜜桃| 日本撒尿小便嘘嘘汇集6| 少妇被粗大猛烈的视频| 老女人水多毛片| 国产精品三级大全| 日本熟妇午夜| 18禁裸乳无遮挡免费网站照片| 国产一级毛片七仙女欲春2| 乱系列少妇在线播放| 久久99蜜桃精品久久| 女的被弄到高潮叫床怎么办| 99热只有精品国产| 日韩在线高清观看一区二区三区| 少妇猛男粗大的猛烈进出视频 | 欧美色欧美亚洲另类二区| 五月伊人婷婷丁香| 久久精品国产鲁丝片午夜精品| 国产男人的电影天堂91| 国产精品99久久久久久久久| 插阴视频在线观看视频| 亚洲av中文av极速乱| 成人亚洲精品av一区二区| 97超视频在线观看视频| kizo精华| 18禁在线无遮挡免费观看视频| av在线蜜桃| 久久精品久久久久久久性| 男女下面进入的视频免费午夜| 久久久久久久亚洲中文字幕| av在线天堂中文字幕| 婷婷精品国产亚洲av| 麻豆成人午夜福利视频| 哪个播放器可以免费观看大片| 老师上课跳d突然被开到最大视频| 成年女人永久免费观看视频| 国产精品99久久久久久久久| 一本久久中文字幕| 此物有八面人人有两片| 高清毛片免费看| 少妇的逼好多水| 一个人看视频在线观看www免费| 一级毛片我不卡| 男的添女的下面高潮视频| 蜜桃亚洲精品一区二区三区| av免费在线看不卡| 欧美日本视频| 美女内射精品一级片tv| 久久精品人妻少妇| 高清毛片免费看| 国产成人福利小说| 国产精品国产高清国产av| 日韩亚洲欧美综合| 亚洲欧美精品专区久久| 久久精品国产鲁丝片午夜精品| 成年女人永久免费观看视频| 99久久九九国产精品国产免费| 免费观看的影片在线观看| 亚洲av中文av极速乱| 欧美高清性xxxxhd video| 国产av不卡久久| 日韩成人伦理影院| 两个人视频免费观看高清| 国产精品国产高清国产av| 18禁在线无遮挡免费观看视频| 久久久精品大字幕| 免费观看在线日韩| 国产精华一区二区三区| 波野结衣二区三区在线| 插阴视频在线观看视频| 99热精品在线国产| av又黄又爽大尺度在线免费看 | 日本一二三区视频观看| 悠悠久久av| 麻豆乱淫一区二区| 此物有八面人人有两片| 性欧美人与动物交配| 亚洲成人精品中文字幕电影| 欧美丝袜亚洲另类| 久久久午夜欧美精品| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| 欧美极品一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄 | 狂野欧美白嫩少妇大欣赏| 亚洲精品亚洲一区二区| 色视频www国产| 久久国产乱子免费精品| 中文字幕制服av| 国产精品av视频在线免费观看| 免费黄网站久久成人精品| 亚洲av.av天堂| 十八禁国产超污无遮挡网站| 99热只有精品国产| 欧美最黄视频在线播放免费| 日韩三级伦理在线观看| 日本一本二区三区精品| 国产精品一区二区三区四区久久| 99热这里只有是精品50| 亚洲国产欧洲综合997久久,| 大又大粗又爽又黄少妇毛片口| 久久久久久国产a免费观看| 在线国产一区二区在线| 99九九线精品视频在线观看视频| 内射极品少妇av片p| 女人十人毛片免费观看3o分钟| 国产精品国产高清国产av| videossex国产| 久久精品91蜜桃| 成人av在线播放网站| 日韩一本色道免费dvd| 人妻系列 视频| 亚洲国产精品sss在线观看| 精品久久久久久成人av| 国产精品一及| 日韩大尺度精品在线看网址| 成人特级av手机在线观看| 内射极品少妇av片p| 天天躁日日操中文字幕| 亚洲电影在线观看av| 简卡轻食公司| 村上凉子中文字幕在线| 欧美高清性xxxxhd video| 亚洲精品色激情综合| 成人欧美大片| 成人漫画全彩无遮挡| 婷婷亚洲欧美| 最近手机中文字幕大全| 亚洲精品成人久久久久久| 国产激情偷乱视频一区二区| 在线观看午夜福利视频| 少妇人妻一区二区三区视频| 国产欧美日韩精品一区二区| 毛片一级片免费看久久久久| 最好的美女福利视频网| 99热这里只有是精品50| 69av精品久久久久久| 日日啪夜夜撸| 丝袜喷水一区| 欧美zozozo另类| 神马国产精品三级电影在线观看| 国产在线精品亚洲第一网站| 69av精品久久久久久| 久久久午夜欧美精品| 亚洲在线观看片| 国产精品久久久久久av不卡| 国产精品福利在线免费观看| 99热精品在线国产| 一边摸一边抽搐一进一小说| 美女大奶头视频| 赤兔流量卡办理| 久久国内精品自在自线图片| 日韩精品有码人妻一区| 亚洲国产日韩欧美精品在线观看| 老司机影院成人| www.色视频.com| 伊人久久精品亚洲午夜| 午夜激情福利司机影院| 美女黄网站色视频| 国产精品.久久久| 国产69精品久久久久777片|