• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rigid chelating dicarbene ligands based on naphthyridine-fused bisimidazolium salts

    2022-07-11 03:39:08YanLiuZhijieSheQinzeZhengXuesongZhengTianbaoWangGeGao
    Chinese Chemical Letters 2022年6期

    Yan Liu,Zhijie She,Qinze Zheng,Xuesong Zheng,Tianbao Wang,Ge Gao

    Key Laboratory of Green Chemistry and Technology of Ministry of Education,College of Chemistry,Sichuan University,Chengdu,610064,China

    Keywords:NHC Dicarbene ligand Naphthyridine Phenanthroline

    ABSTRACT Naphthyridine-fused bisimidazolium salts were designed and synthesized for the first time.The study of the Cu(II) and Pd(II) complexes demonstrated that the deprotonated dicarbene ligands are rigid chelating C,C-ligands with strong electron-donating ability in analogy with the classic phenanthroline N,N-ligands.

    1,10-Phenanthroline (phen,A,Fig.1) is a tricyclic and planar nitrogen-containing heteroarene [1].It has relatively weakσdonating ability due to its electron-poor characteristic.However,this drawback is largely compensated by its hydrophobicity,two rigid pre-organized nitrogen atoms with a perfect cone angle,andπ-acceptor nature.Therefore,it still exerts strong and entropically favored metal binding.Phen has become a classic chelating bidentate N,N-ligand,and together with its various derivatives been widely serving in coordination chemistry,supramolecular chemistry,transition metal catalysis,and photoactive materials [2,3].On the other hand,N-heterocyclic carbenes (NHCs) are strongσ-donors and weakπ-acceptors [4–7].Since the synthesis and isolation of the first stable NHC,1,3-di(adamantyl)imidazol-2-ylidene,by Arguengoet al.in 1991 [8],a plethora of different NHCs have been continuously created and extensively studied,resulting in enormous attractive applications [9–14].Imidazolium salts are the most commonly used precursors to construct multidentate NHC ligands due to their easy access and stability.In 1995,Herrmannet al.first showcased the catalytic activity of a Pd(II) complex formed by a methylene-bridged dicarbene ligand (B,Fig.1) in the Heck coupling of aryl halides.Unfortunately,complex decomposition was witnessed in solution above 70 °C,probably related to the flexibility of the ligand [15].

    It was not until 15 years later that a rigid tricyclic bidentrate NHC ligand named vegi [16]was synthesized based on pyridazine by the group of Kunz to be a C,C-analogue of phen (C,Fig.1).Due to the contracted five-membered imidazolium moieties,the two carbene sites is fixed in a distance of 2.97 ?A with a wider cone angle in comparison with the two nitrogen atoms in phen,and the molecule is planar.The vegi ligand acted as a chelating C,C-ligand to form mononuclear complexes with alkali metals [17]as well as common transition metals such as Rh(I) and Ir(I) [16,18,19].However,it acted as a bridging ligand with coinage metals Ag(I),Cu(I)and Au(I) to form the corresponding binuclear complexes [16,20],implying it is still relatively flexible [21].To attain a phen analogue with a smaller cone angle,Monkowiuset al.later introduced a mixed C,N-ligand (D,Fig.1) in 2012 [22].It formed chelating Pd(II)and Rh(I) complexes [23,24],but acted as a monodentate C-ligand for Ag(I),Au(I),Au(III) and Cu(I) [22,25].Interestingly,nonorbitalbased dispersion-type interactions were found between the nitrogen and Au atoms in the Au(III) complexes [22].

    Due to our continuous interests in novel azolium compounds as functional materials and ligands [26–32],our design of a C,Canalogue of phen ligand (1,Fig.1) is based on the following considerations: 1) two rigid and pre-organized NHC sites to exert strongerσ-donating ability than phen;2) a tetracyclic over tricylic system with a smaller cone angle than C and D to reinforce chelating metal coordination;3) different R groups as wingtips to fine tune the metal coordinating environment.Herein,we present the synthesis of naphthyridine-fused bisimidazolium salts 1·2HCl.The deprotonated dicarbene coordinates Cu(I) to afford a mononuclear Cu(II) complex in tetrahedron geometry,suggesting its strongσ-donating and suitable chelating ability.It coordinates Pd(II) to form a distorted square planar complex,which surpasses its counterparts,the rigid N,N-ligand and flexible C,C-ligand in the Suzuki cross-coupling reactions.

    The precursors 1·2HCl could be easily obtained following a three-step procedure starting from 2,7-dimethyl-1,8-naphthyridine(Scheme 1).The two methyl groups were first transformed into the formyl groups by oxidation using selenium dioxide.The dicarbaldehyde then reacted with different primary amines to form diimines.Finally,cyclization of diimines with paraformaldehyde followed by treatment with a dioxane solution of hydrochloride(4 mol/L) afforded the designed precursors 1·2HCl in nice yields,which were isolated and purified by column chromatography on silica gel.Their structures were characterized by NMR and high resolution mass spectroscopy (HRMS).The1H NMR spectra showed that their protons on the precarbene sites are significantly acidic as they appear in low field at 11.05 (DMSO–d6),12.14 (DMSO–d6),and 10.90 (CD3OH) ppm for 1a-c,respectively.Meanwhile,the protons on the pre-abnormal carbene sites are in high field at 8.98,8.85,and 8.56 ppm,respectively.The large differences (up to 3.29 ppm)implied that the formation of carbenes by deprotonation of 1·2HCl in the presence of a base should be less interfered by the formation of abnormal carbenes.

    Fig.1.Structures of phen (A) and bidentate NHC ligands: flexible C,C-ligand (B);vegi (C);mixed C,N-ligand (D) and rigid C,C-ligand (1).

    Scheme 2.Top: Synthesis of the Cu(II) complex 2.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 2.Hydrogen atoms are omitted for clarity.

    The single crystals of 1a·2HCl were cultivated in mixed dichloromethane (DCM)/methanol at room temperature and the structure was resolved by the X-ray diffraction analysis as shown in Fig.2.The aza[4]helicene structure renders 1a·2HCl nonplanar and the two imidazolium rings twist about 18.4°.The distance between the two precarbene carbons (C1 and C10) is 3.093 ?A.This long distance is caused by repulsion between the two hydrogens on C1 and C10,and is expected to be significantly reduced after deprotonation.Moreover,the two mesityl groups sit almost orthogonally to the imidazolium planes with dihedral angles of 73.7° and 71.2°,respectively,providing a very nice shielding for the carbene sites.It is worth noting that the same protection by the aryl groups is not presented in the vegi ligand [21].

    Fig.2.ORTEP plot (50% probability thermal ellipsoids) of 1a·2HCl.

    Fig.3.HOMO/LUMO energies of phen (A),methylene-bridged dicarbene (B),vegi(C),C,N-ligand (D) and rigid dicarbene (1a) at the B3LYP/6–31g(d,p) level.

    Preparation of the free dicarbene 1a by deprotonation of 1a·2HCl with base in DMSO was conducted.The reaction system was darkened immediately and decomposed gradually in the presence of a strong base such astBuOK,tBuONa,KHDMS,NaHDMS,and LiHDMS.When a weak base (NaOAc or Et3N) was used,the reaction system remained unchanged over time.Anin situ1H NMR spectrum showed that the peak of the C1/C10 protons disappeared after 30 min from addition of NaH,indicating the formation of the free dicarbene 1a (see Supporting information for details).Unfortunately,decomposition of the free dicarbene occurred while13C NMR data were being collected.

    To obtain more information about the free dicarbene 1a,DFT calculations was carried out at the B3LYP/6–31 g(d,p) level.The optimized structure of 1a is consistent with the crystal structure of the 1a·2HCl (Fig.S1 in the Supporting information).The distance between the two carbene atoms (C1 and C10) is shortened to 2.89 ?A,which is smaller than that in the vegi ligand (2.97 ?A)[16],but still larger than the N–N distance in phen (2.744 ?A) [33].Moreover,the two imidazolium rings also twist less in 16.2°.The molecular orbital (MO) analysis showed that the carbeneσorbitals overlap with each other in HOMO-3,revealing high electron density between the two carbene sites.The HOMO/LUMO energies of 1a were calculated to be ?4.53/?1.08 eV (Fig.S2 in Supporting information).In comparison,the HOMO/LUMO energies of phen,methylene-bridged dicarbene ligand,vegi [16],and C,N-ligand were also calculated to be ?6.25/?1.42,?5.62/?0.04,?5.20/?1.01,and?5.37/?1.34 eV,respectively (Fig.3).It is clear to see that 1a has a much higher HOMO energy than the other ligands and a smallest energy gap between LUMO and HOMO.The significantly elevated HOMO energy level suggested the strong electron donating ability of 1a.

    The coordination behavior of dicarbene 1 toward copper was then evaluated.The [Cu(I)(phen)2X]complexes are extensively investigated as emitters in OLEDs and photosensitizers in photocatalysis [34–39].We therefore wanted to use 1a·2HCl to mimic a similar Cu(I) complex.1a·2HCl did not react with CuCl in the absence of a base.When NaH was used,a new compound was isolated.However,the1H NMR spectrum showed no signal,indicating that it was a paramagnetic compound.Fortunately,single crystals were obtained in mixed DCM/methanol to show a structure of [Cu(II)1aCl2](2,68% yield).We also conducted a reaction of 1a·2HCl with CuCl2in the presence oftBuOK,and 2 was formed in 80% yield (Scheme 2).These results demonstrated the strong electron donating ability of 1a,which inevitably led to oxidation of the coordinated Cu(I) to Cu(II) during workup.Complex 2 adopts a distorted tetrahedral geometry with a bite angle (C1-Cu1-C10) of 90.7° and a dihedral angle between the C1-Cu1-C10 and Cl1-Cu1-Cl2 planes of 77°.The Cu center is slightly off the ligand plane.It is noted that the coordinated dicarbene ligand is almost planar as the dihedral angle between the two imidazolium rings is significantly reduced to only 7.6°,resulting in an even shortened C1-C10 distance of 2.762 ?A,which is very close to the N–N distance in the phen ligand.It needs to point out that while three-and fourcoordinated Cu(I) complexes of phen ligands are common,fourcoordinate Cu(II) complexes are not typical [40,41].In our case,however,only a four-coordinate Cu(II) complex was formed no matter a Cu(I) or Cu(II) salt was used.This difference is probably related to their different electron-donating abilities.Therefore,ligand 1 can be considered as the C,C-analogues of the phen ligands with enhanced electron-donating ability.

    To compare with the rigid phen N,N-ligand A and flexible dicarbene C,C-ligand B,coordination of Pd(OAc)2with the rigid dicarbene 1a-b was conducted in the absence of a base to directly afford the corresponding [Pd(II)1aCl2](3a) and [Pd(II)1bCl2](3b)in 90% and 95% yields,respectively.The structure of 3b was resolved by the single crystal X-ray diffraction analysis (Scheme 3).Complex 3b rests in a distorted square planar geometry with the dicarbene plane (C1-C13-C10) bent out of the coordinating plane(C1-Pd1-C10) in 34.9° due to the steric hindrance of the adjacent butyl groups,which resembles very much the corresponding phen[42,43]and flexible dicarbene complexes [44,45].The angle of Cl1-Pd1-Cl2 is 87.3°,similar to that in the corresponding phen complex(86.8°).However,the bite angle of C1-Pd1-C10 is 86.3°,larger than the bite angle of N-Pd-N (80.6°).In addition,a dihedral angle of 10.4° is found between the C1-Pd1-C10 plane and the Cl1-Pd1-Cl2 plane.The rigid skeleton is forced in a boat-shaped conformation,resulting in a dihedral angle of the two imidazolium rings of 29.6°and a further shortened C1-C10 distance of 2.704 ?A from 2.The bond lengthens of C1-Pd and C10-Pd are 1.977 ?A equally,which fall into the common range of NHC-Pd bonds.

    Scheme 3.Top: Synthesis of the Pd(II) complexes 3.Bottom: ORTEP plot (50% probability thermal ellipsoids) of 3b.Hydrogen atoms are omitted for clarity.

    Scheme 4.Oxidation of the Pd(II) complex 3b and the corresponding products 5–7.Conditions: in the presence of (a) 1 equiv.,(b) 2 equiv.and (c) 4 equiv.of PhICl2.

    In addition to the classic Heck,Negishi and Suzuki reactions involving a Pd(0)/Pd(II) catalytic cycle,reactions involving an alternative Pd(II)/Pd(IV) cycle have been actively pursued in the past decades.Well-defined Pd(IV) complexes are helpful to understand the catalytic process,but the synthesis is still elusive [46].In consideration of the rigid backbone and strong electron-donating ability of the dicarbene 1,possible access to a proposed Pd(IV)complex 4 by oxidation of the Pd(II) complex 3 was attempted(Scheme 4).The oxidation of 3a with 1 equiv.of PhICl2resulted in no reaction at all.However,the oxidation of 3b under the same conditions unexpectedly delivered a chloro–substituted product 5 in 70% yield.When 2 equiv.of PhICl2was used,a dichlorosubstituted product 6 was obtained in 96% yield.Increasing the amount of the oxidant to 4 equiv.led to further dearomatization of the naphthyridine backbone and gave a tetrachloro-substituted product 7 in 92% yield.Products 5–7 were fully characterized by NMR and HRMS,and the structure of 7 was also confirmed by the single crystal X-ray diffraction analysis.There was no Pd(IV) product identified in any reaction system.

    Finally,the usefulness of the rigid chelating dicarbene 1 as a ligand in transition metal catalyzed reactions was preliminarily evaluated by the catalytic activity of 3a in the Suzuki coupling reactions of a series of representative aryl bromides with aryl boronic acids.Two Pd(II) complexes with a flexible dicarbene ligand (8)and a rigid phen ligand (9) were also prepared (see the Supporting information) and used as comparative catalysts.As can be seen in Table 1,in the presence of 0.5 mol% catalyst and 2 equiv.of Cs2CO3as a base,3a in general performed better than 8 and 9.When electron-deficient and sterically hindered substrates were employed,the reactions ran slower and 3a exhibited much improved catalytic activity than its counterparts (Table 1,entries 2,3 and 6–8).When weaker base NaOAc was employed,3a still worked fine while the performances of 8 and 9 dropped a lot (Table 1,entry 9).When the reactions were conducted with a lower catalyst loading,in water or at room temperature,the desired product was obtained in moderate yield by using 3a,but poor yield was attained by using 8 and 9 (Table 1,entries 10–12).For less activep-chlorotoluene,3a showed a lower efficiency under the standard conditions,while 8 and 9 were ineffective at all.The reaction was much improved when 5 mol% 3a was used (Table 1,entries 13 and 14).These results demonstrated the beneficial effect of the rigid and strongly electron-donating C,C-ligand 1 in the Pdcatalyzed Suzuki coupling reaction.

    Table 1 Evaluation of the catalytic activity of 3a by the Suzuki coupling reaction.a

    In summary,we have successfully prepared novel naphthyridine-fused bisimidazolium salts 1·2HCl by a straightforward three-step procedure.Although the whole molecules are nonplanar due to the aza[4]helicene skeleton,the deprotonated dicarbenes 1 acted as rigid C,C-chelating bidentate ligands formed very similar Cu(II) and Pd(II) complexes as the classic N,N-ligand phen.Differently,however,only a Cu(II) complex was obtained whenever a Cu(I) or Cu(II) source was used.Moreover,the Pd(II)complex exhibited higher catalytic activity than the Pd(II) complexes with a rigid phen ligand and a flexible dicarbene ligand as preliminarily evaluated by the Suzuki coupling reaction.These specific features are believed in related to the combination of a strong electron-donating ability and a rigid chelating skeleton of 1 as designed.These novel rigid dicarbene ligands are attractive in metal coordination for catalysis and optoelectronic materials [47].Further investigations are now going on in our laboratory.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We appreciate the financial support from the National Natural Science Foundation of China (No.21772134) and the Fundamental Research Funds for the Central Universities (No.20826041D4117).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.069.

    一区二区日韩欧美中文字幕| 国产精品亚洲av一区麻豆| 精品人妻1区二区| 99在线视频只有这里精品首页| 欧美日本视频| 一边摸一边抽搐一进一小说| 纯流量卡能插随身wifi吗| 国产熟女午夜一区二区三区| 国产精品亚洲av一区麻豆| 香蕉丝袜av| 国产人伦9x9x在线观看| 欧美国产精品va在线观看不卡| 久久久精品欧美日韩精品| 亚洲五月色婷婷综合| 日韩一卡2卡3卡4卡2021年| 一区二区日韩欧美中文字幕| 亚洲第一电影网av| 久久久精品欧美日韩精品| 亚洲精品在线美女| 亚洲欧美精品综合久久99| 国产精品免费一区二区三区在线| 91在线观看av| 亚洲五月婷婷丁香| 亚洲成人国产一区在线观看| 黑人巨大精品欧美一区二区mp4| 熟女少妇亚洲综合色aaa.| 精品久久久久久久毛片微露脸| 亚洲精品国产精品久久久不卡| av视频在线观看入口| 国产精品综合久久久久久久免费 | 久久性视频一级片| 精品国产一区二区三区四区第35| 精品卡一卡二卡四卡免费| 久久九九热精品免费| 亚洲av成人不卡在线观看播放网| 国产激情欧美一区二区| 精品一区二区三区四区五区乱码| АⅤ资源中文在线天堂| 久久久久久人人人人人| 亚洲欧美日韩高清在线视频| bbb黄色大片| 91av网站免费观看| 亚洲精品在线观看二区| 老司机深夜福利视频在线观看| 日韩欧美国产一区二区入口| 久久久久久久精品吃奶| 免费搜索国产男女视频| 97碰自拍视频| 久久国产亚洲av麻豆专区| 69精品国产乱码久久久| 久久久久久大精品| 日韩欧美国产一区二区入口| 九色国产91popny在线| 久久亚洲真实| 亚洲成av片中文字幕在线观看| 又大又爽又粗| 啦啦啦 在线观看视频| 亚洲精品在线观看二区| 国产激情欧美一区二区| 十分钟在线观看高清视频www| 日韩av在线大香蕉| 两个人免费观看高清视频| 久久国产精品影院| 午夜免费鲁丝| 十八禁人妻一区二区| 亚洲最大成人中文| 国产精品久久电影中文字幕| www.www免费av| www.999成人在线观看| 欧美绝顶高潮抽搐喷水| 欧美日韩乱码在线| 人人妻,人人澡人人爽秒播| 无人区码免费观看不卡| 亚洲激情在线av| 悠悠久久av| 不卡av一区二区三区| 两个人看的免费小视频| 欧美丝袜亚洲另类 | 高清黄色对白视频在线免费看| 美女高潮喷水抽搐中文字幕| 免费在线观看影片大全网站| 一本大道久久a久久精品| 日韩欧美国产在线观看| 久久草成人影院| 黄色片一级片一级黄色片| 久久久久久久久久久久大奶| 极品教师在线免费播放| 亚洲九九香蕉| 午夜福利,免费看| 999精品在线视频| 又黄又爽又免费观看的视频| 怎么达到女性高潮| 桃色一区二区三区在线观看| 黄色女人牲交| 精品第一国产精品| 国产欧美日韩综合在线一区二区| 制服丝袜大香蕉在线| 日韩 欧美 亚洲 中文字幕| 一二三四在线观看免费中文在| 麻豆一二三区av精品| 亚洲国产精品久久男人天堂| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频| 精品无人区乱码1区二区| 国产成人精品在线电影| 亚洲美女黄片视频| 又黄又爽又免费观看的视频| 大码成人一级视频| 桃红色精品国产亚洲av| 琪琪午夜伦伦电影理论片6080| 国产xxxxx性猛交| 999久久久国产精品视频| 亚洲三区欧美一区| 搞女人的毛片| 91老司机精品| 欧美中文综合在线视频| 国产熟女午夜一区二区三区| 18禁美女被吸乳视频| 亚洲 欧美 日韩 在线 免费| 免费观看精品视频网站| 女人精品久久久久毛片| 视频在线观看一区二区三区| 亚洲性夜色夜夜综合| 国产av一区二区精品久久| 777久久人妻少妇嫩草av网站| 精品卡一卡二卡四卡免费| 91老司机精品| 午夜福利成人在线免费观看| 91国产中文字幕| 午夜免费观看网址| 波多野结衣高清无吗| 成人国产综合亚洲| 日日爽夜夜爽网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人一区二区免费高清观看 | 国产成人免费无遮挡视频| 操美女的视频在线观看| 桃红色精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩瑟瑟在线播放| 成年女人毛片免费观看观看9| 国产欧美日韩一区二区三| 日韩免费av在线播放| 777久久人妻少妇嫩草av网站| 91大片在线观看| 成熟少妇高潮喷水视频| 非洲黑人性xxxx精品又粗又长| 久99久视频精品免费| 两性夫妻黄色片| 丝袜人妻中文字幕| 夜夜爽天天搞| 一级毛片女人18水好多| 很黄的视频免费| 嫁个100分男人电影在线观看| a级毛片在线看网站| 国产高清有码在线观看视频 | 免费在线观看完整版高清| 国产高清视频在线播放一区| 变态另类成人亚洲欧美熟女 | 男人舔女人下体高潮全视频| 18禁观看日本| 97人妻天天添夜夜摸| 国产精品亚洲美女久久久| 亚洲在线自拍视频| svipshipincom国产片| 午夜久久久久精精品| 一个人免费在线观看的高清视频| 日韩欧美一区视频在线观看| 日韩精品青青久久久久久| 夜夜看夜夜爽夜夜摸| 亚洲一区中文字幕在线| 欧美日本视频| 免费一级毛片在线播放高清视频 | 欧美精品啪啪一区二区三区| bbb黄色大片| 日日干狠狠操夜夜爽| 丝袜美腿诱惑在线| 成在线人永久免费视频| 久久中文字幕一级| 精品久久久久久久毛片微露脸| 黄色视频,在线免费观看| 久久香蕉国产精品| 久久精品影院6| 91精品三级在线观看| 涩涩av久久男人的天堂| 可以在线观看毛片的网站| 精品午夜福利视频在线观看一区| 97超级碰碰碰精品色视频在线观看| 日本vs欧美在线观看视频| 国产麻豆成人av免费视频| tocl精华| 脱女人内裤的视频| 国产私拍福利视频在线观看| 精品人妻在线不人妻| 999久久久精品免费观看国产| 一边摸一边做爽爽视频免费| 国产乱人伦免费视频| 一级a爱视频在线免费观看| 免费无遮挡裸体视频| 亚洲午夜精品一区,二区,三区| 国产精品亚洲美女久久久| 色老头精品视频在线观看| 天天一区二区日本电影三级 | 精品人妻1区二区| 99国产精品99久久久久| 亚洲成av人片免费观看| 久久精品91无色码中文字幕| 免费看十八禁软件| a在线观看视频网站| 日本a在线网址| 一a级毛片在线观看| 免费搜索国产男女视频| 久久青草综合色| 1024香蕉在线观看| 婷婷精品国产亚洲av在线| 大型av网站在线播放| 亚洲黑人精品在线| 久久久久九九精品影院| 久久精品国产综合久久久| 久热这里只有精品99| 91成年电影在线观看| 18禁观看日本| 久久国产乱子伦精品免费另类| 国产在线观看jvid| 国产91精品成人一区二区三区| 亚洲成av片中文字幕在线观看| 黄色视频不卡| 香蕉丝袜av| 亚洲五月天丁香| 大陆偷拍与自拍| а√天堂www在线а√下载| 大型av网站在线播放| 男女下面插进去视频免费观看| 国产精品久久视频播放| 国产亚洲av嫩草精品影院| 欧美日韩福利视频一区二区| 性欧美人与动物交配| 高清在线国产一区| 热re99久久国产66热| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色视频,在线免费观看| 久久人妻福利社区极品人妻图片| 亚洲一码二码三码区别大吗| 午夜福利视频1000在线观看 | 亚洲成人久久性| 波多野结衣高清无吗| 男女下面进入的视频免费午夜 | 亚洲专区国产一区二区| 国产高清视频在线播放一区| 男人舔女人下体高潮全视频| 啦啦啦 在线观看视频| 亚洲国产精品成人综合色| 国产亚洲av嫩草精品影院| 欧美丝袜亚洲另类 | 欧美中文日本在线观看视频| 精品人妻1区二区| 久久人人精品亚洲av| 免费av毛片视频| 久久久久久大精品| 亚洲精华国产精华精| 女警被强在线播放| 免费久久久久久久精品成人欧美视频| 中文字幕av电影在线播放| 中文字幕精品免费在线观看视频| 成人特级黄色片久久久久久久| 亚洲国产高清在线一区二区三 | 免费高清视频大片| 人人妻人人爽人人添夜夜欢视频| 久久天堂一区二区三区四区| 91精品三级在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一码二码三码区别大吗| 男人操女人黄网站| 亚洲,欧美精品.| 成人国产一区最新在线观看| 搡老岳熟女国产| 免费在线观看完整版高清| 丝袜美腿诱惑在线| 国产色视频综合| 两人在一起打扑克的视频| 9色porny在线观看| 国产主播在线观看一区二区| 色综合欧美亚洲国产小说| 国产成人av激情在线播放| 韩国av一区二区三区四区| 日韩精品中文字幕看吧| 在线观看www视频免费| 啦啦啦观看免费观看视频高清 | 涩涩av久久男人的天堂| 黄片小视频在线播放| 亚洲久久久国产精品| 欧美日韩亚洲综合一区二区三区_| 色播亚洲综合网| a在线观看视频网站| 18美女黄网站色大片免费观看| 大陆偷拍与自拍| www.www免费av| 国产麻豆成人av免费视频| 久久精品国产99精品国产亚洲性色 | 亚洲av日韩精品久久久久久密| 亚洲av日韩精品久久久久久密| 人成视频在线观看免费观看| 好男人在线观看高清免费视频 | 高清毛片免费观看视频网站| 99精品久久久久人妻精品| av片东京热男人的天堂| 女性生殖器流出的白浆| 日本a在线网址| 午夜福利视频1000在线观看 | АⅤ资源中文在线天堂| 亚洲一区二区三区不卡视频| 亚洲欧美激情在线| 精品国产一区二区三区四区第35| 长腿黑丝高跟| 满18在线观看网站| 99精品久久久久人妻精品| 日本三级黄在线观看| 波多野结衣巨乳人妻| 亚洲人成网站在线播放欧美日韩| 乱人伦中国视频| 久久天堂一区二区三区四区| 天天添夜夜摸| 久久九九热精品免费| 欧美中文综合在线视频| 亚洲av成人一区二区三| 午夜免费鲁丝| 99久久综合精品五月天人人| 精品久久久久久久久久免费视频| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 99国产综合亚洲精品| 国产欧美日韩综合在线一区二区| 黑人欧美特级aaaaaa片| 色老头精品视频在线观看| 亚洲少妇的诱惑av| 19禁男女啪啪无遮挡网站| 在线观看免费日韩欧美大片| 欧美大码av| 少妇 在线观看| 黄色女人牲交| 男女下面插进去视频免费观看| 在线av久久热| 久久精品亚洲精品国产色婷小说| 乱人伦中国视频| 精品乱码久久久久久99久播| 免费看十八禁软件| 黄网站色视频无遮挡免费观看| 最新美女视频免费是黄的| 老司机在亚洲福利影院| 国产亚洲精品第一综合不卡| videosex国产| aaaaa片日本免费| 9191精品国产免费久久| 亚洲国产欧美日韩在线播放| 亚洲av成人av| 波多野结衣一区麻豆| 级片在线观看| 97人妻天天添夜夜摸| 美女免费视频网站| 18禁美女被吸乳视频| 中文字幕色久视频| 日韩精品中文字幕看吧| 欧美在线黄色| 亚洲国产精品成人综合色| 国产av精品麻豆| 久久亚洲真实| 中文字幕色久视频| 一级毛片精品| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 亚洲精华国产精华精| 美女扒开内裤让男人捅视频| 国产成+人综合+亚洲专区| 欧美午夜高清在线| 日韩欧美免费精品| 美女 人体艺术 gogo| 国产激情欧美一区二区| 老司机靠b影院| 日韩三级视频一区二区三区| 国产欧美日韩一区二区精品| 黄色a级毛片大全视频| 999精品在线视频| 黄色视频不卡| 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频 | 久久久久久久午夜电影| 久久性视频一级片| 国产成人精品久久二区二区91| 18禁黄网站禁片午夜丰满| 国产激情欧美一区二区| 12—13女人毛片做爰片一| 久久久久久国产a免费观看| 在线av久久热| 色老头精品视频在线观看| 少妇熟女aⅴ在线视频| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 美女高潮喷水抽搐中文字幕| 在线观看免费日韩欧美大片| 国产免费男女视频| 91字幕亚洲| 狠狠狠狠99中文字幕| 中文字幕最新亚洲高清| 每晚都被弄得嗷嗷叫到高潮| 亚洲av电影在线进入| 美女 人体艺术 gogo| 美国免费a级毛片| 国产xxxxx性猛交| 亚洲五月天丁香| 看免费av毛片| 动漫黄色视频在线观看| 亚洲中文av在线| 久久久久国产一级毛片高清牌| 97人妻天天添夜夜摸| 18禁国产床啪视频网站| 一级作爱视频免费观看| 国产亚洲精品av在线| 欧美乱色亚洲激情| 一本大道久久a久久精品| 国产一区在线观看成人免费| 十八禁人妻一区二区| 可以在线观看毛片的网站| 日韩欧美免费精品| 中文字幕色久视频| 999久久久精品免费观看国产| 亚洲电影在线观看av| 亚洲最大成人中文| av.在线天堂| 色综合色国产| 国产午夜福利久久久久久| 国产极品精品免费视频能看的| 1000部很黄的大片| 亚洲18禁久久av| 51国产日韩欧美| 看十八女毛片水多多多| 亚洲av成人av| 一级av片app| 国产极品精品免费视频能看的| 美女xxoo啪啪120秒动态图| 亚洲熟妇中文字幕五十中出| 国产一区二区三区视频了| 国产精品爽爽va在线观看网站| 欧美日韩亚洲国产一区二区在线观看| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 99热这里只有精品一区| 久久久久久久亚洲中文字幕| .国产精品久久| 香蕉av资源在线| 性欧美人与动物交配| 免费看a级黄色片| 国产精品伦人一区二区| 少妇丰满av| 久久久久久久久久久丰满 | 精品久久久久久久久亚洲 | 国产一区二区亚洲精品在线观看| 亚洲国产日韩欧美精品在线观看| 久久久久久久精品吃奶| 国产亚洲精品久久久久久毛片| 美女cb高潮喷水在线观看| 亚洲专区中文字幕在线| 国产亚洲欧美98| 国产不卡一卡二| 国产aⅴ精品一区二区三区波| 美女高潮喷水抽搐中文字幕| 国产激情偷乱视频一区二区| 超碰av人人做人人爽久久| 色综合色国产| 国产欧美日韩一区二区精品| 人人妻人人澡欧美一区二区| 国产精品久久电影中文字幕| 亚洲自偷自拍三级| 18+在线观看网站| 一个人免费在线观看电影| 国产精品1区2区在线观看.| 免费观看的影片在线观看| 国产高潮美女av| 亚洲成a人片在线一区二区| 日韩中字成人| 精品一区二区三区av网在线观看| 欧美性猛交╳xxx乱大交人| 成人国产综合亚洲| 俺也久久电影网| 日本免费一区二区三区高清不卡| 国产视频内射| 午夜免费成人在线视频| 少妇人妻精品综合一区二区 | 国产精品久久视频播放| 少妇熟女aⅴ在线视频| 国产精品精品国产色婷婷| 看片在线看免费视频| 亚洲av美国av| 天堂影院成人在线观看| 亚洲av.av天堂| 亚洲美女搞黄在线观看 | 天堂动漫精品| 亚洲av成人精品一区久久| 亚洲国产欧洲综合997久久,| 欧美日韩亚洲国产一区二区在线观看| 国产乱人视频| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 国产亚洲精品久久久com| 麻豆成人av在线观看| 两个人视频免费观看高清| 亚洲国产日韩欧美精品在线观看| 99在线人妻在线中文字幕| 精品99又大又爽又粗少妇毛片 | 麻豆国产av国片精品| 人妻制服诱惑在线中文字幕| 国产一区二区三区在线臀色熟女| 人妻丰满熟妇av一区二区三区| 波多野结衣高清作品| 韩国av在线不卡| 成人国产一区最新在线观看| 性插视频无遮挡在线免费观看| 搞女人的毛片| 一级毛片久久久久久久久女| 伊人久久精品亚洲午夜| 午夜福利视频1000在线观看| 此物有八面人人有两片| 直男gayav资源| a级毛片免费高清观看在线播放| 看免费成人av毛片| 毛片女人毛片| 村上凉子中文字幕在线| 国产大屁股一区二区在线视频| 亚洲精品国产成人久久av| 免费看光身美女| 国产精品精品国产色婷婷| 看黄色毛片网站| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 亚洲国产精品sss在线观看| 狂野欧美白嫩少妇大欣赏| 老熟妇仑乱视频hdxx| 国产免费一级a男人的天堂| 色综合亚洲欧美另类图片| 老司机午夜福利在线观看视频| 日本与韩国留学比较| 无人区码免费观看不卡| 国产精品一区二区性色av| 久9热在线精品视频| 色哟哟哟哟哟哟| 午夜精品久久久久久毛片777| 听说在线观看完整版免费高清| 日本黄色片子视频| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩无卡精品| 夜夜夜夜夜久久久久| 久久精品人妻少妇| 精品久久久久久成人av| 有码 亚洲区| 网址你懂的国产日韩在线| 乱系列少妇在线播放| 久久精品夜夜夜夜夜久久蜜豆| 99热精品在线国产| 一个人观看的视频www高清免费观看| 12—13女人毛片做爰片一| 婷婷丁香在线五月| 成年女人永久免费观看视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产亚洲网站| 亚洲av.av天堂| 亚洲,欧美,日韩| 国产欧美日韩一区二区精品| 午夜a级毛片| 美女被艹到高潮喷水动态| 嫩草影院入口| 97碰自拍视频| 久久人妻av系列| 一级毛片久久久久久久久女| 精品一区二区三区视频在线观看免费| 久久精品国产99精品国产亚洲性色| 久久人人爽人人爽人人片va| 欧美激情久久久久久爽电影| 日韩 亚洲 欧美在线| 国产精品av视频在线免费观看| 中文字幕av在线有码专区| 久久天躁狠狠躁夜夜2o2o| 日韩精品青青久久久久久| 国产在视频线在精品| 亚洲国产欧美人成| 麻豆成人av在线观看| 成人二区视频| 亚洲精品粉嫩美女一区| 麻豆成人av在线观看| 一级av片app| 国产一区二区亚洲精品在线观看| 女同久久另类99精品国产91| 桃色一区二区三区在线观看| 88av欧美| 免费无遮挡裸体视频| 国内精品久久久久久久电影| 亚洲自偷自拍三级| 看十八女毛片水多多多| 欧美色欧美亚洲另类二区| 美女被艹到高潮喷水动态| 2021天堂中文幕一二区在线观| 欧美一级a爱片免费观看看| 99久久无色码亚洲精品果冻| 嫩草影视91久久| 日韩欧美国产在线观看| 日本a在线网址| 国产乱人视频| 国产色爽女视频免费观看| 男女之事视频高清在线观看| 在线观看av片永久免费下载| 高清在线国产一区| 美女xxoo啪啪120秒动态图| 国内精品美女久久久久久| 国产精品久久电影中文字幕| 俄罗斯特黄特色一大片| 综合色av麻豆| 日本黄色视频三级网站网址|