• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rigid chelating dicarbene ligands based on naphthyridine-fused bisimidazolium salts

    2022-07-11 03:39:08YanLiuZhijieSheQinzeZhengXuesongZhengTianbaoWangGeGao
    Chinese Chemical Letters 2022年6期

    Yan Liu,Zhijie She,Qinze Zheng,Xuesong Zheng,Tianbao Wang,Ge Gao

    Key Laboratory of Green Chemistry and Technology of Ministry of Education,College of Chemistry,Sichuan University,Chengdu,610064,China

    Keywords:NHC Dicarbene ligand Naphthyridine Phenanthroline

    ABSTRACT Naphthyridine-fused bisimidazolium salts were designed and synthesized for the first time.The study of the Cu(II) and Pd(II) complexes demonstrated that the deprotonated dicarbene ligands are rigid chelating C,C-ligands with strong electron-donating ability in analogy with the classic phenanthroline N,N-ligands.

    1,10-Phenanthroline (phen,A,Fig.1) is a tricyclic and planar nitrogen-containing heteroarene [1].It has relatively weakσdonating ability due to its electron-poor characteristic.However,this drawback is largely compensated by its hydrophobicity,two rigid pre-organized nitrogen atoms with a perfect cone angle,andπ-acceptor nature.Therefore,it still exerts strong and entropically favored metal binding.Phen has become a classic chelating bidentate N,N-ligand,and together with its various derivatives been widely serving in coordination chemistry,supramolecular chemistry,transition metal catalysis,and photoactive materials [2,3].On the other hand,N-heterocyclic carbenes (NHCs) are strongσ-donors and weakπ-acceptors [4–7].Since the synthesis and isolation of the first stable NHC,1,3-di(adamantyl)imidazol-2-ylidene,by Arguengoet al.in 1991 [8],a plethora of different NHCs have been continuously created and extensively studied,resulting in enormous attractive applications [9–14].Imidazolium salts are the most commonly used precursors to construct multidentate NHC ligands due to their easy access and stability.In 1995,Herrmannet al.first showcased the catalytic activity of a Pd(II) complex formed by a methylene-bridged dicarbene ligand (B,Fig.1) in the Heck coupling of aryl halides.Unfortunately,complex decomposition was witnessed in solution above 70 °C,probably related to the flexibility of the ligand [15].

    It was not until 15 years later that a rigid tricyclic bidentrate NHC ligand named vegi [16]was synthesized based on pyridazine by the group of Kunz to be a C,C-analogue of phen (C,Fig.1).Due to the contracted five-membered imidazolium moieties,the two carbene sites is fixed in a distance of 2.97 ?A with a wider cone angle in comparison with the two nitrogen atoms in phen,and the molecule is planar.The vegi ligand acted as a chelating C,C-ligand to form mononuclear complexes with alkali metals [17]as well as common transition metals such as Rh(I) and Ir(I) [16,18,19].However,it acted as a bridging ligand with coinage metals Ag(I),Cu(I)and Au(I) to form the corresponding binuclear complexes [16,20],implying it is still relatively flexible [21].To attain a phen analogue with a smaller cone angle,Monkowiuset al.later introduced a mixed C,N-ligand (D,Fig.1) in 2012 [22].It formed chelating Pd(II)and Rh(I) complexes [23,24],but acted as a monodentate C-ligand for Ag(I),Au(I),Au(III) and Cu(I) [22,25].Interestingly,nonorbitalbased dispersion-type interactions were found between the nitrogen and Au atoms in the Au(III) complexes [22].

    Due to our continuous interests in novel azolium compounds as functional materials and ligands [26–32],our design of a C,Canalogue of phen ligand (1,Fig.1) is based on the following considerations: 1) two rigid and pre-organized NHC sites to exert strongerσ-donating ability than phen;2) a tetracyclic over tricylic system with a smaller cone angle than C and D to reinforce chelating metal coordination;3) different R groups as wingtips to fine tune the metal coordinating environment.Herein,we present the synthesis of naphthyridine-fused bisimidazolium salts 1·2HCl.The deprotonated dicarbene coordinates Cu(I) to afford a mononuclear Cu(II) complex in tetrahedron geometry,suggesting its strongσ-donating and suitable chelating ability.It coordinates Pd(II) to form a distorted square planar complex,which surpasses its counterparts,the rigid N,N-ligand and flexible C,C-ligand in the Suzuki cross-coupling reactions.

    The precursors 1·2HCl could be easily obtained following a three-step procedure starting from 2,7-dimethyl-1,8-naphthyridine(Scheme 1).The two methyl groups were first transformed into the formyl groups by oxidation using selenium dioxide.The dicarbaldehyde then reacted with different primary amines to form diimines.Finally,cyclization of diimines with paraformaldehyde followed by treatment with a dioxane solution of hydrochloride(4 mol/L) afforded the designed precursors 1·2HCl in nice yields,which were isolated and purified by column chromatography on silica gel.Their structures were characterized by NMR and high resolution mass spectroscopy (HRMS).The1H NMR spectra showed that their protons on the precarbene sites are significantly acidic as they appear in low field at 11.05 (DMSO–d6),12.14 (DMSO–d6),and 10.90 (CD3OH) ppm for 1a-c,respectively.Meanwhile,the protons on the pre-abnormal carbene sites are in high field at 8.98,8.85,and 8.56 ppm,respectively.The large differences (up to 3.29 ppm)implied that the formation of carbenes by deprotonation of 1·2HCl in the presence of a base should be less interfered by the formation of abnormal carbenes.

    Fig.1.Structures of phen (A) and bidentate NHC ligands: flexible C,C-ligand (B);vegi (C);mixed C,N-ligand (D) and rigid C,C-ligand (1).

    Scheme 2.Top: Synthesis of the Cu(II) complex 2.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 2.Hydrogen atoms are omitted for clarity.

    The single crystals of 1a·2HCl were cultivated in mixed dichloromethane (DCM)/methanol at room temperature and the structure was resolved by the X-ray diffraction analysis as shown in Fig.2.The aza[4]helicene structure renders 1a·2HCl nonplanar and the two imidazolium rings twist about 18.4°.The distance between the two precarbene carbons (C1 and C10) is 3.093 ?A.This long distance is caused by repulsion between the two hydrogens on C1 and C10,and is expected to be significantly reduced after deprotonation.Moreover,the two mesityl groups sit almost orthogonally to the imidazolium planes with dihedral angles of 73.7° and 71.2°,respectively,providing a very nice shielding for the carbene sites.It is worth noting that the same protection by the aryl groups is not presented in the vegi ligand [21].

    Fig.2.ORTEP plot (50% probability thermal ellipsoids) of 1a·2HCl.

    Fig.3.HOMO/LUMO energies of phen (A),methylene-bridged dicarbene (B),vegi(C),C,N-ligand (D) and rigid dicarbene (1a) at the B3LYP/6–31g(d,p) level.

    Preparation of the free dicarbene 1a by deprotonation of 1a·2HCl with base in DMSO was conducted.The reaction system was darkened immediately and decomposed gradually in the presence of a strong base such astBuOK,tBuONa,KHDMS,NaHDMS,and LiHDMS.When a weak base (NaOAc or Et3N) was used,the reaction system remained unchanged over time.Anin situ1H NMR spectrum showed that the peak of the C1/C10 protons disappeared after 30 min from addition of NaH,indicating the formation of the free dicarbene 1a (see Supporting information for details).Unfortunately,decomposition of the free dicarbene occurred while13C NMR data were being collected.

    To obtain more information about the free dicarbene 1a,DFT calculations was carried out at the B3LYP/6–31 g(d,p) level.The optimized structure of 1a is consistent with the crystal structure of the 1a·2HCl (Fig.S1 in the Supporting information).The distance between the two carbene atoms (C1 and C10) is shortened to 2.89 ?A,which is smaller than that in the vegi ligand (2.97 ?A)[16],but still larger than the N–N distance in phen (2.744 ?A) [33].Moreover,the two imidazolium rings also twist less in 16.2°.The molecular orbital (MO) analysis showed that the carbeneσorbitals overlap with each other in HOMO-3,revealing high electron density between the two carbene sites.The HOMO/LUMO energies of 1a were calculated to be ?4.53/?1.08 eV (Fig.S2 in Supporting information).In comparison,the HOMO/LUMO energies of phen,methylene-bridged dicarbene ligand,vegi [16],and C,N-ligand were also calculated to be ?6.25/?1.42,?5.62/?0.04,?5.20/?1.01,and?5.37/?1.34 eV,respectively (Fig.3).It is clear to see that 1a has a much higher HOMO energy than the other ligands and a smallest energy gap between LUMO and HOMO.The significantly elevated HOMO energy level suggested the strong electron donating ability of 1a.

    The coordination behavior of dicarbene 1 toward copper was then evaluated.The [Cu(I)(phen)2X]complexes are extensively investigated as emitters in OLEDs and photosensitizers in photocatalysis [34–39].We therefore wanted to use 1a·2HCl to mimic a similar Cu(I) complex.1a·2HCl did not react with CuCl in the absence of a base.When NaH was used,a new compound was isolated.However,the1H NMR spectrum showed no signal,indicating that it was a paramagnetic compound.Fortunately,single crystals were obtained in mixed DCM/methanol to show a structure of [Cu(II)1aCl2](2,68% yield).We also conducted a reaction of 1a·2HCl with CuCl2in the presence oftBuOK,and 2 was formed in 80% yield (Scheme 2).These results demonstrated the strong electron donating ability of 1a,which inevitably led to oxidation of the coordinated Cu(I) to Cu(II) during workup.Complex 2 adopts a distorted tetrahedral geometry with a bite angle (C1-Cu1-C10) of 90.7° and a dihedral angle between the C1-Cu1-C10 and Cl1-Cu1-Cl2 planes of 77°.The Cu center is slightly off the ligand plane.It is noted that the coordinated dicarbene ligand is almost planar as the dihedral angle between the two imidazolium rings is significantly reduced to only 7.6°,resulting in an even shortened C1-C10 distance of 2.762 ?A,which is very close to the N–N distance in the phen ligand.It needs to point out that while three-and fourcoordinated Cu(I) complexes of phen ligands are common,fourcoordinate Cu(II) complexes are not typical [40,41].In our case,however,only a four-coordinate Cu(II) complex was formed no matter a Cu(I) or Cu(II) salt was used.This difference is probably related to their different electron-donating abilities.Therefore,ligand 1 can be considered as the C,C-analogues of the phen ligands with enhanced electron-donating ability.

    To compare with the rigid phen N,N-ligand A and flexible dicarbene C,C-ligand B,coordination of Pd(OAc)2with the rigid dicarbene 1a-b was conducted in the absence of a base to directly afford the corresponding [Pd(II)1aCl2](3a) and [Pd(II)1bCl2](3b)in 90% and 95% yields,respectively.The structure of 3b was resolved by the single crystal X-ray diffraction analysis (Scheme 3).Complex 3b rests in a distorted square planar geometry with the dicarbene plane (C1-C13-C10) bent out of the coordinating plane(C1-Pd1-C10) in 34.9° due to the steric hindrance of the adjacent butyl groups,which resembles very much the corresponding phen[42,43]and flexible dicarbene complexes [44,45].The angle of Cl1-Pd1-Cl2 is 87.3°,similar to that in the corresponding phen complex(86.8°).However,the bite angle of C1-Pd1-C10 is 86.3°,larger than the bite angle of N-Pd-N (80.6°).In addition,a dihedral angle of 10.4° is found between the C1-Pd1-C10 plane and the Cl1-Pd1-Cl2 plane.The rigid skeleton is forced in a boat-shaped conformation,resulting in a dihedral angle of the two imidazolium rings of 29.6°and a further shortened C1-C10 distance of 2.704 ?A from 2.The bond lengthens of C1-Pd and C10-Pd are 1.977 ?A equally,which fall into the common range of NHC-Pd bonds.

    Scheme 3.Top: Synthesis of the Pd(II) complexes 3.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 3b.Hydrogen atoms are omitted for clarity.

    Scheme 4.Oxidation of the Pd(II) complex 3b and the corresponding products 5–7.Conditions: in the presence of (a) 1 equiv.,(b) 2 equiv.and (c) 4 equiv.of PhICl2.

    In addition to the classic Heck,Negishi and Suzuki reactions involving a Pd(0)/Pd(II) catalytic cycle,reactions involving an alternative Pd(II)/Pd(IV) cycle have been actively pursued in the past decades.Well-defined Pd(IV) complexes are helpful to understand the catalytic process,but the synthesis is still elusive [46].In consideration of the rigid backbone and strong electron-donating ability of the dicarbene 1,possible access to a proposed Pd(IV)complex 4 by oxidation of the Pd(II) complex 3 was attempted(Scheme 4).The oxidation of 3a with 1 equiv.of PhICl2resulted in no reaction at all.However,the oxidation of 3b under the same conditions unexpectedly delivered a chloro–substituted product 5 in 70% yield.When 2 equiv.of PhICl2was used,a dichlorosubstituted product 6 was obtained in 96% yield.Increasing the amount of the oxidant to 4 equiv.led to further dearomatization of the naphthyridine backbone and gave a tetrachloro-substituted product 7 in 92% yield.Products 5–7 were fully characterized by NMR and HRMS,and the structure of 7 was also confirmed by the single crystal X-ray diffraction analysis.There was no Pd(IV) product identified in any reaction system.

    Finally,the usefulness of the rigid chelating dicarbene 1 as a ligand in transition metal catalyzed reactions was preliminarily evaluated by the catalytic activity of 3a in the Suzuki coupling reactions of a series of representative aryl bromides with aryl boronic acids.Two Pd(II) complexes with a flexible dicarbene ligand (8)and a rigid phen ligand (9) were also prepared (see the Supporting information) and used as comparative catalysts.As can be seen in Table 1,in the presence of 0.5 mol% catalyst and 2 equiv.of Cs2CO3as a base,3a in general performed better than 8 and 9.When electron-deficient and sterically hindered substrates were employed,the reactions ran slower and 3a exhibited much improved catalytic activity than its counterparts (Table 1,entries 2,3 and 6–8).When weaker base NaOAc was employed,3a still worked fine while the performances of 8 and 9 dropped a lot (Table 1,entry 9).When the reactions were conducted with a lower catalyst loading,in water or at room temperature,the desired product was obtained in moderate yield by using 3a,but poor yield was attained by using 8 and 9 (Table 1,entries 10–12).For less activep-chlorotoluene,3a showed a lower efficiency under the standard conditions,while 8 and 9 were ineffective at all.The reaction was much improved when 5 mol% 3a was used (Table 1,entries 13 and 14).These results demonstrated the beneficial effect of the rigid and strongly electron-donating C,C-ligand 1 in the Pdcatalyzed Suzuki coupling reaction.

    Table 1 Evaluation of the catalytic activity of 3a by the Suzuki coupling reaction.a

    In summary,we have successfully prepared novel naphthyridine-fused bisimidazolium salts 1·2HCl by a straightforward three-step procedure.Although the whole molecules are nonplanar due to the aza[4]helicene skeleton,the deprotonated dicarbenes 1 acted as rigid C,C-chelating bidentate ligands formed very similar Cu(II) and Pd(II) complexes as the classic N,N-ligand phen.Differently,however,only a Cu(II) complex was obtained whenever a Cu(I) or Cu(II) source was used.Moreover,the Pd(II)complex exhibited higher catalytic activity than the Pd(II) complexes with a rigid phen ligand and a flexible dicarbene ligand as preliminarily evaluated by the Suzuki coupling reaction.These specific features are believed in related to the combination of a strong electron-donating ability and a rigid chelating skeleton of 1 as designed.These novel rigid dicarbene ligands are attractive in metal coordination for catalysis and optoelectronic materials [47].Further investigations are now going on in our laboratory.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We appreciate the financial support from the National Natural Science Foundation of China (No.21772134) and the Fundamental Research Funds for the Central Universities (No.20826041D4117).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.069.

    一级作爱视频免费观看| 我的老师免费观看完整版| 亚洲精品在线观看二区| 岛国视频午夜一区免费看| 91av网站免费观看| 久久这里只有精品19| 久久久久精品国产欧美久久久| 搞女人的毛片| 人妻夜夜爽99麻豆av| 国产精品久久久人人做人人爽| 成在线人永久免费视频| av片东京热男人的天堂| 超碰成人久久| 国产真人三级小视频在线观看| 国产精品av久久久久免费| 欧美乱妇无乱码| 成人亚洲精品av一区二区| 中文资源天堂在线| 亚洲av成人不卡在线观看播放网| 亚洲无线在线观看| 午夜激情福利司机影院| 国产伦精品一区二区三区四那| 亚洲人成网站在线播放欧美日韩| 亚洲,欧美精品.| 精品久久久久久久末码| 一卡2卡三卡四卡精品乱码亚洲| 在线视频色国产色| 亚洲av第一区精品v没综合| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品欧美日韩精品| 1024手机看黄色片| 在线播放国产精品三级| 久久久久免费精品人妻一区二区| 欧美最黄视频在线播放免费| 成人特级黄色片久久久久久久| 久久欧美精品欧美久久欧美| 九色成人免费人妻av| 18禁美女被吸乳视频| 91av网站免费观看| 在线观看日韩欧美| 亚洲欧洲精品一区二区精品久久久| 99久久99久久久精品蜜桃| 女同久久另类99精品国产91| 黄色 视频免费看| 久久精品91蜜桃| 免费看a级黄色片| 1024香蕉在线观看| 午夜亚洲福利在线播放| 亚洲成a人片在线一区二区| 法律面前人人平等表现在哪些方面| 看片在线看免费视频| 激情在线观看视频在线高清| 国产三级中文精品| 男女床上黄色一级片免费看| 91av网站免费观看| 男女之事视频高清在线观看| 亚洲人成伊人成综合网2020| 国产综合懂色| 久久久久国产精品人妻aⅴ院| 国产精品综合久久久久久久免费| 男人舔女人下体高潮全视频| 狠狠狠狠99中文字幕| 精品熟女少妇八av免费久了| 午夜久久久久精精品| 韩国av一区二区三区四区| 黑人巨大精品欧美一区二区mp4| 日韩欧美国产一区二区入口| 成人特级av手机在线观看| 中国美女看黄片| 老司机午夜福利在线观看视频| 看片在线看免费视频| 全区人妻精品视频| 国产精品免费一区二区三区在线| 母亲3免费完整高清在线观看| 午夜激情欧美在线| 欧美最黄视频在线播放免费| 日韩免费av在线播放| 在线永久观看黄色视频| 母亲3免费完整高清在线观看| 夜夜夜夜夜久久久久| 国产在线精品亚洲第一网站| 欧美日韩综合久久久久久 | 99在线视频只有这里精品首页| 亚洲成人久久爱视频| 看免费av毛片| 老汉色∧v一级毛片| 国产免费av片在线观看野外av| 国产精品自产拍在线观看55亚洲| 亚洲成人久久爱视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲无线观看免费| 国产高潮美女av| 精品国产美女av久久久久小说| bbb黄色大片| 成人亚洲精品av一区二区| 天堂av国产一区二区熟女人妻| 黄色成人免费大全| 国产成人系列免费观看| 听说在线观看完整版免费高清| 国产真实乱freesex| 最新美女视频免费是黄的| 欧美绝顶高潮抽搐喷水| 在线视频色国产色| 欧美激情在线99| 首页视频小说图片口味搜索| 亚洲一区二区三区不卡视频| 久久久久久九九精品二区国产| 国产欧美日韩一区二区三| 51午夜福利影视在线观看| 成人av在线播放网站| 亚洲国产中文字幕在线视频| 手机成人av网站| av中文乱码字幕在线| 亚洲精品美女久久久久99蜜臀| 两个人视频免费观看高清| 美女 人体艺术 gogo| 最新美女视频免费是黄的| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av香蕉五月| 一夜夜www| 很黄的视频免费| 男女那种视频在线观看| 一二三四在线观看免费中文在| 人人妻,人人澡人人爽秒播| 亚洲国产欧洲综合997久久,| 久久午夜综合久久蜜桃| av天堂中文字幕网| 久久亚洲精品不卡| 国产精品久久久久久人妻精品电影| 首页视频小说图片口味搜索| 老司机深夜福利视频在线观看| 国产精品一区二区三区四区免费观看 | 综合色av麻豆| 一本一本综合久久| 欧美一级a爱片免费观看看| 久久国产精品影院| 男女下面进入的视频免费午夜| 精品国产乱码久久久久久男人| 国内精品久久久久久久电影| 搡老妇女老女人老熟妇| 国产久久久一区二区三区| www日本在线高清视频| 国产视频一区二区在线看| 国产三级中文精品| 淫秽高清视频在线观看| 热99re8久久精品国产| 亚洲在线自拍视频| 熟女电影av网| 久久天堂一区二区三区四区| 青草久久国产| 天堂网av新在线| 黑人巨大精品欧美一区二区mp4| 男人舔女人下体高潮全视频| 观看美女的网站| 国产成人一区二区三区免费视频网站| 国产综合懂色| 欧美一区二区精品小视频在线| 久久天堂一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 成熟少妇高潮喷水视频| 免费无遮挡裸体视频| 久久人人精品亚洲av| 成在线人永久免费视频| 精品午夜福利视频在线观看一区| 少妇熟女aⅴ在线视频| 午夜两性在线视频| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆| 一区二区三区国产精品乱码| 日本五十路高清| 90打野战视频偷拍视频| 欧美一级毛片孕妇| 黄色成人免费大全| 久久天堂一区二区三区四区| 黄片大片在线免费观看| 国产高清三级在线| av天堂中文字幕网| 色综合亚洲欧美另类图片| 免费人成视频x8x8入口观看| 狂野欧美激情性xxxx| 国产成人精品久久二区二区免费| www.自偷自拍.com| 免费大片18禁| 亚洲第一欧美日韩一区二区三区| 亚洲一区二区三区色噜噜| 久久中文看片网| a级毛片在线看网站| 青草久久国产| 啦啦啦韩国在线观看视频| 日本黄色视频三级网站网址| 天堂动漫精品| 国产真实乱freesex| 天堂av国产一区二区熟女人妻| 国产精品久久久久久久电影 | 99在线人妻在线中文字幕| 欧美乱妇无乱码| av黄色大香蕉| 欧美日韩综合久久久久久 | 欧美色视频一区免费| 两人在一起打扑克的视频| 精品久久久久久久人妻蜜臀av| 亚洲 国产 在线| 国产三级黄色录像| bbb黄色大片| 在线国产一区二区在线| www.自偷自拍.com| 国产精品自产拍在线观看55亚洲| 女人被狂操c到高潮| 免费看光身美女| 美女免费视频网站| 日日干狠狠操夜夜爽| 女人被狂操c到高潮| 国产精品亚洲美女久久久| 日本五十路高清| 综合色av麻豆| 国产麻豆成人av免费视频| 午夜日韩欧美国产| 日本黄大片高清| 长腿黑丝高跟| xxxwww97欧美| 欧美激情久久久久久爽电影| 亚洲成人中文字幕在线播放| 18禁美女被吸乳视频| 国产精品亚洲av一区麻豆| 黑人操中国人逼视频| 99国产极品粉嫩在线观看| 久久中文字幕人妻熟女| 欧美国产日韩亚洲一区| 亚洲欧美日韩无卡精品| 欧美激情在线99| 国内久久婷婷六月综合欲色啪| 亚洲av五月六月丁香网| 精品国产美女av久久久久小说| 日本一二三区视频观看| 欧美日本视频| 日韩中文字幕欧美一区二区| 搡老岳熟女国产| 19禁男女啪啪无遮挡网站| 桃色一区二区三区在线观看| 国产精品亚洲美女久久久| 中文字幕人成人乱码亚洲影| 日日干狠狠操夜夜爽| svipshipincom国产片| 成人高潮视频无遮挡免费网站| 国产一区二区在线观看日韩 | 麻豆久久精品国产亚洲av| 亚洲国产欧美人成| 中文字幕av在线有码专区| 18禁观看日本| 性色av乱码一区二区三区2| 成熟少妇高潮喷水视频| 后天国语完整版免费观看| 香蕉国产在线看| 午夜精品久久久久久毛片777| 久99久视频精品免费| 夜夜夜夜夜久久久久| 一级毛片高清免费大全| 欧美午夜高清在线| 免费观看人在逋| 老司机午夜福利在线观看视频| h日本视频在线播放| 男人舔女人下体高潮全视频| 三级毛片av免费| 老司机深夜福利视频在线观看| 国产不卡一卡二| 欧美黑人巨大hd| 真实男女啪啪啪动态图| 精品电影一区二区在线| 性色av乱码一区二区三区2| 国产久久久一区二区三区| av天堂中文字幕网| 亚洲熟妇熟女久久| 美女高潮的动态| 国产精品乱码一区二三区的特点| 精品国产美女av久久久久小说| 久久久国产成人免费| 91九色精品人成在线观看| 少妇丰满av| а√天堂www在线а√下载| 精品一区二区三区视频在线 | 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费| 日韩欧美免费精品| 亚洲天堂国产精品一区在线| 老熟妇仑乱视频hdxx| 午夜福利在线观看吧| www.熟女人妻精品国产| 此物有八面人人有两片| 18美女黄网站色大片免费观看| 亚洲人成网站高清观看| 久久久成人免费电影| 麻豆成人午夜福利视频| 成人国产综合亚洲| 成年女人永久免费观看视频| 中文字幕最新亚洲高清| 久久久久亚洲av毛片大全| 69av精品久久久久久| 最新美女视频免费是黄的| 亚洲真实伦在线观看| 男女之事视频高清在线观看| 免费一级毛片在线播放高清视频| 91麻豆精品激情在线观看国产| 真实男女啪啪啪动态图| av在线蜜桃| 国产精品野战在线观看| 久久国产乱子伦精品免费另类| 色精品久久人妻99蜜桃| www日本在线高清视频| 九色成人免费人妻av| 91麻豆av在线| 亚洲精品一区av在线观看| 嫩草影院入口| 99精品在免费线老司机午夜| 欧美黄色片欧美黄色片| 一卡2卡三卡四卡精品乱码亚洲| 悠悠久久av| 成人无遮挡网站| 亚洲成av人片在线播放无| 九九久久精品国产亚洲av麻豆 | 欧美色欧美亚洲另类二区| 岛国在线观看网站| 叶爱在线成人免费视频播放| 国产又黄又爽又无遮挡在线| 国产精品久久久久久亚洲av鲁大| 亚洲av电影在线进入| 日韩欧美国产在线观看| 999久久久国产精品视频| 久久久久久久精品吃奶| 最新美女视频免费是黄的| 欧美+亚洲+日韩+国产| a级毛片在线看网站| 成人鲁丝片一二三区免费| 亚洲国产精品合色在线| 天堂√8在线中文| 美女高潮的动态| 国内精品美女久久久久久| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 久久精品人妻少妇| 欧美黑人巨大hd| 99精品在免费线老司机午夜| 日韩 欧美 亚洲 中文字幕| 午夜免费激情av| 亚洲av片天天在线观看| 美女大奶头视频| 又大又爽又粗| 国产亚洲精品av在线| 国产私拍福利视频在线观看| 国产成人aa在线观看| 久久久久免费精品人妻一区二区| 岛国视频午夜一区免费看| 亚洲欧美激情综合另类| 在线a可以看的网站| 99精品欧美一区二区三区四区| 日本 欧美在线| 一个人免费在线观看电影 | 99久久99久久久精品蜜桃| 18禁观看日本| 国产一区二区三区在线臀色熟女| 国产成人一区二区三区免费视频网站| 人妻丰满熟妇av一区二区三区| 亚洲国产高清在线一区二区三| 国产高潮美女av| 久久精品aⅴ一区二区三区四区| 国产亚洲精品久久久com| svipshipincom国产片| 99国产精品一区二区三区| 亚洲欧美日韩无卡精品| 一个人免费在线观看的高清视频| 好男人在线观看高清免费视频| 亚洲欧美日韩高清在线视频| 人妻夜夜爽99麻豆av| 琪琪午夜伦伦电影理论片6080| 麻豆国产av国片精品| 免费观看精品视频网站| 精品国产亚洲在线| 亚洲精品美女久久av网站| 别揉我奶头~嗯~啊~动态视频| 又大又爽又粗| 午夜福利免费观看在线| 在线观看日韩欧美| 很黄的视频免费| or卡值多少钱| 少妇的丰满在线观看| 一级毛片高清免费大全| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品精品国产色婷婷| 露出奶头的视频| www国产在线视频色| 成人特级黄色片久久久久久久| 舔av片在线| 在线播放国产精品三级| 日韩欧美 国产精品| 舔av片在线| 久久国产精品人妻蜜桃| 一a级毛片在线观看| bbb黄色大片| 麻豆成人av在线观看| 天天添夜夜摸| 精品国产乱子伦一区二区三区| 色噜噜av男人的天堂激情| 精品熟女少妇八av免费久了| 中文亚洲av片在线观看爽| 国产黄色小视频在线观看| 国产伦精品一区二区三区四那| 香蕉av资源在线| 成人鲁丝片一二三区免费| 亚洲电影在线观看av| 99国产精品一区二区蜜桃av| 首页视频小说图片口味搜索| 国产三级在线视频| 国产97色在线日韩免费| 久久久久亚洲av毛片大全| x7x7x7水蜜桃| 女人高潮潮喷娇喘18禁视频| 精品一区二区三区四区五区乱码| 亚洲专区中文字幕在线| 国模一区二区三区四区视频 | 97超视频在线观看视频| 欧美3d第一页| 久久欧美精品欧美久久欧美| 亚洲成人久久爱视频| 免费看光身美女| 69av精品久久久久久| 欧美绝顶高潮抽搐喷水| 欧美日韩中文字幕国产精品一区二区三区| 最新美女视频免费是黄的| 天堂√8在线中文| 国内精品久久久久精免费| 国产精品,欧美在线| 国产精品久久电影中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 精品99又大又爽又粗少妇毛片 | 18禁黄网站禁片免费观看直播| 好男人在线观看高清免费视频| 日韩国内少妇激情av| 欧美日韩乱码在线| 午夜精品在线福利| 白带黄色成豆腐渣| 18禁美女被吸乳视频| 欧美高清成人免费视频www| 国产三级黄色录像| 欧美最黄视频在线播放免费| 久久中文看片网| av黄色大香蕉| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 最好的美女福利视频网| 久久久国产成人免费| 精品不卡国产一区二区三区| 日韩三级视频一区二区三区| 无人区码免费观看不卡| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av成人av| 欧美另类亚洲清纯唯美| 999久久久精品免费观看国产| 国产午夜精品久久久久久| 欧美一级毛片孕妇| 亚洲专区中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 国产成人av激情在线播放| 欧美av亚洲av综合av国产av| 亚洲精品美女久久久久99蜜臀| 天天躁日日操中文字幕| 成人一区二区视频在线观看| 人人妻,人人澡人人爽秒播| 中亚洲国语对白在线视频| 国产精品 欧美亚洲| 麻豆久久精品国产亚洲av| 国产成人精品无人区| 99久久成人亚洲精品观看| 日本黄大片高清| 听说在线观看完整版免费高清| 日韩欧美在线二视频| 国产爱豆传媒在线观看| 欧美性猛交╳xxx乱大交人| 久久久色成人| 国产成人一区二区三区免费视频网站| 亚洲最大成人中文| 香蕉av资源在线| 亚洲欧美日韩高清专用| 国产熟女xx| 成在线人永久免费视频| 欧美日韩国产亚洲二区| 51午夜福利影视在线观看| 午夜精品久久久久久毛片777| 精品国产超薄肉色丝袜足j| 欧美性猛交黑人性爽| 久久午夜亚洲精品久久| 99国产精品99久久久久| 床上黄色一级片| 好男人在线观看高清免费视频| 国产一级毛片七仙女欲春2| 亚洲国产欧美一区二区综合| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩无卡精品| 女人被狂操c到高潮| 久久久久免费精品人妻一区二区| 日本一本二区三区精品| 国产三级中文精品| 窝窝影院91人妻| 久久热在线av| 最近视频中文字幕2019在线8| 亚洲九九香蕉| 国产亚洲精品av在线| 亚洲,欧美精品.| 日韩成人在线观看一区二区三区| 亚洲av熟女| 99热精品在线国产| 亚洲美女视频黄频| 免费在线观看成人毛片| 一区二区三区激情视频| 国产精品女同一区二区软件 | 日本与韩国留学比较| 老鸭窝网址在线观看| 一级毛片高清免费大全| 老熟妇仑乱视频hdxx| 51午夜福利影视在线观看| 99热精品在线国产| 国产蜜桃级精品一区二区三区| 国产97色在线日韩免费| 午夜福利高清视频| 免费人成视频x8x8入口观看| 免费在线观看视频国产中文字幕亚洲| 国产精品精品国产色婷婷| 国产午夜精品论理片| 国产精品精品国产色婷婷| 两性午夜刺激爽爽歪歪视频在线观看| 午夜亚洲福利在线播放| 亚洲av五月六月丁香网| 色精品久久人妻99蜜桃| 99视频精品全部免费 在线 | 白带黄色成豆腐渣| 男女视频在线观看网站免费| 久久国产精品影院| 我要搜黄色片| 一个人看视频在线观看www免费 | 91字幕亚洲| 国产麻豆成人av免费视频| 精品久久久久久,| 亚洲第一欧美日韩一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲国产中文字幕在线视频| 男人舔女人下体高潮全视频| 三级毛片av免费| 一二三四在线观看免费中文在| 香蕉国产在线看| 亚洲中文字幕一区二区三区有码在线看 | 欧美午夜高清在线| 99久久成人亚洲精品观看| 巨乳人妻的诱惑在线观看| 欧美av亚洲av综合av国产av| 精品无人区乱码1区二区| 免费观看人在逋| 一级毛片高清免费大全| av在线天堂中文字幕| 91在线观看av| 91av网站免费观看| 手机成人av网站| 天天躁日日操中文字幕| 欧美不卡视频在线免费观看| 日本免费a在线| 激情在线观看视频在线高清| 亚洲五月天丁香| 亚洲中文日韩欧美视频| 亚洲熟妇中文字幕五十中出| 成熟少妇高潮喷水视频| 老熟妇仑乱视频hdxx| 两个人视频免费观看高清| 国产亚洲精品久久久com| 窝窝影院91人妻| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 91九色精品人成在线观看| 亚洲av免费在线观看| tocl精华| 国产1区2区3区精品| 午夜福利在线观看免费完整高清在 | 51午夜福利影视在线观看| 网址你懂的国产日韩在线| 法律面前人人平等表现在哪些方面| 国产精品久久久人人做人人爽| 久久久久久久久免费视频了| 亚洲国产欧美人成| 无限看片的www在线观看| 欧美zozozo另类| 女同久久另类99精品国产91| 别揉我奶头~嗯~啊~动态视频| 日本五十路高清| 成人亚洲精品av一区二区| 日韩欧美三级三区| netflix在线观看网站| www.www免费av| 一区二区三区高清视频在线| xxxwww97欧美| 宅男免费午夜| 岛国在线观看网站| 亚洲人与动物交配视频| 美女午夜性视频免费| 国产精品一区二区免费欧美| 国产一区二区三区在线臀色熟女| 国产一区二区三区视频了| 亚洲国产精品久久男人天堂| 久久中文字幕一级| 老熟妇仑乱视频hdxx| 一本精品99久久精品77| 岛国在线免费视频观看| 亚洲 国产 在线| xxx96com| 男女视频在线观看网站免费| 欧美日本亚洲视频在线播放| 啦啦啦韩国在线观看视频| 丝袜人妻中文字幕| 国产精品久久久av美女十八| 波多野结衣巨乳人妻|