• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anchoring metal ions in amine-functionalized boron imidazolate framework for photocatalytic reduction of CO2

    2022-07-11 03:38:50GuilnXuQinLongHongYyongSunMengLiuHiXiZhngJinZhng
    Chinese Chemical Letters 2022年6期

    Guiln Xu,Qin-Long Hong,Yyong Sun,Meng Liu,Hi-Xi Zhng,?,Jin Zhng,?

    a State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China

    b Key Lab for Sport Shoes Upper Materials of Fujian Province,Fujian Huafeng New Material Co.,Ltd.,Putian 351164,China

    Keywords:Metal-organic framework CO2 reduction Boron-imidazolate framework Photocatalysis Structure

    ABSTRACT The photocatalytic reduction of CO2 to energy-rich chemicals is highly appealing for alleviation of energy crisis and environment pollution.The introduction of different active sites is a key factor to determine the reaction activity and selectivity.Here,we demonstrate the metal ion-dependent performance for photocatalytic CO2 reduction by anchoring transition metal ions (Co2+ and Ni2+) in an amine-functionalized boron imidazolate framework (BIF-43).As a result,Ni@BIF-43 realized a high selectivity of 90.2% for the CO2-to-CO,while Co@BIF-43 achieved more efficient conversion with a high CO production rate of 2036.0 μmol g?1 h?1.Significantly,precise control of isolated metal site on a well-defined structure through coordination-assisted strategies enables us to better understand the specific effects of different metal-ion species on photoreduction of CO2 as well as the catalytic mechanism.

    Excessive emission of carbon dioxide (CO2) from the burning fossil fuels results in serious global climatic change and energy shortage [1–4].Currently,the photocatalytic conversion of CO2to valuable energy-rich chemicals has been considered as one of promising technologies to alleviate above issues [5–8].Unfortunately,owing to the high thermodynamic stability of CO2molecule,the activation and reduction of CO2are very difficult and complex[9,10].The multiple proton coupled electron transfer process is required to CO2photoreduction,which is accompanied by the competing hydrogen evolution reduction (HER) leading to a wide variety of products [11].In the past several decades,a series of efficient photocatalysts based on semiconductors (such as TiO2,CdS,g-C3N4) and nanocomposites have been developed [12–22].Due to the complicated structural components of catalysts and the large number of possible products,fundamental understanding the dependence between the structure and composition of catalyst on the activity and selectivity of CO2photoreduction is a significant challenge.

    Loading active metal atoms/ions onto heterogeneous supports is a very versatile route to maximize the fraction of active sites and tailor properties of catalysts [23,24].The transition-metal (TM) catalyst has attracted worldwide attention in catalytic field.Especially,the metal Ni and Co serving as active sites play important roles in catalytic reaction [5,7,13,19].Generally,active carbon,metal oxides,silica and zeolites are the most common supports,because of their effective voids and defect sites [25–31].However,it is difficult to precisely control the location and the local environment of metal atoms/ions on these mostly disordered anchoring surfaces,easily resulting in nonuniform distribution as well as complicated metal–support interactions.Compared with the conventional inorganic supports,metal-organic frameworks (MOFs) possess many attractive features such as well-defined structure,high surface area,tunable inorganic nodes and organic linkers,and rich surface coordination sites,and have thus emerged as possible supporters to embed catalytic metal sites [32–36].Introducing TM atoms into a MOF matrix could open up great opportunities to tune the electronic properties of TMs as CO2RR active sites and maintain relatively simple atomic coordination for fundamental mechanism study.Recently,many studies have shown that MOFs can serve as functional supports for anchoring external metal sites on secondary building units (SBU) or organic struts [37–41].However,the reaction condition for photocatalytic reduction of CO2is somewhat harsh,and it is urgently needed to develop new porous and stable functional MOFs.

    Boron imidazolate frameworks (BIFs),a kind of MOFs constructed by the crosslinking of pre-synthesized boron imidazolate ligands and metal ions,are unexpectedly found to show improved chemical stability due to the presence of robust M-N coordination bonds and the strong covalent B-N bonds [42].Recently,some BIFs have been used as catalysts to reduction CO2study,which offered accurate insight into the catalytic processesviaadjusting the local environment of metal nodes [43–47].However,it is difficult to anchor metal on the organic struts in BIFs because of the lack of uncoordinated functional groups,such as ?COOH,?OH,?NH2.Consequently,the construction of BIF-based catalyst with a special binding microenvironment to provide a new direction to functionalize BIFs is quite desirable.

    Fig.1.Structural analysis of BIF-43.(a) The 2D boron imidazolate layer linked by BH(mim)3?,B(im)4?and metal ions.(b) 3D structure of BIF-43.(c) Details of the Zn3(2-ATP)3 ring.

    Here,we designed an amine-functionalized boron imidazolate framework (BIF-43) which was used as a support to stabilize the transition metal ions (Ni2+and Co2+) in pores,obtaining Ni@BIF-43 and Co@BIF-43.By anchoring external metal ions,it offered a simple and precise structural model to analyze the metal nodesdependent effect on photoreduction of CO2.As expected,the BIF-43 with different catalytic active centers exhibit diverse effects on the activity and selectivity of mainly reductive products.It is worth noting that Ni@BIF-43 showed very high catalytic selectivity(90.2%) for CO,which has far exceeded the selectivity of Co@BIF-43 (64.1%).The close contact between adsorption sites and active sites effectively activates CO2molecules and improves photocatalytic conversion of CO2.This strategy offered us an important insight to prepare BIF-based materials for CO2capture and photoreduction.

    BIF-43 (Zn11[B(im)4]6[BH(mim)3]2(2-ATP)6(OH)2,im=imidazole,mim=2-methylimidazole,2-ATP=2-aminoterephthalic acid) was successfully designed and synthesized through the selfassembly of Zn(CH3COO)2·2H2O and three different ligands KBH(2-mim)3,KB(im)4and 2-ATP (summary of crystal data and structural refinements are shown in Table S1 in Supporting information).It is the first example that integrates both tetradentate B(im)4?ligand and tridentate BH(mim)3?ligand.Despite such a complex composition,BIF-43 can be simply considered to be built from the 2D boron-imidazolate-zinc layer pillared by the 2-ATP ligands.The single-crystal X-ray diffraction analysis exhibits that BIF-43 crystallizes in the hexagonal space groupP62c and features a 3D pore structure.There are three crystallographically independent tetrahedral zinc sites in the asymmetric unit.Each Zn1 is bonded to three N from two B(im)4?and one BH(mim)3?,and one O atoms from 2-ATP ligand (Fig.S1 in Supporting information).Each Zn2 is bonded to three N from three B(im)4?and one charge-balancing OH?(Fig.S2 in Supporting information).Zn1 and Zn2 ions are bridged by B(im)4?and BH(mim)3?ligands to form ahcblayer parallel to theabplane (Fig.1a).Two such layers are bridged by Zn3 ions to form a 2D sandwich-like layer,with Zn3(2-ATP)3rings at the center of the sandwich layer (Figs.1b and c and Fig.S3 in Supporting information).Furthermore,these sandwich layers are linked by 2-ATP ligands that bonded on Zn1 to yield a 3D porous structure (Fig.1b).Its phase purity,thermal and chemical stability were confirmed by powder X-ray diffraction (PXRD) and thermogravimetry analysis (TGA) (Figs.S4-S7 in Supporting information).As estimated by the PLATON program,the free space in BIF-43 is 5459.2 ?A3per unit cell with the pore volume ration of 43.0%.N2sorption measurements (Fig.S8 in Supporting information) at 77 K exhibit type-I isotherms behavior with the calculated Brunauer-Emmett-Teller(BET) and Langmuir surface areas of 539.8 and 779.3 m2/g,respectively.Moreover,BIF-43 shows a high affinity for CO2due to the presence of ?NH2in the pore [48,49].The CO2uptake values are 97.2 cm3/g at 273 K and 63.9 cm3/g at 298 K under 1 atm (Fig.S9 in Supporting information).The adsorption enthalpy (Qst) near the zero coverage was calculated to be 32.4 kJ/mol,which was significantly higher than those reported BIFs without ?NH2groups [50].The stronger affinity of BIF-43 toward CO2is more conductive to the activation of CO2during the reduction process.

    Fig.2.(a) HRTEM images and element mapping of Ni@BIF-43.(b) The high resolution XPS spectrum of Ni 2p for Ni@BIF-43.(c) XANES spectra of Ni@BIF-43 for Ni K-edge.(d) Fourier transformed (FT) k2-weighted χ(k)-function of the EXAFS spectra for Ni K-edge.

    Owing to the presence of 2-ATP in the pore wall,the adjacent free-NH2and uncoordinated O-atoms of the 2-ATP could be used to chelate external metal ions in the pores of BIF-43(Fig.1c) [51–53].Therefore,the metalated compounds Ni@BIF-43 were created by immersing the pristine crystals in solutions of Ni2+under air at room temperature.The color of the crystals changed from pale yellow to light green suggesting the adsorption of external metal ions (Fig.S11 in Supporting information).The PXRD (Fig.S12 in Supporting information) demonstrated the retention of BIF-43 crystallinity after loading of Ni ions.Ni@BIF-43 remained porous and showed reduced porosity as demonstrated by N2sorption isotherms (Fig.S8).The BET surface was decreased from 539.8 m2/g for BIF-43 to 275.1 m2/g for Ni@BIF-43.The coordination of Ni ions with the ?NH2/O groups of BIF-43 was further confirmed by Fourier transform infrared (FT-IR) spectra.As shown in Fig.S13 (Supporting information),the peaks at 1612 and 1450 cm?1for Ni@BIF-43 displayed a significantly lower intensity compared to that for BIF-43,which are ascribed to the?NH2and ?COO stretch vibrations,strongly supporting the interaction between Ni ions and ?NH2/O species [54].Inductively coupled plasma atomic emission spectroscopy (ICP-AES) showed that the Ni2+content was 2.1%.The high resolution transmission electron microscopy (HRTEM) images clearly confirmed that no Ni nanoparticles and metal oxides are formed during the immersion period,shown in Fig.2a.Element mapping revealed uniform distribution of Ni ions throughout entire BIF-43 crystal.To gain further structural details on the chemical status and elemental composition of the samples,we performed X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements.The XPS survey scan clearly showed the presence of C,N,O,B,Zn,Ni in Ni@BIF-43 (Fig.S14 in Supporting information).As shown in Fig.2b,the binding energy of Ni 3p peak centered at 856.10 eV,which was assigned to Ni2+[7].The X-ray absorption near-edge structure (XANES) spectra (Fig.2c) also showed that the absorption edge positions of Ni@BIF-43 is also close to that of NiO,which coincided well with the XPS results.In addition,the Fouriertransformed (FT) extended X-ray absorption fine structure (EXAFS)analysis (Fig.2d) inRspace of Ni showed one main peak at 1.56 ?A,which is longer than the distance of Ni-N (1.40 ?A) and slightly shorter than that of Ni-O (1.59 ?A),likely due to the Ni-O and Ni-N combined contributions.No Ni-Ni bonds at around 2.20 ?A are observed.Altogether,these results underline the presence of Ni2+ions in an atomically dispersed form,which is coordinated to the?NH2/O species of the 2-ATP ligands in BIF-43.

    Fig.3.(a) Time course of CO and H2 evolution over Ni@BIF-43.(b) The evolution yield of CO and H2 at different condition.(c) The reproducible photocatalytic activities for Ni@BIF-43.(d) EXAFS of Ni@BIF-43 before and after the photocatalytic CO2 reduction.

    Photocatalytic CO2reduction reactions at room temperature have been investigated in CO2-saturated CH3CN/H2O solution with triethanolamine (TEOA) as sacrificial reagent and Ru(bpy)3]Cl2(noted Ru) as photosensitizer under visible light(420<λ <800 nm) irradiation [5,26,44,55].In this reaction system,CO and H2were detected as the main reduction products and no appreciable amounts of other carbonous products were detected from the reaction (Fig.S15 in Supporting information).As shown in Fig.3a,the yields of CO and H2increases almost linearly with irradiation time in a 6 h reaction.The total amounts of CO and H2products from Ni@BIF-43 catalytic system were 66.5 b5~mol (rate: 1109.0 b5~mol g?1h?1) and 7.2 b5~mol (rate:121.1 b5~mol g?1h?1),respectively,giving a high CO selectivity of 90.2%.The apparent quantum efficiency for CO production was measured to be 0.060% at 450 nm (Fig.S26 in Supporting information).It should be noted that the catalytic performance of pristine crystals BIF-43 without anchoring external metal ions was rather poor and nearly undetectable.Therefore,these results demonstrated that the anchored metal ions serve as the catalytic sites for CO2photoreduction [51,52].

    Control experiments were carried out to further understand the CO2reduction under different conditions and these results were shown in Fig.3b.No products were detected in the absence of visible light or Ru,suggesting that the CO2reduction is indeed driven by the photoirradiation.When CO2was replaced by N2,only H2can be detected while no CO is observed,implying that the CO derived from conversion of CO2.In the absence of Ni@BIF-43 catalysts,only trace amount of CO and H2were detected,which came

    Fig.4.(a) Mott–Schottky plots for Ni@BIF-43 in 0.2 mol/L Na2SO4 aqueous solution.(b) Schematic energy-level diagram showing electron transfer from[Ru(bpy)3]Cl2 to the BIF-43,Co@BIF-43 and Ni@BIF-43.(c) Transient photocurrent response for BIF-43,Co@BIF-43 and Ni@BIF-43 under visible light(420 <λ < 800 nm).(d) Electrochemical impedance spectroscopy plots for BIF-43,Co@BIF-43 and Ni@BIF-43 under visible light (420 <λ < 800 nm).

    from the Ru catalysts and were negligible as compared to that with Ni@BIF-43 catalysts.These results confirmed that the CO2reduction reaction was indeed catalyzed by Ni@BIF-43 and driven by light excitation of the Ru photosensitizer.Additionally,Ni@BIF-43 exhibited high durability in cycling tests with reasonably reproducible photocatalytic activities for all three cycles,shown in Fig.3c.XRD analysis (Fig.S16 in Supporting information) evidenced that the crystallinity of the catalysts is maintained.Moreover,XANES (Fig.3d) and EXAFS (Fig.S17 in Supporting information) measurements of Ni have been examined after photocatalytic reaction.No obvious structural evolution has been observed,further reflecting its stability during the CO2photoreduction process.

    The well functionalized porous platform of BIF-43 allows us to investigate the significant role of different metal sites in CO2photocatalytic reaction.In comparison,Co with only one d-orbital electron less than Ni has been investigated to construct a counterpart sample of Co@BIF-43.The Co content was 0.52% as determined by ICP-AES analysis.HRTEM,element mapping,photograph and XPS analyses revealed that Co was uniformly distributed throughout the crystal in the form of Co2+ions (Figs.S18-S20 in Supporting information).In the similar photocatalytic condition,Co@BIF-43 displayed a higher photocatalytic activity (2036.0 b5~mol g?1h?1for CO) than that of Ni@BIF-43 (1109.0 b5~mol g?1h?1),however,its selectivity (64.1%) was obviously lower than that of Ni@BIF-43(90.2%) (Fig.3b and Fig.S21 in Supporting information).The apparent quantum efficiency for CO production was measured to be 0.061% at 450 nm (Fig.S27 in Supporting information).In addition,three cycles reactions experiments were conducted to evaluate the stability of the photocatalyst (Fig.S22 in Supporting information).

    To elucidate the mechanisms behind the metal sites dependent performance for CO2photoreduction,we studied the whole reaction process systematically.Firstly,the electronic structure of catalyst is one key factor to determine the photocatalytic capability.The UV-vis diffuse reflectance spectra (Figs.S23 and S24 in Supporting information) were conducted to give the bandgap energy of 2.86,1.88 and 1.47 eV for BIF-43,Co@BIF-43 and Ni@BIF-43,respectively.Mott-Schottky measurements were carried out to determine the flat-band position to be ?0.81,?0.84 and ?1.17 eV for BIF-43,Co@BIF-43 and Ni@BIF-43 (Fig.4a and Fig.S25 in Supporting information),respectively,which are approximately close to the bottom of the conduction band (CB).Combined with the analysis of the UV-vis diffuse reflectance spectra,the energy level diagrams for all three catalysts are obtained (Fig.4b).The CB potential for all the three catalysts were higher than the reduction potential of CO2-to-CO and lower than the lowest unoccupied molecular orbital (LUMO) of Ru (?1.27 eV) [5].These results suggested that these catalysts were thermodynamically capable of receiving the photoexcited electrons from the excited Ru for reducing the adsorbed CO2to CO product.However,although the catalytic activity of Co@BIF-43 was higher than that of Ni@BIF-43,its CB potential was lower than that of Ni@BIF-43.Therefore,energy band positions only endow sufficient driving force to trigger the CO2reduction process but cannot determine the catalytic activity.Furthermore,charge separation efficiency of these catalysts was investigated by the transient photocurrent response and the electrochemical impedance spectroscopy (EIS) under the photocatalytic system condition,shown in Figs.4c and d.Greatly enhanced photocurrent intensity and reduced semicircle arc of Nyquist plots have been observed over Co@BIF-43 and Ni@BIF-43,suggesting the enhanced separation efficiency of the photogenerated electron-hole pairs and faster electron transfer from the excited Ru photosensitizer to the reaction center by anchoring Co/Ni ions.Based on previous works[5,37]and the above results,a conceivable mechanism was proposed.Under visible light irradiation,the photosensitizer (Ru) is promoted to the excited state.This excited state is then oxidatively quenched by the catalyst of M@BIF-43 and transfers electron to the exposed metal active site where CO2molecule is activated and reduced to CO.Finally,Ru returned back to its original state by electron supply from the sacrificial reductant TEOA.Moreover,the highest current intensity and lowest charge-transfer resistance of Co@BIF-43 was consistent with its highest catalytic activity towards CO,which demonstrates that charge separation and transport efficiency may be the key factor for the boosted catalytic reaction rate.Whereas,Ni@BIF-43 shows the higher selectivity of CO over H2,indicating the important selective role of the metal center in the catalytic process.The above results clearly indicate that BIFs modified by transition metal ions can significantly facilitate the charge separation,and vastly improve photocatalytic CO2effi-ciency,and the catalytic performances highly dependent the types of active metal ions.

    In summary,an amine-functionalized BIF-43 was reasonably designed and used as the supporter to stabilize active sites Co and Ni,thereby obtaining photocatalysts Ni@BIF-43 and Co@BIF-43.Ni@BIF-43 exhibited a high selectivity of 90% for the CO2-to-CO conversion,while Co@BIF-43 performed a high CO production rate of 2036.0 μmol g?1h?1.The close connection between active sites and adsorption sites,and the enhanced photo-excited electrons transfer together promoted photocatalytic CO2efficiency.Furthermore,the model allows us to realize more definitively the specific effects of different metal-ion species on CO2conversion.The work provided more insights into the design of photocatalysts by anchoring active sitesviafunctional organic ligands as linker.

    Declaration of competing interest

    The authors declare no conflicts of interests.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.21935010,21773242),National Key Research and Development Program of China (No.2018YFA0208600),and the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.061.

    久久精品91无色码中文字幕| 黄色日韩在线| 亚洲av成人不卡在线观看播放网| 19禁男女啪啪无遮挡网站| 亚洲精华国产精华精| 狂野欧美激情性xxxx| 99久久99久久久精品蜜桃| 日韩人妻高清精品专区| 少妇的逼好多水| 十八禁人妻一区二区| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| 久久国产乱子伦精品免费另类| 亚洲精品国产精品久久久不卡| 美女cb高潮喷水在线观看| 亚洲国产中文字幕在线视频| 成人高潮视频无遮挡免费网站| 日本与韩国留学比较| 国产三级黄色录像| 免费在线观看亚洲国产| 天堂av国产一区二区熟女人妻| 亚洲国产高清在线一区二区三| 日韩精品青青久久久久久| 国产视频一区二区在线看| 老熟妇乱子伦视频在线观看| svipshipincom国产片| 热99re8久久精品国产| 亚洲avbb在线观看| 国产精品98久久久久久宅男小说| 免费在线观看影片大全网站| 国产乱人视频| 久久精品人妻少妇| 18禁黄网站禁片免费观看直播| avwww免费| 美女大奶头视频| 久久99热这里只有精品18| 国产欧美日韩精品亚洲av| 欧美性猛交╳xxx乱大交人| 长腿黑丝高跟| 亚洲精品国产精品久久久不卡| 男女之事视频高清在线观看| 欧美成人免费av一区二区三区| 又黄又粗又硬又大视频| 日韩欧美精品v在线| 深爱激情五月婷婷| 99热这里只有精品一区| 国产视频一区二区在线看| 香蕉av资源在线| 亚洲五月天丁香| 亚洲久久久久久中文字幕| 亚洲色图av天堂| 男人舔女人下体高潮全视频| 99riav亚洲国产免费| 国产精品 欧美亚洲| h日本视频在线播放| 男女下面进入的视频免费午夜| 91在线精品国自产拍蜜月 | 一区二区三区激情视频| 少妇的逼好多水| 最近在线观看免费完整版| 脱女人内裤的视频| 老汉色∧v一级毛片| 波多野结衣高清作品| 男人和女人高潮做爰伦理| 亚洲欧美日韩高清在线视频| 欧美又色又爽又黄视频| a级毛片a级免费在线| 欧美日韩福利视频一区二区| 一本综合久久免费| 一区福利在线观看| 国产亚洲av嫩草精品影院| 国产成人a区在线观看| 亚洲 欧美 日韩 在线 免费| 国产精品日韩av在线免费观看| 可以在线观看的亚洲视频| 国产伦精品一区二区三区四那| 老熟妇仑乱视频hdxx| 琪琪午夜伦伦电影理论片6080| 午夜激情福利司机影院| 757午夜福利合集在线观看| www日本黄色视频网| 69av精品久久久久久| 亚洲久久久久久中文字幕| 在线观看66精品国产| 他把我摸到了高潮在线观看| 午夜精品久久久久久毛片777| 成人一区二区视频在线观看| 国产午夜精品久久久久久一区二区三区 | 毛片女人毛片| 18+在线观看网站| 成人特级黄色片久久久久久久| 1000部很黄的大片| 久久人人精品亚洲av| 久久精品国产亚洲av香蕉五月| 黄色女人牲交| 欧美黑人欧美精品刺激| 免费大片18禁| 亚洲欧美日韩高清专用| 国产探花在线观看一区二区| 国产午夜精品久久久久久一区二区三区 | 精品无人区乱码1区二区| 人妻丰满熟妇av一区二区三区| 中文字幕久久专区| 无限看片的www在线观看| 韩国av一区二区三区四区| 狠狠狠狠99中文字幕| 午夜福利视频1000在线观看| 性欧美人与动物交配| 757午夜福利合集在线观看| 热99在线观看视频| 久9热在线精品视频| 亚洲av中文字字幕乱码综合| 亚洲精品日韩av片在线观看 | 国产精品野战在线观看| 精品人妻1区二区| av在线天堂中文字幕| 蜜桃亚洲精品一区二区三区| 熟女电影av网| 女生性感内裤真人,穿戴方法视频| 99热6这里只有精品| 伊人久久精品亚洲午夜| 88av欧美| 美女高潮的动态| 久久久久国产精品人妻aⅴ院| 搡女人真爽免费视频火全软件 | 国产精品一区二区三区四区免费观看 | 性欧美人与动物交配| 亚洲色图av天堂| 国产成年人精品一区二区| 成人性生交大片免费视频hd| 欧美乱色亚洲激情| 宅男免费午夜| 夜夜夜夜夜久久久久| 久久久久国产精品人妻aⅴ院| 久久精品国产清高在天天线| 免费在线观看成人毛片| 国内精品一区二区在线观看| 国产精品三级大全| 国产v大片淫在线免费观看| 国产精品98久久久久久宅男小说| 麻豆国产97在线/欧美| 夜夜夜夜夜久久久久| 免费无遮挡裸体视频| 日韩欧美三级三区| 狂野欧美白嫩少妇大欣赏| 欧美乱色亚洲激情| 精品国产美女av久久久久小说| 一本一本综合久久| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产| 成人性生交大片免费视频hd| 国产黄片美女视频| 天堂动漫精品| 亚洲av电影不卡..在线观看| 精品国产亚洲在线| 国产黄色小视频在线观看| 亚洲第一电影网av| 波多野结衣高清无吗| 日本a在线网址| 制服人妻中文乱码| 亚洲自拍偷在线| 中国美女看黄片| 精品久久久久久久久久免费视频| 国产精品一区二区三区四区免费观看 | av天堂中文字幕网| 男人舔奶头视频| 久久99热这里只有精品18| 淫秽高清视频在线观看| 男插女下体视频免费在线播放| 欧美一级毛片孕妇| 国产午夜福利久久久久久| 欧美性猛交黑人性爽| 亚洲av电影不卡..在线观看| 国内少妇人妻偷人精品xxx网站| 一个人免费在线观看电影| 国产在视频线在精品| 在线观看av片永久免费下载| 中亚洲国语对白在线视频| 成人欧美大片| 搡女人真爽免费视频火全软件 | 又紧又爽又黄一区二区| av在线天堂中文字幕| 国产高清videossex| 又粗又爽又猛毛片免费看| 国产高清有码在线观看视频| 国产伦精品一区二区三区四那| 啦啦啦免费观看视频1| 久久九九热精品免费| 欧美乱码精品一区二区三区| 国产精品,欧美在线| 国产中年淑女户外野战色| 老司机在亚洲福利影院| 色综合站精品国产| 亚洲人成网站高清观看| 国产不卡一卡二| 国产精品嫩草影院av在线观看 | 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 一区二区三区免费毛片| 欧美乱色亚洲激情| 国产精品日韩av在线免费观看| 精品99又大又爽又粗少妇毛片 | 国产精品亚洲一级av第二区| 男女之事视频高清在线观看| 天堂网av新在线| 国产午夜精品久久久久久一区二区三区 | 国产 一区 欧美 日韩| 午夜福利在线在线| 最近在线观看免费完整版| 欧美绝顶高潮抽搐喷水| 九九热线精品视视频播放| 国产精品久久电影中文字幕| 亚洲美女黄片视频| 熟女人妻精品中文字幕| 亚洲人成网站在线播放欧美日韩| 日本a在线网址| 免费观看精品视频网站| 国产精品久久久人人做人人爽| 99热6这里只有精品| 精品不卡国产一区二区三区| 国产黄色小视频在线观看| 国内精品久久久久精免费| 3wmmmm亚洲av在线观看| 51国产日韩欧美| 国产精品99久久99久久久不卡| 久久精品综合一区二区三区| 两个人看的免费小视频| 在线观看一区二区三区| 99久久精品国产亚洲精品| 特级一级黄色大片| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 高清毛片免费观看视频网站| 国产成人欧美在线观看| 一本综合久久免费| 一进一出抽搐gif免费好疼| 日韩欧美三级三区| 欧美成狂野欧美在线观看| 国产熟女xx| 久久久久久大精品| 天堂影院成人在线观看| 精品国产三级普通话版| 欧美成人性av电影在线观看| 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 亚洲国产欧美人成| 国模一区二区三区四区视频| 欧美日韩亚洲国产一区二区在线观看| 欧美乱色亚洲激情| 国产三级中文精品| 亚洲无线在线观看| 免费在线观看成人毛片| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 国产亚洲精品一区二区www| 久久久久久久久久黄片| 成年女人毛片免费观看观看9| 国产免费一级a男人的天堂| 69av精品久久久久久| 99久久99久久久精品蜜桃| 久久久久久久久久黄片| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩高清专用| 日本黄色视频三级网站网址| 最近最新中文字幕大全免费视频| 亚洲无线观看免费| 一个人免费在线观看的高清视频| 淫妇啪啪啪对白视频| 国产一区二区在线观看日韩 | av在线蜜桃| 欧美zozozo另类| 成人精品一区二区免费| 亚洲精品粉嫩美女一区| 国产 一区 欧美 日韩| 国产不卡一卡二| xxxwww97欧美| 国产高潮美女av| 成人无遮挡网站| 日本熟妇午夜| 俄罗斯特黄特色一大片| 国产亚洲精品综合一区在线观看| 丰满乱子伦码专区| av专区在线播放| 国产欧美日韩一区二区三| 首页视频小说图片口味搜索| 亚洲精品在线观看二区| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线观看免费| 国模一区二区三区四区视频| av福利片在线观看| 亚洲精华国产精华精| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看美女被高潮喷水网站 | 国产毛片a区久久久久| 色综合站精品国产| 一级毛片高清免费大全| 黄片小视频在线播放| 亚洲av电影不卡..在线观看| 久久精品国产自在天天线| 日韩亚洲欧美综合| 人妻丰满熟妇av一区二区三区| 一个人看视频在线观看www免费 | www.www免费av| 内地一区二区视频在线| 婷婷亚洲欧美| av视频在线观看入口| 中文资源天堂在线| 国产一区二区三区在线臀色熟女| 国产激情偷乱视频一区二区| 亚洲精品国产精品久久久不卡| 国产精品一区二区免费欧美| 丰满人妻一区二区三区视频av | 国产男靠女视频免费网站| 国产欧美日韩一区二区精品| 亚洲国产高清在线一区二区三| 日韩av在线大香蕉| 看片在线看免费视频| av天堂在线播放| 国产精品精品国产色婷婷| 久久久久九九精品影院| 淫妇啪啪啪对白视频| 97碰自拍视频| 中亚洲国语对白在线视频| 国产av麻豆久久久久久久| 日韩免费av在线播放| 亚洲性夜色夜夜综合| 亚洲av不卡在线观看| 国产精品亚洲一级av第二区| 国产亚洲欧美在线一区二区| 精品久久久久久成人av| 男女下面进入的视频免费午夜| 免费看日本二区| 婷婷精品国产亚洲av在线| 国产精品美女特级片免费视频播放器| 国产精品综合久久久久久久免费| 久9热在线精品视频| 精品国产超薄肉色丝袜足j| 中国美女看黄片| 婷婷精品国产亚洲av| 日韩av在线大香蕉| 国产精品1区2区在线观看.| 日韩av在线大香蕉| 成年版毛片免费区| 亚洲国产精品成人综合色| 免费看光身美女| 亚洲av一区综合| 9191精品国产免费久久| 听说在线观看完整版免费高清| 看黄色毛片网站| 久久香蕉国产精品| 色综合婷婷激情| 综合色av麻豆| 国产伦在线观看视频一区| 极品教师在线免费播放| 9191精品国产免费久久| 在线观看美女被高潮喷水网站 | 亚洲专区国产一区二区| 色播亚洲综合网| 免费无遮挡裸体视频| 成人午夜高清在线视频| 手机成人av网站| 免费人成视频x8x8入口观看| av天堂中文字幕网| 国产精华一区二区三区| 色哟哟哟哟哟哟| 青草久久国产| 色哟哟哟哟哟哟| 日韩亚洲欧美综合| 中文字幕av成人在线电影| 日韩有码中文字幕| 久久久久亚洲av毛片大全| 午夜激情福利司机影院| 国产午夜精品久久久久久一区二区三区 | 亚洲国产日韩欧美精品在线观看 | 国产乱人伦免费视频| 国产精品久久久久久人妻精品电影| 婷婷亚洲欧美| 日韩高清综合在线| 欧美日韩黄片免| 国产欧美日韩一区二区精品| 好男人电影高清在线观看| 午夜激情欧美在线| 日韩欧美精品v在线| 久久草成人影院| 亚洲欧美日韩无卡精品| 亚洲人成网站在线播| 国内揄拍国产精品人妻在线| 黄色丝袜av网址大全| 免费电影在线观看免费观看| 99热精品在线国产| 国产一区二区三区在线臀色熟女| 国产探花极品一区二区| 亚洲黑人精品在线| 亚洲中文字幕日韩| 欧美色视频一区免费| 1000部很黄的大片| 免费在线观看亚洲国产| av国产免费在线观看| 亚洲av电影不卡..在线观看| 亚洲激情在线av| 日本一本二区三区精品| 久久精品综合一区二区三区| 成人永久免费在线观看视频| 女人十人毛片免费观看3o分钟| 国产精品99久久99久久久不卡| 18美女黄网站色大片免费观看| 在线观看免费视频日本深夜| 精品一区二区三区视频在线 | 欧美乱妇无乱码| 久久久久国内视频| 亚洲午夜理论影院| 男女床上黄色一级片免费看| 蜜桃亚洲精品一区二区三区| av在线蜜桃| 夜夜爽天天搞| 波多野结衣巨乳人妻| 欧美午夜高清在线| 国产视频内射| 亚洲一区二区三区色噜噜| 久久午夜亚洲精品久久| 欧美+亚洲+日韩+国产| 国产亚洲欧美98| 啦啦啦免费观看视频1| 欧洲精品卡2卡3卡4卡5卡区| 美女黄网站色视频| a级一级毛片免费在线观看| 女生性感内裤真人,穿戴方法视频| 免费av观看视频| 国内毛片毛片毛片毛片毛片| 亚洲色图av天堂| 午夜免费激情av| 在线观看免费视频日本深夜| 色播亚洲综合网| 国产亚洲精品一区二区www| 国产成人福利小说| 一卡2卡三卡四卡精品乱码亚洲| 人人妻,人人澡人人爽秒播| 1024手机看黄色片| 国产精品一区二区三区四区免费观看 | 国产精品久久久人人做人人爽| 最新美女视频免费是黄的| 久久精品影院6| 色综合婷婷激情| 精品免费久久久久久久清纯| 黄色成人免费大全| 久久午夜亚洲精品久久| av中文乱码字幕在线| 免费看日本二区| 国产免费av片在线观看野外av| 黄色成人免费大全| 亚洲最大成人手机在线| 久久久久亚洲av毛片大全| 国产精品久久久久久久久免 | 久久久久久久午夜电影| 9191精品国产免费久久| 久久6这里有精品| 三级男女做爰猛烈吃奶摸视频| 免费观看的影片在线观看| av在线蜜桃| 亚洲成a人片在线一区二区| 最新中文字幕久久久久| 高潮久久久久久久久久久不卡| 成人特级av手机在线观看| 日韩国内少妇激情av| 在线观看午夜福利视频| 悠悠久久av| 在线看三级毛片| 最新中文字幕久久久久| 国产探花在线观看一区二区| 观看美女的网站| 又紧又爽又黄一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲精品成人久久久久久| av黄色大香蕉| 国产精品日韩av在线免费观看| 老司机深夜福利视频在线观看| 亚洲精品影视一区二区三区av| av在线蜜桃| 日本黄色片子视频| 久久久久久久久大av| 国产激情偷乱视频一区二区| 女人十人毛片免费观看3o分钟| 亚洲电影在线观看av| 中文字幕精品亚洲无线码一区| 18禁黄网站禁片免费观看直播| 最新美女视频免费是黄的| 欧美性猛交黑人性爽| 婷婷亚洲欧美| 别揉我奶头~嗯~啊~动态视频| 国产三级在线视频| 国内久久婷婷六月综合欲色啪| АⅤ资源中文在线天堂| 日本熟妇午夜| 日韩亚洲欧美综合| 91av网一区二区| 九色国产91popny在线| 国产精品爽爽va在线观看网站| 国内精品一区二区在线观看| 亚洲欧美日韩高清专用| 美女大奶头视频| 国产高清三级在线| 国产精品女同一区二区软件 | 久久久久国产精品人妻aⅴ院| 青草久久国产| 亚洲自拍偷在线| 国产aⅴ精品一区二区三区波| 欧美日韩中文字幕国产精品一区二区三区| 欧美激情久久久久久爽电影| 久久久国产成人免费| 美女大奶头视频| 国产精品一区二区免费欧美| 在线观看美女被高潮喷水网站 | av天堂在线播放| 高清在线国产一区| 噜噜噜噜噜久久久久久91| 婷婷亚洲欧美| 熟女人妻精品中文字幕| 久久亚洲精品不卡| 啦啦啦韩国在线观看视频| 日本免费a在线| 久久精品91蜜桃| 日本黄色片子视频| 亚洲精品色激情综合| 韩国av一区二区三区四区| 欧美成人一区二区免费高清观看| 日韩精品青青久久久久久| 久久草成人影院| 欧美bdsm另类| 亚洲男人的天堂狠狠| 最新中文字幕久久久久| 内地一区二区视频在线| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久| 香蕉av资源在线| 国产精品一区二区免费欧美| 国产私拍福利视频在线观看| www.熟女人妻精品国产| 国产免费av片在线观看野外av| 久久精品国产99精品国产亚洲性色| 人人妻人人澡欧美一区二区| 最新在线观看一区二区三区| 日韩欧美精品v在线| 婷婷丁香在线五月| 国产不卡一卡二| 成人18禁在线播放| 丰满的人妻完整版| 九色国产91popny在线| 亚洲18禁久久av| 两个人看的免费小视频| 亚洲av免费在线观看| 午夜精品一区二区三区免费看| 一二三四社区在线视频社区8| 欧美最黄视频在线播放免费| 国产三级黄色录像| 中文字幕av在线有码专区| 99国产综合亚洲精品| 国产免费男女视频| 俄罗斯特黄特色一大片| 又黄又粗又硬又大视频| 一夜夜www| 757午夜福利合集在线观看| 久久亚洲真实| 亚洲成人免费电影在线观看| 久9热在线精品视频| 日韩精品青青久久久久久| 国产亚洲欧美98| 欧美在线黄色| 欧美国产日韩亚洲一区| 亚洲av美国av| 怎么达到女性高潮| 十八禁网站免费在线| 欧美精品啪啪一区二区三区| 熟女人妻精品中文字幕| 精品国产美女av久久久久小说| 好看av亚洲va欧美ⅴa在| 成年人黄色毛片网站| 啦啦啦免费观看视频1| 免费一级毛片在线播放高清视频| 欧美成人a在线观看| 亚洲真实伦在线观看| 精品一区二区三区av网在线观看| 欧美zozozo另类| 久久欧美精品欧美久久欧美| 亚洲天堂国产精品一区在线| 精品免费久久久久久久清纯| 在线观看av片永久免费下载| 中文在线观看免费www的网站| 一夜夜www| 精品人妻偷拍中文字幕| 天堂影院成人在线观看| 国产黄色小视频在线观看| 午夜福利高清视频| 级片在线观看| 亚洲七黄色美女视频| 久久精品人妻少妇| 九色国产91popny在线| 女人十人毛片免费观看3o分钟| 男人舔奶头视频| 精品久久久久久久久久免费视频| 丝袜美腿在线中文| 日本五十路高清| 精品久久久久久久久久免费视频| 色播亚洲综合网| 国产三级在线视频| 啦啦啦韩国在线观看视频| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品sss在线观看| 看片在线看免费视频| 男插女下体视频免费在线播放| 欧美bdsm另类| 中文资源天堂在线| 在线观看日韩欧美| 宅男免费午夜| 老熟妇乱子伦视频在线观看| 最新在线观看一区二区三区|