• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synergy of photocatalytic reduction and adsorption for boosting uranium removal with PMo12/UiO-66 heterojunction

    2022-07-09 02:14:52ZhibinZhangZifanLiZhiminDongFengtaoYuYingcaiWangYouqunWangXiaohongCaoYuhuiLiuYunhaiLiu
    Chinese Chemical Letters 2022年7期

    Zhibin Zhang, Zifan Li, Zhimin Dong, Fengtao Yu, Yingcai Wang,Youqun Wang, Xiaohong Cao, Yuhui Liu,*, Yunhai Liu,*

    a Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China

    b State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China

    ABSTRACT In this work, we proposed a new U(VI) removal strategy combining adsorption and photocatalytic reduction by the PMo12/UiO-66 heterojunctions.The PMo12 has been encapsulated in the cavities of UiO-66 by a one-step hydrothermal method, and the PMo12/UiO-66 exhibited high adsorption capacity and photocatalytic activity.The maximal theoretical sorption capacity of U(VI) on 15% PMo12/UiO-66 reached 225.36 mg/g and the photoreduction rate of 15% PMo12/UiO-66 is about thirty times as much as UiO-66.Under the light irradiation, the photogenerated electrons rapidly transport from UiO-66 to PMo12, and the photo-generated electrons could efficiently reduce the pre-enriched U(VI) to U(IV).This work provides new insights into remediation of the radioactive environment.

    Keywords:UiO-66 PMo12 Uranium Adsorption Photocatalytic reduction

    Developing nuclear power that has been exploited extensively as a clean energy source is of great significance to meet growing global energy demand [1].As the fundamental elements of nuclear fuel, uranium possesses chemotoxicity and radiotoxicity, which can pose serious threats to the living organisms and natural environment [2].Therefore, it is desirable to explore an effective and economical strategy for the removal of uranium [3].

    Over the past few years, numerous adsorbents have been extensively investigated for removing uranium because of environmentfriendly, convenient operation and high efficiency [4,5].However,the adsorption capacity is preponderantly limited by the adsorption active sites, adsorption equilibrium between sorbent and solution, and available surface area [6].Recently, the reduction of highly soluble U(VI) to insoluble U(IV) species by semiconductor photocatalyst has been extensively investigated [7,8].The prior photocatalysis process of U(VI) reduction commonly contain the enriched of U(VI) on the surface of photocatalysts [9].Fenget al.have been proved the adsorption of U(VI) was a vital step in photoreduction of U(VI) [10].Considering the benefits of adsorption and the characteristics of uranium, integrating the adsorption and photocatalysis seems a more effective strategy for removing uranium.Chenet al.reported that the adsorbent-semiconductor hybrid nanosheet (g-C3N4/GO) composites exhibited high uranium removal capacity [11].

    Polyoxometalates (POMs), a type of metal oxide nanoclusters,have been investigated for incorporating uranium atoms in polyoxometalate for the sequestration and storage of radioactive waste since early 1990s [12].Besides, POMs are extensively used as catalysts due to the remarkable capability to receive electrons and redox properties [13].However, the low surface area (1–10 m2/g) and high solubility restricted the direct application of POMs.Therefore,MOFs have been selected as the matrix to encapsulate the POMs or employed organic linkages to graft MOFs and POMs together [14].

    [Zr6O4(OH)4] clusters interlinked with twelve terephthalate ligands create one centrical octahedral cage (free diameters of 11)and eight corner tetrahedral cages (8) in each UiO-66 unit.The centrical octahedral cage provides an appropriate space for encapsulating PMo12(~10), and the stable structure of UiO-66 make the encapsulation of PMo12be more reliable [15].

    Herein, the PMo12/UiO-66 has been assembled synthesized by a one-pot method and applied for the extraction of uranium.The prepared PMo12/UiO-66 could effectively improve the adsorption capacity and the visible-light photocatalytic activity, which provides a new insight strategy for combined adsorption and photocatalytic reduction of uranyl ions.

    The UiO-66 was synthesized according to the hydrothermal method [16].The synthesis of PMo12/UiO-66 was performed according to previous method with some modification [17].Specifically, 1.1652 g zirconium chloride (ZrCl4), 0.835 g terephthalic acid(BDC), 3.6 mL condensed HCl, and the required amount of PMo12(5% PMo12(0.1053 g), 10% PMo12(0.2220 g), 15% PMo12(0.3529 g),20% PMo12(0.500 g), 30% PMo12(0.8591 g)) were added in DMF(40 mL).The resulting reaction mixture was ultrasonicated for~30 min at room temperature.Then, the obtained mixtures were sealed in a Teflon-lined autoclave and kept in an oven at 120 °C for 24 h.The product was collectedviacentrifugation and washed for three times with DMF and methanol and then dried under vacuum at 60 °C.The obtained PMo12/UiO-66 were named as X PMo12/UiO-66, where X refer to 5%, 10%, 15%, 20% and 30% PMo12.The characterization, photocatalytic tests and sorption experiments are described in Supporting information, respectively.

    The morphology and microstructure of UiO-66 and 15%PMo12/UiO-66 were investigated by scanning electron microscopy(SEM).According to Figs.1a and b, the irregular octahedral UiO-66 about 300 nm with Zr, C, O elements dispersed uniformly can be observed, whereas the additional Mo and P elements can be found in 15% PMo12/UiO-66, confirming the well dispersion of PMo12nanoparticles in UiO-66 (Fig.S1 in Supporting information).The crystalline structures of UiO-66 and PMo12/UiO-66 were confirmed by XRD (Fig.1c).The diffraction peaks at 2θof 7.15°, 8.30°, 11.83°,14.57°, 25.52°, 30.53° and 42.94° correspond to the (111), (200),(220), (400), (442), and (711) crystal planes of UiO-66 [18].For PMo12/UiO-66, the peak intensities of UiO-66 gradually decreased with increasing the addition of PMo12.However, no diffraction peaks of PMo12can be observed in the PMo12/UiO-66 probably due to the following two reasons: (1) the particle size of PMo12clusters are relatively small (~10); (2) the PMo12clusters have been encapsulated in the cavities of UiO-66.Similar results can also be observed in the previous reports [19].

    Fig.1.SEM images and EDS elemental mapping images of pure UiO-66 (a) and 15% PMo12/UiO-66 (b).(c) XRD patterns of the synthetic PMo12/UiO-66 composites.(d) FT-IR spectra of the synthetic PMo12/UiO-66 composites.Samples of (a, b) are UiO-66 and PMo12.Samples of (c-g) are 5% PMo12/UiO-66, 10% PMo12/UiO-66, 15%PMo12/UiO-66, 20% PMo12/UiO-66, 30% PMo12/UiO-66, respectively,.

    FI-IR spectra were investigated to recognize the functional groups on the surface of bare UiO-66, commercial PMo12and PMo12/UiO-66 (Fig.1d).Two bands located at 660 cm-1and 743 cm-1correspond to the asymmetric stretching of C–H and C=C.The bands at 1017 cm-1and 1393 cm-1are the signals of Zr–O and O=C=O symmetric stretching, while the weak band at 1507 cm-1represents the C=C of benzene ring [20].Three characteristic peaks are observed for PMo12at 1056 cm-1, 952 cm-1, 879 cm-1attribute to the stretching vibrations of P–O,M=O and Mo–O–Mo, respectively [18].Note that increasing the content of PMo12causes a red shift for the vibration peaks of UiO-66.Furthermore, a new stretching vibration of M=O can be observed in 20% PMo12/UiO-66 and 30% PMo12/UiO-66 owing to the incorporation of PMo12.The TG analyses have also confirmed it (Fig.S2 in Supporting information).

    The chemical composition and chemical state of as prepared samples were investigated by XPS.The survey spectra revealed the presence of Zr, C, O, Mo, P in the 15% PMo12/UiO-66, which are consistent with EDS analysis (Fig.2a).The peaks at 284.64 eV,285.58, and 288.77 eV are indexed to the binding energies of C–C,C–O and O–C=O [21], while the peaks at 182.77 eV and 185.13 eV are referring to Zr 3d5/2and 3d3/2in the high-resolution XPS C 1s and Zr 3d spectra of UiO-66 (Figs.2b and c) [22].In addition,the peaks at 232.55 eV and 235.70 eV are ascribed to Mo 3d5/2and 3d3/2(Fig.2e) [23], whereas the framed peak at 133.63 eV is due to the deconvoluted P 2p spectra, revealing the P5+state in PMo12/UiO-66 (Fig.2d) [24].

    Fig.2.XPS spectra of 15% PMo12/UiO-66 before and after photoreaction: (a) Survey spectra; (b) C 1s; (c) Zr 3d; (d) P 2p; (e) Mo 3d; (f) U 4f.

    Fig.3a shows the adsorption dynamics process of U(VI) onto UiO-66 and 15% PMo12/UiO-66 in the darkness at pH 5.5.The adsorption rate is comparatively rapid during the first 50 min and then gradually becomes slowly after 100 min causing by the occupied and decreased active sites.Obviously, the adsorption process is well fitted withpseudo-second-order model with the values of R2near 1.0 (Table S1 in Supporting information).Theqevalues derived from thepseudo-second-order model are 140.83 mg/g(15% PMo12/UiO-66) and 53.58 mg/g (UiO-66) which are close to the experimental capacities of 15% PMo12/UiO-66 (131.37 mg/g)and UiO-66 (52.13 mg/g), confirming that the uptake processes of uranyl ions are relied on the assumption of the rate-limiting chemical process rather than mass transport.Furthermore, the surface charge of 15% PMo12/UiO-66 is more negative than that of UiO-66 due to the existence of PMo12(Fig.S3 in Supporting information).The species of U(VI) are primarily existing as UO22+at pH 5.5, thereby the charge attraction between cationic UO22+with PMo12/UiO-66 could boost the surface adsorption.

    Fig.3.(a) The sorption kinetics of UiO-66 and 15% PMo12/UiO-66, the full lines and dotted lines are non-linear pseudo-first-order and pseudo-second-order kinetics model, respectively; (b) The sorption isotherms of UiO-66 and 15% PMo12/UiO-66.The full lines and dotted lines are Langmuir and Freundlich adsorption isotherm models, respectively; (c) Photocatalytic reduction by different samples; (d) The calculated first-order kinetics rate constant for the photocatalytic reaction.

    The adsorption isotherms of UiO-66 and 15% PMo12/UiO-66 are revealed Fig.3b.Clearly, the correlation coefficients (R2>0.98) of Langmuir model are much higher than that of Freundlich model(R2= 0.85–0.96) (Table S2 in Supporting information), demonstrating that the dominant adsorption process was monolayer adsorption.The fitted maximum U(VI) uptake capacity of 15% PMo12/UiO-66 was calculated to be 225.36 mg/g according to Langmuir model,which is much larger than that of UiO-66 (59.67 mg/g).More importantly, the adsorbed U(VI) on the surface of PMo12/UiO-66 could boost the transfer of excited electrons [25,26].

    The photocatalytic reduction of U(VI) was tested under 300 W Xe lamp irradiation, and the results are shown in Fig.3c.The pure UiO-66 has low photocatalytic activity due to the rapid recombination of charge carriers and limited light absorption range.Comparatively, the 15% PMo12/UiO-66 shows the best photoreduction activity and the total removal efficiency reaches 98.92%within 300 min irradiation, and the U(VI) photoreduction rate attains 0.0149 min-1, about thirty times as much as UiO-66(0.0005 min-1) (Fig.3d).

    It can be seen from the UV–vis absorption spectra (Fig.4a) that the PMo12/UiO-66 heterojunctions display enhanced visible-light harvesting in the range of 450–800 nm owing to the competitive absorption factor of PMo12cocatalyst (Fig.4a).The corresponding Tauc plot shows the band gap of UiO-66 and PMo12are 2.85 eV and 2.23 eV, respectively (Figs.4b and c).The intensity of photoluminescence (PL) spectra can reflect the extent of recombination of the photo-generated charges.As shown in Fig.4d, the pristine UiO-66 displays striking emission peaks at 380 nm, in contrast,the fluorescence of PMo12/UiO-66 heterojunctions are partially quenched due to the formation of heterojunction between UiO-66 and PMo12.The 15% PMo12/UiO-66 shows the lowest PL peak intensity, suggesting that it has the most efficient suppression for charge recombination.The relationship between light harvesting and charges separation is currently conflicting, and the 15%PMo12/UiO-66 achieves the optimum point [27].

    Fig.4.(a) UV–vis diffuse reflectance spectra of as-prepared samples; (b) Tauc plot band gap estimation from UV–vis diffuse reflectance spectra of samples; (c) UV–vis diffuse reflectance spectra of PMo12; (inset) Tauc plot band gap; (d) PL emission spectra of as-prepared samples.

    Fig.5.FT-IR (a) and XRD (b) patterns of 15% PMo12/UiO-66 before and after photoreaction.

    As displayed in Fig.S4 (Supporting information), the Mott-Schottky curves of UiO-66 show a positive slope, indicating the characteristics of n-type semiconductors.The flat band potential of UiO-66 is -0.70 Vvs.Ag/AgCl.The conduction band (CB) edge nearly overlaps the flat band potential [28], thus, the CB of UiO-66 is calculated to be -0.50 Vvs.NHE.Moreover, the flat-band potential of PMo12is around -0.28 Vvs.NHE [19].The CB position of UiO-66 is lower than that of PMo12, which means the electrons on the UiO-66 can be smoothly transferred to the PMo12due toEfequilibrium in the PMo12/UiO-66 heterojunction.As described in Fig.2, the chemical environment of C, Zr, Mo and P have changed after photoreaction.Specifically, the peaks of C and Zr red shift by 0.08 eV and 0.04 eV, whereas the peaks of P and Mo blue shift by 0.18 eV and 0.09 eV.The above offsets of peaks indicate that the electrons migrate from UiO-66 to PMo12, confirming the formation of heterojunction [29].Additionally, in the U 4f spectra of 15% PMo12/UiO-66, four peaks at 396.19 eV, 395.39 eV and 392.96 eV, 382.16 eV are attributed to U(VI) and U(IV), indicating the coexistence of U(VI) and U(IV) species (Fig.2f) [30].In Fig.5a the new vibration band at 899 cm-1is the asymmetric stretching of uranyl species [31], and have been confirmed as uranium peroxide, (UO2)O2·2H2O by XRD (Fig.5b and Fig.S5 in Supporting information) [32].The quenching experiments were conducted to verify the primary active substances involved in the photoreduction process in order to gain deeper insight into reaction mechanism (Fig.S6 in Supporting information).The photocatalytic activity of 15% PMo12/UiO-66 was inhibited after addingp-BQ, revealing that ˙O2-radicals are the main reduction radicals.In contrast,methanol acting as the hole scavenger can promote the separation of photoinduced carriers and improve the photocatalytic reduction,whereas the TBA shows no effect on the photoreaction, indicating ˙OH radicals are unnecessary during the photoreaction.In conclusion, the removal of U(VI) by PMo12/UiO-66 can be divided as follow steps: (i) The dissociative U(VI) ions were adsorbed on the surface of PMo12/UiO-66 before photoreaction (Eq.1).(ii) Under irradiation, the electrons in the CB of UiO-66 drift rapidly along the direction of the internal electric field to the CB of PMo12, and reduce U(VI) pre-enriched in PMo12/UiO-66 (Eq.2).(iii) The U(VI)species were reduced by photoelectrons and ˙O2-radicals to form(UO2)O2·2H2O (Eqs.3–5) (Fig.6).

    Fig.6.The proposed mechanism for photocatalytic reduction uranium by 15%PMo12/UiO-66 under visible-light illumination.

    In summary, this work provides a new uranium removal strategy combining adsorption and photocatalysis.The encapsulation of PMo12in UiO-66 could enhance the adsorption capacity to 225.36 mg/g.The PMo12can also accept electrons transporting from UiO-66, and further reduce the U(VI) pre-enriched on the surface of PMo12/UiO-66 heterojunctions.The reduced uranium specie was confirmed to be (UO2)O2·2H2O due to the photoelectrons and ˙O2-radicals.Thus, there are reasons to believe that PMo12/UiO-66 is a promising candidate for uranium extraction from radioactive wastewater.

    Declaration of competing interest

    The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.21866004, 21866003, 22066003,22076022, 22006004), the Defense Industrial Technology Development Program (No.JCKY2019401C004), the Open Fund of Jiangxi Province Key Laboratory of Synthetic Chemistry (No.JXSC202012),the Open Fund of State Key Laboratory of Nuclear Resources and Environment (No.NRE1924), the Graduate Innovation Fund of East China University of Technology (No.DHYC-202134).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.062.

    视频区图区小说| 在线观看国产h片| 国产成人免费无遮挡视频| 最近2019中文字幕mv第一页| 国产成人a区在线观看| 一级毛片aaaaaa免费看小| 久久久精品免费免费高清| 成人亚洲精品一区在线观看 | 搡老乐熟女国产| 黑人猛操日本美女一级片| 18禁在线无遮挡免费观看视频| 中文精品一卡2卡3卡4更新| 高清av免费在线| 国产免费福利视频在线观看| 蜜桃久久精品国产亚洲av| 最近2019中文字幕mv第一页| 一级黄片播放器| 久久精品夜色国产| 人妻系列 视频| 欧美3d第一页| 国产无遮挡羞羞视频在线观看| 嘟嘟电影网在线观看| 18禁动态无遮挡网站| 成年av动漫网址| 97在线人人人人妻| 精品视频人人做人人爽| 国产伦理片在线播放av一区| 久久精品国产亚洲av涩爱| 亚洲精品日韩在线中文字幕| 国产亚洲最大av| 国产精品嫩草影院av在线观看| 国产久久久一区二区三区| 日日摸夜夜添夜夜添av毛片| 中文欧美无线码| 欧美少妇被猛烈插入视频| av不卡在线播放| 亚洲av在线观看美女高潮| 亚洲欧美日韩东京热| 日产精品乱码卡一卡2卡三| 一级a做视频免费观看| 大片免费播放器 马上看| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 精品人妻一区二区三区麻豆| 直男gayav资源| 丝袜喷水一区| 夜夜爽夜夜爽视频| 成人午夜精彩视频在线观看| 亚洲精华国产精华液的使用体验| 人人妻人人爽人人添夜夜欢视频 | 久久久久精品性色| 在线免费观看不下载黄p国产| 亚洲国产精品成人久久小说| 午夜激情福利司机影院| 亚洲三级黄色毛片| 边亲边吃奶的免费视频| 一级毛片电影观看| 99热6这里只有精品| 联通29元200g的流量卡| 婷婷色麻豆天堂久久| 啦啦啦在线观看免费高清www| xxx大片免费视频| 亚洲av二区三区四区| 99九九线精品视频在线观看视频| 亚洲av.av天堂| 日本猛色少妇xxxxx猛交久久| 亚洲av电影在线观看一区二区三区| 天堂8中文在线网| 国产免费视频播放在线视频| 国产精品嫩草影院av在线观看| 国产淫片久久久久久久久| 久久99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 99热这里只有是精品50| 日韩成人伦理影院| 岛国毛片在线播放| 91久久精品电影网| 舔av片在线| 国产中年淑女户外野战色| 在线观看免费视频网站a站| 1000部很黄的大片| 国产精品欧美亚洲77777| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 综合色丁香网| 成人亚洲欧美一区二区av| 搡女人真爽免费视频火全软件| 久久青草综合色| 亚洲av综合色区一区| 色5月婷婷丁香| 免费人妻精品一区二区三区视频| 美女xxoo啪啪120秒动态图| 国产乱来视频区| 亚洲三级黄色毛片| 黑丝袜美女国产一区| 制服丝袜香蕉在线| 久久国产乱子免费精品| 亚洲成人中文字幕在线播放| 亚洲精品日韩av片在线观看| 亚洲av男天堂| 搡老乐熟女国产| 国产精品久久久久久av不卡| 男人和女人高潮做爰伦理| 久久久久性生活片| 伊人久久国产一区二区| 国产午夜精品一二区理论片| 伦理电影大哥的女人| 成人毛片a级毛片在线播放| 日本av免费视频播放| 国产成人精品婷婷| 乱系列少妇在线播放| av视频免费观看在线观看| 亚洲精品乱码久久久久久按摩| 伦理电影免费视频| 蜜桃久久精品国产亚洲av| 人人妻人人澡人人爽人人夜夜| 国产一区二区在线观看日韩| 国产精品三级大全| 国国产精品蜜臀av免费| 热re99久久精品国产66热6| 国产精品一区www在线观看| 中文字幕制服av| 熟女人妻精品中文字幕| 精品久久久精品久久久| 建设人人有责人人尽责人人享有的 | 99久久中文字幕三级久久日本| 亚洲精品国产色婷婷电影| 黑人猛操日本美女一级片| videossex国产| 水蜜桃什么品种好| 欧美极品一区二区三区四区| 涩涩av久久男人的天堂| 秋霞伦理黄片| 亚洲中文av在线| 日本-黄色视频高清免费观看| 黄色一级大片看看| 国产永久视频网站| 高清日韩中文字幕在线| 一级二级三级毛片免费看| 久久久久久久精品精品| 亚洲精品国产av成人精品| 91精品国产国语对白视频| 日本一二三区视频观看| 国产中年淑女户外野战色| 亚洲国产毛片av蜜桃av| 内射极品少妇av片p| 亚洲国产日韩一区二区| 国产精品一区二区在线观看99| 国产高潮美女av| 哪个播放器可以免费观看大片| 欧美精品一区二区大全| 欧美三级亚洲精品| 欧美日韩精品成人综合77777| 亚洲精品自拍成人| 亚洲欧美日韩无卡精品| 五月玫瑰六月丁香| 欧美一区二区亚洲| 好男人视频免费观看在线| 男人狂女人下面高潮的视频| 老师上课跳d突然被开到最大视频| 久久婷婷青草| 80岁老熟妇乱子伦牲交| 精品一品国产午夜福利视频| 亚洲最大成人中文| 日韩av不卡免费在线播放| 深夜a级毛片| 91久久精品国产一区二区三区| 美女内射精品一级片tv| 久久精品夜色国产| av黄色大香蕉| 国产探花极品一区二区| 91久久精品电影网| 美女国产视频在线观看| 在线观看美女被高潮喷水网站| 成年人午夜在线观看视频| 亚洲图色成人| 久久久久久久久久成人| 男女边摸边吃奶| 国产精品.久久久| 婷婷色av中文字幕| 在线亚洲精品国产二区图片欧美 | 内射极品少妇av片p| 大话2 男鬼变身卡| 久久精品久久久久久噜噜老黄| 国产精品爽爽va在线观看网站| 精品久久久精品久久久| 热re99久久精品国产66热6| 赤兔流量卡办理| 夫妻性生交免费视频一级片| 久久99蜜桃精品久久| 高清av免费在线| 在现免费观看毛片| av免费观看日本| 亚洲精品久久午夜乱码| 国产日韩欧美在线精品| 在线观看一区二区三区| 亚洲欧美日韩另类电影网站 | 夫妻午夜视频| 亚洲精品456在线播放app| 插逼视频在线观看| 国产综合精华液| videos熟女内射| 亚洲精品乱码久久久久久按摩| 高清不卡的av网站| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久久久按摩| 一二三四中文在线观看免费高清| 一级爰片在线观看| 成人国产麻豆网| av不卡在线播放| 欧美人与善性xxx| 久久久久久久久大av| 精品人妻熟女av久视频| 美女脱内裤让男人舔精品视频| av一本久久久久| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 国产精品女同一区二区软件| 夜夜爽夜夜爽视频| 国产精品秋霞免费鲁丝片| 欧美精品亚洲一区二区| 亚洲av二区三区四区| 97在线视频观看| 亚洲图色成人| 国产亚洲5aaaaa淫片| 插阴视频在线观看视频| 日本黄色日本黄色录像| 狂野欧美激情性xxxx在线观看| 久久久久久人妻| 国产永久视频网站| 六月丁香七月| 日韩国内少妇激情av| 国产男人的电影天堂91| 99热这里只有精品一区| 自拍偷自拍亚洲精品老妇| 一本久久精品| 国产成人精品福利久久| 欧美性感艳星| 国产欧美日韩精品一区二区| 日韩伦理黄色片| 亚洲欧美一区二区三区国产| 天堂中文最新版在线下载| 校园人妻丝袜中文字幕| 午夜免费观看性视频| 搡女人真爽免费视频火全软件| 51国产日韩欧美| 女性生殖器流出的白浆| 国产精品三级大全| 如何舔出高潮| 久久国产精品大桥未久av | 亚洲精品日本国产第一区| 日韩,欧美,国产一区二区三区| 少妇人妻一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 内射极品少妇av片p| 久久国产乱子免费精品| 久久午夜福利片| 97超碰精品成人国产| 国产成人免费观看mmmm| 熟妇人妻不卡中文字幕| 少妇人妻一区二区三区视频| 一级黄片播放器| 你懂的网址亚洲精品在线观看| 视频中文字幕在线观看| 久久毛片免费看一区二区三区| 99热网站在线观看| 中文字幕免费在线视频6| 男女边摸边吃奶| 成人无遮挡网站| 97超碰精品成人国产| 亚州av有码| 亚洲国产成人一精品久久久| 自拍偷自拍亚洲精品老妇| 春色校园在线视频观看| 丝袜喷水一区| 在线天堂最新版资源| 成人国产av品久久久| 在线观看免费视频网站a站| 亚洲成人av在线免费| 一区在线观看完整版| 欧美日韩视频高清一区二区三区二| 三级国产精品片| 欧美+日韩+精品| 精品久久久久久久久亚洲| 一二三四中文在线观看免费高清| 日韩在线高清观看一区二区三区| 啦啦啦在线观看免费高清www| 九九爱精品视频在线观看| 交换朋友夫妻互换小说| 日韩不卡一区二区三区视频在线| 久久久成人免费电影| 中文资源天堂在线| 国产黄片美女视频| 精品国产三级普通话版| 一二三四中文在线观看免费高清| 伊人久久国产一区二区| 欧美精品人与动牲交sv欧美| a级毛片免费高清观看在线播放| 婷婷色综合www| 乱系列少妇在线播放| 国产精品人妻久久久久久| 免费高清在线观看视频在线观看| 久久久国产一区二区| 久久久久久久精品精品| 久久久久性生活片| 亚洲人成网站在线观看播放| 久久99精品国语久久久| 一边亲一边摸免费视频| 国产精品精品国产色婷婷| 少妇熟女欧美另类| 人人妻人人看人人澡| 1000部很黄的大片| 日韩三级伦理在线观看| 欧美日韩国产mv在线观看视频 | 九草在线视频观看| 草草在线视频免费看| 日韩强制内射视频| 欧美精品亚洲一区二区| 小蜜桃在线观看免费完整版高清| 午夜福利在线观看免费完整高清在| 一本色道久久久久久精品综合| 日韩欧美精品免费久久| 在线观看人妻少妇| 亚洲av二区三区四区| 日本wwww免费看| videossex国产| 老熟女久久久| 日本免费在线观看一区| 日韩中文字幕视频在线看片 | 成人亚洲精品一区在线观看 | 成人亚洲精品一区在线观看 | 日本色播在线视频| 成人漫画全彩无遮挡| 水蜜桃什么品种好| 欧美97在线视频| 国产免费一级a男人的天堂| 国产精品三级大全| 水蜜桃什么品种好| 成人美女网站在线观看视频| 国产成人精品福利久久| 精品人妻视频免费看| 自拍欧美九色日韩亚洲蝌蚪91 | av卡一久久| 乱码一卡2卡4卡精品| 久久久久久久久久久免费av| 国产成人91sexporn| 一本久久精品| tube8黄色片| 午夜福利在线观看免费完整高清在| 国产精品国产三级国产av玫瑰| av卡一久久| 久久久a久久爽久久v久久| 成人毛片a级毛片在线播放| 男女边吃奶边做爰视频| 欧美精品亚洲一区二区| 亚洲国产毛片av蜜桃av| 交换朋友夫妻互换小说| 一级片'在线观看视频| 国产69精品久久久久777片| 一个人看的www免费观看视频| 最黄视频免费看| 在现免费观看毛片| 蜜桃在线观看..| 欧美日韩精品成人综合77777| 精品少妇久久久久久888优播| 一级黄片播放器| 伦精品一区二区三区| 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 国产一区有黄有色的免费视频| 身体一侧抽搐| 亚洲国产欧美人成| 国产视频内射| 久久久久久久久久成人| 国产精品一及| 乱系列少妇在线播放| 九草在线视频观看| 一级毛片 在线播放| 在线 av 中文字幕| 亚洲性久久影院| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美一区二区三区国产| 亚洲人成网站在线观看播放| 国产 一区精品| 99久久综合免费| 久久久久久久亚洲中文字幕| 蜜臀久久99精品久久宅男| 国产成人a∨麻豆精品| 免费人成在线观看视频色| 五月伊人婷婷丁香| 春色校园在线视频观看| 国产伦理片在线播放av一区| 日韩伦理黄色片| 女性被躁到高潮视频| 在线播放无遮挡| 精品国产三级普通话版| 亚洲欧美中文字幕日韩二区| 亚洲av二区三区四区| 男男h啪啪无遮挡| 五月开心婷婷网| 午夜福利视频精品| 老司机影院毛片| 嫩草影院新地址| 联通29元200g的流量卡| 免费人妻精品一区二区三区视频| 国精品久久久久久国模美| av视频免费观看在线观看| 精品国产乱码久久久久久小说| 五月天丁香电影| 中国美白少妇内射xxxbb| 国产一区二区三区av在线| 一区二区三区免费毛片| 精品亚洲成国产av| 亚洲欧美精品专区久久| 99久久综合免费| 国产毛片在线视频| 久久久久久久久大av| 熟女人妻精品中文字幕| 黑丝袜美女国产一区| 国产精品三级大全| 久久久久久人妻| 亚洲精品久久久久久婷婷小说| 亚洲成人手机| 成人美女网站在线观看视频| 久久久久精品久久久久真实原创| av女优亚洲男人天堂| 亚洲,欧美,日韩| 一本—道久久a久久精品蜜桃钙片| 欧美3d第一页| 边亲边吃奶的免费视频| 亚洲婷婷狠狠爱综合网| 人人妻人人看人人澡| 自拍欧美九色日韩亚洲蝌蚪91 | 人妻系列 视频| 国产精品一区二区在线观看99| 激情五月婷婷亚洲| 老师上课跳d突然被开到最大视频| 国产精品成人在线| 国产淫片久久久久久久久| 精品少妇黑人巨大在线播放| 国产精品国产三级国产av玫瑰| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 久久久久国产网址| 色婷婷av一区二区三区视频| av不卡在线播放| 精品视频人人做人人爽| 亚洲av日韩在线播放| 国产成人91sexporn| 久久青草综合色| 国产精品久久久久久精品古装| 国产午夜精品一二区理论片| 国产免费福利视频在线观看| 亚洲精品色激情综合| 国产精品熟女久久久久浪| 尤物成人国产欧美一区二区三区| 精品少妇黑人巨大在线播放| 少妇人妻一区二区三区视频| 久久国产亚洲av麻豆专区| 久久精品国产亚洲网站| 成人午夜精彩视频在线观看| 纵有疾风起免费观看全集完整版| 亚洲av福利一区| 一本一本综合久久| 国产久久久一区二区三区| 91狼人影院| 日本色播在线视频| 免费观看的影片在线观看| 亚洲,欧美,日韩| 全区人妻精品视频| 校园人妻丝袜中文字幕| 直男gayav资源| 日本午夜av视频| 美女中出高潮动态图| 精华霜和精华液先用哪个| 伊人久久国产一区二区| 一级a做视频免费观看| 亚洲,欧美,日韩| 亚洲高清免费不卡视频| 我的老师免费观看完整版| 一本一本综合久久| 熟女电影av网| 91精品伊人久久大香线蕉| 中文资源天堂在线| 伦理电影免费视频| 最近最新中文字幕大全电影3| 亚洲国产av新网站| 特大巨黑吊av在线直播| 国产精品无大码| 国产69精品久久久久777片| 亚洲av国产av综合av卡| 国产黄色视频一区二区在线观看| 国产免费福利视频在线观看| 美女cb高潮喷水在线观看| 亚洲色图av天堂| 黄色怎么调成土黄色| 熟女av电影| 国产男女内射视频| 国产亚洲av片在线观看秒播厂| 日本wwww免费看| 精品99又大又爽又粗少妇毛片| 亚洲熟女精品中文字幕| 欧美丝袜亚洲另类| 午夜日本视频在线| 最近2019中文字幕mv第一页| 亚洲精品aⅴ在线观看| 在线 av 中文字幕| 在线看a的网站| 国产亚洲精品久久久com| 精品熟女少妇av免费看| 夜夜骑夜夜射夜夜干| 你懂的网址亚洲精品在线观看| 能在线免费看毛片的网站| 美女脱内裤让男人舔精品视频| 午夜老司机福利剧场| 成人亚洲欧美一区二区av| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久久免费av| 少妇猛男粗大的猛烈进出视频| 色综合色国产| 六月丁香七月| 欧美三级亚洲精品| 中文乱码字字幕精品一区二区三区| 欧美精品一区二区大全| 晚上一个人看的免费电影| 亚洲国产欧美在线一区| 日韩国内少妇激情av| 国产亚洲精品久久久com| 久久99蜜桃精品久久| 国产日韩欧美亚洲二区| 成人影院久久| 波野结衣二区三区在线| 国产美女午夜福利| 草草在线视频免费看| 人妻 亚洲 视频| 午夜福利视频精品| 男女边摸边吃奶| 亚洲av不卡在线观看| 大片电影免费在线观看免费| 亚洲欧美日韩东京热| 热99国产精品久久久久久7| 深夜a级毛片| 国产日韩欧美亚洲二区| 啦啦啦在线观看免费高清www| 一级毛片aaaaaa免费看小| 天堂8中文在线网| 国产高清不卡午夜福利| a级毛色黄片| 中国三级夫妇交换| 内射极品少妇av片p| 色婷婷久久久亚洲欧美| 99热国产这里只有精品6| 99久久精品一区二区三区| 国产精品久久久久久av不卡| 亚洲精品日韩在线中文字幕| av在线app专区| 欧美性感艳星| 国产成人精品久久久久久| 香蕉精品网在线| 国产亚洲91精品色在线| 大香蕉久久网| 97精品久久久久久久久久精品| 精品一区二区免费观看| 蜜桃在线观看..| 国产在视频线精品| 亚洲精品日韩av片在线观看| 久久精品熟女亚洲av麻豆精品| 国产高清有码在线观看视频| 欧美精品人与动牲交sv欧美| 久久精品国产a三级三级三级| 搡老乐熟女国产| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品古装| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av国产av综合av卡| 国产 一区 欧美 日韩| 黄色怎么调成土黄色| 国产高潮美女av| av线在线观看网站| 久久综合国产亚洲精品| 人妻夜夜爽99麻豆av| 久久久久久人妻| 久久ye,这里只有精品| 人体艺术视频欧美日本| 免费看日本二区| 99热网站在线观看| 免费人成在线观看视频色| 精品午夜福利在线看| 亚洲欧美日韩卡通动漫| 国产在线免费精品| 午夜老司机福利剧场| 纵有疾风起免费观看全集完整版| 国产成人aa在线观看| 精品人妻视频免费看| 直男gayav资源| 亚洲国产欧美在线一区| 国产av一区二区精品久久 | 性色avwww在线观看| 国产精品一区二区性色av| 三级国产精品片| 又大又黄又爽视频免费| 久久久久久久亚洲中文字幕| 噜噜噜噜噜久久久久久91| 欧美激情国产日韩精品一区| 亚洲婷婷狠狠爱综合网| 两个人的视频大全免费| 美女高潮的动态| 久久久成人免费电影| 成人一区二区视频在线观看| 一级二级三级毛片免费看| 久久女婷五月综合色啪小说| 亚洲国产精品成人久久小说| 亚洲美女黄色视频免费看| 久久精品国产a三级三级三级| 一级片'在线观看视频|