• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rigid chelating dicarbene ligands based on naphthyridine-fused bisimidazolium salts

    2022-07-11 03:39:08YanLiuZhijieSheQinzeZhengXuesongZhengTianbaoWangGeGao
    Chinese Chemical Letters 2022年6期

    Yan Liu,Zhijie She,Qinze Zheng,Xuesong Zheng,Tianbao Wang,Ge Gao

    Key Laboratory of Green Chemistry and Technology of Ministry of Education,College of Chemistry,Sichuan University,Chengdu,610064,China

    Keywords:NHC Dicarbene ligand Naphthyridine Phenanthroline

    ABSTRACT Naphthyridine-fused bisimidazolium salts were designed and synthesized for the first time.The study of the Cu(II) and Pd(II) complexes demonstrated that the deprotonated dicarbene ligands are rigid chelating C,C-ligands with strong electron-donating ability in analogy with the classic phenanthroline N,N-ligands.

    1,10-Phenanthroline (phen,A,Fig.1) is a tricyclic and planar nitrogen-containing heteroarene [1].It has relatively weakσdonating ability due to its electron-poor characteristic.However,this drawback is largely compensated by its hydrophobicity,two rigid pre-organized nitrogen atoms with a perfect cone angle,andπ-acceptor nature.Therefore,it still exerts strong and entropically favored metal binding.Phen has become a classic chelating bidentate N,N-ligand,and together with its various derivatives been widely serving in coordination chemistry,supramolecular chemistry,transition metal catalysis,and photoactive materials [2,3].On the other hand,N-heterocyclic carbenes (NHCs) are strongσ-donors and weakπ-acceptors [4–7].Since the synthesis and isolation of the first stable NHC,1,3-di(adamantyl)imidazol-2-ylidene,by Arguengoet al.in 1991 [8],a plethora of different NHCs have been continuously created and extensively studied,resulting in enormous attractive applications [9–14].Imidazolium salts are the most commonly used precursors to construct multidentate NHC ligands due to their easy access and stability.In 1995,Herrmannet al.first showcased the catalytic activity of a Pd(II) complex formed by a methylene-bridged dicarbene ligand (B,Fig.1) in the Heck coupling of aryl halides.Unfortunately,complex decomposition was witnessed in solution above 70 °C,probably related to the flexibility of the ligand [15].

    It was not until 15 years later that a rigid tricyclic bidentrate NHC ligand named vegi [16]was synthesized based on pyridazine by the group of Kunz to be a C,C-analogue of phen (C,Fig.1).Due to the contracted five-membered imidazolium moieties,the two carbene sites is fixed in a distance of 2.97 ?A with a wider cone angle in comparison with the two nitrogen atoms in phen,and the molecule is planar.The vegi ligand acted as a chelating C,C-ligand to form mononuclear complexes with alkali metals [17]as well as common transition metals such as Rh(I) and Ir(I) [16,18,19].However,it acted as a bridging ligand with coinage metals Ag(I),Cu(I)and Au(I) to form the corresponding binuclear complexes [16,20],implying it is still relatively flexible [21].To attain a phen analogue with a smaller cone angle,Monkowiuset al.later introduced a mixed C,N-ligand (D,Fig.1) in 2012 [22].It formed chelating Pd(II)and Rh(I) complexes [23,24],but acted as a monodentate C-ligand for Ag(I),Au(I),Au(III) and Cu(I) [22,25].Interestingly,nonorbitalbased dispersion-type interactions were found between the nitrogen and Au atoms in the Au(III) complexes [22].

    Due to our continuous interests in novel azolium compounds as functional materials and ligands [26–32],our design of a C,Canalogue of phen ligand (1,Fig.1) is based on the following considerations: 1) two rigid and pre-organized NHC sites to exert strongerσ-donating ability than phen;2) a tetracyclic over tricylic system with a smaller cone angle than C and D to reinforce chelating metal coordination;3) different R groups as wingtips to fine tune the metal coordinating environment.Herein,we present the synthesis of naphthyridine-fused bisimidazolium salts 1·2HCl.The deprotonated dicarbene coordinates Cu(I) to afford a mononuclear Cu(II) complex in tetrahedron geometry,suggesting its strongσ-donating and suitable chelating ability.It coordinates Pd(II) to form a distorted square planar complex,which surpasses its counterparts,the rigid N,N-ligand and flexible C,C-ligand in the Suzuki cross-coupling reactions.

    The precursors 1·2HCl could be easily obtained following a three-step procedure starting from 2,7-dimethyl-1,8-naphthyridine(Scheme 1).The two methyl groups were first transformed into the formyl groups by oxidation using selenium dioxide.The dicarbaldehyde then reacted with different primary amines to form diimines.Finally,cyclization of diimines with paraformaldehyde followed by treatment with a dioxane solution of hydrochloride(4 mol/L) afforded the designed precursors 1·2HCl in nice yields,which were isolated and purified by column chromatography on silica gel.Their structures were characterized by NMR and high resolution mass spectroscopy (HRMS).The1H NMR spectra showed that their protons on the precarbene sites are significantly acidic as they appear in low field at 11.05 (DMSO–d6),12.14 (DMSO–d6),and 10.90 (CD3OH) ppm for 1a-c,respectively.Meanwhile,the protons on the pre-abnormal carbene sites are in high field at 8.98,8.85,and 8.56 ppm,respectively.The large differences (up to 3.29 ppm)implied that the formation of carbenes by deprotonation of 1·2HCl in the presence of a base should be less interfered by the formation of abnormal carbenes.

    Fig.1.Structures of phen (A) and bidentate NHC ligands: flexible C,C-ligand (B);vegi (C);mixed C,N-ligand (D) and rigid C,C-ligand (1).

    Scheme 2.Top: Synthesis of the Cu(II) complex 2.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 2.Hydrogen atoms are omitted for clarity.

    The single crystals of 1a·2HCl were cultivated in mixed dichloromethane (DCM)/methanol at room temperature and the structure was resolved by the X-ray diffraction analysis as shown in Fig.2.The aza[4]helicene structure renders 1a·2HCl nonplanar and the two imidazolium rings twist about 18.4°.The distance between the two precarbene carbons (C1 and C10) is 3.093 ?A.This long distance is caused by repulsion between the two hydrogens on C1 and C10,and is expected to be significantly reduced after deprotonation.Moreover,the two mesityl groups sit almost orthogonally to the imidazolium planes with dihedral angles of 73.7° and 71.2°,respectively,providing a very nice shielding for the carbene sites.It is worth noting that the same protection by the aryl groups is not presented in the vegi ligand [21].

    Fig.2.ORTEP plot (50% probability thermal ellipsoids) of 1a·2HCl.

    Fig.3.HOMO/LUMO energies of phen (A),methylene-bridged dicarbene (B),vegi(C),C,N-ligand (D) and rigid dicarbene (1a) at the B3LYP/6–31g(d,p) level.

    Preparation of the free dicarbene 1a by deprotonation of 1a·2HCl with base in DMSO was conducted.The reaction system was darkened immediately and decomposed gradually in the presence of a strong base such astBuOK,tBuONa,KHDMS,NaHDMS,and LiHDMS.When a weak base (NaOAc or Et3N) was used,the reaction system remained unchanged over time.Anin situ1H NMR spectrum showed that the peak of the C1/C10 protons disappeared after 30 min from addition of NaH,indicating the formation of the free dicarbene 1a (see Supporting information for details).Unfortunately,decomposition of the free dicarbene occurred while13C NMR data were being collected.

    To obtain more information about the free dicarbene 1a,DFT calculations was carried out at the B3LYP/6–31 g(d,p) level.The optimized structure of 1a is consistent with the crystal structure of the 1a·2HCl (Fig.S1 in the Supporting information).The distance between the two carbene atoms (C1 and C10) is shortened to 2.89 ?A,which is smaller than that in the vegi ligand (2.97 ?A)[16],but still larger than the N–N distance in phen (2.744 ?A) [33].Moreover,the two imidazolium rings also twist less in 16.2°.The molecular orbital (MO) analysis showed that the carbeneσorbitals overlap with each other in HOMO-3,revealing high electron density between the two carbene sites.The HOMO/LUMO energies of 1a were calculated to be ?4.53/?1.08 eV (Fig.S2 in Supporting information).In comparison,the HOMO/LUMO energies of phen,methylene-bridged dicarbene ligand,vegi [16],and C,N-ligand were also calculated to be ?6.25/?1.42,?5.62/?0.04,?5.20/?1.01,and?5.37/?1.34 eV,respectively (Fig.3).It is clear to see that 1a has a much higher HOMO energy than the other ligands and a smallest energy gap between LUMO and HOMO.The significantly elevated HOMO energy level suggested the strong electron donating ability of 1a.

    The coordination behavior of dicarbene 1 toward copper was then evaluated.The [Cu(I)(phen)2X]complexes are extensively investigated as emitters in OLEDs and photosensitizers in photocatalysis [34–39].We therefore wanted to use 1a·2HCl to mimic a similar Cu(I) complex.1a·2HCl did not react with CuCl in the absence of a base.When NaH was used,a new compound was isolated.However,the1H NMR spectrum showed no signal,indicating that it was a paramagnetic compound.Fortunately,single crystals were obtained in mixed DCM/methanol to show a structure of [Cu(II)1aCl2](2,68% yield).We also conducted a reaction of 1a·2HCl with CuCl2in the presence oftBuOK,and 2 was formed in 80% yield (Scheme 2).These results demonstrated the strong electron donating ability of 1a,which inevitably led to oxidation of the coordinated Cu(I) to Cu(II) during workup.Complex 2 adopts a distorted tetrahedral geometry with a bite angle (C1-Cu1-C10) of 90.7° and a dihedral angle between the C1-Cu1-C10 and Cl1-Cu1-Cl2 planes of 77°.The Cu center is slightly off the ligand plane.It is noted that the coordinated dicarbene ligand is almost planar as the dihedral angle between the two imidazolium rings is significantly reduced to only 7.6°,resulting in an even shortened C1-C10 distance of 2.762 ?A,which is very close to the N–N distance in the phen ligand.It needs to point out that while three-and fourcoordinated Cu(I) complexes of phen ligands are common,fourcoordinate Cu(II) complexes are not typical [40,41].In our case,however,only a four-coordinate Cu(II) complex was formed no matter a Cu(I) or Cu(II) salt was used.This difference is probably related to their different electron-donating abilities.Therefore,ligand 1 can be considered as the C,C-analogues of the phen ligands with enhanced electron-donating ability.

    To compare with the rigid phen N,N-ligand A and flexible dicarbene C,C-ligand B,coordination of Pd(OAc)2with the rigid dicarbene 1a-b was conducted in the absence of a base to directly afford the corresponding [Pd(II)1aCl2](3a) and [Pd(II)1bCl2](3b)in 90% and 95% yields,respectively.The structure of 3b was resolved by the single crystal X-ray diffraction analysis (Scheme 3).Complex 3b rests in a distorted square planar geometry with the dicarbene plane (C1-C13-C10) bent out of the coordinating plane(C1-Pd1-C10) in 34.9° due to the steric hindrance of the adjacent butyl groups,which resembles very much the corresponding phen[42,43]and flexible dicarbene complexes [44,45].The angle of Cl1-Pd1-Cl2 is 87.3°,similar to that in the corresponding phen complex(86.8°).However,the bite angle of C1-Pd1-C10 is 86.3°,larger than the bite angle of N-Pd-N (80.6°).In addition,a dihedral angle of 10.4° is found between the C1-Pd1-C10 plane and the Cl1-Pd1-Cl2 plane.The rigid skeleton is forced in a boat-shaped conformation,resulting in a dihedral angle of the two imidazolium rings of 29.6°and a further shortened C1-C10 distance of 2.704 ?A from 2.The bond lengthens of C1-Pd and C10-Pd are 1.977 ?A equally,which fall into the common range of NHC-Pd bonds.

    Scheme 3.Top: Synthesis of the Pd(II) complexes 3.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 3b.Hydrogen atoms are omitted for clarity.

    Scheme 4.Oxidation of the Pd(II) complex 3b and the corresponding products 5–7.Conditions: in the presence of (a) 1 equiv.,(b) 2 equiv.and (c) 4 equiv.of PhICl2.

    In addition to the classic Heck,Negishi and Suzuki reactions involving a Pd(0)/Pd(II) catalytic cycle,reactions involving an alternative Pd(II)/Pd(IV) cycle have been actively pursued in the past decades.Well-defined Pd(IV) complexes are helpful to understand the catalytic process,but the synthesis is still elusive [46].In consideration of the rigid backbone and strong electron-donating ability of the dicarbene 1,possible access to a proposed Pd(IV)complex 4 by oxidation of the Pd(II) complex 3 was attempted(Scheme 4).The oxidation of 3a with 1 equiv.of PhICl2resulted in no reaction at all.However,the oxidation of 3b under the same conditions unexpectedly delivered a chloro–substituted product 5 in 70% yield.When 2 equiv.of PhICl2was used,a dichlorosubstituted product 6 was obtained in 96% yield.Increasing the amount of the oxidant to 4 equiv.led to further dearomatization of the naphthyridine backbone and gave a tetrachloro-substituted product 7 in 92% yield.Products 5–7 were fully characterized by NMR and HRMS,and the structure of 7 was also confirmed by the single crystal X-ray diffraction analysis.There was no Pd(IV) product identified in any reaction system.

    Finally,the usefulness of the rigid chelating dicarbene 1 as a ligand in transition metal catalyzed reactions was preliminarily evaluated by the catalytic activity of 3a in the Suzuki coupling reactions of a series of representative aryl bromides with aryl boronic acids.Two Pd(II) complexes with a flexible dicarbene ligand (8)and a rigid phen ligand (9) were also prepared (see the Supporting information) and used as comparative catalysts.As can be seen in Table 1,in the presence of 0.5 mol% catalyst and 2 equiv.of Cs2CO3as a base,3a in general performed better than 8 and 9.When electron-deficient and sterically hindered substrates were employed,the reactions ran slower and 3a exhibited much improved catalytic activity than its counterparts (Table 1,entries 2,3 and 6–8).When weaker base NaOAc was employed,3a still worked fine while the performances of 8 and 9 dropped a lot (Table 1,entry 9).When the reactions were conducted with a lower catalyst loading,in water or at room temperature,the desired product was obtained in moderate yield by using 3a,but poor yield was attained by using 8 and 9 (Table 1,entries 10–12).For less activep-chlorotoluene,3a showed a lower efficiency under the standard conditions,while 8 and 9 were ineffective at all.The reaction was much improved when 5 mol% 3a was used (Table 1,entries 13 and 14).These results demonstrated the beneficial effect of the rigid and strongly electron-donating C,C-ligand 1 in the Pdcatalyzed Suzuki coupling reaction.

    Table 1 Evaluation of the catalytic activity of 3a by the Suzuki coupling reaction.a

    In summary,we have successfully prepared novel naphthyridine-fused bisimidazolium salts 1·2HCl by a straightforward three-step procedure.Although the whole molecules are nonplanar due to the aza[4]helicene skeleton,the deprotonated dicarbenes 1 acted as rigid C,C-chelating bidentate ligands formed very similar Cu(II) and Pd(II) complexes as the classic N,N-ligand phen.Differently,however,only a Cu(II) complex was obtained whenever a Cu(I) or Cu(II) source was used.Moreover,the Pd(II)complex exhibited higher catalytic activity than the Pd(II) complexes with a rigid phen ligand and a flexible dicarbene ligand as preliminarily evaluated by the Suzuki coupling reaction.These specific features are believed in related to the combination of a strong electron-donating ability and a rigid chelating skeleton of 1 as designed.These novel rigid dicarbene ligands are attractive in metal coordination for catalysis and optoelectronic materials [47].Further investigations are now going on in our laboratory.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We appreciate the financial support from the National Natural Science Foundation of China (No.21772134) and the Fundamental Research Funds for the Central Universities (No.20826041D4117).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.069.

    赤兔流量卡办理| 国产深夜福利视频在线观看| 午夜免费鲁丝| 国产精品免费大片| av播播在线观看一区| 大话2 男鬼变身卡| 夫妻性生交免费视频一级片| 中国美白少妇内射xxxbb| 老女人水多毛片| 国产一区有黄有色的免费视频| 曰老女人黄片| av不卡在线播放| 久久精品国产亚洲av涩爱| 自线自在国产av| av卡一久久| 国产免费福利视频在线观看| 校园人妻丝袜中文字幕| 美女xxoo啪啪120秒动态图| 色婷婷av一区二区三区视频| 如日韩欧美国产精品一区二区三区 | 亚洲精品色激情综合| 国产一区二区三区av在线| 91午夜精品亚洲一区二区三区| 亚洲国产精品一区二区三区在线| 欧美激情国产日韩精品一区| www.av在线官网国产| 国产免费现黄频在线看| 日韩欧美一区视频在线观看| 国产亚洲av片在线观看秒播厂| 青春草国产在线视频| 秋霞在线观看毛片| 国内精品宾馆在线| 91精品国产国语对白视频| 亚洲国产精品一区三区| 国产男人的电影天堂91| 最近最新中文字幕免费大全7| 国产成人精品婷婷| 久久久久视频综合| 一级片'在线观看视频| 亚洲国产av影院在线观看| 男女啪啪激烈高潮av片| h视频一区二区三区| 在线观看人妻少妇| 久久人人爽人人片av| 精品久久久精品久久久| av国产久精品久网站免费入址| 久久久久网色| 免费少妇av软件| 黑丝袜美女国产一区| 91久久精品电影网| 久久久国产精品麻豆| 精品一区二区三卡| 国产在线一区二区三区精| 亚洲欧美一区二区三区国产| 能在线免费看毛片的网站| 国产高清有码在线观看视频| 多毛熟女@视频| 国产午夜精品久久久久久一区二区三区| 日韩人妻高清精品专区| 亚洲色图 男人天堂 中文字幕 | 亚洲三级黄色毛片| 久久这里有精品视频免费| 欧美亚洲日本最大视频资源| 高清欧美精品videossex| 午夜免费鲁丝| 18禁在线无遮挡免费观看视频| 中文字幕av电影在线播放| 国产精品一区二区在线不卡| 国产精品欧美亚洲77777| 国产欧美另类精品又又久久亚洲欧美| 日韩伦理黄色片| 桃花免费在线播放| xxx大片免费视频| 国产精品久久久久久av不卡| 国产日韩欧美视频二区| 婷婷成人精品国产| 在线观看www视频免费| 在线观看国产h片| 天堂8中文在线网| 日日摸夜夜添夜夜爱| 午夜福利影视在线免费观看| 亚洲av免费高清在线观看| 一区二区三区乱码不卡18| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲网站| 国产欧美日韩一区二区三区在线 | 国产有黄有色有爽视频| 亚洲成人手机| a级毛片黄视频| 少妇熟女欧美另类| 一级爰片在线观看| 久久av网站| 欧美三级亚洲精品| 中文天堂在线官网| 日韩大片免费观看网站| 久久韩国三级中文字幕| 我要看黄色一级片免费的| 午夜福利视频精品| 人妻少妇偷人精品九色| 国产精品99久久99久久久不卡 | 91精品三级在线观看| 国产成人精品无人区| 美女主播在线视频| 亚洲精品久久午夜乱码| 国产乱来视频区| 精品亚洲乱码少妇综合久久| 黄色一级大片看看| 人成视频在线观看免费观看| 国产一区二区三区av在线| 久久精品熟女亚洲av麻豆精品| 欧美97在线视频| 80岁老熟妇乱子伦牲交| 黄色一级大片看看| 成年美女黄网站色视频大全免费 | 国产亚洲精品久久久com| 亚洲精品第二区| videos熟女内射| 日韩一区二区视频免费看| 高清黄色对白视频在线免费看| 亚州av有码| 国产免费一区二区三区四区乱码| 欧美一级a爱片免费观看看| 男的添女的下面高潮视频| 久久ye,这里只有精品| 国产视频内射| 欧美老熟妇乱子伦牲交| 国产熟女午夜一区二区三区 | 精品国产露脸久久av麻豆| 国产成人免费观看mmmm| 黄色视频在线播放观看不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久欧美国产精品| 欧美日韩成人在线一区二区| 毛片一级片免费看久久久久| 久久久a久久爽久久v久久| 久久99一区二区三区| √禁漫天堂资源中文www| 性色av一级| 国产白丝娇喘喷水9色精品| 日韩大片免费观看网站| 久久久久国产精品人妻一区二区| 成人免费观看视频高清| 少妇的逼好多水| 人妻系列 视频| 亚洲国产日韩一区二区| 黑人高潮一二区| 亚洲精品第二区| 黄色配什么色好看| 日日撸夜夜添| 99热全是精品| 成年人免费黄色播放视频| 极品人妻少妇av视频| 色婷婷久久久亚洲欧美| 欧美激情国产日韩精品一区| 日韩中文字幕视频在线看片| 蜜桃国产av成人99| 99视频精品全部免费 在线| 少妇的逼好多水| 欧美丝袜亚洲另类| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩卡通动漫| 夜夜爽夜夜爽视频| 婷婷色综合大香蕉| 五月天丁香电影| 色5月婷婷丁香| 日韩制服骚丝袜av| 黄色视频在线播放观看不卡| 久久女婷五月综合色啪小说| 男女高潮啪啪啪动态图| 精品人妻一区二区三区麻豆| 91久久精品电影网| 精品卡一卡二卡四卡免费| 天天影视国产精品| 亚洲精品久久久久久婷婷小说| 日日爽夜夜爽网站| 午夜免费男女啪啪视频观看| 最新中文字幕久久久久| 熟女人妻精品中文字幕| 免费高清在线观看日韩| 18禁在线播放成人免费| 亚洲欧美色中文字幕在线| 2022亚洲国产成人精品| 最近手机中文字幕大全| 热99久久久久精品小说推荐| 97超视频在线观看视频| 亚洲精品中文字幕在线视频| 高清黄色对白视频在线免费看| 免费大片18禁| 成人综合一区亚洲| 哪个播放器可以免费观看大片| 亚洲成人手机| 午夜免费男女啪啪视频观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美日韩另类电影网站| 最近中文字幕2019免费版| 国产亚洲最大av| 国产欧美日韩一区二区三区在线 | 另类精品久久| 22中文网久久字幕| 亚洲,一卡二卡三卡| tube8黄色片| 黄片无遮挡物在线观看| 男人爽女人下面视频在线观看| 日韩成人伦理影院| 国产亚洲欧美精品永久| 亚洲精品乱码久久久v下载方式| av网站免费在线观看视频| 校园人妻丝袜中文字幕| 另类亚洲欧美激情| 免费不卡的大黄色大毛片视频在线观看| 精品人妻熟女av久视频| 日韩精品免费视频一区二区三区 | 一级,二级,三级黄色视频| 国产男人的电影天堂91| 欧美日韩国产mv在线观看视频| 九九爱精品视频在线观看| 午夜福利,免费看| 男女啪啪激烈高潮av片| 国产成人av激情在线播放 | 午夜视频国产福利| 精品人妻偷拍中文字幕| 国产片内射在线| av女优亚洲男人天堂| 久久久a久久爽久久v久久| 精品酒店卫生间| 国产一区二区在线观看日韩| 激情五月婷婷亚洲| 最近手机中文字幕大全| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产日韩一区二区| 亚洲综合色惰| 美女cb高潮喷水在线观看| 久久精品国产a三级三级三级| 国产探花极品一区二区| 亚洲精品亚洲一区二区| 777米奇影视久久| 中文乱码字字幕精品一区二区三区| 成人综合一区亚洲| 精品国产一区二区久久| 99热全是精品| 国产精品 国内视频| 在线观看免费高清a一片| 国产免费又黄又爽又色| 亚洲欧美成人综合另类久久久| 最近的中文字幕免费完整| av在线老鸭窝| 如日韩欧美国产精品一区二区三区 | 婷婷成人精品国产| freevideosex欧美| 丝袜脚勾引网站| 久久久久久久久久人人人人人人| 黄色怎么调成土黄色| 免费人成在线观看视频色| 搡女人真爽免费视频火全软件| 三级国产精品片| 满18在线观看网站| 午夜老司机福利剧场| 久久久久久久久久成人| 91久久精品国产一区二区三区| 极品少妇高潮喷水抽搐| 欧美bdsm另类| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 国精品久久久久久国模美| 日韩欧美一区视频在线观看| 国产成人精品婷婷| 国产一区有黄有色的免费视频| 26uuu在线亚洲综合色| 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| 欧美日韩视频高清一区二区三区二| 日韩精品免费视频一区二区三区 | 久久久精品94久久精品| 欧美97在线视频| 少妇人妻久久综合中文| 中文字幕免费在线视频6| 国产精品国产三级专区第一集| 春色校园在线视频观看| 九草在线视频观看| 久久久久久久精品精品| 国产午夜精品一二区理论片| 中文精品一卡2卡3卡4更新| 香蕉精品网在线| 视频在线观看一区二区三区| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 在线观看美女被高潮喷水网站| 青春草视频在线免费观看| 少妇人妻久久综合中文| 亚洲图色成人| 日韩不卡一区二区三区视频在线| 妹子高潮喷水视频| 在线观看免费日韩欧美大片 | 免费观看a级毛片全部| 亚洲精品第二区| 纵有疾风起免费观看全集完整版| 国产精品熟女久久久久浪| 久久国产精品大桥未久av| 久久青草综合色| 久久亚洲国产成人精品v| 亚洲国产欧美在线一区| 国产精品麻豆人妻色哟哟久久| 最新中文字幕久久久久| 国产欧美日韩一区二区三区在线 | 丁香六月天网| 七月丁香在线播放| 久久精品国产a三级三级三级| 免费观看a级毛片全部| 国产精品国产三级国产专区5o| 中文天堂在线官网| a 毛片基地| 久久人妻熟女aⅴ| 美女内射精品一级片tv| 免费高清在线观看日韩| 一区二区三区免费毛片| 亚洲成色77777| 黄色怎么调成土黄色| 国产精品不卡视频一区二区| 亚洲av电影在线观看一区二区三区| 久久这里有精品视频免费| 国产精品人妻久久久影院| av线在线观看网站| 亚洲美女视频黄频| 亚洲不卡免费看| 日韩伦理黄色片| 亚洲精品中文字幕在线视频| 一区二区三区精品91| 黄色视频在线播放观看不卡| 男女啪啪激烈高潮av片| 亚洲五月色婷婷综合| 国产成人精品久久久久久| 亚洲综合精品二区| 精品国产一区二区三区久久久樱花| 男男h啪啪无遮挡| 伦精品一区二区三区| 中国国产av一级| 午夜视频国产福利| 久久午夜综合久久蜜桃| 午夜福利,免费看| 久久影院123| 亚洲丝袜综合中文字幕| 日韩av免费高清视频| 夜夜爽夜夜爽视频| 有码 亚洲区| 国产淫语在线视频| 国产亚洲欧美精品永久| 久久这里有精品视频免费| 日韩av免费高清视频| 日韩视频在线欧美| 一级a做视频免费观看| 大又大粗又爽又黄少妇毛片口| 日韩三级伦理在线观看| 一级爰片在线观看| 2018国产大陆天天弄谢| 精品人妻在线不人妻| 自拍欧美九色日韩亚洲蝌蚪91| videos熟女内射| 桃花免费在线播放| 亚洲第一av免费看| 又粗又硬又长又爽又黄的视频| 精品亚洲成国产av| 中国三级夫妇交换| 亚洲图色成人| 一本—道久久a久久精品蜜桃钙片| 国产乱人偷精品视频| 婷婷色综合大香蕉| 老熟女久久久| 色吧在线观看| 男女无遮挡免费网站观看| 久久久国产一区二区| 国产淫语在线视频| 久久ye,这里只有精品| 免费看不卡的av| 久久午夜综合久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 啦啦啦中文免费视频观看日本| 欧美人与善性xxx| 亚洲情色 制服丝袜| 国产又色又爽无遮挡免| 一级二级三级毛片免费看| 97超碰精品成人国产| 成人18禁高潮啪啪吃奶动态图 | 大片电影免费在线观看免费| 精品视频人人做人人爽| 午夜久久久在线观看| 久久精品熟女亚洲av麻豆精品| 色哟哟·www| 国产午夜精品一二区理论片| 一级二级三级毛片免费看| 亚洲性久久影院| 日韩成人av中文字幕在线观看| 免费看光身美女| 久久99热这里只频精品6学生| 国产成人freesex在线| 日日爽夜夜爽网站| 精品国产一区二区三区久久久樱花| 最后的刺客免费高清国语| 高清午夜精品一区二区三区| 久久久久网色| 亚洲精品久久久久久婷婷小说| 日本黄色片子视频| 最新中文字幕久久久久| 午夜福利视频在线观看免费| 在线观看三级黄色| 国产精品国产av在线观看| 亚洲av电影在线观看一区二区三区| 高清视频免费观看一区二区| 美女福利国产在线| 全区人妻精品视频| 亚洲欧美中文字幕日韩二区| 免费人妻精品一区二区三区视频| 亚洲精品中文字幕在线视频| 九九久久精品国产亚洲av麻豆| 久久精品国产鲁丝片午夜精品| 色吧在线观看| 久热这里只有精品99| 欧美另类一区| 免费看光身美女| 男男h啪啪无遮挡| 黑丝袜美女国产一区| 久久国内精品自在自线图片| 男女边摸边吃奶| 九色亚洲精品在线播放| 国产精品一国产av| 久久精品国产鲁丝片午夜精品| 亚州av有码| 亚洲精品久久成人aⅴ小说 | 考比视频在线观看| 校园人妻丝袜中文字幕| 亚洲成人av在线免费| 五月天丁香电影| 视频在线观看一区二区三区| 国产精品熟女久久久久浪| 国产精品不卡视频一区二区| 欧美三级亚洲精品| 亚洲av电影在线观看一区二区三区| 在线亚洲精品国产二区图片欧美 | 一级二级三级毛片免费看| 一个人免费看片子| 精品久久久久久久久亚洲| 国产精品99久久99久久久不卡 | 国产成人一区二区在线| √禁漫天堂资源中文www| 亚洲av成人精品一区久久| 日韩精品有码人妻一区| 三级国产精品片| 母亲3免费完整高清在线观看 | 国产高清不卡午夜福利| 免费观看性生交大片5| 97超碰精品成人国产| 中文精品一卡2卡3卡4更新| 极品少妇高潮喷水抽搐| 啦啦啦在线观看免费高清www| 国产熟女欧美一区二区| 国产黄片视频在线免费观看| 精品国产一区二区三区久久久樱花| 老司机影院成人| freevideosex欧美| 自线自在国产av| 国产一区亚洲一区在线观看| 亚洲人成网站在线观看播放| 免费观看无遮挡的男女| 日本黄大片高清| 最近2019中文字幕mv第一页| 超色免费av| 特大巨黑吊av在线直播| 国产一区亚洲一区在线观看| 日韩成人伦理影院| 精品卡一卡二卡四卡免费| 我的老师免费观看完整版| 亚洲精品成人av观看孕妇| 男人操女人黄网站| 国产亚洲av片在线观看秒播厂| 97在线视频观看| 日本黄色日本黄色录像| 国语对白做爰xxxⅹ性视频网站| av网站免费在线观看视频| 亚洲成人一二三区av| 亚洲综合色惰| 国产又色又爽无遮挡免| 大片免费播放器 马上看| 永久免费av网站大全| 91aial.com中文字幕在线观看| 成年av动漫网址| 亚洲av福利一区| 人妻一区二区av| 男男h啪啪无遮挡| 人妻夜夜爽99麻豆av| 日韩一区二区三区影片| 国产成人91sexporn| 人妻 亚洲 视频| 色视频在线一区二区三区| 国产男女超爽视频在线观看| 水蜜桃什么品种好| 一区在线观看完整版| 丝袜喷水一区| 国产精品一区二区在线不卡| 波野结衣二区三区在线| 丝袜脚勾引网站| 观看av在线不卡| 一级爰片在线观看| 在线观看美女被高潮喷水网站| 99国产综合亚洲精品| 亚洲欧美日韩另类电影网站| 九九久久精品国产亚洲av麻豆| 日韩一区二区视频免费看| 亚洲色图综合在线观看| 午夜福利在线观看免费完整高清在| 国产精品一二三区在线看| 日本vs欧美在线观看视频| 欧美变态另类bdsm刘玥| 嫩草影院入口| 男女边摸边吃奶| 九九爱精品视频在线观看| 午夜久久久在线观看| 久久久久国产网址| 中文乱码字字幕精品一区二区三区| 亚洲熟女精品中文字幕| 亚洲国产毛片av蜜桃av| 观看美女的网站| 九九在线视频观看精品| 天堂俺去俺来也www色官网| 日本wwww免费看| 亚洲人成网站在线观看播放| 久久午夜福利片| 亚洲一区二区三区欧美精品| 99久久人妻综合| 精品一区在线观看国产| 女性生殖器流出的白浆| 国产 精品1| 日韩不卡一区二区三区视频在线| 人妻 亚洲 视频| 国产精品久久久久久av不卡| 亚洲一区二区三区欧美精品| 97在线人人人人妻| 日韩强制内射视频| 国产av码专区亚洲av| 日本黄色片子视频| 国产一区亚洲一区在线观看| 国产成人freesex在线| 国产老妇伦熟女老妇高清| 精品久久久久久久久亚洲| 精品视频人人做人人爽| 少妇猛男粗大的猛烈进出视频| 久久热精品热| 九九爱精品视频在线观看| 黑人猛操日本美女一级片| 夫妻性生交免费视频一级片| a级毛色黄片| 97超视频在线观看视频| 伊人久久精品亚洲午夜| 丝袜脚勾引网站| 亚洲美女视频黄频| 97超碰精品成人国产| 日韩免费高清中文字幕av| 亚洲美女黄色视频免费看| 亚洲国产精品国产精品| 亚洲国产精品一区三区| 午夜福利在线观看免费完整高清在| 嘟嘟电影网在线观看| 高清av免费在线| 国产在线免费精品| 少妇 在线观看| 亚洲av.av天堂| 熟女av电影| av不卡在线播放| 少妇被粗大猛烈的视频| av视频免费观看在线观看| 午夜91福利影院| 中文欧美无线码| 美女中出高潮动态图| 国产精品久久久久久av不卡| 汤姆久久久久久久影院中文字幕| 国产爽快片一区二区三区| 中国三级夫妇交换| 国产av一区二区精品久久| 啦啦啦视频在线资源免费观看| 美女大奶头黄色视频| 精品亚洲乱码少妇综合久久| 丰满迷人的少妇在线观看| 亚洲欧美精品自产自拍| 亚洲成人一二三区av| 九九久久精品国产亚洲av麻豆| 精品久久久噜噜| 黄片播放在线免费| 成人毛片60女人毛片免费| 久久久精品区二区三区| 国产精品秋霞免费鲁丝片| 国产免费又黄又爽又色| 免费观看性生交大片5| a级毛片在线看网站| 精品亚洲成a人片在线观看| 国产成人av激情在线播放 | 人妻人人澡人人爽人人| 日本色播在线视频| 一区二区日韩欧美中文字幕 | 女性被躁到高潮视频| 国产极品粉嫩免费观看在线 | 精品午夜福利在线看| 伦理电影大哥的女人| 少妇熟女欧美另类| 精品久久蜜臀av无| 免费看光身美女| 久久精品夜色国产| 爱豆传媒免费全集在线观看| av有码第一页| 国产日韩欧美视频二区| 欧美精品国产亚洲| 亚洲人成77777在线视频| 欧美3d第一页| 国国产精品蜜臀av免费| 九九在线视频观看精品| 18禁动态无遮挡网站| 国产精品一区二区在线不卡| 久久99一区二区三区|