• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cu-embedded porous Al2O3 bifunctional catalyst derived from metal–organic framework for syngas-to-dimethyl ether

    2022-07-11 03:38:50YongleGuoLuFengYuefengLiuZhongkuiZhao
    Chinese Chemical Letters 2022年6期

    Yongle Guo,Lu Feng,Yuefeng Liu,Zhongkui Zhao

    a State Key Laboratory of Fine Chemicals,Department of Catalysis Chemistry and Engineering,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China

    b Dalian National Laboratory for Clean Energy (DNL),Dalian Institute of Chemical Physics,Chinese Academy of Science,Dalian 116023,China

    c Zhang Dayu School of Chemistry,Dalian University of Technology,Dalian 116024,China

    Keywords:Dimethyl ether CO hydrogenation Bifunctional catalyst Embedding-type structure Metal–organic framework

    ABSTRACT Dimethyl ether (DME),as a promising alternative to diesel fuel and liquefied petroleum gas,has attracted considerable attention in catalysis domain.The catalytic direct synthesis of DME from syngas is an upand-coming route but remains a challenge.In this work,we firstly prepared a Cu-embedded porous Al2O3 bifunctional catalyst (Cu@Al2O3-dp) by filling Cu-1,3,5-benzenetricarboxylate metal–organic framework(Cu-BTC MOF) with Al(OH)3 followed by a two-step calcination process (400 °C for 4 h and 600 °C for 1 h),exhibiting excellent catalytic performance for direct synthesis of DME from syngas.Cu@Al2O3-dp catalyst demonstrates much higher CO conversion (25.7% vs. 15.4%) and extremely higher DME selectivity (90.4% vs. 63.9%) with the increased catalytic stability compared to the supported Cu catalyst on MOF-derived porous Al2O3 (Cu/Al2O3) prepared by incipient wetness impregnation method,ascribed to the unique embedding-type structure,promoted Cu dispersion and stronger metal-support interaction.This work not only provides an efficient syngas-to-DME catalyst,but also paves a new way for designing highly-efficient core-shell bifunctional catalysts for diverse consecutive reactions.

    Dimethyl ether (DME),as the simplest ether without C–C bond,is expected to replace diesel due to its high cetane number and low toxicant emission.In addition,DME is also attractive as an excellent substitute for liquefied petroleum gases because of its similar physicochemical properties [1,2].Traditionally,the production of DME is realized by a two-step method.To be more specific,firstly,the methanol is synthesized from syngas over the Cu-based catalysts,and then DME is produced by methanol dehydration over the solid acid catalysts [3,4].Compared with the two-step synthesis of DME,the direct one-step syngas-to-DME (STD) reaction possesses many advantages,such as breaking the thermodynamic equilibrium limitation of methanol synthesis from syngas,promoting the production of DME and decreasing cost for DME producing,etc.[5,6].For these reasons,the one-step STD reaction has drawn increasingly attention of worldwide researchers [7,8].

    The commonly applied bifunctional catalyst in the STD reaction is a mixed catalyst,which is prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst[9,10].The component of methanol synthesis in the STD reaction is mainly Cu-based catalyst [11,12],and that of methanol dehydration in the STD reaction is solid acid catalyst,such as acidic zeolites [13,14]orγ-Al2O3[15,16].The preparation of mixed catalysts is simple,but there are still some disadvantages.For instance,long distance and random distribution of two active units result in low activity and selectivity.The supported dual-function catalysts can make up for the deficiency [17,18].The components for methanol dehydration,such as zeolites orγ-Al2O3,have large specific surface areas and well-developed pores.As a support,it can promote the dispersion of active sites of methanol synthesis and improve the utilization of Cu [19,20].However,the opening structure of supported catalysts lowers the selectivity of DME in the STD process.The core-shell capsule-structure catalyst is developed to solve the problem [6,21-27].The closing-structured capsule-catalysts are prepared by coating the solid acid catalysts (zeolites or Al2O3) shell over the outer surface of millimetre-sized Cu-ZnO-Al2O3cores [21–24].The selectivity of DME over the capsule-catalyst is markedly higher than that over the open-structure bifunctional catalysts,such as hybrid catalysts and supported catalysts.A high-selectivity CuZn@m-Al2O3catalyst for DME synthesis from syngas was also prepared by implanting the Cu-Zn nanoparticles into the matrix of mesoporous alumina [25].However,the catalytic activity and the utilization efficiency of copper are very unsatisfactory owing to the use of the millimetre-sized Cu-based particles or poorlydispersed Cu-based nanoparticles as methanol synthesis unit.It can be envisioned that an excellent bifunctional STD catalyst with high activity,Cu utilizing efficiency and high selectivity can be prepared with the highly-dispersed Cu nanoparticles embedded into porous Al2O3,and the high selectivity results from well-organized embedding-type structure.Metal–organic frameworks (MOFs) are widely used in gas storage,ion exchange and catalysis [28–31],due to its regular crystalline structure and developed porosity.Especially,the Cu-1,3,5-benzenetricarboxylate framework (Cu-BTC MOF)has also been widely applied to synthesize metal oxides,carbon nanodots,metal oxides@silica oxide and films [32–36],owing to its simple synthesis process,cheap reactants,high metal dispersion,ordered pores and large surface areas.

    Fig.1.(a) Schematic illustration of the synthesis of catalyst.SEM images of Cu@Al2O3-dp (b),Cu@Al2O3-im (c) and Cu/Al2O3 (d).Transmission electron microscope (TEM)images of Cu@Al2O3-dp (e),Cu@Al2O3-im (f) and Cu/Al2O3 (g).

    In this work,we,for the first time,prepared a new bifunctional catalyst (Cu@Al2O3-dp) with Cu implanted into porous Al2O3,derived from Cu-1,3,5-benzenetricarboxylate framework (Cu-BTC MOF) by filling MOF with Al2O3using deposition-precipitation method with sodium carbonate solution as the precipitant (Fig.1a).According to the SEM images and XRD pattern of Cu-BTC shown in Fig.S1 (Supporting information),the Cu-BTC MOF has been successfully synthesized by solvothermal method [10].From results of N2adsorption shown in Fig.S2 (Supporting information),the Cu-BTC MOF contains abundant micropore.After filling MOF with aluminium,the uncalcined precursor of Cu@Al2O3-dp (pre-Cu@Al2O3-dp) barely has micropore,it may be ascribed to the fully-filled pore by aluminium,indicating aluminium infiltrate into the pore of MOF.In addition,in order to investigate the implanting ways of alumina and the effect of alumina on the catalyst structure and catalytic performance in the STD reaction,the Cu@Al2O3-im catalyst was prepared with immersion method where aluminium nitrate solution was used to fill Cu-BTC MOF.From the scanning electron microscope (SEM) images shown in Figs.1b and c,the Cu@Al2O3-dp catalyst shows an irregular cube with the sizes ranging from 5 μm to 10 μm,and the Cu@Al2O3-im catalyst features an octahedral structure similar to Cu-BTC MOF,but the sizes are similar to that of Cu@Al2O3-dp and smaller than that of Cu-BTC MOF.From Table 1,the actual CuO loadings of Cu@Al2O3-dp and Cu@Al2O3-im catalysts are 13.0% and 92.9%,respectively.It is suggested that a little alumina is filled within Cu-BTC MOF by the immersion method.In order to clearly show the advantages of the implanting-type catalyst,the supported Cu catalyst on MOF-derived porous Al2O3(Cu/Al2O3) was prepared by incipient wetness impregnation (IWI) method (Figs.1d).The MOFderived Al2O3(Al2O3-DMOF) was obtained by repeatedly etching away the CuO component of the Cu@Al2O3-dp catalyst with ammonia water.Since a small amount of CuO in Al2O3-DMOF was completely and tightly wrapped by alumina,therefore,it was not dissolved by ammonia water,with the loading of CuO 4.2% (Table S1 in Supporting information).From Tables S1 and S2 (Supporting information),since there is a little exposed surface Cu site in Al2O3-DMOF (29.3 μmol/g) and it exhibits poor catalytic performance,the CuO loading similar to the Cu@Al2O3-dp catalyst is loaded onto Al2O3-DMOF,and the actual CuO loading of Cu/Al2O3is 18.8%.Moreover,from Fig.1g,it can be clear that there are many small particles accumulated on the outer surface of Cu/Al2O3catalyst.

    The microstructure of Cu@Al2O3-dp,Cu@Al2O3-im and Cu/Al2O3catalysts are illustrated by high resolution transmission electron microscope (HRTEM) images in Figs.1e-g,from which,it can be seen that the average size of CuO nanoparticles(NPs) of Cu@Al2O3-dp is 2.9 nm,which is far smaller than that of Cu/Al2O3(9.3 nm) and Cu@Al2O3-im (20–40 nm).Furthermore,compared with intimate contact between CuO NPs of Cu/Al2O3catalyst,the CuO NPs of Cu@Al2O3-dp catalyst are separated by Al2O3.Although the CuO NPs of Cu@Al2O3-im catalyst are separated by thin alumina,the CuO NPs aggregation are very severe,because of too little alumina to disperse CuO NPs and inhibit thermal sintering of CuO NPs.In addition,as shown in Table 1,the amount of exposed Cu active sites on Cu@Al2O3-dp catalyst(416.3 μmol/g) is larger than those of the Cu@Al2O3-im (105.7 μmol/g) and Cu/Al2O3catalyst (341.5 μmol/g),although Cu@Al2O3-dp catalyst has a lower CuO loading.These results confirm that Cu@Al2O3-dp catalyst has a higher Cu dispersion.Additionally,the embedding type structure of Cu@Al2O3-dp may compress the CuO sintering during the calcination at high temperature in the preparation process,which may partially lead to its smaller CuO NPs compared to Cu/Al2O3.In order to verify the conjecture,the Cu@Al2O3-dp-400 and Cu/Al2O3-400 catalysts were prepared,and the preparation are similar to that of Cu@Al2O3-dp and Cu/Al2O3,and the only difference is that the former did not be calcined at 600 °C for 1 h.The exposed surface Cu sites of Cu@Al2O3-dp-400 and Cu/Al2O3-400 catalysts are shown in Table S1.From Table 1 and Table S1,it can be seen that the high temperature treatment is necessary for Cu@Al2O3-dp,which makes the Cu sites increase obviously from 97.0 μmol/g to 416.3 μmol/g,while the Cu sites of Cu/Al2O3catalyst sinters severely and decreases from 611.8 μmol/g to 341.5 μmol/g.It is clear that the embedding type structure of Cu@Al2O3-dp may inhibit the sintering of CuO.

    Table 1 Characterization results of the Cu@Al2O3-dp,Cu@Al2O3-im and Cu/Al2O3 catalysts.

    Fig.2.XRD patterns (a),nitrogen adsorption-desorption isotherms and pore size distributions from adsorption branch (b),H2-TPR profiles (c),and Cu 2p XPS spectra(d) of the Cu/Al2O3 and Cu@Al2O3-dp catalysts.

    X-ray diffraction (XRD) was applied to further investigate the crystal structure of catalysts.From Fig.2a and Fig.S3a (Supporting information),compared with Cu/Al2O3and Cu@Al2O3-im catalysts with the obvious and sharp diffraction peaks of CuO (PDF#48-1548) [37],Cu@Al2O3-dp catalyst has no diffraction peaks of CuO,which shows its smaller grain size and higher dispersion and it agrees with the results of HRTEM and amount of surface active Cu.It is favourable for improving the CO conversion.The results of N2adsorption are shown in Fig.2b,Fig.S3b (Supporting information) and Table 1,the adsorption–desorption isotherms and pore size distributions of Cu@Al2O3-dp and Cu@Al2O3catalysts(Fig.2b) display that both catalysts contain many micropores and mesopores,and the pores size of Cu@Al2O3-dp catalyst is larger than that of Cu/Al2O3.The types of hysteresis loop of Cu@Al2O3-dp and Cu/Al2O3indicate the pores of the former resemble ink-bottle pores in alumina,while that of the latter is more likely to be intercrystalline pore [38].From Table 1,the values ofSmicroandVmicroof Cu@Al2O3-dp are higher than those of Cu/Al2O3.Although the Cu@Al2O3-dp has a slightly lower mesoporous surface area compared with Cu/Al2O3,which is owing to the more intercrystalline pore of Cu/Al2O3,the total surface area of Cu@Al2O3-dp is larger than that of Cu/Al2O3.From Fig.S3b and Table 1,it can be seen that the Cu@Al2O3-im nearly has neither micropore nor mesopore,which might be ascribed to the fully-filled structure.

    H2temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) experiments were conducted to study the reduction behaviour of CuO and metal-support interaction between Cu and alumina of catalysts.From Fig.2c and Fig.S3c(Supporting information),compared with Cu/Al2O3and Cu@Al2O3-im catalysts obviously with two kinds of reduction peaks of CuO,corresponding to the surface and bulk of reducible CuO species[24],only one main symmetrical reduction peak at 247 °C is found on Cu@Al2O3-dp catalyst,indicating homogenous distribution of CuO nanoparticles embedded in alumina [25].From Fig.2d and Fig.S3d (Supporting information),the Cu 2p3/2peaks of Cu@Al2O3-dp and Cu@Al2O3-im catalysts can fitted and divided into two peaks at 932.9 and 934.7 eV,932.7 and 933.7 eV,respectively,corresponding to Cu+and Cu2+species.The Cu+species is ascribed to the Cu2+reduced by decomposition of benzoate ligands during calcination [34],which can strengthen the CO adsorption and are beneficial to methanol synthesis [37].From Table 1,theICu+/ICu2+intensity ratios of Cu@Al2O3-dp are higher that of the Cu@Al2O3-im.CO temperature programmed desorption (COTPD) profiles were shown in Fig.S4 (Supporting information),it can be seen that much stronger adsorbed CO on Cu@Al2O3-dp than that on Cu/Al2O3.Both indicate the capacity of CO adsorption on Cu@Al2O3-dp is stronger than that on Cu@Al2O3-im and Cu/Al2O3.

    The binding energies of deconvolution peaks belonged to Cu2+species on Cu@Al2O3-dp,Cu/Al2O3and Cu@Al2O3-im catalysts are 934.7,933.9 and 933.7 eV,respectively,which demonstrates the Cu@Al2O3-dp catalyst possesses stronger Cu-Al interaction compared to Cu/Al2O3and Cu@Al2O3-im catalysts,which can improve intrinsic activity of Cu actives in the Cu@Al2O3-dp and conduces to the CO conversion [7].

    The acidic nature of the catalysts is measured by NH3-TPD experiments and shown in Table 1 and Fig.S5 (Supporting information).It can be seen that there are two main NH3desorption peaks in Cu@Al2O3-dp and Cu/Al2O3catalysts.One was at low temperature (about 150–300 °C),corresponding to the desorption of the adsorbed NH3on weak acid sites,and the other was high temperature (about 300–450 °C),corresponding to the desorption of the adsorbed NH3on medium acid sites [24,25].Weak and medium acid sites are identified as the ideal acid active sites for methanol dehydration to dimethyl ether [7].Moreover,few strong acid sites exist in Cu@Al2O3-dp and Cu/Al2O3catalysts.From Fig.S5,it can be observed that Cu@Al2O3-dp catalyst has more medium acids and less strong acid than Cu/Al2O3,which is beneficial to methanol dehydration and inhibiting the formation of methane and coke[7].In addition,the Cu@Al2O3-im hardly possesses acid sites (2.8 μmol/g),which is attributed to the very low Al content and/or very low surface area.From Table 1,although the Cu@Al2O3-dp catalyst shows a slightly lower amount of acidic sites (289.7 μmol/g)than Cu/Al2O3(301.4 μmol/g),it shows much higher DME selectivity (90.4%),resulting from the unique Cu-embedding structure in porous Al2O3.

    Table 2 Catalytic performance of the Cu@Al2O3-dp,Cu@Al2O3-im,Cu/Al2O3 and Cu@Al2O3-com catalysts for DME direct synthesis from syngas.a

    The Cu@Al2O3-dp,Cu@Al2O3-im and Cu/Al2O3catalysts are applied in the STD reaction,and the results are illustrated in Table 2.Thanks to the unique embedding-type structure and its confinement effect,the Cu@Al2O3-dp catalyst shows higher dispersion of Cu,more Cu+species and stronger Cu–Al interaction [7,37].Moreover,the methanol formed on Cu species can only come out through the pore of alumina,during which they are converted to DME by the acidic sites of alumina,and increased the selectivity of DME and decreased the selectivity of methanol,breaking the thermo-dynamically limitation and promoting CO conversion.However,due to the unrestricted and opened reaction environment of conventional supported Cu/Al2O3catalyst,the methanol can be directly desorbed from the catalyst without contacting the acidic site of alumina,which leads to high selectivity of methanol and low selectivity of DME,which inhibits the methanol synthesis reaction and decreases CO conversion.Therefore,the 25.7% of CO conversion and 0.3 min?1of turnover frequency (TOF) are observed over Cu@Al2O3-dp,which are much higher than those over the Cu@Al2O3-im (2.3%,0.2 min?1) and Cu/Al2O3(15.4%,0.2 min?1)catalysts.Meanwhile,Cu@Al2O3-dp illustrates much higher distribution of DME (90.4%) compared with Cu@Al2O3-im (14.2%) and Cu/Al2O3(63.9%).The selectivity of methanol on the Cu@Al2O3-dp is lower than that on the Cu/Al2O3,which is ascribed to more medium acidic sites and unique embedded-structure [25].Moreover,the high selectivity of methane on Cu/Al2O3of 25.5% and Cu@Al2O3-im of 36.2% in comparison with 4.2% on the Cu@Al2O3-dp can be attributed to the large crystallite sizes of metallic Cu and stronger acidic sites,which are active sites for methanation of CO or decomposition of intermediates such as methanol or possibly DME [7].For comparison,the supported Cu catalyst on commercialγ-Al2O3with CuO loading of 15.0% was also synthesized (Cu/Al2O3-com).The CO conversion and DME selectivity over the Cu/Al2O3-com are 7.9% and 60.5%,which are lower than those of the Cu@Al2O3-dp and Cu/Al2O3.Furthermore,from Table S3 (Supporting information),Cu@Al2O3-dp indicates much higher production of DME per hour per gram of CuO than the previously reported Cu-based catalysts.The stability of Cu@Al2O3-dp and Cu/Al2O3were measured and are shown in Fig.S6 (Supporting information).It is clear that the CO conversion of Cu@Al2O3-dp does not obviously decrease during 28 h of time on stream (TOS).The selectivity of DME over Cu@Al2O3-dp catalyst slightly decreases during 28 h,while that over Cu/Al2O3catalyst significantly decreases.A large amount of methane and methanol are produced over the Cu/Al2O3catalyst as time on stream prolongs.From Fig.S6 and Table S4 (Supporting information) the slight decrease of DME selectivity on the Cu@Al2O3-dp,compared to Cu/Al2O3,results from the loss of a few acidic sites and embedding structure.From Table S4,the loss ratio of acidic sites over Cu@Al2O3-dp catalyst is 1.7% during 28 h of time on stream,which is more than Cu/Al2O3catalyst (6.2%).

    In this work,a novel Cu-embedded porous Al2O3catalyst has been successfully prepared by filling Al(OH)3into Cu-BTC framework through the deposition-precipitation followed by a calcination process.The developed Cu@Al2O3-dp catalyst displays 25.7%of outstanding CO conversion and 90.4% of DME selectivity in the STD reaction,which are much larger than those over the supported Cu/Al2O3catalyst.Moreover,the Cu@Al2O3-dp catalyst also shows higher catalytic stability than Cu/Al2O3catalyst.The outstanding catalytic performance of Cu@Al2O3-dp catalyst can be attributed to its unique embedding-type structure,higher Cu dispersion,more Cu+species,stronger Cu-Al interaction and more medium acidic sites.This work not only develops a highly efficient catalyst for direct synthesis of DME from syngas,but also provides a new way for designing other embedding-type bifunctional catalysts for diverse consecutive reactions.

    Declaration of competing interest

    The authors declare no conflicts of interests.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (No.U1610104),Liaoning Revitalization Talents Program (No.XLYC1907053,China) and CAS Youth Innovation Promotion Association (No.2018220,China).

    Appendix A.Supplementary data

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.10.031.

    成人国产av品久久久| 国产又爽黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美亚洲二区| 好男人视频免费观看在线| 最新的欧美精品一区二区| 91成人精品电影| 在现免费观看毛片| 欧美精品一区二区免费开放| 欧美日韩一区二区视频在线观看视频在线| 日韩欧美一区视频在线观看| 咕卡用的链子| 激情五月婷婷亚洲| 久久久国产一区二区| 99热网站在线观看| 久久久久精品人妻al黑| 午夜福利乱码中文字幕| 国产亚洲av片在线观看秒播厂| 精品国产超薄肉色丝袜足j| 曰老女人黄片| 又黄又粗又硬又大视频| 丰满少妇做爰视频| 9色porny在线观看| 90打野战视频偷拍视频| 亚洲欧美精品综合一区二区三区 | 天天躁日日躁夜夜躁夜夜| 国产精品女同一区二区软件| 一区二区av电影网| 免费在线观看黄色视频的| 亚洲一区二区三区欧美精品| 国产av精品麻豆| 亚洲久久久国产精品| 美女中出高潮动态图| 丝袜在线中文字幕| 日韩一区二区三区影片| 亚洲 欧美一区二区三区| 可以免费在线观看a视频的电影网站 | 男女免费视频国产| 亚洲久久久国产精品| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠躁躁| 在线 av 中文字幕| 免费观看无遮挡的男女| 成人18禁高潮啪啪吃奶动态图| 日本午夜av视频| 汤姆久久久久久久影院中文字幕| 国产成人精品福利久久| 国产精品二区激情视频| 亚洲中文av在线| 国产精品香港三级国产av潘金莲 | 99国产综合亚洲精品| 亚洲在久久综合| 国产精品麻豆人妻色哟哟久久| 三级国产精品片| 国产精品久久久久成人av| videossex国产| 综合色丁香网| 多毛熟女@视频| 成人国语在线视频| 性少妇av在线| 日韩精品有码人妻一区| 一级,二级,三级黄色视频| 久久人妻熟女aⅴ| 亚洲在久久综合| videos熟女内射| 欧美成人精品欧美一级黄| 国产精品嫩草影院av在线观看| 黄色毛片三级朝国网站| 最近中文字幕高清免费大全6| 午夜久久久在线观看| 日日撸夜夜添| 国产精品国产三级专区第一集| 秋霞伦理黄片| 国产精品久久久av美女十八| 狠狠精品人妻久久久久久综合| 午夜激情av网站| 欧美人与性动交α欧美软件| av不卡在线播放| 亚洲 欧美一区二区三区| 啦啦啦视频在线资源免费观看| 天美传媒精品一区二区| 国产男人的电影天堂91| 亚洲欧美成人综合另类久久久| 天天操日日干夜夜撸| 高清黄色对白视频在线免费看| 成人免费观看视频高清| 宅男免费午夜| 国产不卡av网站在线观看| 亚洲欧美成人精品一区二区| 成年女人在线观看亚洲视频| 国产精品麻豆人妻色哟哟久久| 欧美亚洲日本最大视频资源| 欧美 日韩 精品 国产| 国产一级毛片在线| 亚洲精品成人av观看孕妇| 免费在线观看视频国产中文字幕亚洲 | 久久精品aⅴ一区二区三区四区 | 精品少妇黑人巨大在线播放| 宅男免费午夜| 91精品三级在线观看| 亚洲国产日韩一区二区| 久久精品人人爽人人爽视色| 国产av精品麻豆| 中文天堂在线官网| 91国产中文字幕| 一级毛片 在线播放| 欧美国产精品一级二级三级| 我的亚洲天堂| 好男人视频免费观看在线| 亚洲,欧美,日韩| 欧美变态另类bdsm刘玥| 午夜福利视频在线观看免费| 亚洲图色成人| 久久久久久久大尺度免费视频| 国产黄色视频一区二区在线观看| 高清欧美精品videossex| a级毛片黄视频| 欧美成人午夜精品| 欧美成人午夜精品| 晚上一个人看的免费电影| 侵犯人妻中文字幕一二三四区| 下体分泌物呈黄色| 一区二区三区激情视频| 九九爱精品视频在线观看| 亚洲精品成人av观看孕妇| 晚上一个人看的免费电影| 在线免费观看不下载黄p国产| 亚洲欧美精品综合一区二区三区 | 久久久精品区二区三区| 国产爽快片一区二区三区| 精品亚洲成a人片在线观看| h视频一区二区三区| 精品少妇黑人巨大在线播放| 熟女av电影| 国产成人精品在线电影| 电影成人av| 久久99蜜桃精品久久| 亚洲精品日韩在线中文字幕| 欧美精品人与动牲交sv欧美| 亚洲美女黄色视频免费看| 亚洲伊人久久精品综合| 成人国语在线视频| 激情五月婷婷亚洲| 看免费av毛片| 国产成人a∨麻豆精品| 中文字幕精品免费在线观看视频| 不卡av一区二区三区| 99热全是精品| 飞空精品影院首页| 午夜影院在线不卡| 熟女av电影| 亚洲av电影在线进入| 欧美精品人与动牲交sv欧美| 久久久久精品久久久久真实原创| 国产97色在线日韩免费| 日本猛色少妇xxxxx猛交久久| www.熟女人妻精品国产| 综合色丁香网| xxxhd国产人妻xxx| 久久午夜福利片| 99久国产av精品国产电影| 国产老妇伦熟女老妇高清| 最近的中文字幕免费完整| 黄色 视频免费看| 亚洲精品一区蜜桃| av视频免费观看在线观看| 看免费成人av毛片| 欧美日韩综合久久久久久| 男女免费视频国产| 亚洲精品日韩在线中文字幕| 日本色播在线视频| 男人操女人黄网站| 女人精品久久久久毛片| 成人影院久久| 国产精品久久久久久av不卡| 高清欧美精品videossex| 另类精品久久| 女人高潮潮喷娇喘18禁视频| 国产伦理片在线播放av一区| 99国产综合亚洲精品| 欧美亚洲 丝袜 人妻 在线| 久久久久久伊人网av| 亚洲综合色网址| 亚洲av电影在线观看一区二区三区| 人人澡人人妻人| 高清欧美精品videossex| 亚洲五月色婷婷综合| 自线自在国产av| 男人添女人高潮全过程视频| 高清视频免费观看一区二区| 成人免费观看视频高清| 国产福利在线免费观看视频| 视频区图区小说| 国产亚洲午夜精品一区二区久久| 免费久久久久久久精品成人欧美视频| 青青草视频在线视频观看| 大片免费播放器 马上看| 一二三四在线观看免费中文在| 热re99久久精品国产66热6| 国产乱人偷精品视频| 国产色婷婷99| av有码第一页| 青草久久国产| 久久久国产一区二区| 免费观看性生交大片5| 亚洲国产色片| 成年av动漫网址| 亚洲国产毛片av蜜桃av| 看免费成人av毛片| 午夜福利网站1000一区二区三区| 日本av免费视频播放| 777米奇影视久久| 好男人视频免费观看在线| 久久人人爽人人片av| 国产爽快片一区二区三区| 久久久a久久爽久久v久久| 九九爱精品视频在线观看| 久久婷婷青草| 国产男女超爽视频在线观看| 日本色播在线视频| 一本色道久久久久久精品综合| 国产精品一区二区在线不卡| 热99国产精品久久久久久7| 另类精品久久| 美女午夜性视频免费| 五月开心婷婷网| 亚洲人成电影观看| 少妇的丰满在线观看| 午夜福利视频精品| 日韩中文字幕欧美一区二区 | 青春草视频在线免费观看| 免费在线观看完整版高清| 国产精品av久久久久免费| 亚洲精品,欧美精品| 少妇的丰满在线观看| 国产免费一区二区三区四区乱码| 美女国产高潮福利片在线看| 春色校园在线视频观看| 99热全是精品| 久久人人97超碰香蕉20202| 热99久久久久精品小说推荐| 你懂的网址亚洲精品在线观看| 亚洲人成电影观看| 国产激情久久老熟女| 婷婷色综合www| 99久久人妻综合| 国产成人一区二区在线| 国产免费福利视频在线观看| 国产一区二区在线观看av| 久久青草综合色| 国产精品国产三级国产专区5o| 久久久久久人妻| 欧美激情极品国产一区二区三区| 精品福利永久在线观看| 色婷婷av一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 免费黄色在线免费观看| 国产淫语在线视频| 成人亚洲欧美一区二区av| 亚洲精品自拍成人| 国产成人91sexporn| 高清不卡的av网站| 欧美成人午夜精品| 精品一品国产午夜福利视频| 天堂中文最新版在线下载| 亚洲国产av影院在线观看| 91精品伊人久久大香线蕉| 如何舔出高潮| 高清视频免费观看一区二区| 一区二区av电影网| 国产精品亚洲av一区麻豆 | 成人国产麻豆网| 久久久久人妻精品一区果冻| 好男人视频免费观看在线| 久久99蜜桃精品久久| 亚洲婷婷狠狠爱综合网| 国产成人精品福利久久| 精品久久蜜臀av无| 伊人久久国产一区二区| a级片在线免费高清观看视频| 色94色欧美一区二区| 少妇被粗大猛烈的视频| 在线观看国产h片| 侵犯人妻中文字幕一二三四区| 国产日韩欧美在线精品| 伦理电影大哥的女人| 免费高清在线观看视频在线观看| 大片电影免费在线观看免费| 中文乱码字字幕精品一区二区三区| 伊人久久国产一区二区| 老司机影院毛片| 亚洲国产av新网站| 国产免费视频播放在线视频| 狠狠精品人妻久久久久久综合| 久久亚洲国产成人精品v| 伊人亚洲综合成人网| 国产精品 欧美亚洲| 秋霞在线观看毛片| 久久精品aⅴ一区二区三区四区 | 成人国产麻豆网| 亚洲欧洲日产国产| 国产片特级美女逼逼视频| 国产精品久久久av美女十八| 国产免费福利视频在线观看| 午夜久久久在线观看| 少妇熟女欧美另类| 一区二区日韩欧美中文字幕| 汤姆久久久久久久影院中文字幕| 97在线视频观看| 国产黄色视频一区二区在线观看| 人妻 亚洲 视频| 人成视频在线观看免费观看| 男女国产视频网站| 九色亚洲精品在线播放| 宅男免费午夜| 日本午夜av视频| 精品国产国语对白av| 韩国精品一区二区三区| 国产免费现黄频在线看| 日韩大片免费观看网站| 下体分泌物呈黄色| 国产不卡av网站在线观看| 91国产中文字幕| 一区二区三区四区激情视频| 久久精品国产亚洲av天美| 亚洲精品美女久久久久99蜜臀 | 国产成人aa在线观看| 午夜影院在线不卡| 一本久久精品| 亚洲精品中文字幕在线视频| 99re6热这里在线精品视频| 久久99蜜桃精品久久| www.熟女人妻精品国产| 最近的中文字幕免费完整| 赤兔流量卡办理| 天天操日日干夜夜撸| 搡老乐熟女国产| 国产精品久久久久久久久免| 亚洲视频免费观看视频| 国产黄色免费在线视频| 亚洲av电影在线观看一区二区三区| 97精品久久久久久久久久精品| 两个人免费观看高清视频| 这个男人来自地球电影免费观看 | 99热网站在线观看| 一二三四中文在线观看免费高清| 超碰97精品在线观看| 美女高潮到喷水免费观看| av在线观看视频网站免费| 久久午夜综合久久蜜桃| 成人二区视频| 国产精品二区激情视频| 最新中文字幕久久久久| 好男人视频免费观看在线| 纯流量卡能插随身wifi吗| 最近中文字幕2019免费版| 日韩中文字幕视频在线看片| 少妇 在线观看| 91精品三级在线观看| 桃花免费在线播放| 亚洲四区av| 亚洲三级黄色毛片| 天堂中文最新版在线下载| 99久久中文字幕三级久久日本| 久久 成人 亚洲| 老熟女久久久| 久久人妻熟女aⅴ| 国产精品 欧美亚洲| 在线观看www视频免费| 捣出白浆h1v1| av又黄又爽大尺度在线免费看| 亚洲综合精品二区| 欧美av亚洲av综合av国产av | 99re6热这里在线精品视频| 亚洲激情五月婷婷啪啪| 久久影院123| 乱人伦中国视频| 亚洲第一区二区三区不卡| 亚洲精品国产一区二区精华液| 欧美精品亚洲一区二区| 国产日韩欧美在线精品| 熟女电影av网| 啦啦啦在线观看免费高清www| 日韩欧美精品免费久久| 韩国精品一区二区三区| 亚洲成人av在线免费| 亚洲国产av新网站| 嫩草影院入口| 国产亚洲av片在线观看秒播厂| 纵有疾风起免费观看全集完整版| 久久久精品国产亚洲av高清涩受| 亚洲 欧美一区二区三区| www.自偷自拍.com| 免费观看av网站的网址| av网站在线播放免费| 欧美国产精品va在线观看不卡| 日日啪夜夜爽| 免费观看av网站的网址| 国产男女内射视频| 欧美精品亚洲一区二区| 国产成人午夜福利电影在线观看| 黄频高清免费视频| 最近最新中文字幕免费大全7| 丝袜美足系列| 国产精品久久久久久久久免| 久久久久国产网址| 七月丁香在线播放| 午夜激情av网站| 欧美人与善性xxx| 日韩制服骚丝袜av| 亚洲精品日本国产第一区| 国产午夜精品一二区理论片| 国产熟女午夜一区二区三区| av电影中文网址| 欧美老熟妇乱子伦牲交| 一区二区av电影网| 国产在视频线精品| 欧美激情 高清一区二区三区| 国产一区二区三区av在线| 美女福利国产在线| 人妻 亚洲 视频| 亚洲美女视频黄频| 国产片特级美女逼逼视频| 欧美黄色片欧美黄色片| 亚洲欧洲国产日韩| 亚洲欧美清纯卡通| 精品人妻在线不人妻| 久久精品久久久久久噜噜老黄| 好男人视频免费观看在线| 精品国产一区二区三区四区第35| 日韩av在线免费看完整版不卡| 欧美日韩视频高清一区二区三区二| 晚上一个人看的免费电影| 99精国产麻豆久久婷婷| 青青草视频在线视频观看| 一区二区av电影网| 婷婷色综合www| 深夜精品福利| 亚洲av男天堂| 国产片特级美女逼逼视频| 亚洲久久久国产精品| 午夜激情久久久久久久| 在线亚洲精品国产二区图片欧美| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 少妇被粗大的猛进出69影院| 亚洲av.av天堂| 免费看av在线观看网站| 精品国产乱码久久久久久男人| 伦理电影大哥的女人| 电影成人av| 男男h啪啪无遮挡| 国产精品不卡视频一区二区| 日韩精品有码人妻一区| 午夜激情av网站| 99精国产麻豆久久婷婷| 天堂8中文在线网| 在线观看一区二区三区激情| 日本色播在线视频| 国产精品嫩草影院av在线观看| 亚洲精品一二三| 精品久久蜜臀av无| 三上悠亚av全集在线观看| 亚洲精品自拍成人| 国产免费一区二区三区四区乱码| 国产精品香港三级国产av潘金莲 | 一二三四在线观看免费中文在| 五月开心婷婷网| 国产精品女同一区二区软件| 极品少妇高潮喷水抽搐| 18在线观看网站| 男人爽女人下面视频在线观看| 黄色一级大片看看| 国产男人的电影天堂91| 亚洲国产欧美日韩在线播放| 纵有疾风起免费观看全集完整版| 校园人妻丝袜中文字幕| 天天影视国产精品| 精品国产一区二区久久| 久久久精品区二区三区| 亚洲一码二码三码区别大吗| 美女福利国产在线| 欧美人与善性xxx| 亚洲av福利一区| 熟妇人妻不卡中文字幕| 亚洲人成电影观看| 下体分泌物呈黄色| 国产有黄有色有爽视频| 久久久久久久精品精品| 另类亚洲欧美激情| 大码成人一级视频| 自线自在国产av| 午夜av观看不卡| 久久人人爽人人片av| 欧美日韩综合久久久久久| 成人漫画全彩无遮挡| 巨乳人妻的诱惑在线观看| 成人国产麻豆网| 欧美日韩av久久| 亚洲第一区二区三区不卡| 国产综合精华液| 久久久精品免费免费高清| 亚洲成国产人片在线观看| 欧美成人精品欧美一级黄| 1024视频免费在线观看| 色婷婷久久久亚洲欧美| 亚洲人成77777在线视频| 亚洲,一卡二卡三卡| 黄色一级大片看看| 美女xxoo啪啪120秒动态图| 涩涩av久久男人的天堂| 亚洲一级一片aⅴ在线观看| 老女人水多毛片| 色吧在线观看| 巨乳人妻的诱惑在线观看| 日韩av免费高清视频| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 天堂俺去俺来也www色官网| 精品人妻偷拍中文字幕| 超碰成人久久| 人体艺术视频欧美日本| 久久精品久久精品一区二区三区| 一区二区日韩欧美中文字幕| 亚洲av福利一区| av在线老鸭窝| 亚洲色图 男人天堂 中文字幕| a 毛片基地| 欧美精品一区二区大全| 久久午夜福利片| 90打野战视频偷拍视频| 中文字幕av电影在线播放| 亚洲精品美女久久久久99蜜臀 | 国产日韩欧美在线精品| 国产极品粉嫩免费观看在线| 性色av一级| 最新的欧美精品一区二区| 最近的中文字幕免费完整| 大话2 男鬼变身卡| 国产免费一区二区三区四区乱码| 国产毛片在线视频| 9色porny在线观看| 国产伦理片在线播放av一区| 亚洲av电影在线观看一区二区三区| 久久狼人影院| 国产精品免费大片| 久久精品熟女亚洲av麻豆精品| 国产一区亚洲一区在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久99精品国语久久久| 欧美精品亚洲一区二区| 欧美精品人与动牲交sv欧美| 国产黄色视频一区二区在线观看| 欧美xxⅹ黑人| 国产精品嫩草影院av在线观看| 大陆偷拍与自拍| 美女福利国产在线| 色94色欧美一区二区| 王馨瑶露胸无遮挡在线观看| 久久精品人人爽人人爽视色| 色播在线永久视频| 国产精品av久久久久免费| 日韩免费高清中文字幕av| 丝袜美腿诱惑在线| 日本欧美国产在线视频| 精品国产露脸久久av麻豆| 一本久久精品| 国产av码专区亚洲av| 美国免费a级毛片| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美网| 亚洲成人av在线免费| 卡戴珊不雅视频在线播放| 捣出白浆h1v1| 国产成人免费无遮挡视频| 亚洲av电影在线进入| 啦啦啦视频在线资源免费观看| 久久久久精品人妻al黑| 卡戴珊不雅视频在线播放| 成年人免费黄色播放视频| 久久久久人妻精品一区果冻| 亚洲男人天堂网一区| 久久久久久久精品精品| www.av在线官网国产| 一二三四中文在线观看免费高清| 99re6热这里在线精品视频| 中文字幕av电影在线播放| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 久久免费观看电影| 天堂俺去俺来也www色官网| 免费在线观看黄色视频的| 极品少妇高潮喷水抽搐| 又粗又硬又长又爽又黄的视频| 丝袜喷水一区| 十分钟在线观看高清视频www| 日日啪夜夜爽| 大码成人一级视频| 日本欧美视频一区| 精品一区在线观看国产| 亚洲久久久国产精品| 在线观看免费高清a一片| 精品国产一区二区三区久久久樱花| 午夜日韩欧美国产| 永久网站在线| 9热在线视频观看99| 欧美日韩成人在线一区二区| 飞空精品影院首页| 亚洲国产av新网站| 国产成人精品一,二区| 国产精品 欧美亚洲| 人人妻人人爽人人添夜夜欢视频| 天堂8中文在线网| 色94色欧美一区二区| 最近手机中文字幕大全|