• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel photoelectrochemical immunosensor for MCF-7 cell detection based on n-p organic semiconductor heterojunction

    2022-07-11 03:39:00QinZengQingyWeiJirongLuoYongQinMinghuiYngYingpingZouLiminLu
    Chinese Chemical Letters 2022年6期

    Qin Zeng,Qingy Wei,Jirong Luo,Yong Qin,Minghui Yng,?,Yingping Zou,?,Limin Lu

    a Hunan Provincial Key Laboratory of Micro &Nano Materials Interface Science,College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China

    b Institute of Functional Materials and Agricultural Applied Chemistry,College of Science,Jiangxi Agricultural University,Nanchang 330045,China

    c Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation,East China University of Technology,Nanchang 330013,China

    Keywords:Photoelectrochemical immunosensor Organic semiconductors n-p Heterojunction MCF-7

    ABSTRACT In this work,we developed a novel photoelectrochemical (PEC) sensor based on n-p organic semiconductor heterojunction for sensitive detecting MCF-7 cancer cells.BTA-C4Ph and PM6 were designed as photoactive materials to form n-p heterojunction,which greatly enhanced the photoelectric conversion efficiency.Antibody-modified magnetic nanoparticles were utilized to capture and separate MCF-7 cells from samples.Detection of MCF-7 is ascribed to the loading of MCF-7 onto BTA-C4Ph-PM6 modified electrode that resulted in the decrease of photocurrent intensity.The PEC immunosensor displayed a linear concentration ranging from 50 cell/mL to 1 × 104 cell/mL with a limit of detection (LOD) of 41 cell/mL(S/N=3) for MCF-7.Additionally,the senor also exhibited good stability,excellent selectivity and prominent reproducibility.Furthermore,the sensor was successfully applied to detect MCF-7 in whole blood.This work illustrates that n-p heterojunction of organic semiconductor may find wide applications for the preparation of different photoelectrochemical sensors.

    Breast cancer is a malignant tumor with the highest incidence rate and is the second fatal rate among women [1].Early diagnosis is the main means to reduce the mortality and morbidity of breast cancer [2].Michigan cancer foundation-7 (MCF-7) is one type of human breast cancer cells.Currently,various analytical techniques are reported for MCF-7 detection,including differential pulse voltammetry (DPV) [3],electrochemiluminescence (ECL)[4],electrochemical impedance spectroscopy (EIS) [5,6],inductively coupled plasma-mass spectrometry (ICP-MS) [7],localized surface plasmon resonance (LSPR) spectra [8],Fluorescence spectra [9]etc.However,development of approach for MCF-7 detection in human blood with high selectivity and sensitivity are still highly required for early breast cancer diagnosis.

    Photoelectrochemical (PEC) detection has arisen as a promising technique for detecting biomarkers owing to its simple operation and easy of miniaturization [10–12].It also demonstrates a low background signal and high sensitivity caused by the complete isolation of exciting source and detecting signal [13,14].Generally,the performance of PEC sensor depends heavily on the photo-tocurrent conversion efficiency of photoactive materials employed in the design of sensors.However,single photosensitive material often hard to satisfy the practical application due to its low efficiency for electron-hole separation [15].Consequently,much attention has paid on two or more kinds of semiconductors forming a heterojunction nanostructure [16–19].Compared with inorganic heterojunction,organic semiconductor heterojunction has adjustable energy level and higher matching degree,which is beneficial to improve the photoelectric conversion efficiency [20–25].

    PM6 as organic semiconductor donor has high crystallinity and strongπ-πstacking arrangement with the highest occupied molecular orbital (HOMO) of ?5.56 eV and lowest unoccupied molecular orbital (LOMO) of ?3.50 eV These characteristics are conducive to the transport of charge carriers,thereby inhibiting the recombination of electron-hole pairs [26,27].For example,organic photovoltaics based on Y6-PM6 heterojunction can achieve a high efficiency of 15.7% [28,29].Organic semiconductor receptors have advantages such as adjustable molecular structures,regulable energy levels and strong light absorption,which are widely used in organic solar cells.For instance,Duanet al.designed a solar cell module based on organic semiconductor acceptor N3 with power conversion efficiency average of 14.10% [21].BTA-C4Ph is an unreported low-band gap n-type organic semiconductor acceptor,deriving from the advanced organic semiconductor material Y6 [28].The absorption wavelength of BTA-C4Ph ranges from 500 nm to 800 nm with a HOMO of ?5.59 eV and a LUMO of ?3.88 eV The energy levels of BTA-C4Ph and PM6 are highly matched,indicating BTA-C4Ph-PM6 heterojunction has the potential in PEC detection.

    Herein,we reported a label-free PEC immunosensor for detecting MCF-7 cells utilizing BTA-C4Ph-PM6 as the photoelectric material and magnetic nanoparticles (MNs) for capture and enrichment MCF-7 cells from blood samples (Scheme 1).BTA-C4Ph and PM6 formed an n-p heterojunction,which not only improved the photoelectric conversion efficiency of organic semiconductors,but also effectively inhibited the recombination of electron-hole pairs.The highly matched energy levels between BTA-C4Ph and PM6 resulted in a high photocurrent for the BTA-C4Ph-PM6 heterogeneity,which ensured the sensing sensitivity.MNs are nontoxic and widely used in biosensing [30].While,MNs modified with antibodies can specifically bind to epithelial cell adhesion molecule (Ep-CAM) on the MCF-7 cell surface,providing high selectivity of the sensor [31–33].With the loading of MCF-7 onto the electrode,the photocurrent intensity of the electrode is suppressed,which is proportional to cell concentration.The sensor shows high specificity,reproducibility and good stability.Furthermore,the PEC senor was successfully applied for analyzing MCF-7 in whole blood samples.

    Scheme 1.(A) Electron-hole pair transfer process of BTA-C4Ph-PM6 heterojunction.(B) The process of enriching MCF-7 cells.

    Fig.2.(A) Normalized absorption spectra of BTA-C4Ph in the chloroform.(B) Cyclic voltammogram of BTA-C4Ph (a) and Fc/Fc+ (b).(C) SEM image of Fe3O4 MNs.(D)TEM image of BTA-C4Ph-PM6.

    The synthetic process of BTA-C4Ph is shown in Fig.1.The compound 1 was prepared by Stille coupling reaction of 4,7-dibromo-2-(2-ethylhexyl)-5,6-dinitro-2H-benzo[d][1,2,3]triazole with tributyl(4-hexylthiophen-2-yl)stannane and then went through a double intramolecular Cadogan reductive cyclization and anN-alkylation to obtain the fused compound 2.The compound 3 was then synthesized by the Vilsmeier-Haack reaction.The target molecule BTA-C4Ph was achieved through the Knoevenagel condensation between the compound 3 and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2FIC).The details of the synthesis procedures were shown in Supporting information.The intermediate and target materials were characterized by1H NMR and13C NMR,and the corresponding NMR spectra were displayed in Figs.S2-S6 (Supporting information).

    Fig.1.The synthetic procedure of BTA-C4Ph.

    To form BTA-C4Ph-PM6 heterojunction,1 mg BTA-C4Ph and 1 mg PM6 were dispersed in 1 mL tetrahydrofuran (THF),respectively,and then mixed and sonicated for 10 min to prepare 2 mL BTA-C4Ph-PM6 heterojunction solution.

    Carboxyl functionalized Fe3O4nanoparticles (Fe3O4MNs) were acquired by hydrothermal method on the basis of the previous reports [32–34].The detailed procedure for synthesis of Fe3O4and anti-EpCAM-MNs were shown in Supporting information.

    As represented in Scheme 1B,for capture and enrich MCF-7 from samples,100 μL anti-EpCAM-MNs (200 μg/mL) nanocomposite was added to NaCl (0.9%) solution with different concentration of MCF-7 cells.At room temperature,the reaction was shaken for 1 h.Anti-EpCAM-MNs-MCF-7 was separated by magnetic separation and re-dispersed in 1 mL NaCl (0.9%).

    To prepare the PEC sensor,BTA-C4Ph-PM6 heterojunction hybrid was sonicated for 10 min,and then 10 μL BTA-C4Ph-PM6 mixed solutions was added onto the surface of cleaned GCE.After dried under infrared light,30 μL anti-EpCAM-MNs-MCF-7 compounds was dropped on the surface of the modified electrode,which was incubated in an oven at 37 °C for 1 h,and rinsed with DI water for testing.

    Fig.3.(A) EIS responses of electrodes: (a) bare GCE,(b) BTA-C4Ph/GCE,(c) BTA-C4Ph-PM6/GCE,(d) BTA-C4Ph-PM6/anti-EpCAM-MNs/GCE,(e) BTA-C4Ph-PM6/anti-EpCAMMNs/MCF-7/GCE.Supporting electrolyte: 5.0 mmol/L K3Fe(CN)6/K4Fe(CN)6 (1:1) containing 0.1 mol/L KCl.(B) Photoelectric responses of electrodes: (a) PM6/GCE,(b) BTAC4Ph/GCE,(c) BTA-C4Ph-PM6/anti-EpCAM-MNs/MCF-7/GCE,(d) BTA-C4Ph-PM6/anti-EpCAM-MNs/GCE,(e) BTA-C4Ph-PM6/GCE.PEC test was in 0.01 mol/L PBS (pH 7.2~7.4)at a bias potential of ?0.3 V (vs. Ag/AgCl) under visible light irradiation (λ > 420 nm).

    The normalized absorption spectra and cyclic voltammetry (CV)curve of BTA-C4Ph were shown in Fig.2.The absorption spectrum of BTA-C4Ph (Fig.2A) exhibits an obvious absorption peak at around 720 nm.CV was employed to measure the electrochemical properties of BTA-C4Ph.The HOMO and LUMO energy levels can be calculated by the formula of EHOMO/LUMO=?e(4.80 ??1/2,Fc/Fc++?onset,ox/red) (eV),where the?1/2,Fc/Fc+is the redox potential of Fc/Fc+νs.Ag/AgCl (0.44 V),?onset,ox/redis the onset potential of oxidation (?ox) and reduction (?red) of BTA-C4Ph in the measurement system.The CV curve of BTA-C4Ph is shown in Fig.2B.The?oxand?redare 1.23 V and-0.48 V,respectively.Consequently,the EHOMO/ELUMOvalues were calculated as ?5.59/?3.88 eV.

    Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied to study the morphology of the Fe3O4MNs and BTA-C4Ph-PM6.As shown in Fig.2C,the size of Fe3O4MNs is approximate 200 nm with a classic spherical structure.Fig.2D illustrates that the BTA-C4Ph-PM6 heterojunction displays well-defined suitable nanofiber structure,which is beneficial to the transmission of electrons [28].

    The electrochemical impedance spectroscopy (EIS) was applied to characterize electrode modification process.The semicircle diameter in the Nyquist plots equals to the electron transfer resistance (Ret).Fig.3A reveals the EIS of various modified electrodes in 5.0 mmol/L K3Fe(CN)6/K4Fe(CN)6(1:1) solution containing 0.1 mol/L KCl.As can be seen,bare electrode (curve a) shows a lower Ret value.However,after the coating of BTA-C4Ph (curve b) or BTA-C4Ph-PM6 (curve c) on bare electrode,the Ret values increase significantly.This phenomenon is attributed to the semiconductor nature of the organic material as most organics are covalent compounds with no free electrons or ions,which can result in slow charge flow and weak conduct electricity.When anti-EpCAM-MNs(curve d) were immobilized on the modified electrode,Ret was further increased,revealing that anti-EpCAM-MNs hindered the electron transfer of electrode.Moreover,the incubation with MCF-7 cells (curve e) resulted in a larger Ret increase,illustrating that the cells were successfully captured by the anti-EpCAM.These results proved the successful preparation of the electrode.

    Fig.4.(A) Photocurrent responses of electrodes modified with different volume ratios of BTA-C4Ph and PM6.(B) Photocurrent responses of electrode at different voltages.PEC test was in 0.01 mol/L PBS (pH 7.2~7.4) at a bias potential of ?0.3 V (vs.Ag/AgCl) under visible light irradiation (λ > 420 nm).

    The feasibility of the PEC sensor for MCF-7 detection was investigated by chronoamperometry method.Fig.3B shows photocurrent responses of different modified electrodes in 0.01 mol/L phosphate buffered saline (PBS).As illustrated in Fig.3B,the photocurrent response is small when mere immobilization of BTA-C4Ph(curve b) or PM6 (curve a) onto the electrode.In contrast,for BTAC4Ph-PM6 heterojunction (curve e) modified electrode,the photocurrent increases significantly,which is because the electronhole transition occurred between the acceptor BTA-C4Ph and the donor PM6.The energy level match between BTA-C4Ph and PM6 effectively inhibited the recombination of electron-hole pairs and improved the photocurrent response of single organic semiconductors.After the sequential immobilization of anti-EpCAM-MNs(curve d) and MCF-7 cells (curve c) onto the electrode,the photocurrent gradually decreased,indicating the MCF-7 cells were successfully captured by the anti-EpCAM and the feasibility of photoelectric detecting of MCF-7.

    Different experimental parameters,including bias potential and volume ratio of BTA-C4Ph:PM6 were studied to acquire optimal performance for MCF-7 determination.

    Fig.4A shows the effect of the volume ratio of BTA-C4Ph(0.5 mg/mL) and PM6 (0.5 mg/mL) on the photocurrent intensity by changing the volume ratio of BTA-C4Ph to PM6 from 4:1 to 1:1,the photocurrent signal increases obviously.However,the peak current gradually decreases with further increase of the volume ratio to 1:4.This phenomenon might be related to the formation of heterojunctions between BTA-C4Ph and PM6.In the heterojunction,electrons and holes undergo transitions when exposed to light.However,excessive PM6 may lead to an imbalance in the concentration of carriers and holes produced by the heterojunction when illuminated,affecting the leap efficiency and causing a decrease in photocurrent.Therefore,volume ratio of 1:1 is chosen as the optimal volume ratio for MCF-7 detection.

    The photocurrent intensity of BTA-C4Ph-PM6/GCE under different bias voltages was illustrated in Fig.4B.The photocurrent response of BTA-C4Ph-PM6/GCE increases gradually as the change of the bias potential from 0.3 V to ?0.4 V.Nevertheless,when the bias voltage reaches ?0.4 V,the photocurrent baseline begins to be unstable.This phenomenon is due to the fact that the applied electric field accelerates the separation and transition of electronhole pairs.However,when the voltage is too high,the material attached on the electrode surface may fall off and affect the stability of the photocurrent.Therefore,?0.3 V is chosen as the optimum bias potential for MCF-7 detection.

    Fig.5.The linear relationship of the photocurrent variation between BTA-C4Ph-PM6/anti-EpCAM-MNs/GCE and BTA-C4Ph-PM6/anti-EpCAM-MNs/MCF-7/GCE with MCF-7 cells concentration,error bar is SD (n=3).PEC test was in 0.01 mol/L PBS(pH 7.2~7.4) at a bias potential of-0.3 V (vs. Ag/AgCl) under visible light irradiation(λ > 420 nm).

    Fig.6.(A) The selectivity of the PEC assay for determining MCF-7 cells.(B) The stability of PEC sensor.PEC test was in 0.01 mol/L PBS (pH 7.2~7.4) at a bias potential of ?0.3 V (vs. Ag/AgCl) under visible light irradiation (λ > 420 nm).

    With the optimal experimental conditions,the PEC sensor based on BTA-C4Ph-PM6 heterojunction was applied to detect MCF-7 and the change in photocurrent of the electrodes correlates directly with the concentration of MCF-7 cells.Fig.5 shows the linear relation between photocurrent variation and MCF-7 cell concentration.It can be seen from the figure that as the concentration of MCF-7 cells increases,the photocurrent variation gradually increases.The linear correlation coefficient is 0.9946 within the concentration of MCF-7 in the range from 50 cell/mL to 1 × 104cell/mL.The LOD is calculated to be 41 cell/mL (S/N=3),which is lower than several articles published for MCF-7 detection (Table 1).

    Table 1 Comparison of analytical performance between the proposed PEC method and other MCF-7 sensors.

    Table 2 Determination of MCF-7 in whole blood using the PEC assay.

    The selectivity of the PEC sensor was evaluated using Hela cells as control.As demonstrated in Fig.6A,the photoelectric response to 1 × 104cell/mL HeLa cells was very weak.However,the response signal was greatly enhanced to the mixture containing 1 ×104cell/mL Hela cells and 1 × 104cell/mL MCF-7 cells,which wascomparable to that with only the MCF-7 cells (1 × 104cell/mL).These phenomena demonstrate that the proposed sensor showed high selectivity for MCF-7 cancer cells.

    To study the reproducibility of the PEC sensor,three sensors were prepared for the detection of 1 × 104cell/mL MCF-7.The RSD is 1.19%,indicating good reproducibility.Moreover,the stability of the PEC assay was researched by continuous ‘on-off’irradiation under a xenon lamp.As shown in Fig.6B,after 8 consecutive onoff cycles of irradiation,the background photocurrent was basically unchanged with RSD of 5.85%,indicating that the PEC sensor has good stability.

    To assess the applicability of the sensor,the PEC sensor was used to determine MCF-7 cells in whole blood with a standard addition method.Whole blood samples were obtained from the Xiangya Hospital and diluted 8-fold without any other treatment.Specific amounts of MCF-7 cells (5 × 102,1 × 103,5 × 103cell/mL)were then added to these whole blood samples.Each sample was tested three times (n=3).The results were shown in Table 2.The recoveries were within 104.9% and 109.2% with RSDs in the range of 1.45% to 5.44%.The results show that the PEC sensor can specifically detect MCF-7 in whole blood,which has potential application value.

    In summary,a novel photoelectrochemical immunosensor was reported for the sensitive determination of MCF-7,where BTAC4Ph-PM6 heterojunction served as photoelectric active materials.BTA-C4Ph-PM6 heterojunction improved the photoelectric conversion efficiency of single organic semiconductors,which enhanced the PEC current intensity.Anti-EpCAM-MNs nanocomposite was used to recognize the EpCAM protein on the surface of MCF-7 cells to achieve the separation and enrichment of MCF-7 cells.Based on these advantages,the PEC sensor provides a linear response ranging from 50 cell/mL to 1 × 104cell/mL with a limit of detection(LOD) of 41 cell/mL (S/N=3).This work paved a new way for application of organic heterojunction in preparation of PEC sensors,which may find wide application in different areas.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are thankful for the support of this work by the National Natural Science Foundation of China (No.22174163),the Hunan Provincial Science and Technology Plan Project,China (No.2019TP1001),and the Innovation Driven Project of Central South University (No.2020CX002).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.090.

    亚洲情色 制服丝袜| 免费观看性生交大片5| 久久久久精品久久久久真实原创| 久久国产精品大桥未久av| 少妇精品久久久久久久| 三级国产精品片| 欧美日韩国产mv在线观看视频| 五月玫瑰六月丁香| av播播在线观看一区| 日韩熟女老妇一区二区性免费视频| 91成人精品电影| 日韩一区二区三区影片| 一级毛片我不卡| 成人18禁高潮啪啪吃奶动态图 | 七月丁香在线播放| 成人黄色视频免费在线看| 亚洲精品久久久久久婷婷小说| 久久久久久久久久久久大奶| 亚洲av日韩在线播放| 精品国产露脸久久av麻豆| 伦理电影大哥的女人| 国产探花极品一区二区| 97超碰精品成人国产| 午夜视频国产福利| av专区在线播放| 成年女人在线观看亚洲视频| 日本欧美视频一区| tube8黄色片| 亚洲欧美色中文字幕在线| 日本欧美视频一区| 夜夜爽夜夜爽视频| 美女中出高潮动态图| 一级毛片aaaaaa免费看小| 日韩精品免费视频一区二区三区 | 亚洲国产色片| 国产精品久久久久久精品电影小说| 国产一区亚洲一区在线观看| 搡女人真爽免费视频火全软件| 免费观看a级毛片全部| 免费人妻精品一区二区三区视频| 久久热精品热| 国产成人精品无人区| 91久久精品电影网| 在线看a的网站| 欧美xxⅹ黑人| 午夜福利在线观看免费完整高清在| 欧美三级亚洲精品| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久久人人人人人人| 亚洲经典国产精华液单| 色94色欧美一区二区| 免费高清在线观看日韩| 大陆偷拍与自拍| 制服丝袜香蕉在线| 交换朋友夫妻互换小说| 美女大奶头黄色视频| 午夜日本视频在线| 大香蕉久久成人网| 国产 一区精品| 3wmmmm亚洲av在线观看| 成人国产麻豆网| av免费在线看不卡| 亚洲精品色激情综合| 国产男女内射视频| 国产片内射在线| 在线观看美女被高潮喷水网站| 观看美女的网站| 嫩草影院入口| 一本久久精品| 中文乱码字字幕精品一区二区三区| 欧美精品亚洲一区二区| 国产日韩欧美视频二区| 久久精品久久久久久久性| 欧美成人精品欧美一级黄| 高清毛片免费看| 亚洲国产毛片av蜜桃av| 国产淫语在线视频| 日韩在线高清观看一区二区三区| 久久av网站| 国产精品.久久久| 插逼视频在线观看| 人妻夜夜爽99麻豆av| 午夜日本视频在线| 日本色播在线视频| 九九久久精品国产亚洲av麻豆| 亚洲一级一片aⅴ在线观看| 亚洲一级一片aⅴ在线观看| 高清av免费在线| 狂野欧美激情性xxxx在线观看| 观看美女的网站| 欧美日韩国产mv在线观看视频| av女优亚洲男人天堂| 丰满饥渴人妻一区二区三| 特大巨黑吊av在线直播| 国产乱人偷精品视频| 久久狼人影院| 91精品一卡2卡3卡4卡| 久久鲁丝午夜福利片| 亚洲人成77777在线视频| 国产成人精品久久久久久| 久久久午夜欧美精品| 欧美日韩视频精品一区| 一区二区av电影网| 日韩三级伦理在线观看| 男女国产视频网站| 久久精品久久精品一区二区三区| 精品卡一卡二卡四卡免费| 国产精品熟女久久久久浪| 99热6这里只有精品| 美女视频免费永久观看网站| 欧美成人午夜免费资源| 免费黄频网站在线观看国产| 午夜免费男女啪啪视频观看| 看免费成人av毛片| 国产熟女欧美一区二区| 免费少妇av软件| 亚洲国产成人一精品久久久| 久久精品国产鲁丝片午夜精品| 中文字幕久久专区| 少妇被粗大的猛进出69影院 | 91精品国产九色| 极品少妇高潮喷水抽搐| 人妻 亚洲 视频| 精品人妻熟女毛片av久久网站| 99国产综合亚洲精品| 亚洲精品亚洲一区二区| av播播在线观看一区| 十分钟在线观看高清视频www| 男女高潮啪啪啪动态图| 久久精品久久精品一区二区三区| 亚洲av免费高清在线观看| 在线观看www视频免费| 久久精品国产a三级三级三级| 夜夜爽夜夜爽视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 街头女战士在线观看网站| 欧美bdsm另类| 国产伦精品一区二区三区视频9| 亚洲av男天堂| 成人国产av品久久久| 国产乱人偷精品视频| 久久精品熟女亚洲av麻豆精品| 伊人久久精品亚洲午夜| 在线看a的网站| 日本色播在线视频| 各种免费的搞黄视频| 国产精品女同一区二区软件| 亚洲成人手机| 国产精品99久久99久久久不卡 | h视频一区二区三区| 女人久久www免费人成看片| 欧美精品人与动牲交sv欧美| 国产 一区精品| 精品久久蜜臀av无| 国产综合精华液| 日韩亚洲欧美综合| 欧美成人精品欧美一级黄| 欧美97在线视频| 九草在线视频观看| 91午夜精品亚洲一区二区三区| 日韩精品有码人妻一区| √禁漫天堂资源中文www| 91久久精品国产一区二区成人| 一区二区三区乱码不卡18| 性色av一级| 亚洲欧美色中文字幕在线| 十八禁网站网址无遮挡| 亚洲第一区二区三区不卡| 亚洲天堂av无毛| 国产国拍精品亚洲av在线观看| 啦啦啦中文免费视频观看日本| 丝袜脚勾引网站| 亚洲av在线观看美女高潮| 久久av网站| 久久99一区二区三区| 69精品国产乱码久久久| 免费久久久久久久精品成人欧美视频 | 久久精品国产亚洲av天美| 99久久精品一区二区三区| 色网站视频免费| 亚洲精品日韩av片在线观看| 一级片'在线观看视频| 黄色毛片三级朝国网站| 97精品久久久久久久久久精品| 自线自在国产av| 国产精品不卡视频一区二区| 久久人妻熟女aⅴ| 人人妻人人澡人人看| av天堂久久9| 热99国产精品久久久久久7| 三上悠亚av全集在线观看| 亚洲精品一二三| 欧美xxⅹ黑人| 九九久久精品国产亚洲av麻豆| 久久人人爽av亚洲精品天堂| 国产精品嫩草影院av在线观看| 免费黄网站久久成人精品| 国产精品人妻久久久久久| 大话2 男鬼变身卡| 少妇人妻久久综合中文| 18禁在线播放成人免费| 欧美日韩av久久| 老女人水多毛片| 性高湖久久久久久久久免费观看| 蜜臀久久99精品久久宅男| 午夜激情久久久久久久| 成人无遮挡网站| 香蕉精品网在线| 国产午夜精品一二区理论片| 国产白丝娇喘喷水9色精品| 国产精品一区二区三区四区免费观看| 高清午夜精品一区二区三区| 精品久久久久久久久亚洲| 午夜激情久久久久久久| 嫩草影院入口| 国产一级毛片在线| 另类亚洲欧美激情| 国产高清不卡午夜福利| 观看av在线不卡| 国产日韩一区二区三区精品不卡 | 国产免费又黄又爽又色| 男女免费视频国产| 国产成人精品婷婷| 高清欧美精品videossex| 亚洲不卡免费看| 国产午夜精品一二区理论片| 高清黄色对白视频在线免费看| 国产一区二区在线观看av| 人人妻人人添人人爽欧美一区卜| 国产成人aa在线观看| 亚洲av成人精品一区久久| 久久国产精品大桥未久av| 国产国语露脸激情在线看| 色视频在线一区二区三区| 少妇 在线观看| 一区二区日韩欧美中文字幕 | 亚洲人成网站在线观看播放| 日本-黄色视频高清免费观看| 亚洲国产av影院在线观看| 亚洲欧美日韩卡通动漫| 精品人妻熟女av久视频| 丁香六月天网| 亚洲av二区三区四区| 69精品国产乱码久久久| 成人18禁高潮啪啪吃奶动态图 | 日韩欧美一区视频在线观看| 熟女电影av网| 日本wwww免费看| 91久久精品国产一区二区成人| 91精品国产九色| 欧美+日韩+精品| 亚洲精品,欧美精品| 中文字幕最新亚洲高清| 人妻少妇偷人精品九色| 青春草视频在线免费观看| 国产有黄有色有爽视频| 亚洲av成人精品一二三区| 国产精品久久久久久av不卡| 18禁观看日本| 伦精品一区二区三区| 免费人妻精品一区二区三区视频| 夫妻午夜视频| 国产精品99久久99久久久不卡 | 黑丝袜美女国产一区| 亚洲美女视频黄频| 毛片一级片免费看久久久久| 亚洲精品中文字幕在线视频| 中国美白少妇内射xxxbb| av在线观看视频网站免费| 狂野欧美激情性xxxx在线观看| 精品人妻熟女av久视频| 两个人免费观看高清视频| 一级,二级,三级黄色视频| 精品一区在线观看国产| 少妇人妻精品综合一区二区| 国产午夜精品一二区理论片| 久久热精品热| 丰满乱子伦码专区| 99热全是精品| 少妇被粗大的猛进出69影院 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本爱情动作片www.在线观看| 欧美丝袜亚洲另类| 国产又色又爽无遮挡免| 亚洲精品亚洲一区二区| 男女国产视频网站| 天堂俺去俺来也www色官网| 亚洲精品一二三| 国产精品国产三级专区第一集| 中国国产av一级| 在线观看www视频免费| 99国产精品免费福利视频| 欧美日韩在线观看h| 亚洲色图综合在线观看| 特大巨黑吊av在线直播| 黄色配什么色好看| 草草在线视频免费看| 午夜免费鲁丝| 中文字幕制服av| av有码第一页| 成人国产麻豆网| 一本久久精品| 国产色婷婷99| 亚洲精品aⅴ在线观看| 国产精品三级大全| 人妻少妇偷人精品九色| 精品人妻在线不人妻| 亚洲精品亚洲一区二区| 亚洲国产精品一区三区| 久久久精品区二区三区| 亚洲在久久综合| 18在线观看网站| xxxhd国产人妻xxx| 纯流量卡能插随身wifi吗| 十八禁网站网址无遮挡| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| 国产亚洲精品第一综合不卡 | 国产女主播在线喷水免费视频网站| 男女边吃奶边做爰视频| 韩国高清视频一区二区三区| 日韩,欧美,国产一区二区三区| 久久精品国产自在天天线| 高清不卡的av网站| 国产日韩欧美亚洲二区| 两个人的视频大全免费| 狂野欧美激情性xxxx在线观看| 婷婷色av中文字幕| 国产成人精品在线电影| 各种免费的搞黄视频| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 少妇被粗大猛烈的视频| 午夜91福利影院| 大又大粗又爽又黄少妇毛片口| 亚洲av国产av综合av卡| 视频中文字幕在线观看| 亚洲精品乱码久久久v下载方式| 欧美日韩一区二区视频在线观看视频在线| xxx大片免费视频| 亚洲国产av新网站| 国语对白做爰xxxⅹ性视频网站| 国产色婷婷99| 亚洲激情五月婷婷啪啪| 亚洲精品久久午夜乱码| av线在线观看网站| 成人毛片a级毛片在线播放| 99九九线精品视频在线观看视频| 午夜精品国产一区二区电影| 欧美日韩一区二区视频在线观看视频在线| 日韩av免费高清视频| 韩国av在线不卡| www.av在线官网国产| 女人精品久久久久毛片| 久久久久精品性色| 亚洲,欧美,日韩| 成人国产麻豆网| 免费观看的影片在线观看| 久久久精品免费免费高清| 国产 一区精品| 欧美日韩国产mv在线观看视频| 日韩电影二区| 国产精品成人在线| 黄色毛片三级朝国网站| 乱码一卡2卡4卡精品| 男女边摸边吃奶| 91久久精品国产一区二区成人| 亚洲国产精品999| 精品久久久久久久久亚洲| 嫩草影院入口| 欧美一级a爱片免费观看看| 视频在线观看一区二区三区| 91在线精品国自产拍蜜月| 国产亚洲av片在线观看秒播厂| 国产永久视频网站| 日本av手机在线免费观看| 伊人久久国产一区二区| 22中文网久久字幕| 啦啦啦中文免费视频观看日本| 国产精品麻豆人妻色哟哟久久| 亚洲一区二区三区欧美精品| 啦啦啦视频在线资源免费观看| 丝袜喷水一区| 只有这里有精品99| 性色avwww在线观看| 欧美变态另类bdsm刘玥| 久久久久精品久久久久真实原创| 在现免费观看毛片| 国产探花极品一区二区| 各种免费的搞黄视频| 日本黄色片子视频| 高清午夜精品一区二区三区| 中国国产av一级| 精品亚洲乱码少妇综合久久| 亚洲精品乱码久久久久久按摩| 男男h啪啪无遮挡| 两个人免费观看高清视频| 最新中文字幕久久久久| 国产 精品1| 久久久国产精品麻豆| 日韩av免费高清视频| 中文字幕免费在线视频6| 在线看a的网站| av国产精品久久久久影院| 欧美97在线视频| 国产一区二区在线观看日韩| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 免费久久久久久久精品成人欧美视频 | 纵有疾风起免费观看全集完整版| 国产高清有码在线观看视频| 国产日韩欧美在线精品| 午夜av观看不卡| 日本欧美国产在线视频| 亚洲久久久国产精品| 亚洲精品乱久久久久久| 超碰97精品在线观看| 大话2 男鬼变身卡| 亚洲精品久久午夜乱码| 日韩电影二区| 国产伦精品一区二区三区视频9| 一级黄片播放器| 国产精品久久久久久久电影| 观看美女的网站| 久久精品熟女亚洲av麻豆精品| 免费播放大片免费观看视频在线观看| 亚洲国产色片| 国产成人精品在线电影| 久久久久人妻精品一区果冻| 久久久a久久爽久久v久久| 午夜av观看不卡| 下体分泌物呈黄色| 国产成人精品在线电影| 亚洲国产精品一区三区| 午夜影院在线不卡| 国产一区二区在线观看日韩| 亚洲人与动物交配视频| 国产av精品麻豆| 亚洲精品久久午夜乱码| 亚洲三级黄色毛片| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 欧美xxⅹ黑人| 男男h啪啪无遮挡| 色5月婷婷丁香| 久久久国产一区二区| 黑人巨大精品欧美一区二区蜜桃 | 亚洲天堂av无毛| 欧美精品亚洲一区二区| 色网站视频免费| 美女xxoo啪啪120秒动态图| 新久久久久国产一级毛片| 欧美老熟妇乱子伦牲交| 极品人妻少妇av视频| 超碰97精品在线观看| 美女大奶头黄色视频| 午夜91福利影院| 免费看光身美女| 男女边吃奶边做爰视频| 日本91视频免费播放| 日本午夜av视频| 最近的中文字幕免费完整| 在线天堂最新版资源| 久久97久久精品| 亚洲图色成人| 黄片无遮挡物在线观看| 亚洲欧美中文字幕日韩二区| 99国产综合亚洲精品| 在线观看美女被高潮喷水网站| 男人添女人高潮全过程视频| 精品一区二区免费观看| 国产69精品久久久久777片| 亚洲av欧美aⅴ国产| 天堂8中文在线网| 国产欧美日韩一区二区三区在线 | 国产一区亚洲一区在线观看| 成年人午夜在线观看视频| 日韩欧美一区视频在线观看| 22中文网久久字幕| 一级二级三级毛片免费看| 欧美日韩亚洲高清精品| 免费av不卡在线播放| 一本—道久久a久久精品蜜桃钙片| 免费日韩欧美在线观看| 另类亚洲欧美激情| 国产精品一国产av| 亚洲婷婷狠狠爱综合网| 欧美精品高潮呻吟av久久| 精品人妻偷拍中文字幕| 成人18禁高潮啪啪吃奶动态图 | 丁香六月天网| 高清黄色对白视频在线免费看| 欧美少妇被猛烈插入视频| 久久久精品区二区三区| 国产欧美亚洲国产| 亚洲国产精品专区欧美| 一本大道久久a久久精品| 成人午夜精彩视频在线观看| 一区二区三区精品91| 亚洲欧美日韩卡通动漫| 精品一品国产午夜福利视频| 免费高清在线观看视频在线观看| 黄片播放在线免费| 内地一区二区视频在线| 大香蕉久久成人网| 午夜激情福利司机影院| 纵有疾风起免费观看全集完整版| 精品久久久精品久久久| 成人免费观看视频高清| 91在线精品国自产拍蜜月| 色5月婷婷丁香| 久久ye,这里只有精品| 久热这里只有精品99| 亚州av有码| 乱码一卡2卡4卡精品| 亚洲国产av影院在线观看| 欧美成人精品欧美一级黄| 黄片无遮挡物在线观看| 国产视频内射| 久久久午夜欧美精品| 51国产日韩欧美| 人成视频在线观看免费观看| 国产精品嫩草影院av在线观看| 中文字幕人妻丝袜制服| 午夜福利影视在线免费观看| 老司机影院毛片| 国产成人a∨麻豆精品| 亚洲中文av在线| 国精品久久久久久国模美| 亚洲精品美女久久av网站| 青青草视频在线视频观看| 91精品一卡2卡3卡4卡| 国产亚洲最大av| 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 久久婷婷青草| 国产亚洲欧美精品永久| 国产日韩欧美在线精品| 亚洲精品乱久久久久久| 国产色爽女视频免费观看| 久久久久久伊人网av| 亚洲av在线观看美女高潮| 亚洲欧美成人综合另类久久久| 亚洲国产成人一精品久久久| 精品久久久久久久久亚洲| 18禁动态无遮挡网站| 看非洲黑人一级黄片| 特大巨黑吊av在线直播| 亚洲熟女精品中文字幕| 久热久热在线精品观看| 最黄视频免费看| 午夜精品国产一区二区电影| av福利片在线| 久久久久久久国产电影| 少妇人妻 视频| 老熟女久久久| 亚洲综合色惰| 一个人免费看片子| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕久久专区| 一边亲一边摸免费视频| 精品视频人人做人人爽| 国产亚洲午夜精品一区二区久久| 99久久精品一区二区三区| 欧美国产精品一级二级三级| 97超碰精品成人国产| 国产精品女同一区二区软件| 精品人妻熟女毛片av久久网站| xxxhd国产人妻xxx| 国产精品.久久久| 99九九在线精品视频| 在线天堂最新版资源| 欧美 亚洲 国产 日韩一| 满18在线观看网站| 国产 精品1| 最新的欧美精品一区二区| 日本黄色片子视频| 成人黄色视频免费在线看| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 精品亚洲成a人片在线观看| 中国三级夫妇交换| 男女无遮挡免费网站观看| 国国产精品蜜臀av免费| 日韩在线高清观看一区二区三区| 青青草视频在线视频观看| 免费看光身美女| av卡一久久| 欧美三级亚洲精品| 欧美日韩av久久| 免费人妻精品一区二区三区视频| 免费看av在线观看网站| 3wmmmm亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 国产精品国产三级国产av玫瑰| 男女无遮挡免费网站观看| 亚洲精品国产色婷婷电影| 麻豆成人av视频| 久久国产亚洲av麻豆专区| 国产av码专区亚洲av| 欧美日韩av久久| 国产精品成人在线| 18禁观看日本| 搡女人真爽免费视频火全软件| 一个人免费看片子| 国产亚洲午夜精品一区二区久久| 欧美老熟妇乱子伦牲交| 亚洲色图综合在线观看| 久久国产精品大桥未久av| 国产片特级美女逼逼视频| 久久久午夜欧美精品| 女的被弄到高潮叫床怎么办| 美女国产视频在线观看| 日韩精品免费视频一区二区三区 | 美女主播在线视频|