• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complexation between uranyl(VI) and CMPO in a hydroxyl-functionalized ionic liquid: An extraction,spectrophotography, and calorimetry study

    2022-07-09 02:14:30BaihuaChenJunLiuHongyuanWeiYuchuanYangXingliangLiShumingPengYanqiuYang
    Chinese Chemical Letters 2022年7期

    Baihua Chen, Jun Liu, Hongyuan Wei, Yuchuan Yang, Xingliang Li, Shuming Peng,Yanqiu Yang

    Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, China

    ABSTRACT The extraction complexes of uranyl(VI) in HNO3 to a hydroxyl-functionalized ionic liquid (IL) phase,HOEtmimNTf2 bearing CMPO, were investigated.Three possibly successive extraction complexes, UO2L2+(L=CMPO), UO2L22+ and UO2L32+, were detected based on variable U/L ratios.Uranyl(VI) prefers to be extracted as complex UO2L32+, combining with the ions from HOEtmimNTf2 to construct a solid material through self-assembly.The thermodynamics of complexes, UO2Lj2+ (j=1-3), were studied by spectrophotometry and microcalorimetry.All the formation reactions are principally driven by entropy, although a small part of the driving force of complexes UO2L22+ and UO2L32+ comes from enthalpy.Based on the thermodynamic properties for complex UO2L32+, we provide a possible coordination mode in HOEtmimNTf2: the first CMPO molecule coordinates with UO22+ in a bidentate fashion while the others do in a monodentate fashion.The results offer a thermodynamic insight into the formation behaviors of the uranyl(VI)/CMPO complexes involving the special IL HOEtmimNTf2, which is of significance to advance the novel IL extraction strategy.

    Keywords:Uranyl(VI)CMPO Ionic liquid Solvent extraction Complexation Thermodynamics

    Liquid-liquid extraction is the most maturely popular separation technique for the reprocessing of spent nuclear fuels.Due to its unique physicochemical and solvation properties [1,2],ionic liquid (IL) is promising as an efficient and eco-friendly solvent to recover actinides from spent nuclear fuels.Extensive studies have been conducted over years on the extraction and complexation of actinides and lanthanides, replacing volatile molecular solvent dissolving the common ligands with ILs.Positive results on efficiency and selectivity have been achieved [2–6].For example, uranyl(VI) in HNO3was more effectively extracted by trioctylphosphine oxide (TOPO) in butylmethylimidazolium bis(trifluoromethylsulfonyl)imide (C4mimNTf2) greatly elevated the extraction efficiency compared with the same extraction conducted with TOPO in dichloromethane [6].

    Octylphenyl(N,N-diisobutylcarbamoylmethyl)phosphine oxide(CMPO) has received attention as one of the most widely studied phosphorous-based extractants to separate tri-, hexa- and tetravalent actinides from acidic solutions [7–9].Schemes of actinides extraction from HNO3solutions by CMPO in ILs have been achieved recently [3,10–12].Comparison studies illustrated the extraction efficiency enhances largely with ILs replacing molecular solvents as the diluent of ligands.Visseret al.using the mixture extractant of CMPO and TBP (tributyl phosphate), found that the distribution ratios for Am(III), Th(IV), Pu(IV) and U(VI) were all at least an order of magnitude higher when butylmethylimidazolium hexafluorophosphate (C4mimPF6) as the diluent of extracting phase than those whenn-dodecane as diluent [10].Routet al.observed much largerDAmvalues using TBP and CMPO in C4mimNTf2than inn-dodecane [13].

    Most recently, we provided a novel strategy for efficient capture of uranium from nitric acid solutions with CMPO in(1-hydroxyethyl-3-methyl)imidazolium bis(trifluoromethylsulfonyl)imide (HOEtmimNTf2), a hydroxyl-functionalized ionic liquid [14].The specific property of HOEtmimNTf2triggers the self-assembly of the uranyl(VI)/CMPO complex at the aqueous-IL interface to form a solid material, with the composition of 3/9/1/7 for UO22+/CMPO/HOEtmim+/NTf2-.Almost all aqueous uranium (95%) was transferred to the solid phase.However, the extraction species as well as the complexation of uranyl(VI) with CMPO involving HOEtmimNTf2still keep unknown.Herein, we describe the thermodynamic behaviors of complexation between uranyl(VI) and CMPO in HOEtmimNTf2, investigated by biphasic extraction and monophasic titration.Based on the determined thermodynamics for complexes, we further discuss the chelation fashions of CMPO to uranyl(VI).The results and discussion are of significance in understanding the corresponding extraction behaviors and then optimizing the extraction systems.

    It is generally accepted that ILs do not behave as inert diluents toward nitric acid [15,16].As depicted in Fig.S1 (Supporting information), the HNO3concentration in HOEtmimNTf2increased linearly with the increase of the aqueous HNO3concentration.HNO3distribution ratio was calculated to beDHNO3=0.31 by the linear slope, suggesting that strong interaction between HOEtmimNTf2and HNO3occurred.CMPO is of weak basicity and interacts with HNO3.It has been demonstrated that HNO3can be extracted into the organic phase, using molecular solvents as the diluent of CMPO [17–19].For example, equilibrating CMPO dissolved in NPHE (nitrophenylhexyl ether) with aqueous HNO3solution, HNO3·CMPO was formed in the organic phase with the equilibrium constantK=3.1×10-5[18].Given this, we conducted an additional experiment, equilibrating HOEtmimNTf2bearing CMPO with 0.1 mol/L HNO3.As shown in Table S1 (Supporting information), in the concentration range of CMPO (0.024–0.064 mol/L),the equilibrium HNO3concentrations in the IL phases (0.0283–0.0274 mol/L) changed around 0.0277 mol/L (the equilibrium HNO3concentration in the IL phases without CMPO).Taking experimental uncertainty into account, we believe that the CMPO concentration in the IL phase affects the HNO3distribution little.In other words, the interaction of HNO3with CMPO is incomparable with that with HOEtmimNTf2.It is the right reason for our previous observation that the HNO3concentration in the aqueous phase did not affect the uranium extraction efficiency [14].Consequently,to simplify the experiment process and data treatment, the experimental solutions were prepared with the equal-volume equilibrated HOEtmimNTf2and 1.0 mol/L HNO3, while the protonation of ligand CMPO was not considered.

    The formation of extraction complexes in the biphasic extraction system is essential to produce solid assembly material.Firstly we conducted extractions on a constant-temperature water bath shaker, with the aqueous phase with UO2(NO3)2(no more than 1.0 mmol/L) in 1.0 mol/L HON3.Pre-experiments showed that no observably solid assembly material appeared at the inter-surface of the biphasic system in a day time when the initial uranyl(VI)concentration in 1.0 mol/L HNO3solution was less than 1.0 mmol/L.Cation exchange has been presumed to be the partitioning mechanism for the biphasic metal extraction equilibrium with hydrophobic IL as diluent [1,20–22].Considering the stoichiometric ratio of the solid material obtained at the interface of the biphasic system [14], we hypothesized three successive extraction complexes formed possibly in the IL phase,i.e., UO2L2+, UO2L22+and UO2L32+.The uranium distribution ratio (DU) should function as a cubic polynomial equation along with the CMPO concentration([ˉL]) in the IL phase (Eq.S5 in Supporting information).Fig.1 depicts the UO2(NO3)2extraction results by CMPO in HOEtmimNTf2at 25 °C.Fitting the extraction data with Eq.S5 based on the least square method, as shown the short dash line in Fig.1a, the apparent equilibrium constants (Kexapp) for the three successive extraction complexes were obtained to beKex,1app= 2.16±0.24,Kex,2app=4.97±0.34, andKex,3app=8.53±0.03, respectively.Interestingly that (Kex,3app-Kex,2app)>(Kex,2app-Kex,1app)>Kex,1app, suggests that, for this extraction system, uranium prefers to be extracted by the complexes of higher uranyl(VI) stoichiometric ratio, especially UO2L32+.It can be interpreted that along with the uranyl(VI) stoichiometric ratio increasing, the extraction complexes become more hydrophobic, which facilitates their transfer into the organic phase [21].As illustrated in Fig.1b, in a dual logarithmic coordinate system a fine linearship we observed betweenDUand [] (2.6-4.5 mmol/L) with a slope of 2.93, suggesting complex UO2L32+being the predominant extraction species [6].

    Fig.1.UO22+ in nitric acid extraction with CMPO in HOEtmimNTf2 at ambient temperature.Aqueous phase: 0.91 mmol/L UO2(NO3)2 in 1.0 mol/L HNO3; organic phase:CMPO (0.5~4.5 mmol/L) in HOEtmimNTf2 (equilibrated by 1.0 mol/L HNO3).

    As a result of the Laporte forbidden electronic transitions from ligand orbitals to empty 5forbitals of central uranium, uranyl(VI)in the range of 485–380 nm behaves weak absorption bands which are mainly governed by the geometry of the equatorial coordination and only to a less extent affected by the chemical nature of the ligands [23,24].In the present work, identification of the complex species between UO22+and CMPO, as well as the determination of the stability constants of the complexes, was achieved by spectrophotometric titrations of UO22+with CMPO in HOEtmimNTf2[25,26].As shown in Fig.2, additions of CMPO caused significant changes in the shape and location of the absorption bands.As the L/U ratio (R=CL/CU) increased to about 2.32,the series of absorption bands became sharper, well-defined, continuously red-shifted, and intensified.However, different changes were observed afterRwas higher than 2.32.The main absorption bands at about 402, 413, 425.5, and 438 nm were continued to redshifted, accompanied by decreases in intensities, while the absorption band at about 390 nm changed little.For example, as shown in the insert picture of Fig.3a, whenRincreased from 2.32 to 3.49,the peak center of the most intensive absorption band red-shifted from 425.5 to 426.0 nm, while its intensity reduced from 0.0432 to 0.0419; the absorption bands at about 452, 464, 481, and 498 nm increased slightly in intensity.The continuous changes of the absorption spectra in titration indicate the successive complexation of UO22+with CMPO.

    Fig.2.Spectrophotometric titration of UO2(NO3)2 with CMPO in HOEtmimNTf2.Initial solution: V0=2.0 mL, CU0=1.5 mmol/L, titrant: CL=69.7 mmol/L, 0.15 mL added.(a) Spectra of the titration system normalized to the initial concentration of U(VI); (b)molar absorptivity of the species found in the titration system.

    Fig.3.(a) Absorption spectra of the IL phases after extraction; (b) Spectrum comparison of the IL phases after extraction (R=2.0) with complex [UO2(CMPO)2]2+;(c) Spectrum comparison of the IL phases after extraction (R=6.0) with complex[UO2(CMPO)3]2+; (d) Absorption spectrum of the solid assembly material.

    Factor analysis by HypSpec program [27] suggested the presence of four absorption species in the system,i.e., free UO22+and three successive complexes like UO2L2+, UO2L22+, and UO2L32+.Fit converged well at the stability constants (logβ) of 4.82 (5),9.39(12), and 12.98(5) for complex UO2L2+, UO2L22+, and UO2L32+,respectively.The calculated molar absorption spectra of the species are depicted in Fig.3b.The better-defined vibronic fine structure and sharper absorption bands clued that uranyl(VI) complexed with CMPO in an ordered ligand field [25,28].The spectrum changes of the titration system (Fig.3a) can be interpreted with the quite different spectra of uranyl(VI) species and their concentration changes in the solution.For instance, Absorbancy of complex UO2L32+is weaker than that of complex UO2L22+, responsible for the spectrum intensity decreased in the titration system whenR>2.32.

    Fig.4.Spectrophotometric titration of UO2(NTf2)2 with CMPO in HOEtmimNTf2.Initial solution: V0=2.0 mL, CU0=1.5 mmol/L, titrant: CL=97.4 mmol/L, 0.096 mL added.(a) Spectra of the titration system normalized to the initial concentration of uranyl(VI); (b) Molar absorptivity of the species found in the titration system.

    In Fig.3, we compared the absorption spectra of the IL phases after extraction with those of complexes UO2L22+and UO2L32+in HOEtmimNTf2.The spectra of UO2L22+and UO2L32+, as depicted in Fig.2b, were obtained in the monophasic titration experiments.As shown in Fig.3a, for the spectra of the post-extraction IL phases, along with the increase of L/U ratio, the position of absorption bands red-shifted continuously (depicted the short-dash line),and the relative intensity of the absorption band between 447 nm and 459 nm (marked with ◇) strengthened slowly.No matter in terms of the peak positions or the relative intensities among the peaks, the post-extraction spectrum of the IL phase whenR=2.0 was almost identical to that of complex UO2L22+(Fig.3b), and that of the IL phase whenR=6.0 nearly overlapped that of complex UO2L32+(Fig.3c).Such observations suggest that with the increase of the L/U ratio, the uranyl(VI) species in the post-extraction IL phase successively change in the order of UO2L2+, UO2L22+, and UO2L32+, consistent with the trend of uranium distribution ratio with the CMPO concentration in the IL phase (Fig.1).When CMPO extracts aqueous uranyl(VI) to the IL phase as complex UO2L22+,and similarly whenR=2.0 the extraction complex is UO2L32+[24,25,29].With the experimental techniques of our previous work[14], we collected some self-assembly material and determined its absorption spectrum (Fig.3d).Compared with the absorption spectrum of complex UO2(CMPO)32+in HOEtmimNTf2(Fig.3c), significant redshifts occurred for the corresponding bands in the absorption spectrum of the assembly material.This is a common optical character resulting from the assembly of mono-molecules [30].Typically two reasons can explain this phenomenon: one is related to an edge-to-edge (J-type) aggregation of complex monomers in self-assembly material, and the other is related to the state transition of complex monomers from the disordered dispersion in solution to the orderly tight arrangement the self-assembly material[30–32].

    To check the effect of nitrate anions on the complexes formation, spectrophotometric titrations were also conducted with UO2(NTf2)2instead of UO2(NO3)2, as shown in Fig.4.Three successive uranyl(VI) complexes were also observed, which are of the same stability constants as the corresponding complexes of UO2(NO3)2(Table 1).Moreover, these species are of almost identical spectrum profiles (Fig.S2 in Supporting information).So, we believe that the species of uranyl(VI) are of the same coordination environments, no matter whether UO2(NO3)2or UO2(NTf2)2has been used as the initial substance.All the aforementioned results possibly explain why the counter ions detected in the solidmaterial collected from the extraction system are NTf2-rather than NO3-.

    Table 1 Thermodynamic parameters of the complexation of uranyl(VI) with CMPO in ionic liquids.

    Fig.5.Representative microcalorimetric titration of uranyl(VI)/CMPO complexation in HOEtmimNTf2.(a) Titration thermograms; (b) cumulative reaction heat (black◇for experimental data (left y-axis), and: the red short dash line for the calculated results) and the uranyl(VI) species (right y-axis, black line: UO22+, red line:UO2L2+, green line: UO2L22+, and blue line: UO2L32+) as a function of the titrant volume (Vtitrant, μL).Initial solution in the cup: 0.800 mL of UO2(NO3)2 solution(2.19 mmol/L) in HOEtmimNTf2, titrant: 40.0 mmol/L CMPO in HOEtmimNTf2.

    Fig.5 shows a representative microcalorimetric titration of U(VI)/CMPO complexation in HOEtmimNTf2.At the beginning of titration, the heat-rate curve consisted of negative peaks; with the addition of ligand solution, the negative peaks decreased rapidly in turn and then changed to positive peaks (Fig.5a).This phenomenon indicated that the complexation system was endothermic in the early stage with lower L/U ratios, while rapidly changing to be exothermic with the increase of L/U ratio.In conjunction with the stability constants determined by spectrophotometry, the enthalpies for the U(VI)/CMPO complexes were calculated with HypDeltaH [33] and summarized in Table 1.The formation reactions of complexes UO2L2+, UO2L22+and UO2L32+are of small enthalpy and large positive entropy, in agreement with the normal characters of the inner-sphere complexation between a hard Lewis acid and hard Lewis base [34,35].The formation of UO2L2+is endothermic and entirely driven by entropy; the formations of UO2L22+and UO2L32+are weakly exothermic and driven by both enthalpy and entropy, whereas enthalpy only accounts for a small portion of the driving force.Positive enthalpy for complex UO2L2+indicates that the consumed energy in uranyl(VI) desolvation overrides the release in uranyl(VI)/CMPO coordination, whereas the opposite situation for complexes UO2L22+and UO2L32+[28,36,37].

    In molecular solvents, the coordination number of linear UO22+is five or six (CN=5 or 6), forming pentagonal or hexagonal bipyramidal complexes with ligands [26,38–42].However, in ILs such as C4mimPF6and C8mimNTf2, extended Xray absorption fine structure (EXAFS) measurements showed that UO22+behaves lower CN (CN=4.0-4.5) than in molecular solvent [43,44].The entropy for complex UO2L2+in HOEtmimNTf2(120(7) J mol-1K-1) is equivalent to that in wet C4mimNTf2(129(4) J mol-1K-1) [25], indicating that in HOEtmimNTf2, the first CMPO molecule chelates to UO22+in the same bidentate fashion as in C4mimNTf2[25].Such coordination mode has been confirmed by the solid crystallographic data of the corresponding complex [38,39].The stepwise enthalpy and entropy for complex UO2L22+(reaction UO2L2++L →UO2L22+,ΔH2=-10.9±2.0 kJ/mol,ΔS2=48±8 J mol-1K-1) and for complex UO2L32+(reaction UO2L22++L →UO2L32+,ΔH3=-9.8±2.0 kJ/mol,ΔS3=33±9 J mol-1K-1) are of equivalent values in error ranges, suggesting the second and third CMPO molecule most likely chelate to UO22+in the same fashion.Consequently, we herein hypothesize that the second and the third CMPO would act as a monodentate ligand to coordinate with UO22+[45].The thermodynamic results can be interpreted perfectly with such a complexation assumption.One donor of CMPO (possibly the O-donor of P=O moiety because of its stronger basicity than that of the N-O moiety [46]) coordinates with UO22+, which is convenient to disperse the steric hindrances and coordination tensions.As consequence, less difference occurs in the energy needed to remove the inner-sphere solvent molecules of UO22+in the last two complexations.

    In summary, the complexation of uranyl(VI) with CMPO in a hydroxyl-functionalized ionic liquid HOEtmimNTf2has been investigated by solvent extraction, spectrophotometry, and calorimetry.Three successive complexes UO2L2+, UO2L22+and UO2L32+form in HOEtmimNTf2.Though UO2L2+and UO2L22+are the possible extraction species under a lower L/U ratio, complex UO2L32+is the preferable extraction species of uranyl(VI) in the IL phase, assembling its neutral molecules at the inter-surface of the biphasic system to yield a solid material [14].In homogeneous HOEtmimNTf2solution, the stability constants of complexes UO2L2+, UO2L22+and UO2L32+are 4.82(5), 9.39(12) and 12.98(5), respectively.All formation reactions are predominantly driven by entropy, although a small part of the driving force of complexes UO2L22+and UO2L32+comes from enthalpy.The thermodynamics of the UO22+/CMPO complexes is interpreted by hypothesizing that the first CMPO molecule coordinates with UO22+in a bidentate fashion, and the others in a monodentate fashion.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgment

    This work was supported by the National Science Foundation of China (Nos.22076175, 11675156, U1830202 and 21976165).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.066.

    欧美激情高清一区二区三区| 19禁男女啪啪无遮挡网站| 老熟女久久久| 国产成人精品久久二区二区免费| 色婷婷av一区二区三区视频| 狠狠婷婷综合久久久久久88av| 一个人免费看片子| 女性被躁到高潮视频| 久久久久精品国产欧美久久久 | 蜜桃在线观看..| 日韩一区二区三区影片| 久久热在线av| av福利片在线| 亚洲人成77777在线视频| 丝袜喷水一区| 亚洲精品一卡2卡三卡4卡5卡 | 满18在线观看网站| 国产又色又爽无遮挡免| 老汉色∧v一级毛片| 午夜91福利影院| 成人三级做爰电影| 老鸭窝网址在线观看| 人人妻人人爽人人添夜夜欢视频| 91字幕亚洲| 国产片特级美女逼逼视频| 2021少妇久久久久久久久久久| 青春草亚洲视频在线观看| 久9热在线精品视频| 一级毛片黄色毛片免费观看视频| 午夜福利乱码中文字幕| 狠狠精品人妻久久久久久综合| 亚洲欧美清纯卡通| www.熟女人妻精品国产| 青草久久国产| 99国产综合亚洲精品| 两个人免费观看高清视频| 免费在线观看影片大全网站 | 亚洲国产成人一精品久久久| 婷婷色综合www| 国产视频首页在线观看| 免费在线观看黄色视频的| 男女下面插进去视频免费观看| 亚洲av美国av| 精品人妻一区二区三区麻豆| 欧美在线黄色| 亚洲中文字幕日韩| 午夜91福利影院| 中文字幕最新亚洲高清| 国产成人一区二区三区免费视频网站 | 黄色 视频免费看| 欧美人与性动交α欧美软件| 国产视频首页在线观看| 午夜老司机福利片| 天天操日日干夜夜撸| 男女床上黄色一级片免费看| 一个人免费看片子| 久久精品久久久久久久性| 久久精品国产综合久久久| 激情五月婷婷亚洲| 99精品久久久久人妻精品| 精品免费久久久久久久清纯 | 18禁国产床啪视频网站| 纯流量卡能插随身wifi吗| 女性被躁到高潮视频| 久久99热这里只频精品6学生| 日韩大片免费观看网站| 亚洲美女黄色视频免费看| 色网站视频免费| 午夜福利,免费看| 亚洲成人免费av在线播放| 妹子高潮喷水视频| 最近手机中文字幕大全| 国产日韩一区二区三区精品不卡| av片东京热男人的天堂| 久久99精品国语久久久| 成年美女黄网站色视频大全免费| 午夜免费成人在线视频| 美国免费a级毛片| 最黄视频免费看| 国产成人欧美在线观看 | 亚洲国产欧美一区二区综合| 五月开心婷婷网| av视频免费观看在线观看| 国产在线一区二区三区精| 亚洲精品第二区| 天天躁日日躁夜夜躁夜夜| 亚洲国产精品一区三区| 最新在线观看一区二区三区 | √禁漫天堂资源中文www| 极品人妻少妇av视频| 亚洲精品久久久久久婷婷小说| 久久国产精品大桥未久av| 人妻一区二区av| 日韩电影二区| 99久久人妻综合| 韩国高清视频一区二区三区| 老熟女久久久| 欧美日韩精品网址| 大片免费播放器 马上看| 丰满迷人的少妇在线观看| 久久久久国产一级毛片高清牌| 国产极品粉嫩免费观看在线| 婷婷色麻豆天堂久久| 你懂的网址亚洲精品在线观看| 亚洲男人天堂网一区| 久久精品aⅴ一区二区三区四区| 精品人妻熟女毛片av久久网站| 欧美黑人精品巨大| 涩涩av久久男人的天堂| 晚上一个人看的免费电影| 一级a爱视频在线免费观看| 一本久久精品| 久久国产亚洲av麻豆专区| 国产人伦9x9x在线观看| 中文精品一卡2卡3卡4更新| 国产极品粉嫩免费观看在线| 大香蕉久久成人网| 又大又黄又爽视频免费| 国产精品偷伦视频观看了| 欧美精品人与动牲交sv欧美| 免费观看人在逋| 国产亚洲欧美在线一区二区| 熟女av电影| h视频一区二区三区| 国产亚洲av片在线观看秒播厂| 成年av动漫网址| 亚洲精品国产区一区二| 少妇 在线观看| 美女国产高潮福利片在线看| 久久精品国产综合久久久| 亚洲精品av麻豆狂野| 青青草视频在线视频观看| 欧美另类一区| 自拍欧美九色日韩亚洲蝌蚪91| 99久久精品国产亚洲精品| 女警被强在线播放| 亚洲色图 男人天堂 中文字幕| 别揉我奶头~嗯~啊~动态视频 | 天天操日日干夜夜撸| 一级毛片黄色毛片免费观看视频| 亚洲av日韩精品久久久久久密 | 久久天躁狠狠躁夜夜2o2o | 精品少妇内射三级| 欧美日韩视频高清一区二区三区二| 国产精品 欧美亚洲| 精品欧美一区二区三区在线| 七月丁香在线播放| 亚洲国产av新网站| 91精品国产国语对白视频| av一本久久久久| 久久久精品94久久精品| 日本猛色少妇xxxxx猛交久久| 欧美黄色淫秽网站| 亚洲伊人久久精品综合| bbb黄色大片| 久久精品久久久久久噜噜老黄| 成人国语在线视频| 成人国产av品久久久| 亚洲av片天天在线观看| 一区二区三区四区激情视频| 高潮久久久久久久久久久不卡| 久久午夜综合久久蜜桃| 久久ye,这里只有精品| 多毛熟女@视频| 久久久精品94久久精品| 男女边吃奶边做爰视频| 欧美中文综合在线视频| 亚洲综合色网址| 久久久久国产一级毛片高清牌| 狂野欧美激情性xxxx| 中文字幕色久视频| 国产成人欧美在线观看 | 各种免费的搞黄视频| 爱豆传媒免费全集在线观看| 亚洲av片天天在线观看| 热re99久久国产66热| 王馨瑶露胸无遮挡在线观看| 91精品国产国语对白视频| 午夜福利视频精品| 美女福利国产在线| 99久久99久久久精品蜜桃| 热re99久久国产66热| av国产久精品久网站免费入址| netflix在线观看网站| 欧美乱码精品一区二区三区| 亚洲国产最新在线播放| 日韩免费高清中文字幕av| 日韩免费高清中文字幕av| 不卡av一区二区三区| 国产片特级美女逼逼视频| 国产精品99久久99久久久不卡| 久热爱精品视频在线9| 精品少妇一区二区三区视频日本电影| 久热爱精品视频在线9| 国产精品一二三区在线看| 免费看av在线观看网站| 亚洲视频免费观看视频| 宅男免费午夜| 老汉色av国产亚洲站长工具| 女人久久www免费人成看片| 视频区欧美日本亚洲| 久久国产精品大桥未久av| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区黑人| 亚洲黑人精品在线| 色精品久久人妻99蜜桃| 18在线观看网站| 欧美日韩视频精品一区| 精品熟女少妇八av免费久了| 极品人妻少妇av视频| 狂野欧美激情性xxxx| 国产精品三级大全| 久久ye,这里只有精品| 亚洲精品久久午夜乱码| 热re99久久国产66热| 我要看黄色一级片免费的| 一边摸一边抽搐一进一出视频| 亚洲精品成人av观看孕妇| 成人国产一区最新在线观看 | 午夜老司机福利片| 一本—道久久a久久精品蜜桃钙片| 国产亚洲欧美精品永久| 男女国产视频网站| 青春草亚洲视频在线观看| 亚洲,一卡二卡三卡| 丰满少妇做爰视频| 下体分泌物呈黄色| 妹子高潮喷水视频| 久久精品国产a三级三级三级| 国产在线观看jvid| 久久天堂一区二区三区四区| 啦啦啦 在线观看视频| 亚洲九九香蕉| 美女大奶头黄色视频| 国产色视频综合| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美在线一区| 久久午夜综合久久蜜桃| 久久 成人 亚洲| 热99国产精品久久久久久7| 国产日韩欧美视频二区| 免费在线观看完整版高清| 大陆偷拍与自拍| 纵有疾风起免费观看全集完整版| 久久99精品国语久久久| 亚洲国产av新网站| 亚洲国产中文字幕在线视频| 午夜免费鲁丝| 日韩大码丰满熟妇| av网站免费在线观看视频| 一区在线观看完整版| 日韩大片免费观看网站| 国产人伦9x9x在线观看| 91精品伊人久久大香线蕉| 国产老妇伦熟女老妇高清| 亚洲精品在线美女| videos熟女内射| 久久久欧美国产精品| av有码第一页| 天天操日日干夜夜撸| 免费观看a级毛片全部| 国产精品人妻久久久影院| 青青草视频在线视频观看| 午夜福利影视在线免费观看| 久久久久国产精品人妻一区二区| 尾随美女入室| 久久99一区二区三区| 亚洲美女黄色视频免费看| 国产97色在线日韩免费| 成人影院久久| 欧美乱码精品一区二区三区| 欧美成人午夜精品| 亚洲精品一区蜜桃| 1024香蕉在线观看| 精品久久久久久久毛片微露脸 | 亚洲国产看品久久| 黄色视频不卡| 交换朋友夫妻互换小说| 操出白浆在线播放| 多毛熟女@视频| 好男人视频免费观看在线| 亚洲精品第二区| 91成人精品电影| 亚洲,欧美,日韩| 国产成人精品久久久久久| 欧美成狂野欧美在线观看| 中文字幕色久视频| 久久99热这里只频精品6学生| 曰老女人黄片| 午夜福利一区二区在线看| 亚洲成色77777| 只有这里有精品99| 日韩中文字幕视频在线看片| 黄色怎么调成土黄色| 亚洲午夜精品一区,二区,三区| 亚洲专区中文字幕在线| 久久精品aⅴ一区二区三区四区| 久久久国产精品麻豆| 丝袜人妻中文字幕| 国产精品亚洲av一区麻豆| 人人澡人人妻人| 在线 av 中文字幕| 丝瓜视频免费看黄片| 国产不卡av网站在线观看| 精品国产乱码久久久久久男人| 国产精品人妻久久久影院| 一本久久精品| 悠悠久久av| 久久毛片免费看一区二区三区| 香蕉丝袜av| 久9热在线精品视频| 欧美国产精品一级二级三级| 女人爽到高潮嗷嗷叫在线视频| 999精品在线视频| 成人午夜精彩视频在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品一区三区| 国产老妇伦熟女老妇高清| 韩国精品一区二区三区| 欧美黑人欧美精品刺激| 老鸭窝网址在线观看| 首页视频小说图片口味搜索 | 国产又色又爽无遮挡免| 51午夜福利影视在线观看| 国产麻豆69| av国产精品久久久久影院| 精品少妇一区二区三区视频日本电影| av在线老鸭窝| 视频区欧美日本亚洲| 一区在线观看完整版| 脱女人内裤的视频| 国产亚洲av高清不卡| 久久狼人影院| 中文字幕另类日韩欧美亚洲嫩草| 欧美人与性动交α欧美精品济南到| 国产亚洲午夜精品一区二区久久| 91九色精品人成在线观看| 国产高清视频在线播放一区 | 国产主播在线观看一区二区 | 亚洲成人手机| 青春草视频在线免费观看| 国产有黄有色有爽视频| 日本午夜av视频| 国产高清国产精品国产三级| 一边摸一边抽搐一进一出视频| 久久久国产欧美日韩av| 人人妻人人澡人人爽人人夜夜| 国产一区二区三区av在线| 精品一区在线观看国产| 国产精品久久久久久精品电影小说| 国产亚洲精品第一综合不卡| videosex国产| 一区在线观看完整版| 久久国产精品人妻蜜桃| 亚洲专区国产一区二区| 国产淫语在线视频| 免费女性裸体啪啪无遮挡网站| 日韩一卡2卡3卡4卡2021年| 国产成人免费无遮挡视频| 丝袜在线中文字幕| 久久av网站| 婷婷色麻豆天堂久久| 夫妻午夜视频| 丝袜脚勾引网站| 精品视频人人做人人爽| 在线看a的网站| 午夜激情久久久久久久| 精品国产国语对白av| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 精品久久蜜臀av无| 国产精品久久久久成人av| 丝袜喷水一区| 免费观看人在逋| 18禁裸乳无遮挡动漫免费视频| 美国免费a级毛片| 亚洲少妇的诱惑av| 成人亚洲欧美一区二区av| 精品久久久久久电影网| 大片免费播放器 马上看| www.自偷自拍.com| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人看| 丝袜美足系列| 极品少妇高潮喷水抽搐| 国产成人精品在线电影| 免费不卡黄色视频| 精品久久久精品久久久| 国产亚洲av片在线观看秒播厂| 丝袜美腿诱惑在线| 国产成人免费观看mmmm| 婷婷色综合www| 国产日韩欧美在线精品| 欧美xxⅹ黑人| 熟女少妇亚洲综合色aaa.| 黄色视频在线播放观看不卡| av视频免费观看在线观看| 少妇人妻久久综合中文| 精品久久久精品久久久| tube8黄色片| 亚洲av日韩在线播放| www.精华液| 亚洲五月色婷婷综合| 亚洲,欧美精品.| 国产精品一国产av| 日日摸夜夜添夜夜爱| 乱人伦中国视频| 免费观看av网站的网址| 国产亚洲欧美精品永久| 亚洲精品一卡2卡三卡4卡5卡 | 丝袜脚勾引网站| 国产欧美日韩一区二区三 | kizo精华| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 日本五十路高清| 天天添夜夜摸| 亚洲国产av新网站| av国产久精品久网站免费入址| 久久精品国产a三级三级三级| 成人免费观看视频高清| av福利片在线| 一本综合久久免费| 欧美人与善性xxx| 亚洲五月婷婷丁香| 亚洲欧洲精品一区二区精品久久久| 水蜜桃什么品种好| 国产午夜精品一二区理论片| 免费看十八禁软件| 伦理电影免费视频| 亚洲精品成人av观看孕妇| a级片在线免费高清观看视频| 日韩av不卡免费在线播放| 亚洲精品国产色婷婷电影| 侵犯人妻中文字幕一二三四区| 成人午夜精彩视频在线观看| 久久久久久久久久久久大奶| 又粗又硬又长又爽又黄的视频| 欧美日韩av久久| 亚洲国产精品999| 波多野结衣一区麻豆| 黄片播放在线免费| 超碰97精品在线观看| 国产欧美亚洲国产| 精品一区二区三区四区五区乱码 | 亚洲精品国产av成人精品| 免费少妇av软件| 99国产精品一区二区蜜桃av | 亚洲国产日韩一区二区| 99热国产这里只有精品6| 午夜日韩欧美国产| 97在线人人人人妻| 中文字幕人妻丝袜制服| 大码成人一级视频| 777久久人妻少妇嫩草av网站| 成人午夜精彩视频在线观看| 视频在线观看一区二区三区| 久久综合国产亚洲精品| 老汉色∧v一级毛片| 大香蕉久久网| 菩萨蛮人人尽说江南好唐韦庄| 老司机深夜福利视频在线观看 | 亚洲精品日本国产第一区| 热99久久久久精品小说推荐| 高清黄色对白视频在线免费看| 中国国产av一级| 亚洲图色成人| 纵有疾风起免费观看全集完整版| 天堂8中文在线网| videos熟女内射| 最新的欧美精品一区二区| 精品少妇内射三级| 精品人妻在线不人妻| 免费在线观看黄色视频的| 老司机影院成人| 一二三四社区在线视频社区8| 亚洲免费av在线视频| 亚洲欧美激情在线| 美女脱内裤让男人舔精品视频| av一本久久久久| 亚洲av成人不卡在线观看播放网 | 一级毛片黄色毛片免费观看视频| 国产片内射在线| 午夜av观看不卡| 一本大道久久a久久精品| 人妻一区二区av| 一本—道久久a久久精品蜜桃钙片| 亚洲五月色婷婷综合| 免费高清在线观看日韩| 搡老乐熟女国产| 亚洲成人免费av在线播放| 亚洲五月婷婷丁香| 精品少妇一区二区三区视频日本电影| 国产成人精品在线电影| www.熟女人妻精品国产| 人人妻,人人澡人人爽秒播 | 七月丁香在线播放| 午夜日韩欧美国产| 久久狼人影院| 青草久久国产| 亚洲情色 制服丝袜| 国产亚洲精品第一综合不卡| 久久精品亚洲av国产电影网| av不卡在线播放| 在线天堂中文资源库| 国产精品免费大片| 亚洲图色成人| 亚洲五月婷婷丁香| 热99国产精品久久久久久7| 国产欧美亚洲国产| 青青草视频在线视频观看| 巨乳人妻的诱惑在线观看| 亚洲人成电影免费在线| 久久国产精品影院| 欧美激情高清一区二区三区| 久久久久久久精品精品| 欧美在线黄色| 日本wwww免费看| 亚洲成人免费电影在线观看 | 中文字幕高清在线视频| 亚洲成人国产一区在线观看 | 老熟女久久久| 久久精品亚洲av国产电影网| 在线 av 中文字幕| 国产成人精品在线电影| 精品卡一卡二卡四卡免费| 国产在线视频一区二区| 免费av中文字幕在线| 国产亚洲av片在线观看秒播厂| 一区在线观看完整版| 一二三四在线观看免费中文在| 香蕉丝袜av| 少妇猛男粗大的猛烈进出视频| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 精品亚洲乱码少妇综合久久| 后天国语完整版免费观看| 欧美精品亚洲一区二区| 肉色欧美久久久久久久蜜桃| 真人做人爱边吃奶动态| 欧美人与善性xxx| www.熟女人妻精品国产| 国产真人三级小视频在线观看| 国产一区二区在线观看av| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| a级毛片黄视频| 香蕉丝袜av| 99久久综合免费| 亚洲国产日韩一区二区| 脱女人内裤的视频| 免费在线观看完整版高清| √禁漫天堂资源中文www| 在线观看一区二区三区激情| 精品久久久久久电影网| 悠悠久久av| 成年人黄色毛片网站| 又紧又爽又黄一区二区| 后天国语完整版免费观看| 在线观看www视频免费| 亚洲激情五月婷婷啪啪| 在线 av 中文字幕| 少妇裸体淫交视频免费看高清 | 亚洲专区中文字幕在线| 亚洲美女黄色视频免费看| 亚洲欧美日韩另类电影网站| 亚洲黑人精品在线| 老司机亚洲免费影院| 国产熟女欧美一区二区| 亚洲av片天天在线观看| 国产亚洲欧美在线一区二区| 久久99热这里只频精品6学生| 久久av网站| 欧美大码av| 国产又色又爽无遮挡免| 亚洲欧洲日产国产| 免费少妇av软件| 久久久久视频综合| 久久久国产欧美日韩av| 两人在一起打扑克的视频| 人人妻,人人澡人人爽秒播 | 久久久久久久精品精品| 在线精品无人区一区二区三| 久久国产精品人妻蜜桃| 18禁国产床啪视频网站| 国产精品一区二区在线不卡| 热99久久久久精品小说推荐| 男女高潮啪啪啪动态图| 精品人妻在线不人妻| 男女边吃奶边做爰视频| 日韩精品免费视频一区二区三区| 亚洲综合色网址| 青春草视频在线免费观看| 久久久国产一区二区| 男女无遮挡免费网站观看| 国产亚洲欧美精品永久| 男女无遮挡免费网站观看| 国产亚洲欧美精品永久| 精品一区二区三卡| 久久综合国产亚洲精品| 国产一区二区三区综合在线观看| 日日夜夜操网爽| 成人免费观看视频高清| 中文字幕高清在线视频| 午夜福利在线免费观看网站| 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 午夜免费鲁丝| 在线天堂中文资源库| 日日摸夜夜添夜夜爱| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 美女脱内裤让男人舔精品视频| 又黄又粗又硬又大视频| 国产福利在线免费观看视频|