• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and characterization of the two enantiomers of a chiral sigma-1 receptor radioligand: (S)-(+)- and (R)-(-)-[18F]FBFP

    2022-07-09 02:14:46ToWngYingZhngXiojunZhngLyunChnMingqingZhngJinmingZhngPtrBrustWinniDuthrConrYiyunHungHongmiJi
    Chinese Chemical Letters 2022年7期

    To Wng, Ying Zhng, Xiojun Zhng, Lyun Chn, Mingqing Zhng,Jinming Zhng,*, Ptr Brust, Winni Duthr-Conr, Yiyun Hung,*, Hongmi Ji,*

    a Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China

    b Nuclear Medicine Department, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China

    c Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China

    d Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520-8048, United States

    e Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig 04318,Germany

    ABSTRACT Racemic [18F]FBFP ([18F]1) proved to be a potent σ1 receptor radiotracer with superior imaging properties.The pure enantiomers of unlabeled compounds (S)- and (R)-1 and the corresponding iodonium ylide precursors were synthesized and characterized.The two enantiomers (S)-1 and (R)-1 exhibited comparable high affinity for σ1 receptors and selectivity over σ2 receptors.The Ca2+ fluorescence assay indicated that (R)-1 behaved as an antagonist and (S)-1 as an agonist for σ1 receptors.The 18F-labeled enantiomers (S)- and (R)-[18F]1 were obtained in >99%enantiomeric purity from the corresponding enantiopure iodonium ylide precursors with radiochemical yield of 24.4% ± 2.6% and molar activity of 86–214 GBq/μmol.In ICR mice both (S)- and (R)-[18F]1 displayed comparable high brain uptake, brain-to-blood ratio, in vivo stability and binding specificity in the brain and peripheral organs.In micro-positron emission tomography (PET) imaging studies in rats,(S)-[18F]1 exhibited faster clearance from the brain than (R)-[18F]1, indicating different brain kinetics of the two enantiomers.Both (S)- and (R)-[18F]1 warrant further evaluation in primates to translate a single enantiomer with more suitable kinetics for imaging the σ1 receptors in humans.

    Keywords:σ1 receptor Enantiomer Radiotracer Positron emission tomography Fluorine-18

    The sigma-1 (σ1) receptor consists of 223 amino acid residues[1] with molecular weight of 25.3 kDa [2].It is mainly localized at the endoplasmic reticulum (ER) membrane, specifically mitochondria-associated membrane (MAM) [3,4].Most importantly, this receptor is a unique “l(fā)igand-operated receptor chaperone” and interacts with many functional proteins [4].The crystal structure of humanσ1receptor revealed a trimeric architecture with a single transmembrane domain in each protomer [3].It can be modulated by drugs and differences between agonistand antagonist-bound crystal structures of theσ1receptor have been illustrated recently [5].Agonists decrease whereas antagonists increase the oligomeric state ofσ1receptor [6–8], suggesting that agonists and antagonists dynamically regulateσ1receptor oligomerization in distinct manners [9].

    Theσ1receptor has been shown to regulate various physiological processes, such as transcriptional activity, Ca2+homeostasis, ER stress response, and autophagy [10–12] with its role in organizing and remodeling cholesterol-enriched ER signaling microdomains [13].Growing evidence demonstrated that this chaperone is also involved in a number of disorders including central nervous system (CNS) diseases [14–21], cardiovascular diseases [22] and cancers [23].In the CNS, theσ1receptor plays a pivotal role in the pathophysiology of many neuropsychiatric disorders including Alzheimer’s disease (AD), Parkinson’s disease(PD), Huntington’s disease (HD), frontotemporal lobe degeneration(FTLD), amyotrophic lateral sclerosis (ALS) and major depressive disorder (MDD) [14–21].Several compounds acting on theσ1receptor including agonists such as ANAVEX2–73, SA4503 and pridopidine and antagonists S1RA have entered clinical trials as drug candidates, underscoring the importance ofσ1receptor as a therapeutic target [19,24].Most recently, theσ1receptor has been identified as an essential host factor supporting SARS-CoV-2 viral infectivity [25,26].The availability of an optimal radioligand for positron emission tomography (PET) imaging ofσ1receptor in the brain will enable the elucidation of this receptor chaperone’s involvement in neurologic and psychiatric disorders and its changes during disease progression, as well as exploration of therapeutic mechanism to facilitate new drug development.

    Currently, there is noσ1receptor radiotracer approved for use in clinical routine.[11C]SA4503 is the first radioligand used for imagingσ1receptor changes in the brain of AD [27] and PD[28] patients andσ1receptor occupancy by fluvoxamine [29] and donepezil [30].But the short half-life of its11C-nuclide limits its applications.Among the18F-labeled radioligands investigated in humans, [18F]FPS [31] and [18F]FTC-146 [32,33] exhibit irreversible kinetics, which excludes their applications for the imaging and quantification ofσ1receptors in the human brain.Currently, only(S)-[18F]fluspidine [34] has proved to be a promising radioligand and used for imagingσ1receptor in patients with major depression [35] andσ1receptor occupancy of pridopidine [36].Nonetheless, its free fraction in plasma is low (2.3%), making reliable measurement challenging, and further validation is required to test its reproducibility in quantifying theσ1receptor in humans.Therefore, there is a need for the development ofσ1receptor radiotracer with optimal pharmacokinetic and imaging properties.

    We have recently reported the characterization of [18F]FBFP([18F]1) in non-human primates that demonstrated high plasma fraction, good brain uptake, and the highest specific binding signals in non-human primates among theσ1receptor radioligands evaluated to date [37,38].Similar to [18F]fluspidine, [18F]1 has a chiral center and thus is composed of two enantiomers as shown in Fig.1.For future clinical translation a single enantiomer is desirable, as the two enantiomers may possess different affinity and hence pharmacokinetic and imaging characteristics, as in the case of (R)- and (S)-[18F]fluspidine [39–41].Therefore, we synthesized the two enantiomers of FBFP (1) forin vitrobinding assays and agonist/antagonistic activity test.The18F-labeled enantiomers (S)-and (R)-[18F]1 were also synthesized and evaluatedviabiodistribution in mice and micro-PET imaging studies in rats.

    Fig.1.Structures of 18F-labeled σ1 receptor enantiomers (S)- and (R)-[18F]1.

    The synthetic routes for the two enantiomers (S)-1 and (R)-1 and enantiopure precursors for (S)- and (R)-[18F]1 were illustrated in Schemes 1 and 2.The racemic compoundrac-1 andrac-5 were prepared following our previously reported methods [37] with minor modifications, resulting in a shorter synthesis time and higher yield.Separation ofrac-1viachiral preparative HPLC provided the two enantiomers (S)-1 and (R)-1.The detailed chiral HPLC conditions for separation are presented in Table S1 (Supporting information).

    To obtain the single enantiomer (S)-1 or (R)-1 directly,we used (S)-(+)- or (R)-(-)-tetrahydrofurfuryl alcohol ((S)-6)or (R)-6) as starting material, which was converted toptoluenesulfonate (S)-7 or (R)-7 for nucleophilic substitution with LiBr to give the bromo–intermediate (S)-8 or (R)-8.N-Alkylation of piperazine (9) with 4-halide-benzyl bromide (3 or 4) provided the intermediate 10 or 11.FurtherN-alkylation with (S)-8 or (R)-8 then afforded (S)-1, (R)-1, (S)-5 or (R)-5, respectively.

    Scheme 1.Synthetic routes for rac-1 and its two enantiomers (S)- and (R)-1.Reagents and conditions: (a) K2CO3, KI, CH3CN, 40 °C, 2 h, 77%-91%; (b) TsCl, TEA,DMAP, CH2Cl2, 0 °C to r.t., overnight, 94%-99%; (c) LiBr, acetone, reflux, 24 h, 56%;(d) TEA, CH3OH, 60 °C, 3 h, 72%-80%; (e) 10 or 11, K2CO3, NaI, DMF, reflux, 2 h,76%-91%.

    Scheme 2.Synthesis of the iodonium ylide precursors and radiosynthesis of (S)-and (R)-[18F]1.Reagents and conditions: (a) Ac2O, H3BO3, 30 °C, 0.5 h, 32%; (b) i)TFA, CHCl3, Oxone, r.t., 1 h; ii) 6,10-dioxaspiro[4.5]decane-7,9–dione (14), Na2CO3(10% aq), EtOH, 35 °C, 0.5 h, 77%; (c) [18F]F-, Kryptofix 2.2.2 (K2.2.2), K2CO3, TPP,DMF, 120 °C, 10 min.

    Table 1 Specific rotation and absolute configuration of the enantiomers.a

    The iodonium ylide precursorsrac-15, (S)-15 and (R)-15 were synthesized based on our previously reported methods [38] with minor modifications as shown in Scheme 2.Using boric acid(H3BO3) as catalyst [42] instead of concentrated sulfuric acid [43],6,10-dioxaspiro[4.5]decane-7,9–dione (14) was obtained in a simple and efficient method.Similar to the synthesis of the two enantiomers of compound 1, (S)-15 and (R)-15 were obtained by separation ofrac-15viachiral preparative HPLC (Table S2 and Fig.S2 in Supporting information), orviachiral synthesis from (S)-5 or(R)-5.

    The final products were analyzed by chiral HPLC and determined to have more than 98% enantiomeric excess (ee) for (S)-1,(R)-1, (S)-15 and (R)-15, as shown in Figs.S1 and S2 (Supporting information).

    The optical rotations of the enantiomers (S)-1 and (R)-1 and radiolabeling precursors (S)-15 and (R)-15 was determined by a polarimeter and shown in Table 1.The specific rotationswere +6.95 and -7.15, respectively, for (S)-1 and (R)-1, prepared by chiral synthesis.Values for the samples (+)-1 and (-)-1, obtained by chiral HPLC separation, were similar (+7.03 and -7.12,respectively).Thevalues for (S)-15 and (R)-15 (+2.34 and-2.15, respectively) from chiral synthesis were also similar to those of (+)-15 and (-)-15 (+2.30 and -2.10, respectively), obtained by chiral HPLC separation.

    Fig.2.The docked poses of the enantiomers (S)-1 and (R)-1 into σ1 receptor.(A) and (B) Pose of co-crystallized (S)-1 and top-ranked docking (Carbon: pink;Nitrogen: blue; Oxygen: red; Fluorine: pale cyan).(C) and (D) Best docked pose for(R)-1 (Carbon: orange; Nitrogen: blue; Oxygen: red; Fluorine: pale cyan).Hydrogen bonds are indicated by yellow dashed lines.In all panels, the σ1 receptor is shown in green.

    The structure of the humanσ1receptor has been reported [3].Molecular docking studies were conducted to investigate and predict the possible molecular interaction mode of the enantiomers(S)- and (R)-1 with the humanσ1receptor.The method for docking models was referenced and revised from previousσ1receptor ligand recognition studies [3,5,44].

    It is well known that the electrostatic and steric-hindrance interaction between the basic nitrogen atom on the ligand scaffold and Glu-172 or Asp-126 are significantly important.Both enantiomers (S)- and (R)-1 were determined to be suitable for the binding pocket ofσ1receptor occupied with a similar pose (Figs.2A and C).As depicted in Figs.2B and D, both enantiomers featured hydrogen-bond interactions between the two nitrogen atoms of the piperazine ring with Glu-172 and Asp-126.However, the distances between the nitrogen atoms and the two amino acid residues above are different.The distances between the nitrogen atom of the piperazine adjacent to the 4-fluorobenzyl group and Glu-172 are 2.8and 3.5for (S)-1 and (R)-1, respectively.The distances between the nitrogen atom adjacent to the tetrahydrofurfuryl group and Asp-126 are 3.4and 2.7for (S)-1 and (R)-1,respectively.Such notable differences for the two enantiomers could affect their pharmacokinetics and dynamicsin vivo.The values of the receptor-ligand scoring function were approximately-10.00 and -9.88 kcal/mol for the enantiomers (S)-1 and (R)-1,respectively.The two-dimensional diagram of receptor-ligand binding is presented in Fig.S3 (Supporting information).

    Competition binding assays were performed as previously reported [45], using rat brain homogenates with (+)-[3H]pentazocine as radioligand for theσ1receptors and rat liver membranes with[3H]DTG (in the presence of 10 μmol/L dextrallorphan to blockσ1receptors) as radioligand for theσ2receptors, respectively.The results are shown in Table 2.TheKi(σ1) values were 3.22±0.87,3.16±1.07 and 3.23±0.62 nmol/L, respectively, forrac-1, (S)-(+)-1 and (R)-(-)-1.TheKi(σ2) values were 168±56.0, 126±5.13 and 178±32.8 nmol/L, respectively, forrac-1, (S)-(+)-1 and (R)-(-)-1.TheKi(σ2)/Ki(σ1) ratios were 52, 40 and 55, respectively, forrac-1, (S)-(+)-1 and (R)-(-)-1.These data indicated that both enantiomers possessed comparable low nanomolar affinity forσ1receptors and high subtype selectivity.

    Table 2 Binding affinities of rac-, (S)- and (R)-1 for σ1 and σ2 receptors.a

    Fig.3.Effect of ligands (S)-1, (R)-1 and σ1 receptor agonist opipramol, SA4503 and antagonist haloperidol on KCl-induced Ca2+ influx.For the control group, the PC12 cells were incubated with 0.5% DMSO (solvent used to dissolve the compounds for this test) for 10 min, and then stimulated with KCl (80 mmol/L) for 10 min.

    Agonists and antagonists of theσ1receptor have been shown to bind with different oligomeric states, and hold different therapeutic potential in clinical trials [5,46].Agonists stabilizeσ1receptor monomers and dimers that are the active forms of the chaperone protein, whereas antagonists bind to higher oligomer complexes [6,7].Based on the report thatσ1agonists can inhibit potassium chloride (KCl)-induced Ca2+influx into synaptosomes, an assay to determine the agonistic/antagonistic effects ofσ1ligands has been established using opipramol, aσ1agonist which can reduce KCl-induced Ca2+influx, by fluorescence measurements with fura-2 or fura-4-AM [47–49].Given the inhibition of Ca2+influx by agonists, we use fura-4-AM imaging to measure calcium response and test agonist/antagonist activity for (S)- and (R)-1.The results are shown in Fig.3.Compared to control, theσ1receptor agonist opipramol and SA4503 inhibited Ca2+influx by 43% and 54% (P <0.001), respectively.Similar to opipramol and SA4503, (S)-1 was able to reduce the KCl-induced Ca2+influx by 48% (P <0.001),indicating (S)-1 asσ1receptor agonist.However, theσ1receptor antagonist haloperidol had no inhibition effect on ion reflux(P=0.204).(R)-1 further increased the KCl-induced Ca2+influx by 63% (P <0.001).

    In the second experiment, synaptosomes were preincubated with the test compound (R)-1, (S)-1 and SA4503 for 5 min.Then, opipramol was added and after 5 min, the cells were stimulated with KCl.The effect of ligands (S)-1, (R)-1 andσ1receptor agonist SA4503 on opipramol-induced inhibition of Ca2+influx is shown in Fig.S4 and Table S3 (Supporting information).Preincubation with theσ1receptor agonist SA4503 strengthened opipramol inhibition of Ca2+influx (31% increase compared to opipramol alone,P=0.002).Preincubation of (S)-1 had no significant effect on opipramol inhibition of Ca2+influx (21% decrease,P=0.295).It is notable that preincubation with (R)-1 reversed the effect of opipramol on Ca2+influx significantly (218% compared to opipramol group,P <0.001), indicating (R)-1 as aσ1receptor antagonist.Both experiments together demonstrate theσ1antagonistic effect of (R)-1 and theσ1agonistic effect of (S)-1.Differentσ1agonist/antagonist activity for (S)- and (R)-1 warrant further investigation for their therapeutic applications.

    Fig.4.HPLC profiles from co-injection of (R)-1 (tR=9.92 min) with (R)-[18F]1(tR=10.02 min), and (S)-1 (tR=9.63 min) with (S)-[18F]1 (tR=9.73 min).HPLC analyses were performed on the Shimadzu SCL-20 AVP system.Conditions: Agela Venusil MP C18 column (250×4.6 mm, 5 μm), 50% acetonitrile and 50% water containing 0.05% triethylamine (TEA) at 1 mL/min.

    One-step radiosynthesis of racemic and two enantiomers of[18F]1 were explored based on the previously reported method[38] with different conditions as shown in Scheme 2.Chiral HPLC analysis indicated no racemization during the radiosynthesis.The two enantiomers (S)- or (R)-[18F]1 were obtained in more than 98% enantiomeric excess (ee) from the corresponding enantiopure iodonium ylide precursors ((S)-(+)-15 and (R)-(-)-15), as shown in Fig.S5 (Supporting information).Moreover, with triphenylphosphine (PPh3, TPP) as a ligand/catalyst, the radiochemical yields(RCY) were significantly improved (decay-corrected RCY of 24.4% ±2.6%,n=6,vs.10% as previously reported [38]) with lower reaction temperature (120 °Cvs.150 °C) and shorter reaction time (10 minvs.25 min).Rac-, (S)- and (R)-[18F]1 were obtained with>99% radiochemical purity (RCP) and molar activity of 86–214 GBq/μmol.

    To identify the radiotracers, the corresponding unlabeled compounds were co-injected and co-eluted.The HPLC profiles of (S)-and (R)-[18F]1 are presented in Fig.4.The retention times of (R)-1 and (R)-[18F]1 were 9.92 and 10.02 min, respectively.The retention times of (S)-1 and (S)-[18F]1 were 9.63 and 9.73 min, respectively.The difference in retention times was in accordance with the time lag as a result of the volume and flow rate within the distance between the UV and radioactivity detectors of our HPLC system.

    Biodistribution studies with (S)- and (R)-[18F]1 (185–296 kBq,0.1 mL, 7% ethanol in saline) were performed in male ICR mice to test if there are differences in kinetics.The results are illustrated in Tables S4 and S5 (Supporting information).Similar torac-[18F]1,both (S)- and (R)-[18F]1 exhibited high initial uptake in the brain(>10% ID/g at 2 min) and low levels of blood accumulation after 30 min.Thus, both enantiomers possessed high brain-to-blood ratios of around 20 from 15 min to 60 min.Radioactivity accumulation in the bone was low at 60 min (<5% ID/g) and remained constant with time, indicating no defluorination of (S)- and (R)-[18F]1in vivo.

    To determine the binding specificity of (S)- and (R)-[18F]1in vivo, blocking studies with theσ1selective agonist SA4503 and self-inhibition by (S)- or (R)-1 were conducted.SA4503 (0.1 mL,5 μmol/kg) and unlabeled (S)- or (R)-1 (0.1 mL, 5 μmol/kg) were injected 5 min prior to radiotracer injection.The results are summarized in Fig.5.Similar torac-[18F]1, pretreatment with SA4503 led to a significant reduction in brain uptake of both (S)-[18F]1(83%,P <0.001) and (R)-[18F]1 (78%,P <0.001).Meanwhile, radioactivity accumulation in the blood were significantly increased by 195% and 231%, respectively, leading to decreased brain-toblood ratios (94% reduction for both enantiomers,P <0.001).Moreover, pretreatment with SA4503 also resulted in significant reduction of radiotracer uptake in peripheral organs known to containσ1receptors, including the heart (69% and 67% reduction for(S)- and (R)-[18F]1,P <0.001), spleen (71% and 62%,P <0.001),lung (83% and 76%,P <0.001), pancreas (47% and 50%,P <0.001)and muscle (57% and 38%,P <0.001).For self-blocking studies,pretreatment with unlabeled (S)-1 or (R)-1 at the same dose of SA4503 led to significant reduction in brain uptake (88% and 82%,P <0.001), and brain-to-blood ratios (96% and 95%,P <0.001),as well as significant reduction of uptake in peripheral organs including the heart (72% and 70%,P <0.001), spleen (76% and 60%,P <0.001), lung (86% and 74%,P <0.001), pancreas (31% and 39%,P <0.001) and muscle (62% and 49%,P <0.001).These results demonstrate high levels of specific binding for both (S)-[18F]1 and(R)-[18F]1 toσ1receptorsin vivo.

    The metabolic stability of (S)- and (R)-[18F]1 was investigatedin vivoin male ICR mice at 30 min post-injection of the radiotracers(74–92.5 MBq, 0.1 mL, 7% ethanol in saline).Representative HPLC chromatograms of the acetonitrile extracts obtained from plasma and brain samples are presented in Fig.6.In the brain samples,>95% of the radioactivity signal represented the intact parent radiotracer for both (S)- and (R)-[18F]1 (n=3).Only small amount of a hydrophilic radioactive metabolite was observed with retention times of 2.63 and 2.84 min for (S)- or (R)-[18F]1 (Figs.6B and E), respectively.In plasma samples, only one major hydrophobic radio-metabolite withtRof 2.61 and 2.88 min, respectively, were detected after injection of (S)- or (R)-[18F]1 (Figs.6C and F).

    Fig.5.Effects of pretreatment with (S)-1 (0.1 mL, 5 μmol/kg), (R)-1 (0.1 mL, 5 μmol/kg) and SA4503 (0.1 mL, 5 μmol/kg) on organ biodistribution of (S)-[18F]1 (A) and(R)-[18F]1 (B) at 30 min after intravenous injection.Values are means ± SD, n=8.

    Fig.6.Analytical radio-HPLC chromatograms of the mouse plasma and brain extracts at 30 min after administration of (S)- [18F]1 (A: (S)-[18F]1; B: brain extracts; C: plasma extracts) and (R)-[18F]1 (D: (R)-[18F]1; E: brain extracts; F: plasma extracts).

    Fig.7.Time–activity curves of rac-, (S)- and (R)-[18F]1 in the whole brain from baseline (n=3–7) and SA4503 blocking scans (n=3) in Sprague-Dawley rats.

    To further investigate the kinetics and confirm the specific binding of two enantiomers, micro-PET/CT studies were conducted in anaesthetized Sprague-Dawley (SD) rats.In vivobinding specificity was evaluatedviaco-injection of SA4503 (5 μmol/kg) with the radiotracers (7.40–9.25 MBq, 0.5 mL, 7% ethanol in saline).Dynamic brain PET scanning was started immediately after injection of the radiotracers and lasted for 90 min.The time-activity curves(TACs) ofrac-, (S)- and (R)-[18F]1 in the whole brain from baseline (n=6, 7, 3, respectively) and SA4503 blocking scans (n=4, 3,3, respectively) are presented in Fig.7.Similar torac-[18F]1, (S)-and (R)-[18F]1 entered the brain rapidly and reached peak concentrations within 2 min and washed out steadily over time.However,(S)-[18F]1 exhibited much faster clearance than (R)-[18F]1 from the rat brain.The different kinetics of (S)-(+)- and (R)-(-)-[18F]1 in the brain of mice and rats may be related to species difference.Pretreatment with SA4503 resulted in significant reduction of radiotracer uptake, confirming high specific binding of both enantiomers toσ1receptors in the rat brain.

    In conclusion, we have developed efficient procedures for the synthesis of enantiomerically pure ligands (S)-1 and (R)-1 and the corresponding iodonium ylide precursors.Computational docking studies indicated both enantiomers as suitable ligands for theσ1receptors.Moreover, the molecular interactions between (S)-1 and theσ1receptor was found to be different from that between (R)-1 and theσ1receptor.It is also interesting that (R)-1 behaved as an antagonist while (S)-1 as an agonist.The enantiomerically pure radioligands (S)-(+)- and (R)-(-)-[18F]1 were obtained from their corresponding iodonium ylide precursors with improved radiochemical yields using triphenylphosphine as a ligand/catalyst.Evaluation in rodents demonstrated excellent properties of both (S)-(+)-[18F]1 and (R)-(-)-[18F]1 with high brain uptake, high brainto-blood ratios, high metabolic stability in the brain and high specific binding to theσ1receptors.In dynamic micro-PET studies,(S)-(+)-[18F]1 exhibited much faster clearance from the rat brain compared to (R)-(+)-[18F]1, demonstrating different pharmacokinetics of two enantiomerically pure radioligands.Taken together,(S)-(+)-[18F]1 and (R)-(-)-[18F]1 warrant further evaluation in primates to develop an optimal enantiomerically pure radioligand for imaging ofσ1receptors in humans.

    Ethics statement

    All procedures related to the animal experiments were performed in compliance with relevant laws and institutional guidelines.All the animal experiments of the ICR mice and rats were approved by the Institutional Animal Care and Use Committee of Beijing Normal University.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We gratefully acknowledge the financial support from Beijing Natural Science Foundation (No.7212203) and National Natural Science Foundation of China (No.21876013).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.03.099.

    在线观看日韩欧美| 欧美中文综合在线视频| 亚洲一区二区三区不卡视频| 无人区码免费观看不卡| 欧美日本中文国产一区发布| 国产精品亚洲一级av第二区| 一区二区三区国产精品乱码| 法律面前人人平等表现在哪些方面| 亚洲av欧美aⅴ国产| 身体一侧抽搐| 久久久久国产精品人妻aⅴ院 | 精品一区二区三区av网在线观看| 视频在线观看一区二区三区| 欧美午夜高清在线| videos熟女内射| 成人av一区二区三区在线看| 咕卡用的链子| e午夜精品久久久久久久| 日韩三级视频一区二区三区| 国产一卡二卡三卡精品| 欧美激情久久久久久爽电影 | 日本欧美视频一区| 久久国产精品人妻蜜桃| avwww免费| 国产不卡av网站在线观看| 亚洲成人国产一区在线观看| 精品人妻1区二区| 欧美亚洲日本最大视频资源| 午夜免费鲁丝| 日本wwww免费看| 亚洲国产欧美一区二区综合| 最新的欧美精品一区二区| 欧美日韩亚洲综合一区二区三区_| 在线视频色国产色| 亚洲欧美精品综合一区二区三区| 色尼玛亚洲综合影院| 色综合欧美亚洲国产小说| 99久久综合精品五月天人人| 国产精品.久久久| 一进一出好大好爽视频| 18禁观看日本| 咕卡用的链子| av天堂久久9| 国产97色在线日韩免费| 99国产精品一区二区蜜桃av | 黄频高清免费视频| 在线观看一区二区三区激情| 女同久久另类99精品国产91| 亚洲第一欧美日韩一区二区三区| 亚洲精品粉嫩美女一区| 国产99白浆流出| 精品高清国产在线一区| 夫妻午夜视频| 午夜精品久久久久久毛片777| 久久中文看片网| 亚洲第一av免费看| 亚洲 国产 在线| 国产精品国产高清国产av | 国产成人欧美| 变态另类成人亚洲欧美熟女 | 国产精品国产高清国产av | 国产av一区二区精品久久| 亚洲伊人色综图| 男人舔女人的私密视频| 欧美成人午夜精品| 一二三四在线观看免费中文在| 久久午夜综合久久蜜桃| 人妻久久中文字幕网| 很黄的视频免费| 欧美日韩视频精品一区| 大香蕉久久成人网| 国产精品九九99| 日本黄色日本黄色录像| 国产亚洲精品第一综合不卡| 动漫黄色视频在线观看| 欧美日韩精品网址| 欧美日韩瑟瑟在线播放| 午夜日韩欧美国产| 制服人妻中文乱码| 国产成人欧美在线观看 | 久久国产精品影院| 国产视频一区二区在线看| 老司机深夜福利视频在线观看| 亚洲成人手机| 正在播放国产对白刺激| 99热网站在线观看| 久99久视频精品免费| 亚洲人成电影观看| 久久久久久久久久久久大奶| 久久精品国产亚洲av高清一级| 午夜福利免费观看在线| 日韩熟女老妇一区二区性免费视频| 日韩欧美三级三区| 热99久久久久精品小说推荐| 精品一品国产午夜福利视频| 精品视频人人做人人爽| 啦啦啦免费观看视频1| 一边摸一边做爽爽视频免费| 老熟妇乱子伦视频在线观看| 91老司机精品| av天堂久久9| √禁漫天堂资源中文www| 亚洲人成伊人成综合网2020| 国产精品一区二区在线观看99| av视频免费观看在线观看| 国产野战对白在线观看| 12—13女人毛片做爰片一| 丁香欧美五月| 超碰97精品在线观看| 国产精品一区二区精品视频观看| 在线观看免费高清a一片| 亚洲情色 制服丝袜| 欧美黄色淫秽网站| 在线观看日韩欧美| 久久精品91无色码中文字幕| 天堂√8在线中文| 久久久久久久午夜电影 | 女同久久另类99精品国产91| 欧美日韩亚洲高清精品| 欧美日韩精品网址| 建设人人有责人人尽责人人享有的| 999久久久国产精品视频| 女人高潮潮喷娇喘18禁视频| 91成人精品电影| 色在线成人网| 国产精品香港三级国产av潘金莲| 丰满的人妻完整版| 亚洲成av片中文字幕在线观看| 亚洲精品一二三| 亚洲成人国产一区在线观看| 国产精品免费一区二区三区在线 | 精品人妻在线不人妻| 黄片小视频在线播放| 欧美黑人精品巨大| 国产91精品成人一区二区三区| 热99久久久久精品小说推荐| 国产精品免费一区二区三区在线 | 一区在线观看完整版| 亚洲五月天丁香| 女人久久www免费人成看片| 视频区欧美日本亚洲| 人人妻人人澡人人爽人人夜夜| 国产三级黄色录像| 男女床上黄色一级片免费看| 日韩中文字幕欧美一区二区| 妹子高潮喷水视频| 嫩草影视91久久| 一进一出抽搐gif免费好疼 | 一区二区三区激情视频| 欧美日韩av久久| 91九色精品人成在线观看| 王馨瑶露胸无遮挡在线观看| 国产成人精品久久二区二区免费| 免费观看精品视频网站| 国产成人av激情在线播放| 免费在线观看日本一区| 色播在线永久视频| 亚洲自偷自拍图片 自拍| 亚洲午夜精品一区,二区,三区| 国产成+人综合+亚洲专区| 亚洲欧美一区二区三区久久| 日韩免费高清中文字幕av| 伦理电影免费视频| 欧美日韩视频精品一区| 日韩大码丰满熟妇| 视频在线观看一区二区三区| 两性夫妻黄色片| 日本一区二区免费在线视频| 国产麻豆69| 国产精品免费大片| 91老司机精品| 国产精品一区二区免费欧美| 99国产精品99久久久久| √禁漫天堂资源中文www| 日日摸夜夜添夜夜添小说| 18在线观看网站| 久久亚洲真实| 高清黄色对白视频在线免费看| 亚洲av熟女| 啪啪无遮挡十八禁网站| 电影成人av| 人成视频在线观看免费观看| 亚洲九九香蕉| 国产真人三级小视频在线观看| 中文字幕精品免费在线观看视频| 淫妇啪啪啪对白视频| 中文欧美无线码| 99riav亚洲国产免费| 亚洲人成电影免费在线| 一进一出抽搐动态| 国产成人欧美在线观看 | 精品久久久精品久久久| 亚洲一区二区三区不卡视频| 王馨瑶露胸无遮挡在线观看| 亚洲中文日韩欧美视频| 国产成人免费无遮挡视频| 欧美乱色亚洲激情| 老司机在亚洲福利影院| 欧美精品亚洲一区二区| 国产99白浆流出| 身体一侧抽搐| 一区二区三区激情视频| 国产精品久久久av美女十八| 天天添夜夜摸| 中文欧美无线码| 日韩欧美免费精品| 69av精品久久久久久| 国产欧美日韩综合在线一区二区| 女警被强在线播放| 怎么达到女性高潮| 欧美日韩亚洲国产一区二区在线观看 | 在线观看一区二区三区激情| 大陆偷拍与自拍| 久久精品人人爽人人爽视色| 日韩人妻精品一区2区三区| 99热国产这里只有精品6| 日韩免费av在线播放| 国产亚洲精品第一综合不卡| 欧美黑人欧美精品刺激| 男女下面插进去视频免费观看| 午夜精品久久久久久毛片777| 老司机福利观看| 黑人操中国人逼视频| 久久精品国产综合久久久| 精品少妇一区二区三区视频日本电影| 欧美 日韩 精品 国产| 国产又爽黄色视频| 国产又色又爽无遮挡免费看| 亚洲精品粉嫩美女一区| av超薄肉色丝袜交足视频| 一区二区三区精品91| 人人澡人人妻人| 亚洲欧美一区二区三区久久| 国产亚洲精品久久久久久毛片 | 午夜亚洲福利在线播放| 国产欧美日韩一区二区精品| 国产色视频综合| 日韩成人在线观看一区二区三区| 999久久久国产精品视频| 18禁国产床啪视频网站| 大型av网站在线播放| 男女床上黄色一级片免费看| 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲精品一区二区www | 亚洲精品国产色婷婷电影| 一级片'在线观看视频| 久久久精品国产亚洲av高清涩受| 成人手机av| 午夜福利在线观看吧| a级毛片在线看网站| 午夜福利免费观看在线| 最近最新免费中文字幕在线| bbb黄色大片| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久久久电影网| 两人在一起打扑克的视频| 久久精品亚洲av国产电影网| 亚洲av欧美aⅴ国产| 亚洲欧美一区二区三区黑人| 亚洲五月婷婷丁香| 日韩视频一区二区在线观看| 亚洲色图 男人天堂 中文字幕| 大型av网站在线播放| 麻豆av在线久日| 欧美色视频一区免费| 国产黄色免费在线视频| 亚洲av第一区精品v没综合| 一个人免费在线观看的高清视频| 亚洲国产看品久久| 欧美日韩亚洲国产一区二区在线观看 | 免费女性裸体啪啪无遮挡网站| 老司机午夜十八禁免费视频| 大香蕉久久网| 国产日韩欧美亚洲二区| 99国产极品粉嫩在线观看| 高清av免费在线| 麻豆乱淫一区二区| 一边摸一边做爽爽视频免费| 亚洲欧洲精品一区二区精品久久久| 91国产中文字幕| 久久香蕉激情| 无人区码免费观看不卡| 日韩 欧美 亚洲 中文字幕| 18禁观看日本| 激情视频va一区二区三区| 亚洲一区二区三区不卡视频| 亚洲一区中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 高潮久久久久久久久久久不卡| 在线观看午夜福利视频| 亚洲一码二码三码区别大吗| 最近最新中文字幕大全免费视频| 夜夜夜夜夜久久久久| 国产激情欧美一区二区| 亚洲欧美一区二区三区久久| 国产1区2区3区精品| 在线观看舔阴道视频| 九色亚洲精品在线播放| 国产野战对白在线观看| 亚洲熟妇中文字幕五十中出 | 国产在线一区二区三区精| 一进一出抽搐gif免费好疼 | 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区在线臀色熟女 | 搡老乐熟女国产| 中文字幕精品免费在线观看视频| 久久精品国产综合久久久| 一边摸一边做爽爽视频免费| 丁香欧美五月| 麻豆成人av在线观看| 国产在线观看jvid| 最近最新中文字幕大全免费视频| 久久久国产成人精品二区 | 成年人免费黄色播放视频| 欧美日本中文国产一区发布| 国产av一区二区精品久久| 午夜福利欧美成人| 在线免费观看的www视频| 国产亚洲精品第一综合不卡| а√天堂www在线а√下载 | 老司机福利观看| 久久久精品国产亚洲av高清涩受| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品免费一区二区三区在线 | 亚洲第一欧美日韩一区二区三区| 黑人巨大精品欧美一区二区蜜桃| ponron亚洲| 中文欧美无线码| 一边摸一边做爽爽视频免费| 亚洲国产欧美一区二区综合| 久久久久久久久免费视频了| 午夜福利,免费看| 国产精品欧美亚洲77777| 黄网站色视频无遮挡免费观看| 在线看a的网站| av天堂久久9| 少妇被粗大的猛进出69影院| x7x7x7水蜜桃| www.自偷自拍.com| 免费女性裸体啪啪无遮挡网站| 咕卡用的链子| 中文字幕人妻丝袜一区二区| 欧美最黄视频在线播放免费 | 色综合婷婷激情| 自线自在国产av| 亚洲aⅴ乱码一区二区在线播放 | 不卡一级毛片| 色94色欧美一区二区| 一级毛片女人18水好多| 亚洲第一av免费看| 久久久国产一区二区| 99国产精品一区二区三区| 精品国产乱码久久久久久男人| 国产精品电影一区二区三区 | 久久久国产成人精品二区 | 黄色毛片三级朝国网站| 黄色女人牲交| 免费久久久久久久精品成人欧美视频| 国产男靠女视频免费网站| 老司机午夜十八禁免费视频| 国产亚洲av高清不卡| 久久中文字幕人妻熟女| 国精品久久久久久国模美| 日本黄色日本黄色录像| 在线播放国产精品三级| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区精品| 国产精品一区二区精品视频观看| 精品福利永久在线观看| 韩国av一区二区三区四区| 黄色视频,在线免费观看| 亚洲第一欧美日韩一区二区三区| 999久久久国产精品视频| 男女午夜视频在线观看| 在线观看免费午夜福利视频| 一区二区三区激情视频| 欧美人与性动交α欧美精品济南到| 建设人人有责人人尽责人人享有的| 欧美亚洲 丝袜 人妻 在线| 一本大道久久a久久精品| 欧美日本中文国产一区发布| 看黄色毛片网站| 精品久久久久久久毛片微露脸| 9色porny在线观看| 国产午夜精品久久久久久| 亚洲综合色网址| 国产男靠女视频免费网站| 十分钟在线观看高清视频www| 一二三四在线观看免费中文在| 1024视频免费在线观看| 久久精品亚洲精品国产色婷小说| 国产有黄有色有爽视频| 日日爽夜夜爽网站| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 国产蜜桃级精品一区二区三区 | 另类亚洲欧美激情| 我的亚洲天堂| 十八禁网站免费在线| 亚洲avbb在线观看| 亚洲专区中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 黄片大片在线免费观看| 国产成人av激情在线播放| 亚洲成人手机| 欧美av亚洲av综合av国产av| 91av网站免费观看| 国产精品av久久久久免费| 最新的欧美精品一区二区| 老司机深夜福利视频在线观看| 国产又爽黄色视频| 国产麻豆69| 飞空精品影院首页| 国产成人影院久久av| 成人精品一区二区免费| 国产一区二区三区视频了| 中文字幕另类日韩欧美亚洲嫩草| www.熟女人妻精品国产| 久99久视频精品免费| 成熟少妇高潮喷水视频| 高清欧美精品videossex| 无限看片的www在线观看| 999精品在线视频| 久热这里只有精品99| 亚洲av成人不卡在线观看播放网| 国产淫语在线视频| 亚洲视频免费观看视频| 女性生殖器流出的白浆| 国产精品 国内视频| 亚洲国产中文字幕在线视频| 免费在线观看黄色视频的| 俄罗斯特黄特色一大片| 麻豆av在线久日| 男人操女人黄网站| 大片电影免费在线观看免费| 成人精品一区二区免费| 婷婷精品国产亚洲av在线 | 亚洲中文字幕日韩| 国产一区二区三区在线臀色熟女 | 免费观看a级毛片全部| 久久草成人影院| 动漫黄色视频在线观看| 成年人免费黄色播放视频| 麻豆av在线久日| 日日爽夜夜爽网站| 欧美av亚洲av综合av国产av| 亚洲人成77777在线视频| 人人妻人人澡人人看| 99热国产这里只有精品6| 夜夜躁狠狠躁天天躁| 国产免费男女视频| av有码第一页| 国内久久婷婷六月综合欲色啪| 黄片播放在线免费| 国产xxxxx性猛交| 99国产极品粉嫩在线观看| 岛国在线观看网站| 久久国产乱子伦精品免费另类| 亚洲av欧美aⅴ国产| e午夜精品久久久久久久| 亚洲情色 制服丝袜| 国产野战对白在线观看| www.999成人在线观看| 国产97色在线日韩免费| 麻豆成人av在线观看| av线在线观看网站| 午夜福利,免费看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av第一区精品v没综合| 热re99久久国产66热| 成年动漫av网址| 亚洲九九香蕉| 自拍欧美九色日韩亚洲蝌蚪91| 好看av亚洲va欧美ⅴa在| 精品亚洲成a人片在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 丝袜美腿诱惑在线| 一进一出抽搐动态| av视频免费观看在线观看| 99国产精品免费福利视频| 免费看十八禁软件| 日韩一卡2卡3卡4卡2021年| 国产99久久九九免费精品| 美女午夜性视频免费| 最近最新免费中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 91字幕亚洲| 国产成人精品在线电影| 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲综合色网址| 搡老岳熟女国产| 午夜日韩欧美国产| 九色亚洲精品在线播放| 亚洲自偷自拍图片 自拍| 欧美+亚洲+日韩+国产| 99国产精品免费福利视频| 桃红色精品国产亚洲av| 国产精品一区二区在线不卡| 精品久久久久久,| 操美女的视频在线观看| 久久 成人 亚洲| 精品国产超薄肉色丝袜足j| 欧美激情高清一区二区三区| 狂野欧美激情性xxxx| 国产一区二区三区视频了| 国产精品久久久av美女十八| 亚洲国产精品一区二区三区在线| 欧洲精品卡2卡3卡4卡5卡区| 真人做人爱边吃奶动态| 99re在线观看精品视频| 亚洲五月天丁香| 男男h啪啪无遮挡| 国产在线一区二区三区精| 五月开心婷婷网| 国产精品久久电影中文字幕 | 亚洲国产精品合色在线| 午夜免费观看网址| 高清毛片免费观看视频网站 | 国产成人欧美| 国产精品香港三级国产av潘金莲| 黄色视频,在线免费观看| 亚洲精品粉嫩美女一区| 国产伦人伦偷精品视频| 久久久国产成人精品二区 | 国产精品99久久99久久久不卡| 99在线人妻在线中文字幕 | 亚洲人成伊人成综合网2020| 无限看片的www在线观看| 俄罗斯特黄特色一大片| 一级片'在线观看视频| 日韩成人在线观看一区二区三区| 亚洲精品自拍成人| 很黄的视频免费| 午夜精品国产一区二区电影| 狠狠狠狠99中文字幕| 校园春色视频在线观看| 日韩成人在线观看一区二区三区| 国产精品偷伦视频观看了| 在线观看66精品国产| 一二三四社区在线视频社区8| 免费不卡黄色视频| 亚洲国产精品合色在线| 亚洲熟妇中文字幕五十中出 | 国产一区有黄有色的免费视频| 99精国产麻豆久久婷婷| 亚洲五月婷婷丁香| 欧美日韩福利视频一区二区| 亚洲色图综合在线观看| 精品少妇一区二区三区视频日本电影| 国产一区二区三区综合在线观看| 在线av久久热| 成人av一区二区三区在线看| 最新的欧美精品一区二区| 又紧又爽又黄一区二区| 国产午夜精品久久久久久| 高潮久久久久久久久久久不卡| 大型黄色视频在线免费观看| 18禁美女被吸乳视频| 怎么达到女性高潮| 丝瓜视频免费看黄片| 黄频高清免费视频| 无限看片的www在线观看| av有码第一页| 在线播放国产精品三级| 色播在线永久视频| 一区福利在线观看| 亚洲综合色网址| 天堂俺去俺来也www色官网| 久久中文字幕人妻熟女| 亚洲人成伊人成综合网2020| 亚洲国产精品合色在线| а√天堂www在线а√下载 | 国产精品国产高清国产av | 亚洲国产毛片av蜜桃av| 在线观看免费日韩欧美大片| 黄色怎么调成土黄色| 嫩草影视91久久| 久久久久国内视频| 黑人操中国人逼视频| 捣出白浆h1v1| 久久精品国产99精品国产亚洲性色 | 精品久久久久久久久久免费视频 | 国产精品99久久99久久久不卡| 99国产精品免费福利视频| 亚洲人成伊人成综合网2020| 妹子高潮喷水视频| 欧美日韩乱码在线| 看片在线看免费视频| 国产三级黄色录像| 午夜成年电影在线免费观看| 在线视频色国产色| 久久久久久久精品吃奶| 欧美乱码精品一区二区三区| 少妇裸体淫交视频免费看高清 | 欧美精品亚洲一区二区| 国产午夜精品久久久久久| 婷婷丁香在线五月| 午夜福利视频在线观看免费| 在线观看日韩欧美| 妹子高潮喷水视频| 久久久久久久精品吃奶| 亚洲欧美日韩另类电影网站| 日韩熟女老妇一区二区性免费视频| 欧美最黄视频在线播放免费 | 少妇的丰满在线观看| 日韩制服丝袜自拍偷拍| 国产精品 国内视频| 精品久久久久久久久久免费视频 | 成人永久免费在线观看视频| 女人久久www免费人成看片| 成年女人毛片免费观看观看9 | 欧美精品一区二区免费开放|