• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bimetallic cobalt-nickel coordination polymer electrocatalysts for enhancing oxygen evolution reaction

    2022-07-11 03:38:52LeleLuQiangLiJiaDuWeiShiPengCheng
    Chinese Chemical Letters 2022年6期

    Lele Lu,Qiang Li,Jia Du,Wei Shi,Peng Cheng

    Department of Chemistry,Key Laboratory of Advanced Energy Materials Chemistry (MOE),Renewable Energy Conversion and Storage Center (RECAST),College of Chemistry,Nankai University,Tianjin 300071,China

    Keywords:Coordination polymer Mixed-metal strategy Electrocatalysis Oxygen evolution reaction Activation energy

    ABSTRACT Coordination polymers (CPs) have great potential to be used in electrocatalysis owing to their designable compositions and structures.It is highly challenging to apply CPs as electrocatalysts for oxygen evolution reaction (OER) on account of insufficient catalytic efficiency and relatively poor stability of current electrocatalysts.Herein,through a mixed-metal strategy,one-dimensional CoxNi1-x-HIPA with dual active sites was synthesized and studied for OER electrocatalysts.By changing the metal ratio of CoxNi1-x-HIPA,the OER performance was well regulated.The optimized Co1/2Ni1/2-HIPA exhibited minimum reaction activation energy,and represented an overpotential of 367 mV to reach 10 mA/cm2 at 25 °C.Moreover,an overpotential of 314 mV at 10 mA/cm2 was obtained from Co1/2Ni1/2-HIPA at 55 °C.This mixed-metal strategy provides a feasible way for adjusting the electronic states of the electrocatalysts to improve the electrocatalytic OER performance.

    As two main challenges of the 21stcentury,the everlasting global energy consumption relying mostly on fossil fuels and the consequent climate change are tilting the balance of our society [1–4].One way out of this dilemma is to resort to the development of sustainable and environmentally friendly energy instead.Among all candidates,hydrogen energy attracts broad interest due to its rich resources,high combustion calorific value and pollution-free feature [5–8].Electrocatalytic water splitting has been deemed as one of the most promising methods for hydrogen production.Nevertheless,the application of electrocatalytic water splitting is subject to anodic oxygen evolution reaction (OER),which possesses a large thermodynamic equilibrium potential of 1.23 Vvs.reversible hydrogen electrode (RHE),and involves a multistep proton-coupled 4e?transfer process [9–11].Hitherto,representative high-efficiency catalysts for OER are mostly noble metalbased compounds like IrO2and RuO2,yet their restricted resources and high-price stand in the way of large-scale applications [12,13].To address this complication,enormous efforts have been made to utilize earth-abundant transition metal-based electrocatalysts for the next generation of OER electrocatalysts [14–17].

    Coordination polymers (CPs),a type of coordination compounds with long-range ordered and adjustable structures resulting from coordination between metal nodes and organic ligands,have been widely studied for the applications of catalysis,fluorescence,and energy storage [18–26].The application of CPs in the field of electrocatalysis mainly involves two kinds: (1) using CPs as precursors to fabricate metal-based nanostructures as electrocatalysts through high-temperature calcination [27,28];(2) directly utilizing CPs with high-activity as electrocatalysts [29–31].The metal centers of CPs are generally the active sites,therefore the regulation of metal types,coordination environment,defects,etc.are crucial to improve their electrocatalytic properties.By introducing different kinds of metals into CPs and adjusting their proportion,it is expected to fabricate highly efficient OER catalysts.However,there are still few related examples referring to electrocatalysts based on bimetallic CPs and the regulation of the metal proportion for enhanced OER performance [32–37].

    In this contribution,one-dimensional (1D) bimetallic CPs with formula of [CoxNi1-x(HIPA)(H2O)3]n(CoxNi1-x-HIPA,H3IPA=5-hydroxyisophthalic acid) are elaborately designed and fabricated with a modified hydrothermal method.The well-designed mixedmetal strategy for the construction of bimetallic CPs with longrange ordered crystal structure and uniform distribution of different metal elements is beneficial for efficient charge density regulation that result in enhanced catalytic activity.The optimal Co1/2Ni1/2-HIPA shows the lowest overpotential and the smallest Tafel slope (TS) in alkaline electrolyte.Furthermore,we also explored the effect of temperature on OER activity of CP-based electrocatalysts for the first time.The resulted activation energies of the catalysts and the electron states confirm that this mixed-metal strategy could ultimately result in enhanced electrocatalysts for oxygen evolution reaction.

    Fig.1.(a) 1D structure of CoxNi1-x-HIPA (Co and Ni centers distributed randomly in the CoxNi1-x-HIPA);(b) PXRD patterns of CoxNi1-x-HIPA and the simulated diffraction pattern of Co-HIPA;(c) FTIR spectra of CoxNi1-x-HIPA and H3IPA.

    The reaction of H3IPA and different molar ratios of Co(OAc)2·4H2O and Ni(OAc)2·4H2O led to the formation of CoxNi1-x-HIPA (x=0,1/3,1/2,2/3,4/5,1).Based on the single crystal data of Co-HIPA and Ni-HIPA [38],each Co or Ni center is connected to three O atoms from two HIPA2?ligands,and other coordination sites are taken up by three H2O molecules,forming an octahedral environment.The alternating connection of HIPA2?and metal centers lead to a chain structure (Fig.1a).Hydrogen bonds between H2O molecules and the oxygen of ligands connect adjacent chains into a three-dimensional supramolecular framework (Fig.S1 in Supporting information).

    According to inductively coupled plasma-optical (ICP) data (Table S1 in Supporting information),the molar ratios of metal centers in CoxNi1-x-HIPA fit the feeding molar ratios.Powder X-ray diffraction (PXRD) patterns of all CoxNi1-x-HIPA are identical to the Co/Ni-HIPA (Fig.1b),which proves their isostructural nature and high phase purity.As shown in Fig.1c,Fourier transform infrared (FTIR) spectra of all CoxNi1-x-HIPA are similar as well,further confirming their isomorphism.Thermal gravimetric analysis(TGA) curves display similar weight loss from ~150 °C to 230°C,which can be attributed to the loss of three coordinated H2O molecules (Fig.S2 in Supporting information).The collapse of the coordination frameworks occurred over 400 °C.

    Scanning electron microscopy (SEM) was applied to examine the morphology of CoxNi1-x-HIPA.All the CoxNi1-x-HIPA show the regular rod-like morphology (Fig.S3 in Supporting information).Herein,Co1/2Ni1/2-HIPA,which proves to be the best OER electrocatalyst,is chosen for more detailed examination.Both transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) images confirm its rod-like morphology(Figs.2a and b).Energy-dispersive X-ray spectroscopy (EDS) elemental mapping results reveal that Co,Ni,C and O elements in Co1/2Ni1/2-HIPA disperse evenly (Fig.2c).

    Fig.2.TEM images (a,b),STEM image and EDS elemental mappings (c) of Co1/2Ni1/2-HIPA.

    Fig.3.LSV curves (a),Tafel plots (b),Cdl (c) and EIS (d) of CoxNi1-x-HIPA (x=0,1/3,1/2,2/3,4/5,1) at 25 °C.

    As shown in Fig.3a,the linear sweep voltammetry (LSV) tests were applied to evaluate OER performances of CoxNi1-x-HIPA at 25°C.Co-HIPA shows an overpotential of 412 mV when the current density reaches 10 mA/cm2.Ni-HIPA basically manifests no OER behavior throughout the working potential range.The overpotential of CoxNi1-x-HIPA varies with the content of Co/Ni centers at 10 mA/cm2: 380 mV for Co4/5Ni1/5-HIPA,386 mV for Co2/3Ni1/3-HIPA and 432 mV for Co1/3Ni2/3-HIPA.It is noted that a minimum overpotential of 367 mV at 10 mA/cm2can be achieved by the optimal Co1/2Ni1/2-HIPA.Based on LSV curves,TS were calculated to explore the intrinsic reaction kinetics (Fig.3b).Ni-HIPA delivers the highest TS (349 mV/dec),which is consistent with its poor OER activity.Co-HIPA shows a TS of 133 mV/dec.Besides Co1/3Ni2/3-HIPA (140 mV/dec),the TS of the other bimetallic catalysts all decreased compared to the monometallic counterparts.Co1/2Ni1/2-HIPA has the lowest TS of 115 mV/dec.Furthermore,the electrochemically active surface areas (ECSAs) of the catalysts were evaluated by means of double-layer capacitances (Cdl),which were calculated from non-faradaic cyclic voltammograms(CV) measurements (Fig.3c and Fig.S4 in Supporting information).Co1/2Ni1/2-HIPA has aCdlof 3.56 mF/cm2,which distinctly exceeds that of Co-HIPA (1.76 mF/cm2),Ni-HIPA (0.20 mF/cm2)and other bimetallic CoxNi1-x-HIPA,and demonstrates more electroactive sites exposed on the catalyst surface [39].The Nyquist plots radius of Co1/2Ni1/2-HIPA is significantly smaller than those of other CoxNi1-x-HIPA.This smaller charge transfer resistance of Co1/2Ni1/2-HIPA is conducive to improve the catalytic performance(Fig.3d).A high Faradaic efficiency of 96.2% for Co1/2Ni1/2-HIPA was able to be reached based on an average ring current of 57.7 μA (Fig.S5 in Supporting information).

    Fig.4.Comparison of the overpotentials at 10 mA/cm2 (left axis) and TS (right axis) of CoxNi1-x-HIPA (x=0,1/3,1/2,2/3,4/5,1) at 25 °C (a),35 °C (b),45 °C (c),55 °C (d).

    Co1/2Ni1/2-HIPA exhibited durability over 16 h through the chronoamperometry test (Fig.S6 in Supporting information),demonstrating itself to be a promising competitor among other reported CP-based catalysts (Table S2 in Supporting information).The overpotential of Co1/2Ni1/2-HIPA at 10 mA/cm2increased 49 mV after 16 h chronoamperometric test,while the overpotential at 100 mA/cm2increased merely 10 mV (Fig.S7a in Supporting information).After 1000 CV cycles,the overpotential of Co1/2Ni1/2-HIPA at 10 mA/cm2increased by 56 mV,while the overpotential at 100 mA/cm2was almost identical to the initial value (Fig.S7b in Supporting information),indicating the excellent durability of Co1/2Ni1/2-HIPA.The morphology of Co1/2Ni1/2-HIPA after the chronoamperometry test was examined by SEM (Fig.S8 in Supporting information).The regular rod-like structure basically remains unchanged.According to EDS test,the molar ratio of Co and Ni in Co1/2Ni1/2-HIPA increased slightly (Table S3 in Supporting information),which may be one of the causes leading to the degradation of the catalyst performance.

    Furthermore,the effect of temperature on the catalytic activity of OER was also studied.The LSV curves and Tafel plots of CoxNi1-x-HIPA at 35–55 °C are shown in Supporting information Fig.S9.The overpotential at 10 mA/cm2and the TS of CoxNi1-x-HIPA decrease evidently as the temperature increases,indicating the enhanced activities at increased temperatures (Fig.4).In particular,Ni-HIPA exhibits a significant promotion of OER performance where the overpotential at 10 mA/cm2reaches 404 mV along with a TS of 130 mV/dec at 55 °C.The optimal Co1/2Ni1/2-HIPA continuously delivers the smallest overpotential and the lowest TS throughout all selected temperatures,in which the lowest overpotential of 314 mV at 10 mA/cm2and TS of 103 mV/dec are obtained at 55 °C.All CoxNi1-x-HIPA exhibit enhanced turnover frequency (TOF) compared to Co/Ni-HIPA at 380 mV (Table S4 in Supporting information).Co1/2Ni1/2-HIPA possesses the highest TOF of 0.025 s?1at 25 °C and 0.074 s?1at 55 °C.Based on the CV curves at different scan rates (Figs.S10-S12 in Supporting information),the ECSAs of CoxNi1-x-HIPA were calculated (Figs.S13a–c in Supporting information).TheCdlof Co1/2Ni1/2-HIPA remains higher than those of other catalysts at elevated temperatures,corresponding to more active sites on the catalyst surface.The electrochemical impedance spectroscopy (EIS) tests of CoxNi1-x-HIPA show that Co1/2Ni1/2-HIPA has a smaller charge transfer resistance at all selected temperatures (Figs.S13d-f in Supporting information).

    In order to understand the different activities of CoxNi1-x-HIPA,the activation energies based on the charge transfer resistance at different temperatures were calculated.The Nyquist plots radii of CoxNi1-x-HIPA were reduced at increased temperature (Fig.S14 in Supporting information).The equivalent circuit of the impedance curve is given in Fig.S15 (Supporting information),whereRsrepresents the resistance of the electrolyte,CPE represents the constant phase element,andRctrepresents the charge transfer impedance.The exchange current (i0) and apparent activation energy (Ea) of the electrode are calculated by the following Eqs.1 and 2 [40,41]:

    whereAis a coefficient independent of temperature,Ris gas constant,Tis absolute temperature,nis the number of electrons transferred,andFis Faraday constant.TheRctandi0values of CoxNi1-x-HIPA at different temperatures are given in Supporting information Table S5.i0represents the difficulty when the catalyst gains and loses electrons at reaction equilibrium state,which means how easily the catalytic reaction occurs.Co1/2Ni1/2-HIPA has the smallestRctandi0at all selected temperatures,corresponding to the highest catalytic activity.Arrhenius plots show that Co1/2Ni1/2-HIPA has the lowest activation energy of 19.91 kJ/mol and in consequence,the best OER performance of this family (Fig.5).

    XPS surveys were conducted to examine the electronic states of different metal centers.Co,Ni,C and O elements coexist in all CoxNi1-x-HIPA (Fig.S16 in Supporting information).To obtain more detailed information of the surface electronic states,the corresponding high-resolution XPS of all samples have been measured(Fig.S17 in Supporting information).The binding energies of Co 2p3/2and Co 2p1/2in Co-HIPA are 779.1 eV and 794.7 eV [42,43],while the binding energies of Ni 2p3/2and Ni 2p1/2in Ni-HIPA are located at 853.5 eV and 871.2 eV [32,44].Compared with Co-HIPA and Ni-HIPA,the binding energies of Co 2p3/2and Co 2p1/2of all bimetallic CPs slightly downshift,while the binding energies of Ni 2p3/2and Ni 2p1/2slightly upshift (Table S6 in Supporting information).This variation of binding energy is ascribed to the increased electron density of Co center and the decreased electron density of Ni center [45].Through the mixed-metal strategy,the simultaneous introduction of Co and Ni with different ratios was able to alter electronic states,thus influencing the formation of active intermediates during the catalytic process [45,46].According to literatures,M?OOH is a common water oxidation active intermediate in alkaline electrolyte,which is generated by continuous attacks of OH?on M?and serves as a crucial intermediate for oxidation of OH?.The increase in the electron density of the Co centers in CPs is conducive to the improvement of OER electrocatalytic performance [47–50].Based on the above analysis,an OER mechanism is presented in Fig.6.

    Fig.5.Arrhenius plots of Log i0 vs.1/T of CoxNi1-x-HIPA (x=0,1/3,1/2,2/3,4/5,1).

    Fig.6.Proposed OER mechanism on CoxNi1-x-HIPA (x=0,1/3,1/2,2/3,4/5,1) in alkaline medium (M?represented for Co and Ni centers).

    To further confirm the origin of the Co1/2Ni1/2-HIPA as highly efficient electrocatalyst,the change of composition and electron state after 16 h chronoamperometry test were studied by XPS spectra.After chronoamperometry test,the binding energy of Co 2p(778.8 eV for Co 2p3/2) and Ni 2p (852.9 eV for Ni 2p3/2) downshift compared to that of pristine Co1/2Ni1/2-HIPA (Fig.S18 in Supporting information).This phenomenon could be attributed to the formation of intermediate of M(OH)2during OER process [49].The new peak emerged at the binding energies of 777.0 eV can be attributed to Co3+,which was consistent with the proposed mechanism [51,52].As revealed by FTIR results (Fig.S19 in Supporting information),the main peaks of the title compounds after OER are almost unchanged compared to that of the compounds before OER.The peaks located at 1621 cm?1and 1354 cm?1are assigned to asymmetric and symmetric stretching vibrations of ?COOH [53].On the basis of the above analysis,it can be deduced that M?OOH and M(OH)2surrounding with the HIPA ligands emerged as the reaction proceeded,of which M?OOH acted as the active site.

    To summarize,a mixed-metal strategy is proposed to synthesize a series of bimetallic cobalt-nickel coordination polymers as electrocatalysts for oxygen evolution reaction.The optimal Co1/2Ni1/2-HIPA exhibits an overpotential of 367 mV at 10 mA/cm2with reduced charge transfer resistance and enhanced active surface area compared to single-metal CPs.The optimized Co1/2Ni1/2-HIPA also shows the lowest overpotential at 10 mA/cm2throughout all selected temperatures and possesses minimum activation energy.This work provides a powerful and facile way to simultaneously optimize the composition and the electron states for enhancing catalytic performance of CP-based electrocatalysts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21622105 and 21931004),the Natural Science Foundation of Tianjin (No.18JCJQJC47200),and the Ministry of Education of China (No.B12015).

    Appendix A.Supplementary data

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.090.

    国产欧美日韩一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 欧美久久黑人一区二区| 一级黄色大片毛片| 巨乳人妻的诱惑在线观看| 视频区欧美日本亚洲| 一本久久中文字幕| 正在播放国产对白刺激| 免费无遮挡裸体视频| 亚洲伊人色综图| 亚洲精品国产精品久久久不卡| 高清毛片免费观看视频网站| 制服人妻中文乱码| 亚洲三区欧美一区| 岛国视频午夜一区免费看| 亚洲精华国产精华精| 91麻豆av在线| 亚洲最大成人中文| 在线观看一区二区三区| 老鸭窝网址在线观看| 久久草成人影院| 咕卡用的链子| 国产男靠女视频免费网站| 欧美激情极品国产一区二区三区| 精品国产一区二区久久| 久久精品国产综合久久久| 大型黄色视频在线免费观看| 亚洲精品国产精品久久久不卡| 男人操女人黄网站| 黄色毛片三级朝国网站| 999久久久国产精品视频| 亚洲精品美女久久久久99蜜臀| 久久久久国内视频| 国内精品久久久久精免费| 亚洲三区欧美一区| 亚洲精品美女久久av网站| 91国产中文字幕| 天堂影院成人在线观看| 亚洲国产高清在线一区二区三 | 午夜福利,免费看| 一级,二级,三级黄色视频| 午夜久久久在线观看| 曰老女人黄片| 午夜a级毛片| 亚洲欧美一区二区三区黑人| 国产精品 欧美亚洲| 美女国产高潮福利片在线看| 他把我摸到了高潮在线观看| 后天国语完整版免费观看| 最新美女视频免费是黄的| 国产精品98久久久久久宅男小说| 18禁国产床啪视频网站| 69精品国产乱码久久久| 亚洲国产日韩欧美精品在线观看 | 一区二区日韩欧美中文字幕| 高清黄色对白视频在线免费看| 欧美黄色淫秽网站| 天天一区二区日本电影三级 | 黄色丝袜av网址大全| 久久久久国产精品人妻aⅴ院| 成人三级黄色视频| 国产精品 国内视频| 美女扒开内裤让男人捅视频| 黑人巨大精品欧美一区二区mp4| 一区二区日韩欧美中文字幕| 精品欧美国产一区二区三| √禁漫天堂资源中文www| 成年版毛片免费区| 国产精品免费一区二区三区在线| 大香蕉久久成人网| 中文字幕av电影在线播放| 女人被躁到高潮嗷嗷叫费观| 天天添夜夜摸| 国产精品久久电影中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲第一青青草原| 亚洲成av人片免费观看| 99久久99久久久精品蜜桃| 亚洲少妇的诱惑av| 午夜亚洲福利在线播放| 校园春色视频在线观看| 亚洲成人免费电影在线观看| 在线免费观看的www视频| 成人手机av| 91大片在线观看| 女同久久另类99精品国产91| 国产精品九九99| 一进一出抽搐动态| 无限看片的www在线观看| 国产成人系列免费观看| 嫁个100分男人电影在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美激情在线| 十八禁网站免费在线| 午夜福利视频1000在线观看 | 国产精品自产拍在线观看55亚洲| 成年女人毛片免费观看观看9| 国产精品乱码一区二三区的特点 | 午夜免费鲁丝| 91成人精品电影| 俄罗斯特黄特色一大片| 中文字幕色久视频| 国产精品亚洲一级av第二区| 国产亚洲欧美在线一区二区| 99久久综合精品五月天人人| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久人人做人人爽| 日韩大码丰满熟妇| 免费在线观看日本一区| 波多野结衣av一区二区av| 亚洲av第一区精品v没综合| 国产亚洲欧美精品永久| 国产99白浆流出| 在线天堂中文资源库| 国产麻豆成人av免费视频| 精品卡一卡二卡四卡免费| 午夜福利18| 日日干狠狠操夜夜爽| 欧美中文综合在线视频| 午夜视频精品福利| 欧美日韩乱码在线| 黑人欧美特级aaaaaa片| 女人高潮潮喷娇喘18禁视频| 这个男人来自地球电影免费观看| 真人做人爱边吃奶动态| 最好的美女福利视频网| 国产精品 国内视频| 欧美国产日韩亚洲一区| 丝袜美足系列| 在线观看www视频免费| 免费av毛片视频| 搡老妇女老女人老熟妇| 午夜精品久久久久久毛片777| aaaaa片日本免费| av天堂久久9| 精品卡一卡二卡四卡免费| 少妇 在线观看| 99国产极品粉嫩在线观看| 精品国产美女av久久久久小说| 欧美激情高清一区二区三区| 精品欧美国产一区二区三| 亚洲第一电影网av| 色婷婷久久久亚洲欧美| 黑人巨大精品欧美一区二区蜜桃| 一进一出好大好爽视频| 黄频高清免费视频| 精品无人区乱码1区二区| 日韩大尺度精品在线看网址 | 久久久久久久精品吃奶| 性欧美人与动物交配| 久久精品国产综合久久久| 国产精品影院久久| 亚洲av成人av| www.www免费av| 三级毛片av免费| 亚洲国产精品久久男人天堂| 男男h啪啪无遮挡| 身体一侧抽搐| 久久精品国产亚洲av香蕉五月| 少妇裸体淫交视频免费看高清 | 中文亚洲av片在线观看爽| 亚洲精品久久成人aⅴ小说| 黑丝袜美女国产一区| 欧美日韩福利视频一区二区| 久久国产精品人妻蜜桃| 国语自产精品视频在线第100页| 国产又爽黄色视频| 搡老妇女老女人老熟妇| 亚洲免费av在线视频| 老司机在亚洲福利影院| 亚洲av电影在线进入| 色综合欧美亚洲国产小说| 亚洲欧美日韩另类电影网站| 亚洲狠狠婷婷综合久久图片| 欧美久久黑人一区二区| 99re在线观看精品视频| 国产精品秋霞免费鲁丝片| 欧美国产精品va在线观看不卡| 亚洲激情在线av| 国产国语露脸激情在线看| 欧美 亚洲 国产 日韩一| 国产私拍福利视频在线观看| 国产精品亚洲av一区麻豆| 少妇 在线观看| 琪琪午夜伦伦电影理论片6080| www国产在线视频色| 在线观看66精品国产| 啦啦啦 在线观看视频| 国产精品美女特级片免费视频播放器 | 精品久久久久久,| 一边摸一边抽搐一进一小说| 一本综合久久免费| 亚洲精品粉嫩美女一区| 午夜久久久久精精品| 午夜福利高清视频| 高清毛片免费观看视频网站| 成人永久免费在线观看视频| 一进一出好大好爽视频| 久久草成人影院| 妹子高潮喷水视频| 叶爱在线成人免费视频播放| 最近最新中文字幕大全电影3 | 美女午夜性视频免费| 真人一进一出gif抽搐免费| 一本综合久久免费| 国产午夜精品久久久久久| 99久久综合精品五月天人人| 亚洲全国av大片| 满18在线观看网站| 久久久久久久久中文| 丰满的人妻完整版| 狂野欧美激情性xxxx| 亚洲 欧美 日韩 在线 免费| 亚洲aⅴ乱码一区二区在线播放 | 99精品在免费线老司机午夜| 亚洲片人在线观看| 国内精品久久久久久久电影| 亚洲电影在线观看av| 国产精品av久久久久免费| 正在播放国产对白刺激| 美女大奶头视频| 成年人黄色毛片网站| 中文字幕精品免费在线观看视频| 视频区欧美日本亚洲| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人不卡在线观看播放网| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| 国产精华一区二区三区| 国产成+人综合+亚洲专区| 黄片小视频在线播放| 两人在一起打扑克的视频| 亚洲三区欧美一区| 啪啪无遮挡十八禁网站| 一本大道久久a久久精品| 午夜福利,免费看| 中出人妻视频一区二区| 波多野结衣高清无吗| 18美女黄网站色大片免费观看| 9191精品国产免费久久| 99国产精品免费福利视频| 成人三级做爰电影| 亚洲精品在线观看二区| 在线观看免费午夜福利视频| 亚洲精品在线美女| 免费看美女性在线毛片视频| 啦啦啦观看免费观看视频高清 | 好男人电影高清在线观看| 久久婷婷人人爽人人干人人爱 | 国产精品免费视频内射| 中文字幕人成人乱码亚洲影| 叶爱在线成人免费视频播放| 操美女的视频在线观看| 久久精品国产综合久久久| 一级a爱片免费观看的视频| 日韩av在线大香蕉| www.熟女人妻精品国产| 夜夜看夜夜爽夜夜摸| 欧美日本中文国产一区发布| 欧美日韩一级在线毛片| 亚洲国产欧美网| 国产在线观看jvid| 午夜福利在线观看吧| 亚洲天堂国产精品一区在线| 欧美日韩黄片免| 琪琪午夜伦伦电影理论片6080| 亚洲成a人片在线一区二区| 手机成人av网站| 亚洲国产精品sss在线观看| 亚洲一码二码三码区别大吗| 欧美丝袜亚洲另类 | 免费一级毛片在线播放高清视频 | 99久久国产精品久久久| 国产亚洲精品av在线| 搡老岳熟女国产| 欧美成人一区二区免费高清观看 | 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出| 久久久国产成人免费| 好看av亚洲va欧美ⅴa在| 一a级毛片在线观看| 三级毛片av免费| 激情视频va一区二区三区| 亚洲黑人精品在线| 美女国产高潮福利片在线看| 两个人视频免费观看高清| 国产成人免费无遮挡视频| 亚洲,欧美精品.| 色av中文字幕| 成人三级黄色视频| 很黄的视频免费| 色哟哟哟哟哟哟| 免费看十八禁软件| 一级黄色大片毛片| 午夜福利在线观看吧| 欧美国产精品va在线观看不卡| 午夜福利免费观看在线| 50天的宝宝边吃奶边哭怎么回事| 国产精品香港三级国产av潘金莲| 久久精品国产99精品国产亚洲性色 | 1024香蕉在线观看| 黄色丝袜av网址大全| 精品国产一区二区三区四区第35| 欧美日韩一级在线毛片| 超碰成人久久| 久久精品国产清高在天天线| 欧美色视频一区免费| 亚洲av成人一区二区三| 国产xxxxx性猛交| 国产精华一区二区三区| 亚洲国产欧美网| 午夜a级毛片| 无人区码免费观看不卡| 欧美 亚洲 国产 日韩一| 1024香蕉在线观看| 国产麻豆成人av免费视频| 少妇熟女aⅴ在线视频| 欧美老熟妇乱子伦牲交| 黄色片一级片一级黄色片| 成人国产综合亚洲| 亚洲熟妇中文字幕五十中出| 欧美黄色淫秽网站| 一级黄色大片毛片| 亚洲人成77777在线视频| 免费久久久久久久精品成人欧美视频| 又紧又爽又黄一区二区| 亚洲熟妇中文字幕五十中出| 18禁黄网站禁片午夜丰满| 国产伦一二天堂av在线观看| 精品一品国产午夜福利视频| 好男人在线观看高清免费视频 | 亚洲精品av麻豆狂野| 91麻豆精品激情在线观看国产| 美女扒开内裤让男人捅视频| 国产主播在线观看一区二区| 国内久久婷婷六月综合欲色啪| 美女午夜性视频免费| 成人国语在线视频| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 美女免费视频网站| 人妻久久中文字幕网| 成人三级黄色视频| 色av中文字幕| 一区二区日韩欧美中文字幕| 久久久久精品国产欧美久久久| 国产又色又爽无遮挡免费看| 日韩欧美在线二视频| 美女午夜性视频免费| 大码成人一级视频| 国产真人三级小视频在线观看| 性欧美人与动物交配| 涩涩av久久男人的天堂| 最新在线观看一区二区三区| 日韩成人在线观看一区二区三区| 国产区一区二久久| 亚洲伊人色综图| 久久午夜亚洲精品久久| 一级毛片高清免费大全| 日日夜夜操网爽| 在线国产一区二区在线| 免费av毛片视频| 国产极品粉嫩免费观看在线| 午夜激情av网站| 亚洲精品美女久久久久99蜜臀| 欧美中文综合在线视频| 天天躁夜夜躁狠狠躁躁| 色精品久久人妻99蜜桃| 国产1区2区3区精品| 一区二区日韩欧美中文字幕| 人人妻人人澡人人看| 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 国产亚洲欧美精品永久| 国产视频一区二区在线看| 国产精品精品国产色婷婷| 老司机福利观看| 黄色 视频免费看| 精品免费久久久久久久清纯| 欧美最黄视频在线播放免费| av视频免费观看在线观看| 亚洲国产精品久久男人天堂| 国产精品,欧美在线| 国产aⅴ精品一区二区三区波| 亚洲第一青青草原| 亚洲 欧美一区二区三区| 亚洲精品粉嫩美女一区| 国产亚洲精品av在线| 免费看美女性在线毛片视频| 欧美绝顶高潮抽搐喷水| 久久久久久久精品吃奶| 黑人巨大精品欧美一区二区mp4| 18禁裸乳无遮挡免费网站照片 | 少妇熟女aⅴ在线视频| cao死你这个sao货| 国产视频一区二区在线看| 91国产中文字幕| 亚洲精品中文字幕在线视频| 午夜老司机福利片| 成人三级黄色视频| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三| xxx96com| 色综合站精品国产| 久久精品亚洲精品国产色婷小说| 亚洲一码二码三码区别大吗| 女同久久另类99精品国产91| 亚洲一卡2卡3卡4卡5卡精品中文| 久久欧美精品欧美久久欧美| 大码成人一级视频| 久久精品aⅴ一区二区三区四区| 正在播放国产对白刺激| 岛国视频午夜一区免费看| 看免费av毛片| 亚洲性夜色夜夜综合| 老司机深夜福利视频在线观看| 国产成人精品久久二区二区91| 777久久人妻少妇嫩草av网站| 免费看十八禁软件| 少妇粗大呻吟视频| 亚洲免费av在线视频| 啦啦啦免费观看视频1| 日本三级黄在线观看| 宅男免费午夜| 看片在线看免费视频| 淫秽高清视频在线观看| 搞女人的毛片| 在线观看午夜福利视频| 国产高清视频在线播放一区| 欧美黄色淫秽网站| 久久婷婷人人爽人人干人人爱 | 极品教师在线免费播放| 成年版毛片免费区| 亚洲五月婷婷丁香| 日韩精品青青久久久久久| 性欧美人与动物交配| 在线观看免费视频网站a站| 久久午夜综合久久蜜桃| 黄色视频不卡| 午夜福利影视在线免费观看| 色播亚洲综合网| 日韩中文字幕欧美一区二区| 日韩欧美三级三区| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看完整版高清| 脱女人内裤的视频| 亚洲九九香蕉| 9热在线视频观看99| 在线观看午夜福利视频| 日本免费一区二区三区高清不卡 | 国产精品久久久人人做人人爽| 91老司机精品| 午夜福利免费观看在线| 激情在线观看视频在线高清| 久久午夜亚洲精品久久| 欧美日本亚洲视频在线播放| 亚洲第一电影网av| av有码第一页| 亚洲国产精品合色在线| 给我免费播放毛片高清在线观看| 乱人伦中国视频| 人妻久久中文字幕网| 国产精品,欧美在线| 91精品国产国语对白视频| 黄频高清免费视频| 日韩中文字幕欧美一区二区| 国内精品久久久久久久电影| 欧美黑人精品巨大| 国产激情欧美一区二区| 制服丝袜大香蕉在线| 亚洲欧美精品综合一区二区三区| 一区在线观看完整版| 欧美日本亚洲视频在线播放| 国产av一区在线观看免费| 亚洲精品美女久久久久99蜜臀| 99久久99久久久精品蜜桃| 黄色 视频免费看| 国产亚洲欧美98| 久久精品国产亚洲av香蕉五月| 一级毛片女人18水好多| 国产伦人伦偷精品视频| 亚洲欧美激情在线| 69精品国产乱码久久久| 精品久久久久久,| 亚洲欧洲精品一区二区精品久久久| 十八禁网站免费在线| 亚洲一区二区三区不卡视频| 久久天躁狠狠躁夜夜2o2o| 久久久久久人人人人人| 婷婷丁香在线五月| 亚洲av美国av| 午夜福利影视在线免费观看| 久久久久九九精品影院| 神马国产精品三级电影在线观看 | 久久精品国产99精品国产亚洲性色 | 欧美日韩亚洲综合一区二区三区_| 777久久人妻少妇嫩草av网站| 久9热在线精品视频| 亚洲国产毛片av蜜桃av| 国产aⅴ精品一区二区三区波| 午夜福利免费观看在线| 国产精品98久久久久久宅男小说| 国产极品粉嫩免费观看在线| 一区福利在线观看| 免费观看精品视频网站| 国产高清有码在线观看视频 | 丁香六月欧美| 人成视频在线观看免费观看| 一进一出抽搐gif免费好疼| 亚洲欧美精品综合久久99| 国产精品二区激情视频| 超碰成人久久| 男人操女人黄网站| 久久国产精品男人的天堂亚洲| 久久久久久久久免费视频了| 免费观看人在逋| 日本黄色视频三级网站网址| 在线av久久热| 中文字幕人妻丝袜一区二区| 国产伦一二天堂av在线观看| 禁无遮挡网站| 婷婷精品国产亚洲av在线| 欧美国产日韩亚洲一区| 国产精品爽爽va在线观看网站 | 韩国精品一区二区三区| 午夜成年电影在线免费观看| 国产三级黄色录像| 成年版毛片免费区| 18禁黄网站禁片午夜丰满| 精品一品国产午夜福利视频| 99国产精品99久久久久| 午夜福利在线观看吧| 波多野结衣高清无吗| 黄色丝袜av网址大全| 久久久精品欧美日韩精品| 亚洲精品一卡2卡三卡4卡5卡| 三级毛片av免费| 少妇被粗大的猛进出69影院| 99久久99久久久精品蜜桃| 久久久久国内视频| 91成人精品电影| 国产在线精品亚洲第一网站| 精品国产乱码久久久久久男人| 日本黄色视频三级网站网址| 国产单亲对白刺激| 长腿黑丝高跟| 激情在线观看视频在线高清| 无人区码免费观看不卡| 久久天堂一区二区三区四区| 国产伦一二天堂av在线观看| 国产av又大| 亚洲国产看品久久| 99国产精品99久久久久| 一边摸一边抽搐一进一小说| 人人妻,人人澡人人爽秒播| 久久午夜综合久久蜜桃| 午夜亚洲福利在线播放| 每晚都被弄得嗷嗷叫到高潮| 色av中文字幕| 久久久国产精品麻豆| 黑人巨大精品欧美一区二区mp4| av片东京热男人的天堂| 国产成年人精品一区二区| 欧美国产精品va在线观看不卡| 午夜精品久久久久久毛片777| 在线观看免费视频网站a站| 久久久久久久久中文| 18禁裸乳无遮挡免费网站照片 | 午夜福利,免费看| 天天一区二区日本电影三级 | 啦啦啦免费观看视频1| 中文字幕av电影在线播放| 亚洲精华国产精华精| 国产男靠女视频免费网站| 精品久久久久久久久久免费视频| 最近最新中文字幕大全免费视频| 一区二区三区高清视频在线| 久久伊人香网站| 久久久精品欧美日韩精品| 久久久久久免费高清国产稀缺| 老司机福利观看| 亚洲无线在线观看| 亚洲 欧美 日韩 在线 免费| 人妻久久中文字幕网| 久久久久久大精品| 日本黄色视频三级网站网址| 人妻久久中文字幕网| 视频区欧美日本亚洲| 黄网站色视频无遮挡免费观看| 久久久久国产一级毛片高清牌| 亚洲精品国产精品久久久不卡| 久久国产精品影院| 中文字幕色久视频| 琪琪午夜伦伦电影理论片6080| 久久香蕉精品热| 狂野欧美激情性xxxx| 女生性感内裤真人,穿戴方法视频| 久热爱精品视频在线9| 国产精品亚洲av一区麻豆| 黄色视频不卡| 久久香蕉精品热| 人妻久久中文字幕网| or卡值多少钱| 身体一侧抽搐| www.熟女人妻精品国产| 午夜亚洲福利在线播放| 亚洲 国产 在线| 国产精品一区二区免费欧美| 人成视频在线观看免费观看| 国产男靠女视频免费网站| 啦啦啦韩国在线观看视频| 这个男人来自地球电影免费观看| 美女免费视频网站| 亚洲av片天天在线观看|