• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hierarchical assembly of uranyl metallacycles involving macrocyclic hosts

    2022-07-09 02:14:46YunyunLingLeiMeiQiuynJinJunshnGengJingyngWngKngLiuKongqiuHuJipnYuWeiqunShi
    Chinese Chemical Letters 2022年7期

    Yunyun Ling, Lei Mei, Qiuyn Jin, Junshn Geng, Jingyng Wng, Kng Liu,Kongqiu Hu, Jipn Yu, Weiqun Shi

    a Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

    b University of Chinese Academy of Sciences, Beijing 100049, China

    ABSTRACT Actinide metallacycles are an emerging class of functional coordination assemblies, but multi-level assembly from metallacycle units toward hierarchical supramolecular structures are still rarely investigated.In this work, we put forward a novel supramolecular inclusion-based method through introducing two macrocyclic hosts, cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) to facilitate hierarchical assembly of uranyl metallacycles with higher complexity, and successfully prepare two different kinds of uranyl metallacycle-based complexes with intriguing hierarchical structures, a CB[7]-based four-member molecular necklace ([4]MN) and a CB[8]-involved ring-in-ring supramolecular polymer chain.The results obtained here prove the feasibility of supramolecular inclusion for regulating coordination assembly of uranyl metallacycles and related hierarchical structures.It is believed that this method can be used to achieve the construction of actinide coordination assemblies with higher structural complexity.

    Keywords:Metallacycle Coordination self-assembly Uranyl Cucurbituril Hierarchical structure Molecular necklace

    Metallacycles and metallacages, of which the synthesis always relies on coordination-driven self-assembly of metal centers with elegantly tailored angular ligands [1–4], are typical supramolecular coordination complexes (SCCs) [5–10] featuring discrete closed structures with well-defined shapes and dimensions [6,7,11].These finite supramolecular architectures can be used in different fields such as biomedical sensor [12], electrochemistry [13] or “smart”soft materials [14–16].Up to now, metal nodes used in metallacycles or metallacages with different degrees of structural complexity are mainly transition metals [2,7,9,10] and lanthanides [17–21].Recently, actinide ions are introduced as an emerging class of metal nodes for the construction of supramolecular metallacycles.For example, uranium, a most-studied actinide element that exists in nature as a stable uranyl ion with two axial oxygens, are employed in many discrete architectures with closed structures such as metalcoordinated macrocycles [22–24], and nanocages [25–27].It should be mentioned that, although the rich coordination chemistry of actinide nodes (e.g.,uranyl sphere could be tetragonal bipyramid,pentagonal bipyramid or hexagonal bipyramid) has facilitated the preparation of various discrete coordination assemblies, most of the current work is still mainly touch upon coordination-based primary assembly, while further multi-level assembly of these building blocks toward hierarchical supramolecular structures are still rarely investigated.

    Multi-level assembly of complex hierarchical structures from well-defined supramolecular units has attracted the interest of supramolecular chemists and material specialists [16,17,28–31].Many elegant examples of complex hierarchical structures are observed in biological systems, such as molecular knots, links, and entanglements found in the helix of DNA, the folding of RNA, and the multi-level assembly of proteins in natural organisms [32].These exquisite artificial assemblies can help us better understand the mechanisms of self-assembly in nature, and also offer valuable hints to make complex biomimetic materials with desirable structures and functionality.The hierarchical assembly is always facilitated by non-covalent interactions [33–35], including electrostatic interactions, hydrophobic interactions, hydrogen bonds andπ-πinteractionsetc.,which play important role in linking different subunits together.Compared with covalent interactions, noncovalent interactions fall into the range of weak intermolecular interactions that is intrinsically flexible and dynamic.With the aid of these weak interactions, those independent but interacting discrete supramolecular motifs can aggerate together and assemble to form final hierarchical assemblies.

    Scheme.1.Self-assembly processes between uranyl node and the flexible L linker without or with macrocyclic cucurbituril hosts: (a) dinuclear uranyl-sealed metallacycle U-RC formed from coordination assembly of L and dimeric uranyl node; (b)CB[7]-enabled formation of uranyl-based [4]MN, U-[4]MN-CB[7], through a L@CB[7]pseudorotaxane linker; (c) CB[8]-enabled formation of ring-in-ring supramolecular polymer chain (U-RRC–CB[8]) through a 2L@CB[8] pseudorotaxane linker.

    In pursuit of coordination-driven self-assembly of actinide metallacycles, we have used a flexible ‘U’-shapeo-xylenederived dicarboxylate ligand (L: 1,1′-(1,3-phenylenebis(methylene))bis(pyridin-1-ium-4-carboxylate)) to construct a binuclear uranylsealed metallacycle, U-RC (Scheme 1a) [23].Herein, we further explore the multi-level assembly of this two-component metalligand (uranyl-L) system.A novel supramolecular inclusion-based method through introducing two different kinds of macrocyclic hosts, cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) are proposed to facilitate possible interactions of uranyl-L system with a third component toward induced formation of hierarchical assembly structures with higher complexity.The results reveal that,both supramolecular inclusions by macrocyclic CB[7] and CB[8] of L with a flexible skeleton exert a significant effect on its molecular conformation, as well as its coordination assembly with uranyl.It should be noted that, due to the difference in supramolecular inclusion behavior between the guest L and CB[7]/CB[8] macrocycles, two completely different assembly pathways can be observed (Schemes 1b and c).As a consequence, the final topologic structures of the resulting uranyl metallacycles and their secondary assembly with macrocyclic motifs are totally different,where the involvement of CB[7] leads to the formation of a fourmember [4]MN, U-[4]MN–CB[7], through a L@CB[7] pseudorotaxane linker (Scheme 1b), while CB[8] facilitates the assembly of a ring-in-ring supramolecular polymer chain (U-RRC-CB[8]) through a 2L@CB[8] pseudorotaxane linker, among which a pair of adjacent figure-8 monomeric uranyl-based metallacycles are welded by CB[8] (Scheme 1c).

    The supramolecular inclusion between the starting reactant LOETBr2[23], the ethyl ester of L linker, and two cucurbituril macrocycles were first investigated.1H NMR analysis (Fig.1a and Fig.S5 in Supporting information) shows that chemical environments of the guest hydrogen atoms undergo changes upon mixing with CB[7].Besides a small amount of signals assigned to residual non-encapsulated LOETBr2, a new set of CB[7]-encapsulated species can be observed, indicating that the transformation between the threading and unthreading processes for LOETBr2and CB[7] undergoes a slow kinetic on the NMR time scale.Detailed assignation of these NMR signals shows that the chemical shifts of four hydrogen atoms (Ha, Hb, Hcand Hd) of the 1,3-xylenyl group at the center of LOETBr2move upfield, while both Hgand Hhof the ethyl group have minor downfield shifts, indicating that CB[7] is likely to bind at the 1,3-xylene site in the form of a pseudorotaxane.The pseudorotaxane structure between LOETBr2and CB[7] can be further confirmed by single-crystal structure analysis given below,though NOE signals between LOETBr2and CB[7] can hardly be observed due to the long distance between the hydrogen atoms on the benzene ring of LOETBr2in the middle of the guest are far away from the hydrogen atoms on CB[7] (Fig.S6 in Supporting information, the precise molecular structure is extracted from the crystal structure discussed below).Furthermore, Job-plot (Fig.S7 in Supporting information) reveal that the stoichiometric ratio in a pseudorotaxane of LOETBr2and CB[7] is 1:1, which is consistent with the results of mass spectrometry analysis (Fig.S8 in Supporting information).The corresponding pseudorotaxane crystals are prepared hydrothermally, and subject to X-ray crystallographic analysis (Fig.1b, Fig.S9 and Table S1 in Supporting information).The result reveals that, as expected, each L guest is encapsulated by one CB[7] at the central site of 1,3-xylenyl to form a L@CB[7]-type pseudototaxane.A similar inclusion complex has been reported in a CB[7]-based pseudorotaxane with a 1,4-xylenyl analogue as the guest molecule [36], though the 1,3-substitution isomerization enables L to stretch out in the shape of letter ‘M’with an opening angle (the dihedral angle between planeβand planeγ) of 296.359°(Fig.1c).

    Fig.1.Supramolecular inclusion between L and two cucurbituril macrocycles, CB[7]and CB[8], and crystal structures of the corresponding pseudorotaxane, L@CB7 and 2L@CB8.(a) 1H NMR spectra (500 MHz, D2O, 298 K) of a mixture of CB[7] and an equimolar amount of LOETBr2 with that of CB[7] and LOETBr2 as a comparison; (b)Crystal structure of L@CB[7]; (c) The structure of individual L in L@CB[7], showing the characteristic angles; (d) 1H NMR spectra (500 MHz, D2O, 298 K) of 2L@CB[8]with that of CB[8] and [H2L]Br2 as a comparison; (e) Crystal structure of 2L@CB[8];(f) The structure of individual L in 2L@CB[8], showing the characteristic angles.Solvent molecules have been omitted for the sake of clarity.C sky blue, O red, N dark blue.

    The binding affinity of L to CB[8] was also investigated using1H NMR (Fig.1d).Hydrogen atoms of 1,3-xylenyl group (Ha, Hb,Hcand Hd) show upfield shifts similar to that in L@CB[7] pseudorotaxane, while both the signals of Heand Hfare split into two independent peaks.This splitting phenomenon suggests that the space around each terminal pyridinium may be interfered by other groups, resulting in a change in its chemical environment, which finally causes all the hydrogen atoms on the pyridinium ring to no longer be chemically equivalent.A plausible explanation is that the inclusion between L and CB[8] with a larger cavity takes a different pattern than the case involving CB[7].X-ray crystallographic analysis of crystals based on both components of CB[8] and L shows that, the L guest adopts a ‘U’-shaped folded configuration with an opening angle (the dihedral angle between planeβand planeγ) of 15.562° in CB[8] macrocycle with a larger cavity than CB[7](Figs.1e and f, Fig.S10 in Supporting information), where both terminal pyridinium groups are close to each other and show a certain degree of mutual interactions.This special conformation of L is consistent with the above1H NMR results.Moreover, the large cavity of CB[8] macrocycle can accommodate two U-shaped guests at the same time, which are partially pushed out to the outer space of the overcrowded CB[8] cavity in this 2L@CB[8] pseudorotaxane(Fig.1e).The relatively less endocytosis of L guest into the cavity of CB[8] makes intermolecular interactions between them more or less weakened, which can be confirmed from the reduced magnitude of chemical shift change (Ha, Hband Hc) compared to that of L@CB[7] and mass spectrometry (only low-intensity partially decomposed fragments of 2L@CB[8] can be observed in Fig.S11 in Supporting information).Another interesting phenomenon is the deformation of CB[8] (7.9and 10.4, Fig.S12 in Supporting information) compared to CB[7], which might be originated from the unique inclusion behavior of CB[8].

    The above results on supramolecular inclusion of L with CB[7]and CB[8] demonstrate that, due to distinct cavity sizes of CB[7]and CB[8], their inclusion behaviors with the flexible guest L are different, thus resulting in significant difference in assembly pattern and molecular conformation of as-formed pseudorotaxanes,L@CB[7] and 2L@CB[8].It can be expected that this interesting macrocycle-based regulation method will greatly affect the coordination mode and supramolecular assembly of the pseudorotaxane linker.Therefore, the coordination assembly of L@CB[7] or 2L@CB[8] with uranyl is further explored.

    Hydrothermal reaction of L@CB[7] and uranyl, or alternately, a direct one-pot reaction of uranyl, LOETBr2and CB[7], produces yellow block crystals of U-[4]MN-CB[7], which are subject to singlecrystal determination.Crystallographic analysis (Tables S2-S4 in Supporting information) shows that, in the asymmetric unit of U-[4]MN-CB[7], there are three L@CB[7] linkers that are connected in a monodentate mode by three monomeric uranyl centers to form a cationic molecular loop with three threaded CB[7] macrocycles,thus being namely as [4]-MN (Figs.2a-d and Fig.S13 in Supporting information).Interestingly, since the introduction of CB[7], the topological structure of U-[4]MN-CB[7] is totally different from that of U-RC without CB[7] involved.It is no doubt that the increase of opening angle of flexible L linker (the dihedral angle between planeβand planeγis 289.763° in U-[4]MN-CB[7], Fig.2c) driven by CB[7] is crucial to promote the formation of this large closed metallacycle (U-U distances: 18.718, 19.165 and 19.056).In spite of a minor deviation of experimental PXRD pattern from the simulated one relevant to partial solvent loss in the loosely-packing lattice of uranyl metallacycle of U-MN-CB[7] (Fig.S13 in Supporting information), the phase purity of U-[4]MN-CB[7] can still be verified (Fig.S14 in Supporting information).Characterization on its physico-chemical properties is also conducted (Figs.S15 and S16 in Supporting information).

    The coordination assembly of uranyl with a mixture of LOETBr2and CB[8] or directly with 2L@CB[8] affords yellow flake cluster crystals of U-RRC-CB[8].Crystallographic analysis reveals that the CB[8]-involving pseudorotaxane motifs retains the same molecular conformation as that in 2L@CB[8],i.e.,with a pair of ‘U’-shaped L linker trapped in the cavity of CB[8].An array of such 2L@CB[8] are further connected by monomeric uranyl nodes to form a ring-inring cationic supramolecular polymer chain (Figs.2e-h and Fig.S17 in Supporting information), among which each ‘U’-shaped L linker bites the same uranyl center through two terminal monodentate carboxylate group.Characterization of physico-chemical properties were also conducted to prove its identity (Figs.S18-S20 in Supporting information).The coordination pattern of L linker with uranyl in U-RRC-CB[8] is very similar to that observed in U-RC, and the only difference is the nuclearity of uranyl node, which evolutes from dimeric uranyl in U-RC to monomeric U-RRC-CB[8] Similar to 2L@CB8, a exacerbated folding of ‘U’-shaped L linker enforced by the surrounding CB[8] macrocycle through supramolecular inclusion plays an important role, where the opening angle in U-RRCCB[8] is reduced to -18.621° (the minus signal means the direction of opening angle is reversed) accompanied with two terminal carboxyl groups getting closer.

    Fig.2.Crystal structures of U-[4]MN-CB[7] and U-RRC-CB[8].Capped-stick (a) and space-filling (b) representation of U-[4]MN-CB[7].(c) The structure of individual ring in U-[4]MN–CB[7], showing the characteristic angles.(d) Stacked structure of U-[4]MN-CB[7].Capped-stick (e) and space-filling (f) representation of U-RCC-CB[8].(g) The structure of individual ring in U-RRC-CB[8], showing the characteristic angles.(h) Stacked structure of U-RRC-CB[8].Solvent molecules have been omitted for the sake of clarity.U yellow, C sky blue, O red, N dark blue (the phenyl group is defined as plane α, while the pyridinium rings are plane β and γ, see Tables S5-S6 in Supporting information for details).

    Fig.3.(a) The removal rate of U with different ratios of ligand and uranyl ion (I represent LOETBr2:CB[7]:U=1:1:1, II represent LOETBr2:CB[7]:U=2:2:1 and Ⅲrepresent LOETBr2:CB[7]:U=3:3:1).(b) separation results of U/M crystallization experiment when LOETBr2:CB[7]:U=3:3:1 (I, II and III columns represent the molar distribution of U/M in the starting material, crystals and wash solutions, respectively).

    A further detailed comparison of L linkers in L@CB[7], U-[4]MNCB[7], 2L@CB[8], U-RRC-CB[8] and U-RC are conducted to unveil the effect of supramolecular inclusion on hierarchical assembly of uranyl metallacycles and the minor structural changes of L linkers after uranyl coordination (Table S5 and S6 in Supporting information).First, it can be seen that, the introduction of macrocyclic host for supramolecular inclusion of the L linker, compared to U-RC,greatly alters the coordination assembly process of uranyl metallacycles.More importantly, the nature of macrocycles, such as CB[7]and CB[8] used here with different dimensions and supramolecular inclusion behaviors, also has a significant impact and would lead to different outcomes of metallacycle-based hierarchical assemblies.As demonstrated above, CB[7] with a smaller cavity is threaded by one guest molecule, while CB[8] with a larger cavity can contains two folded guest molecules at the same time.Along this line, the degree of macrocycle-induced conformational restriction of each guest molecule varies with the type of macrocycles.As a result, the bipyridinium guest in the pseudorotaxane formed by supramolecular inclusion of CB[7] has a large opening angle, and it can assemble with uranyl ion to obtain a [4]MN; on the other hand, the opening angle of the guest linker after encapsulated by CB[8] is further restrained, and it can only accommodates a mononuclear uranyl ion to obtain a uranyl metallacycle.Furthermore, metal coordination will also exert impact on ligand conformation.For example, after coordination with uranyl, the opening angle and distance between two end carboxyl of the L linker in 2L@CB[8] are also significantly reduced (before coordination, 15.562° and 6.076; after coordination, -18.621° and 4.296,Table S6), which is related to the structural adjustment of flexible L linker so as to meet the requirement of metal coordination.

    Finally, we explore the crystallization separation of uranyl ions based on the fact that U-[4]MN-CB[7] tends to crystallize out from the solution.The primary separation experiment shows that the removal rate of uranyl increases with the ratio of ligand-to-uranyl and reaches toca.40% when the ratio is over 2:2:1 (Fig.3a).The removal rate of U here should be restrained by relatively high equilibrium concentrations of U and L@CB7, which might be originated from the modest binding affinity between uranyl and the carboxyl group of L@CB7.The selective separation of uranyl is further evaluated.Control experiments reveal that L@CB[7] does not interact with other metal centers when using other metal sources such as typical lanthanide ions.Therefore, this coordination assembly method is expected to be used for the selective crystallization separation of uranyl ions from lanthanide ions.A competitive experiment shows that the crystallization of high-purity U-[4]MN-CB[7]crystals can still proceed smoothly even in the presence of other lanthanide ions from La3+to Yb3+(Fig.3b, Figs.S21 and S22 in Supporting information).

    In summary, we introduce two different kinds of macrocyclic hosts to facilitate supramolecular inclusion of a flexible organic linker and thus regulate the hierarchical self-assembly of uranyl metallacycles.Ultimately, the encapsulation of CB[7] makes the guest linker to stretch out with a large opening angle and leads to the formation of a [4]MN, while CB[8] restrains the guest linker to be ‘U’-shaped with a smaller opening angle, and promotes the assembly of a ring-in-ring supramolecular polymer chain.This work provides a feasible method for the construction of actinide metallacycles with higher structural complexity, and enriches the library of actinide coordination assemblies.More work on the applications of coordination-driven assemblies in crystallization separation of actinide will be conducted in future.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We thank the support from the National Science Fund for Distinguished Young Scholars (No.21925603) and the National Natural Science Foundation of China (Nos.22122609, 22076186 and 22176191).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.03.092.

    综合色丁香网| 亚洲欧美日韩东京热| 美女脱内裤让男人舔精品视频| 亚洲av中文av极速乱| 日韩制服骚丝袜av| 国产成人免费无遮挡视频| 熟女人妻精品中文字幕| 大又大粗又爽又黄少妇毛片口| 波野结衣二区三区在线| 日韩中字成人| 视频中文字幕在线观看| 国产精品久久久久久精品古装| 日本一本二区三区精品| 一级毛片黄色毛片免费观看视频| 精品一区二区免费观看| 少妇裸体淫交视频免费看高清| 国产黄色视频一区二区在线观看| 欧美丝袜亚洲另类| 黄色视频在线播放观看不卡| 国产亚洲午夜精品一区二区久久 | 免费大片18禁| av卡一久久| 国产精品精品国产色婷婷| 中国国产av一级| 精品久久久久久久久av| 偷拍熟女少妇极品色| 中国国产av一级| 日韩欧美精品免费久久| 国产 精品1| 美女高潮的动态| 色视频www国产| 午夜激情福利司机影院| 欧美xxxx性猛交bbbb| 2021少妇久久久久久久久久久| 日韩欧美精品免费久久| 99久久精品国产国产毛片| 久久99热这里只频精品6学生| 成人特级av手机在线观看| 久久久久久国产a免费观看| 国产男女内射视频| 欧美另类一区| 国产高清国产精品国产三级 | 亚洲av电影在线观看一区二区三区 | 午夜福利视频1000在线观看| 亚洲欧美一区二区三区国产| 免费看av在线观看网站| 乱码一卡2卡4卡精品| 国产在线男女| 亚洲成人av在线免费| 亚洲第一区二区三区不卡| 国产熟女欧美一区二区| 天堂中文最新版在线下载 | 成人国产av品久久久| 91精品国产九色| 涩涩av久久男人的天堂| 欧美变态另类bdsm刘玥| 国产亚洲5aaaaa淫片| 一级a做视频免费观看| 男人和女人高潮做爰伦理| 国产乱人偷精品视频| 成人免费观看视频高清| 欧美bdsm另类| 欧美成人一区二区免费高清观看| 亚洲精品一区蜜桃| 男女边摸边吃奶| 亚洲国产欧美在线一区| 亚洲av免费高清在线观看| 在线观看人妻少妇| 国产男女超爽视频在线观看| 国产成年人精品一区二区| 日韩欧美精品免费久久| 夜夜爽夜夜爽视频| 免费高清在线观看视频在线观看| 日本爱情动作片www.在线观看| 国产亚洲一区二区精品| 人人妻人人爽人人添夜夜欢视频 | 日韩一区二区视频免费看| 寂寞人妻少妇视频99o| 各种免费的搞黄视频| 婷婷色综合www| 新久久久久国产一级毛片| 免费av不卡在线播放| 国产精品久久久久久精品电影| 亚洲aⅴ乱码一区二区在线播放| 免费看日本二区| 国产精品99久久久久久久久| 精品国产三级普通话版| 久久国内精品自在自线图片| 联通29元200g的流量卡| 久久亚洲国产成人精品v| 国产精品一区二区在线观看99| 免费大片黄手机在线观看| 最近中文字幕2019免费版| 国产高潮美女av| 2021天堂中文幕一二区在线观| 在线观看一区二区三区| 大片电影免费在线观看免费| 18禁在线播放成人免费| 偷拍熟女少妇极品色| 18禁裸乳无遮挡免费网站照片| 日韩 亚洲 欧美在线| 国产精品久久久久久久久免| 国产大屁股一区二区在线视频| 波多野结衣巨乳人妻| 大香蕉久久网| 国产免费一级a男人的天堂| 久久久久久久久大av| 精品久久久精品久久久| 免费少妇av软件| 亚洲av欧美aⅴ国产| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 日韩在线高清观看一区二区三区| 欧美日韩精品成人综合77777| 亚洲欧美日韩卡通动漫| 国产日韩欧美亚洲二区| 99久久九九国产精品国产免费| 国产免费一级a男人的天堂| 亚洲精品色激情综合| 在线观看国产h片| 久久人人爽人人片av| 人妻一区二区av| av国产免费在线观看| 久久6这里有精品| 中文字幕免费在线视频6| 亚洲色图av天堂| 草草在线视频免费看| 亚洲高清免费不卡视频| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观| 午夜亚洲福利在线播放| 又爽又黄a免费视频| 欧美区成人在线视频| 中国三级夫妇交换| 乱系列少妇在线播放| 久久久欧美国产精品| av在线观看视频网站免费| 少妇裸体淫交视频免费看高清| 国产精品蜜桃在线观看| 欧美三级亚洲精品| 一级毛片电影观看| 如何舔出高潮| 九九在线视频观看精品| 久久久精品94久久精品| 久久久久久久国产电影| 国产午夜福利久久久久久| 国产黄a三级三级三级人| 少妇人妻精品综合一区二区| 日韩,欧美,国产一区二区三区| 少妇丰满av| 97热精品久久久久久| 老女人水多毛片| 大话2 男鬼变身卡| 欧美一区二区亚洲| 国产91av在线免费观看| 大话2 男鬼变身卡| 综合色丁香网| 欧美一级a爱片免费观看看| 亚洲精品乱码久久久久久按摩| 青春草亚洲视频在线观看| 热re99久久精品国产66热6| 日韩,欧美,国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 免费观看的影片在线观看| 青春草视频在线免费观看| 国产乱人视频| 午夜福利视频精品| 亚洲在线观看片| 国产黄色免费在线视频| 久久韩国三级中文字幕| 欧美97在线视频| 午夜日本视频在线| 性色avwww在线观看| 男女无遮挡免费网站观看| 国产精品国产三级专区第一集| 女人十人毛片免费观看3o分钟| av线在线观看网站| 中文字幕av成人在线电影| 美女xxoo啪啪120秒动态图| 特大巨黑吊av在线直播| 寂寞人妻少妇视频99o| 久久影院123| 成年av动漫网址| 免费观看在线日韩| 国产综合精华液| 日本三级黄在线观看| 人妻夜夜爽99麻豆av| 亚洲精品国产色婷婷电影| 久久久久久久大尺度免费视频| 老司机影院毛片| 亚洲av福利一区| 少妇熟女欧美另类| 欧美区成人在线视频| 国产一区二区亚洲精品在线观看| 欧美成人午夜免费资源| 午夜福利在线在线| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 日韩一本色道免费dvd| 久久99热这里只频精品6学生| 亚洲天堂国产精品一区在线| 一区二区三区精品91| av国产久精品久网站免费入址| 成人欧美大片| 99热网站在线观看| 免费看av在线观看网站| 全区人妻精品视频| 精品少妇久久久久久888优播| 老女人水多毛片| 日日啪夜夜撸| 99久久精品国产国产毛片| 日韩成人伦理影院| 爱豆传媒免费全集在线观看| 九九爱精品视频在线观看| 纵有疾风起免费观看全集完整版| 天美传媒精品一区二区| 精品一区二区三卡| 亚洲精品自拍成人| 国产成年人精品一区二区| 春色校园在线视频观看| 尤物成人国产欧美一区二区三区| 色综合色国产| 免费观看a级毛片全部| 亚洲精品国产色婷婷电影| 国产片特级美女逼逼视频| 极品少妇高潮喷水抽搐| 九草在线视频观看| 汤姆久久久久久久影院中文字幕| 亚洲精品国产色婷婷电影| 人妻少妇偷人精品九色| 国产高清三级在线| 国产老妇女一区| 欧美bdsm另类| 国产高清有码在线观看视频| 美女高潮的动态| 在线播放无遮挡| freevideosex欧美| 久久精品综合一区二区三区| 在线 av 中文字幕| 在线观看人妻少妇| 久久久久久久久久成人| 亚洲精品日韩在线中文字幕| 七月丁香在线播放| 亚洲国产精品成人综合色| 婷婷色av中文字幕| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区在线观看99| 精品久久久久久电影网| 久久午夜福利片| av线在线观看网站| 欧美潮喷喷水| 成人毛片a级毛片在线播放| 亚洲av.av天堂| 久久精品久久精品一区二区三区| 亚洲精品中文字幕在线视频 | 国产真实伦视频高清在线观看| 精品一区在线观看国产| 亚洲精品国产av成人精品| 老女人水多毛片| 国产成人精品福利久久| 亚洲av国产av综合av卡| 免费不卡的大黄色大毛片视频在线观看| av国产久精品久网站免费入址| 韩国高清视频一区二区三区| 久热这里只有精品99| 两个人的视频大全免费| 国产精品国产三级专区第一集| 777米奇影视久久| 国内精品宾馆在线| 精品人妻一区二区三区麻豆| www.av在线官网国产| 国产精品福利在线免费观看| 国产精品一及| 嫩草影院精品99| 久久6这里有精品| 老司机影院成人| 狠狠精品人妻久久久久久综合| 最近最新中文字幕大全电影3| 精品少妇黑人巨大在线播放| 肉色欧美久久久久久久蜜桃 | 一区二区三区四区激情视频| 国产人妻一区二区三区在| 又爽又黄a免费视频| 人人妻人人澡人人爽人人夜夜| 成人黄色视频免费在线看| 亚洲av免费高清在线观看| 国产毛片在线视频| 久久ye,这里只有精品| 国产乱人偷精品视频| 国产女主播在线喷水免费视频网站| 好男人视频免费观看在线| 看黄色毛片网站| eeuss影院久久| 2021少妇久久久久久久久久久| 91狼人影院| 精品午夜福利在线看| 日本黄色片子视频| 亚洲精品aⅴ在线观看| 国产成人免费无遮挡视频| 免费少妇av软件| 99热国产这里只有精品6| 国模一区二区三区四区视频| 国产成人精品福利久久| 91久久精品国产一区二区三区| 老师上课跳d突然被开到最大视频| 男女边摸边吃奶| 亚洲aⅴ乱码一区二区在线播放| 看黄色毛片网站| av国产免费在线观看| 国产精品一区www在线观看| 午夜精品一区二区三区免费看| 一级毛片黄色毛片免费观看视频| 91aial.com中文字幕在线观看| 免费播放大片免费观看视频在线观看| 99九九线精品视频在线观看视频| 国产片特级美女逼逼视频| 国产午夜精品一二区理论片| av免费在线看不卡| 婷婷色av中文字幕| 午夜福利在线在线| 国内精品宾馆在线| 五月开心婷婷网| 偷拍熟女少妇极品色| 国产成人精品一,二区| 国产精品福利在线免费观看| 99久久精品国产国产毛片| 五月开心婷婷网| 国国产精品蜜臀av免费| 亚洲天堂国产精品一区在线| 九九久久精品国产亚洲av麻豆| 国产黄色视频一区二区在线观看| 美女脱内裤让男人舔精品视频| 亚洲欧美日韩卡通动漫| 另类亚洲欧美激情| 各种免费的搞黄视频| 免费观看的影片在线观看| 成人高潮视频无遮挡免费网站| 丰满乱子伦码专区| 尤物成人国产欧美一区二区三区| 日韩中字成人| 久久精品夜色国产| 天堂中文最新版在线下载 | 久久久久国产精品人妻一区二区| 人体艺术视频欧美日本| 国产免费视频播放在线视频| 久久久精品免费免费高清| 少妇被粗大猛烈的视频| 麻豆乱淫一区二区| 成人毛片60女人毛片免费| 亚洲国产精品成人综合色| 另类亚洲欧美激情| 五月玫瑰六月丁香| 亚洲人成网站在线播| 神马国产精品三级电影在线观看| 亚洲精品日本国产第一区| 亚洲色图av天堂| 久久影院123| 国产大屁股一区二区在线视频| 日韩欧美 国产精品| 亚洲,一卡二卡三卡| 久久这里有精品视频免费| 日韩制服骚丝袜av| 一级av片app| 神马国产精品三级电影在线观看| 亚洲国产精品成人久久小说| 国产高清不卡午夜福利| 丰满少妇做爰视频| 看十八女毛片水多多多| 嫩草影院新地址| 18+在线观看网站| av免费在线看不卡| 日本欧美国产在线视频| 国产日韩欧美在线精品| 制服丝袜香蕉在线| 97超视频在线观看视频| 免费观看的影片在线观看| 日韩视频在线欧美| 在线观看av片永久免费下载| 午夜激情久久久久久久| 亚洲精品国产av成人精品| 国产欧美日韩精品一区二区| 91午夜精品亚洲一区二区三区| 在线观看国产h片| 亚洲精品456在线播放app| 在线天堂最新版资源| 国产亚洲91精品色在线| 国产在视频线精品| 亚洲无线观看免费| 少妇被粗大猛烈的视频| 亚洲综合精品二区| 欧美97在线视频| 一本色道久久久久久精品综合| 欧美 日韩 精品 国产| 欧美亚洲 丝袜 人妻 在线| 最近2019中文字幕mv第一页| 午夜福利网站1000一区二区三区| 五月天丁香电影| 99久久九九国产精品国产免费| 久久综合国产亚洲精品| 在线播放无遮挡| 国产成人福利小说| 国产精品国产av在线观看| 亚洲一级一片aⅴ在线观看| 女的被弄到高潮叫床怎么办| 国产精品无大码| 51国产日韩欧美| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 少妇高潮的动态图| 国产综合精华液| 另类亚洲欧美激情| 欧美一区二区亚洲| 欧美日本视频| 午夜激情久久久久久久| 久久久精品免费免费高清| 亚州av有码| 国产高清三级在线| 日韩大片免费观看网站| 国产探花在线观看一区二区| av又黄又爽大尺度在线免费看| 国产在线一区二区三区精| 国内揄拍国产精品人妻在线| 午夜精品国产一区二区电影 | 午夜福利视频精品| 人妻一区二区av| 午夜亚洲福利在线播放| 看黄色毛片网站| 亚洲最大成人av| 人妻 亚洲 视频| 国产精品爽爽va在线观看网站| 可以在线观看毛片的网站| 国产精品国产三级国产av玫瑰| 在线观看人妻少妇| 亚洲精品色激情综合| 欧美97在线视频| 亚洲av免费在线观看| 一级爰片在线观看| 99久久中文字幕三级久久日本| 久久久久久久国产电影| 欧美bdsm另类| 如何舔出高潮| 搡女人真爽免费视频火全软件| 久久久久久久大尺度免费视频| 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站 | 蜜桃久久精品国产亚洲av| 亚洲欧美成人综合另类久久久| 噜噜噜噜噜久久久久久91| 丝袜喷水一区| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片| 亚洲av男天堂| 最近最新中文字幕大全电影3| 有码 亚洲区| 99久久精品一区二区三区| 欧美日韩视频高清一区二区三区二| 97超碰精品成人国产| 久久久久久久精品精品| 精品酒店卫生间| 日韩欧美精品免费久久| 成年女人看的毛片在线观看| 久久精品国产亚洲网站| 街头女战士在线观看网站| 在线亚洲精品国产二区图片欧美 | 国产69精品久久久久777片| 亚洲精品日韩在线中文字幕| 国产视频内射| 精品国产乱码久久久久久小说| 国产精品久久久久久久久免| 精品国产三级普通话版| 男人添女人高潮全过程视频| 欧美另类一区| 人妻制服诱惑在线中文字幕| 日日摸夜夜添夜夜爱| 91狼人影院| 王馨瑶露胸无遮挡在线观看| 99视频精品全部免费 在线| 男人爽女人下面视频在线观看| 欧美精品一区二区大全| 97精品久久久久久久久久精品| 日韩欧美精品v在线| 免费看日本二区| 2022亚洲国产成人精品| 久久精品国产亚洲av天美| 免费av毛片视频| 乱码一卡2卡4卡精品| av国产免费在线观看| 亚洲人与动物交配视频| 九九在线视频观看精品| 丝袜美腿在线中文| 亚洲经典国产精华液单| 97热精品久久久久久| 在线观看av片永久免费下载| 99热6这里只有精品| 国产乱人视频| 国产美女午夜福利| 午夜福利高清视频| 在线看a的网站| 免费黄色在线免费观看| 日韩av在线免费看完整版不卡| 国产中年淑女户外野战色| 国产成人freesex在线| 国模一区二区三区四区视频| 日本免费在线观看一区| 国产精品熟女久久久久浪| 国产女主播在线喷水免费视频网站| 日韩 亚洲 欧美在线| 99热国产这里只有精品6| 国产精品一区www在线观看| 纵有疾风起免费观看全集完整版| 亚洲婷婷狠狠爱综合网| 亚洲欧美精品自产自拍| 大片免费播放器 马上看| 99视频精品全部免费 在线| 亚洲综合精品二区| 国产高潮美女av| 黄色怎么调成土黄色| 日本熟妇午夜| 97热精品久久久久久| 亚洲一区二区三区欧美精品 | 在线看a的网站| 亚洲av免费高清在线观看| 国产永久视频网站| 少妇熟女欧美另类| 免费av毛片视频| 亚洲成人一二三区av| 亚洲成人中文字幕在线播放| 秋霞在线观看毛片| 日本色播在线视频| 亚洲av在线观看美女高潮| 一级毛片电影观看| 国产伦在线观看视频一区| 婷婷色综合www| 永久网站在线| 日本欧美国产在线视频| 永久网站在线| 亚洲精品成人av观看孕妇| 大话2 男鬼变身卡| 欧美日韩亚洲高清精品| 国产精品av视频在线免费观看| 国产在线男女| 精品久久国产蜜桃| 十八禁网站网址无遮挡 | 草草在线视频免费看| 韩国高清视频一区二区三区| 内射极品少妇av片p| 久久久久久国产a免费观看| 久久精品国产亚洲av天美| 91aial.com中文字幕在线观看| 美女内射精品一级片tv| 亚洲无线观看免费| 亚洲av成人精品一二三区| 国产乱来视频区| 日韩成人伦理影院| 在线观看国产h片| 欧美一级a爱片免费观看看| av播播在线观看一区| 一本一本综合久久| 一级毛片aaaaaa免费看小| 精华霜和精华液先用哪个| 国产黄色视频一区二区在线观看| 日本免费在线观看一区| 在线观看国产h片| 黄色欧美视频在线观看| 视频区图区小说| 久久人人爽人人片av| 在线观看一区二区三区| 免费黄频网站在线观看国产| 一级毛片电影观看| 高清视频免费观看一区二区| 97热精品久久久久久| 全区人妻精品视频| 国产精品久久久久久av不卡| 国产免费又黄又爽又色| av免费在线看不卡| 看黄色毛片网站| 日本爱情动作片www.在线观看| 在线天堂最新版资源| 国模一区二区三区四区视频| 亚洲av欧美aⅴ国产| 国产精品嫩草影院av在线观看| 日本免费在线观看一区| 久久人人爽人人片av| 老司机影院毛片| 好男人视频免费观看在线| 欧美区成人在线视频| 亚洲精品国产av成人精品| 肉色欧美久久久久久久蜜桃 | 久久久久久久亚洲中文字幕| 久久影院123| 午夜视频国产福利| 91久久精品国产一区二区成人| 一级毛片黄色毛片免费观看视频| 在线免费观看不下载黄p国产| 午夜福利在线在线| 99久久人妻综合| 各种免费的搞黄视频| 亚洲无线观看免费| 王馨瑶露胸无遮挡在线观看| 天堂中文最新版在线下载 | 在线 av 中文字幕| 国产黄色免费在线视频| 亚洲人成网站高清观看| 超碰av人人做人人爽久久| 夫妻性生交免费视频一级片| 最近2019中文字幕mv第一页| 国产精品偷伦视频观看了| 日日啪夜夜爽| 大片电影免费在线观看免费| 十八禁网站网址无遮挡 | 亚洲综合精品二区| 国产成人一区二区在线| 插阴视频在线观看视频| 午夜免费男女啪啪视频观看| 久久久精品欧美日韩精品|