• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Note on the Indirect Controls for a Coupled System of Wave Equations?

    2022-07-08 13:27:54TatsienLIBopengRAO

    Tatsien LI Bopeng RAO

    1School of Mathematical Sciences,Fudan University,Shanghai 200433,China;Shanghai Key Laboratory for Contemporary Applied Mathematic,Shanghai 200433,China;Nonlinear Mathematical Modeling and Methods Laboratory,Shanghai 200433,China.E-mail: dqli@fudan.edu.cn

    2Corresponding author.Institut de Recherche Math′ematique Avanc′ee,Universit′e de Strasbourg,67084 Strasbourg,France.E-mail: bopeng.rao@math.unistra.fr

    Abstract By a procedure of successive projections,the authors decompose a coupled system of wave equations into a sequence of sub-systems.Then,they can clarify the indirect controls and the total number of controls.Moreover,the authors give a uniqueness theorem of solution to the system of wave equations under Kalman’s rank condition.

    Keywords Indirect controls,Approximate controllability,Coupled system of wave equations

    1 Introduction

    Let ? ?Rnbe a bounded domain with smooth boundary Γ.Consider the following system for the variableU=(u(1),···,u(N))T:

    whereAis a matrix of orderNandDis a matrix of orderN×M.

    Obviously,system (1.1) is controlled by the controlsHdirectly acted on the boundary,and also implicitly influenced by the interaction between the equations.It is well-known that when rank(D)

    is necessary(and even sufficient in some special situations) for the approximate boundary controllability of system(1.1)(see [7]).This shows that the coupling termAUplays an important role for the approximate boundary controllability.It seems that rank(D,AD,···,AN?1D),called the total number of controls in [8],is a good indicator for the action of the coupling matrixAwith the boundary control matrixD.Since rank(D)is the number of boundary controlsH,it is natural to name rank(D,AD,···,AN?1D)?rank(D) as the number of indirect controls,but we did not see what are these(internal or boundary)controls,nor how they intervene into the system.

    In this paper,we try to explain the meaning of indirect controls and the mechanism of their roles.The basic idea is to project system (1.1) to Ker(DT) for getting a system with a homogeneous boundary condition.We first show the idea by a simple example,and present the general procedure later.

    Example 1Consider the following system

    First let

    We have

    Then,applying the row-vectors (1,0,0) and (0,1,0) in Ker(DT) to system (1.3),we get

    The reduced system (1.4) is for the variablesu1andu2,so at the first step,the variableh(1)=?u3can be formally regarded as an internal control appearing in system(1.4).However,the value ofh(1)can not be freely chosen,then we call it as an indirect internal control.

    Next let

    We have

    Then,applying the row-vector (1,0) in Ker(DT1) to the reduced system (1.4),at the second step we get

    This is a system for the variableu1,in which the variableh(2)=?u2can be regarded as an indirect internal control.

    Finally,let

    Since Ker(DT2)=(0),we stop the projection.

    By this way,we decompose the original system (1.3) into two sub-systems (1.4) and (1.5).Consequently,besides the direct boundary controlhacting on the boundary and appearing in the original system (1.3),we find two indirect internal controlsh(1)andh(2),which are hidden in the sub-systems (1.4) and (1.5),respectively.

    Related to the indirect controllability,the notion of the indirect stabilization was introduced by Russell[16]in the early 1990’s.It concerns if the dissipation induced by one of the equations can be sufficiently transmitted to the other ones in order to realize the stability of the overall system(see[2–3]for wave equations and[14–15]for wave/heat equations).Moreover,as shown in [4,13],the situation is more complicated for partially damped systems.The effectiveness of the indirect damping depends in a very complex way on all of the involved factors such as the nature of the coupling,the order of boundary dissipation,the hidden regularity,the accordance of boundary conditions and many others.

    The paper is organized as follows.In§2,we will give a general procedure of projection,which decomposes a system of wave equations into a sequence of sub-systems.In §3,we establish the relation between the ranks of the matrices appearing in the procedure of projection.In §4,we identify the indirect internal controls in the reduced systems and explain its role in the systems.In §5,we establish a uniqueness theorem under Kalman’s rank condition without any algebraic condition on the coupling matrix,neither any geometrical condition on the controlled domain.This result will be served as a base for the approximate controllability by locally distributed controls later.§6 is devoted to some questions to be developed in the forthcoming work.

    2 An Algebraic Procedure of Reduction

    Now we describe the general procedure of projection.Let

    whereA0is a matrix of orderN0,D0is a matrix of orderN0×Mwith

    D0is not necessarily a full column-rank matrix.

    Let

    We choose

    In particular,we have

    Noting

    there exist a matrixA1of orderN1and a matrixD1of orderN1×M,such that

    SinceK0is of full column-rank,A1is uniquely determined.While,sinceD0may be not of full column-rank,for guaranteeing the uniqueness ofD1,we require

    Then,noting (2.3),by applyingKT0to system (1.1) and setting

    we get

    The projected system (2.8) is not self-closed in general.It can be regarded as a system for the reduced variableU(1),associated with the internal controlH(1).

    Similarly,by the successive projections,forl=2,3,···,we get

    Forl=1,2,···,let

    Define

    In particular,we have

    Noting that

    there exist a matrixAlof orderNland a matrixDlof orderNl×M,such that

    Then,noting (2.12),we have

    and

    SinceKl?1is of full column-rank,we have Ker(Kl?1)={0}.It follows from (2.15) that

    While,sinceDl?1may be not of full column-rank,Ker(Dl?1)≠{0} in general.In order to uniquely determine the matrixDlby the relation (2.16),similarly to (2.6),we require

    Then,applyingKTl?1to system (2.9) and setting

    we get

    We continue the procedure of projection until

    (i) eitherDL=0,then we get a self-closed conservative system

    which is not approximately controllable,so is the original system (1.1);

    (ii) or Ker(DTL)={0},then we get a non self-closed system

    Since the control matrixDLis of full row-rank,this case is favorite for the approximate controllability of system (2.22),however,we don’t know whether the original system (1.1) is actually approximately controllable or not.

    The above procedure is purely algebraic.In order to clarify the leading idea,we do not take other type boundary conditions into account.

    3 Mathematical Analysis

    Let us recall the following fundamental result (see [7,Lemma 2.5]).

    Lemma 3.1Let d≥0be an integer.The rank condition

    holds if and only if d is the largest dimension of the subspaces,which are contained inKer(DT)and invariant for AT.

    Proposition 3.1Let l be an integer with1≤l≤L.For any subspace V contained inKer(DTl)and invariant for ATl,there exists a subspace W contained inKer(DTl?1)and invariant for ATl?1,such thatdim(W)=dim(V),and vice versa.

    ProofFirst,letV?Ker(DTl) be an invariant subspace ofATl.LetW=Kl?1(V) denote the direct image ofVbyKl?1.

    For any giveny∈W,by the definition ofW,there existsx∈V,such thaty=Kl?1x.ApplyingxTto (2.14) leads that

    Sincex∈V?Ker(DTl),we havexTDlDTl?1=0,then

    Moreover,sinceVis invariant forATl,we haveATlx∈V,then it follows from (3.2) that

    By (2.12),we have

    ThusWis contained in Ker(DTl?1) and invariant forATl?1.

    Inversely,letW?Ker(DTl?1) be an invariant subspace ofATl?1.Let

    denote the inverse image ofWbyKl?1.For any givenx∈V,there existsy∈W,such thatKl?1x=y.ApplyingxTto (2.14),we get

    ApplyingKl?1from the right to the above relation,it follows that

    By (2.12),DTl?1Kl?1=0,then

    SinceWis invariant forATl?1,we haveATl?1y∈W.By the definition ofV,there existsx∈V,such thatKl?1x=ATl?1y.Then,it follows from (3.4) that

    SinceKTl?1Kl?1is invertible,we have

    namely,Vis invariant forATl.

    Finally,insertingKl?1x=yandATlx=xinto (3.3),and notingKl?1x=ATl?1y,we get

    ThenDl?1DTlx=0.By (2.18),we getDTlx=0. So,V?Ker(DTl).Moreover,sinceKl?1is of full column-rank,we have dim(V)=dim(W).

    Proposition 3.2We have

    ProofWe first show that for 1≤l≤L,we have

    In fact,let

    By Lemma 3.1,pl?1is the dimension of the largest subspace which is contained in Ker(DTl?1)and invariant forATl?1.By Proposition 3.1,the largest subspace which is contained in Ker(DTl)and invariant forATlhas also the dimensionpl?1.Then we have

    Noting (2.10) and combining (3.7)–(3.8),we get (3.6).

    Then,the summation of (3.6) forlfrom 1 toLgives

    At theL-th step of reduction,we have eitherDL=0,then

    or Ker(DTL)=0,then

    Then,using (3.10) and (3.11) in (3.9),we get (3.5).

    Proposition 3.3rank(Dl,AlDl,···,Dl)?Nlis a constant with respect to l with0≤l≤L.Consequently,Kaman’s rank condition

    holds for all l with0≤l≤L if and only ifKer(DTL)={0}.

    ProofFirst,using (2.10) and (3.6),we deduce

    Next,assume that condition (3.12) holds for alllwith 1≤l≤L.In particular,we have

    SinceNL>0,we haveDL≠0.By the alternative of reduction,we get Ker(DTL)={0}.

    Inversely,by Lemma 3.1,condition Ker(DTL)={0}implies condition(3.14).Then,it follows from relation (3.13) that condition (3.12) holds for alllwith 1≤l≤L.

    Proposition 3.4Let A be a cascade matrix and?satisfy the geometrical control condition.Then system(1.1)is approximately controllable if and only ifKer(DTL)={0}.

    ProofBy[7](see also[1]),system(1.1)is approximately controllable if and only if the pair(A,D) satisfies Kalman rank condition (1.2),or equivalently,by Proposition 3.3,if and only if Ker(DTL)={0}.

    At the end of the section,we give two others examples for further illustrating the reduction procedure.

    Example 2Consider the following system

    Let

    Noting (2.1)–(2.2),we may take

    Then,using (2.16)–(2.17) withl=1,a straightforward computation gives

    and

    ApplyingKT0to system (3.15),we get

    where

    and

    This is a system for the variablesu1,v1andη1.The variableh1can be regarded as an internal control in system (3.16).

    Next,applying (2.16)–(2.17) withl=2 to

    we get

    ApplyingKT1to system (3.16),we get

    where

    SinceD2=0,we stop the projection withN2=2.By Proposition 3.3,none of the pairs(A0,D0),(A1,D1)or(A2,D2)satisfies Kalman’s rank condition(3.12).More precisely,we have

    rank(D0,A0D0,A20D0,A30D0)?4=rank(D1,A1D1,A21D1)?3=rank(D2,A2D2)?2.Noting rank(D2,A2D2)=0,it follows that

    rank(D0,A0D0,A20D0,A30D0)=4?2=2,rank(D1,A1D1,A21D1)=3?2=1.

    Example 3Consider the following system.

    Let

    Noting (2.1)–(2.2),we may take

    Using (2.16)–(2.17) withl=1,a straightforward computation gives

    and

    Then,applyingKT0to system (3.18),we get

    where

    This is a system for the variablesv1,v2with an internal controlh1.

    Next,applying (2.16)–(2.17) withl=2 to

    we get

    Then,applyingKT1to system (3.18),we get

    where

    This is a system for the variablev2with an internal controlh2.Since Ker(DT2)={0},we stop the projection.

    Since Ker(DT2)={0},we stop the projection withN2=2.By Proposition 3.3,the pairs(A0,D0),(A1,D1) and (A2,D2) satisfy Kalman’s rank condition (3.12).

    4 Notion of Indirect Controls

    For 1≤l≤L,the termH(l)can be formally regarded as internal controls in the sub-system(2.20).But the value ofH(l)is given by (2.19),therefore,it can not be freely chosen.So,H(l)(1≤l≤L) will be called indirect internal controls,and accordingly,rank(Dl) denotes its number.Thus,the original system (1.1) is directly controlled by the boundary controlH(0),and indirectly controlled by the internal controlsH(1),···,H(L)which are hidden in the subsystem (2.20) and intervene into the systems at different steps of the reduction.Moreover,the formula (3.5) justifies well the notion of the total number of (direct and indirect) controls previously introduced in [8].This gives a pretty good explanation to the indirect controls.

    The term “direct controls” or “indirect controls” is related to the sub-system (2.20).For 1≤l≤L,H(l)can be regarded as direct internal controls in (2.20) at thel-th step or as indirect controls for the original system(1.1).In any case,this is simply a terminology that we can use as we want.

    Proposition 4.1Assume that system(1.1)is approximately controllable.Then for all l with1≤l≤L,the rank condition(3.12)holds and the sub-system(2.20)is approximately controllable by the internal indirect control H(l).

    ProofFirst by Proposition 3.3 and noting (1.2),we have

    On the other hand,by (2.19),we have

    Then,the approximate controllability of system (1.1) implies that of the sub-system (2.20) for alllwith 1≤l≤L.

    We know few about the structure of indirect controlsH(l)with 1≤l≤L,however,the following result shows that the indirect controlsH(l)should be so smooth that its action on the sub-system (2.20) will be very weak,especially as the steplincreases.

    Proposition 4.2For any given l with1≤l≤L,let

    Then,we have

    ProofFor any givenand any givenH∈(L2loc(R+;L2(Γ)))M,the solution to problem (1.1)–(1.2) has the regularity (see [7–8,10]):

    Forl=1,consider the reduced system

    with the initial data:

    Since the right-hand side

    the solution to problem (4.3)–(4.4) has the regularity (see [11]or [12])

    The general case can be easily completed by a bootstrap argument.

    5 Approximate Controllability by Locally Distributed Controls

    This section gives only a brief abstract on the internal controllability.It will be carefully completed in a forthcoming work.

    Now we consider the system for the variableU=(u(1),···,u(N))T:

    with the initial data

    whereH∈(L2loc(R+;L2(?)))Mandχωis the characteristic function of a subsetωof ?.

    Remark 5.1The global caseω=? is trivial,so less interesting.For the exact controllability,ωis often assumed to be a neighbour of Γ in the literature,while for the approximate controllability,it seems that no restriction onωwill be necessary.

    Definition 5.1System(5.1)is approximately controllable at the time T >0if for anygiven initial data∈(L2(?) ×H?1(?))N,there exists a sequence{Hn}of controlsin(L2loc(R+;L2(?)))Mwith support in[0,T],such that the corresponding sequence{Un}of solutions satisfies

    Similarly to the approximate boundary controllability in [9],we can show the equivalence between the approximate controllability of system (5.1) and the uniqueness of solution to the following adjoint system for the variable Φ=(φ(1),···,φ(N))T:

    associated with the internal observation

    Moreover,condition (1.2)is still necessary for the uniqueness of solution to the overdetermined system (5.4)–(5.5).

    Theorem 5.1If A satisfies Kalman’s rank condition(1.2),then system(5.4)–(5.5)has only the trivial solution.Consequently,system(5.1)is approximately controllable by locally distributed controls.

    ProofTo be clear,let Φ ∈(C0(R;H10(?)) ∩C1(R;L2(?)))Nbe a solution to system(5.4)–(5.5).First,applyingDTto the equations in (5.4) and noting (5.5),we get

    Then,successively applyingDTAT,DT(A2)T···to the equations in (5.4),we get

    therefore,

    By (1.2),the matrix (D,AD,···,AN?1D) is of full row-rank,then

    Thus,applying Holmgren’s uniqueness theorem,we get Φ≡0 in (0,T)×?,provided that

    whered(?) denotes the geodesic diameter of ? (see [10,Theorem 8.2]).

    Remark 5.2Since the differential operator ?commutes with the internalD-observation(5.5):

    the situation is almost the same as for ordinary differential equations (see [5]).This is why the uniqueness in Theorem 5.1 holds without any restriction on the coupling matrixA,nor on the damped sub-domainω.

    Remark 5.3Recall that the controllability time (optimal) for system (1.1) is given by

    It should be sufficiently large,especially asNis large(see [7,17]).However,the controllability time given by (5.10) is independent of the number of equations and of the number of applied controls.It is exactly the same as for a sole equation in [10].

    6 Comments

    After having discussed the notion of indirect controls,further work would be needed to develop new results.For example,some interesting problems could be considered as follows.

    Question 1Since the value ofH(l)can not be freely chosen,the indirect internal controlsH(l)in the sub-system (2.20) has not the same meaning as the direct internal controlsHin(5.1).Any initiative for further clarifying their relations would be interesting to pursue.

    Question 2The adaptation of the procedure to the coupled system of wave equations with coupled Robin controls (with two coupling matrices) might be an interesting direction to be investigated.

    AcknowledgementThe authors would like to thank the reviewer’s valuable comments.

    国产精华一区二区三区| 日本 欧美在线| 久久精品国产99精品国产亚洲性色| 久久 成人 亚洲| 久久婷婷成人综合色麻豆| 久久天堂一区二区三区四区| 亚洲五月婷婷丁香| 人妻丰满熟妇av一区二区三区| 女同久久另类99精品国产91| 香蕉av资源在线| 啪啪无遮挡十八禁网站| 亚洲第一电影网av| 亚洲中文字幕日韩| 波多野结衣高清作品| 黄片大片在线免费观看| 久久久久久久久免费视频了| 一区二区三区高清视频在线| 琪琪午夜伦伦电影理论片6080| 国产熟女午夜一区二区三区| 久久 成人 亚洲| 每晚都被弄得嗷嗷叫到高潮| 淫秽高清视频在线观看| 日韩一卡2卡3卡4卡2021年| 一级毛片精品| 日本五十路高清| a级毛片a级免费在线| 日本一区二区免费在线视频| 99久久99久久久精品蜜桃| 日韩免费av在线播放| 久久久水蜜桃国产精品网| 最近在线观看免费完整版| 久久热在线av| ponron亚洲| 长腿黑丝高跟| 老司机午夜十八禁免费视频| 欧美绝顶高潮抽搐喷水| 亚洲精品久久成人aⅴ小说| 国产亚洲欧美在线一区二区| 视频在线观看一区二区三区| 国产精品永久免费网站| 亚洲av成人一区二区三| 最好的美女福利视频网| 国产高清有码在线观看视频 | 国产av又大| 午夜精品在线福利| 日韩欧美 国产精品| 久久婷婷成人综合色麻豆| av欧美777| a级毛片a级免费在线| 亚洲成av人片免费观看| 99热6这里只有精品| 国产成人欧美在线观看| 两个人看的免费小视频| 人人妻人人看人人澡| 免费无遮挡裸体视频| 99在线人妻在线中文字幕| 听说在线观看完整版免费高清| 丝袜人妻中文字幕| 欧美中文日本在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区字幕在线| 悠悠久久av| 两个人免费观看高清视频| 成在线人永久免费视频| 国产亚洲精品久久久久5区| 亚洲成人免费电影在线观看| 国产精品影院久久| АⅤ资源中文在线天堂| 亚洲国产欧美一区二区综合| 中国美女看黄片| 一边摸一边抽搐一进一小说| 99在线视频只有这里精品首页| 免费看日本二区| 夜夜躁狠狠躁天天躁| 手机成人av网站| 一区二区三区高清视频在线| 久久国产精品男人的天堂亚洲| 天堂动漫精品| 一个人观看的视频www高清免费观看 | 欧美人与性动交α欧美精品济南到| 亚洲精品国产一区二区精华液| 一区二区三区国产精品乱码| 久久精品91蜜桃| 波多野结衣高清作品| 久99久视频精品免费| 国产亚洲精品综合一区在线观看 | 欧美性猛交╳xxx乱大交人| 国产视频内射| www.999成人在线观看| 欧美人与性动交α欧美精品济南到| 丁香六月欧美| 男人舔女人下体高潮全视频| 久久九九热精品免费| 脱女人内裤的视频| 亚洲第一av免费看| 两性夫妻黄色片| 亚洲 欧美一区二区三区| 久久精品人妻少妇| 国产伦人伦偷精品视频| 观看免费一级毛片| 女人高潮潮喷娇喘18禁视频| 日韩av在线大香蕉| 国产激情欧美一区二区| 欧美在线黄色| 欧美色视频一区免费| 亚洲av中文字字幕乱码综合 | 99热这里只有精品一区 | 夜夜躁狠狠躁天天躁| 18禁观看日本| 久久久久久久精品吃奶| 中文字幕久久专区| 美女免费视频网站| 精品欧美国产一区二区三| 男男h啪啪无遮挡| 亚洲欧美日韩无卡精品| 青草久久国产| 日韩国内少妇激情av| 久久精品aⅴ一区二区三区四区| 国产成人影院久久av| 精品国内亚洲2022精品成人| 久久国产精品男人的天堂亚洲| 精品久久久久久久末码| 日韩大尺度精品在线看网址| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看 | 欧美国产日韩亚洲一区| 免费在线观看影片大全网站| 国产成人精品久久二区二区91| 亚洲欧洲精品一区二区精品久久久| 亚洲国产高清在线一区二区三 | 国产精品一区二区免费欧美| 亚洲精品在线观看二区| 亚洲五月天丁香| 国产成人av激情在线播放| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久久5区| 色尼玛亚洲综合影院| 老司机靠b影院| 精品久久久久久久毛片微露脸| 欧美一级毛片孕妇| 一区二区三区激情视频| 国产伦人伦偷精品视频| 黄色a级毛片大全视频| 99国产极品粉嫩在线观看| 国产成人精品久久二区二区91| 国产aⅴ精品一区二区三区波| 久久久久久九九精品二区国产 | 亚洲欧美精品综合久久99| 黑人巨大精品欧美一区二区mp4| АⅤ资源中文在线天堂| 国产精品久久电影中文字幕| 国产成人欧美| 亚洲一码二码三码区别大吗| 亚洲av中文字字幕乱码综合 | 亚洲人成网站高清观看| 巨乳人妻的诱惑在线观看| 黄片大片在线免费观看| 欧美性长视频在线观看| 女生性感内裤真人,穿戴方法视频| 成人国语在线视频| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区| 国产成人一区二区三区免费视频网站| 在线观看免费视频日本深夜| 91av网站免费观看| 国产99久久九九免费精品| 久久国产乱子伦精品免费另类| 一边摸一边抽搐一进一小说| 搞女人的毛片| 欧美黑人欧美精品刺激| 亚洲欧美精品综合久久99| 成人特级黄色片久久久久久久| 亚洲av电影在线进入| 午夜久久久在线观看| 丝袜在线中文字幕| 狠狠狠狠99中文字幕| 久久人妻av系列| 精品人妻1区二区| 午夜福利在线观看吧| 成人精品一区二区免费| 99热只有精品国产| 一卡2卡三卡四卡精品乱码亚洲| 欧美亚洲日本最大视频资源| 制服丝袜大香蕉在线| 精品第一国产精品| 国产野战对白在线观看| av福利片在线| 国产亚洲精品久久久久久毛片| 国产av不卡久久| 一进一出抽搐动态| 久久久久精品国产欧美久久久| 熟妇人妻久久中文字幕3abv| ponron亚洲| 国产一卡二卡三卡精品| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| 欧美黑人精品巨大| 十分钟在线观看高清视频www| 国产亚洲av高清不卡| 久久久精品欧美日韩精品| 国产片内射在线| 日韩欧美国产一区二区入口| tocl精华| 侵犯人妻中文字幕一二三四区| 一个人免费在线观看的高清视频| 欧美一级a爱片免费观看看 | 国产成人精品久久二区二区91| 国产精品电影一区二区三区| 免费电影在线观看免费观看| 亚洲avbb在线观看| 最好的美女福利视频网| 99精品久久久久人妻精品| 亚洲一区中文字幕在线| 女性生殖器流出的白浆| 91老司机精品| 久久狼人影院| 在线av久久热| 日韩精品青青久久久久久| 这个男人来自地球电影免费观看| 女性被躁到高潮视频| 亚洲精品粉嫩美女一区| 中文字幕最新亚洲高清| 日韩精品免费视频一区二区三区| 最新在线观看一区二区三区| 久久婷婷成人综合色麻豆| 两个人视频免费观看高清| 日日爽夜夜爽网站| 亚洲男人天堂网一区| 国产单亲对白刺激| 亚洲av成人不卡在线观看播放网| 久9热在线精品视频| 欧美不卡视频在线免费观看 | 97超级碰碰碰精品色视频在线观看| 久久香蕉精品热| 午夜亚洲福利在线播放| 亚洲av片天天在线观看| 99在线人妻在线中文字幕| 午夜成年电影在线免费观看| 97碰自拍视频| av福利片在线| 国产一区二区三区视频了| 欧美成人性av电影在线观看| 国产精品野战在线观看| 十八禁网站免费在线| 国产激情久久老熟女| 久久久久亚洲av毛片大全| 黄片大片在线免费观看| 久久久久国产精品人妻aⅴ院| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲成国产人片在线观看| 日韩欧美 国产精品| 久久精品91无色码中文字幕| 亚洲午夜精品一区,二区,三区| a级毛片a级免费在线| 久久久久久久久免费视频了| 午夜免费观看网址| 国产单亲对白刺激| 国产三级在线视频| 精品欧美国产一区二区三| 亚洲色图av天堂| av在线天堂中文字幕| 看免费av毛片| 亚洲男人天堂网一区| 熟女少妇亚洲综合色aaa.| 人人妻,人人澡人人爽秒播| 成年人黄色毛片网站| 亚洲色图av天堂| 亚洲九九香蕉| 91九色精品人成在线观看| 天堂√8在线中文| 在线播放国产精品三级| 久热这里只有精品99| 在线av久久热| 国产亚洲精品第一综合不卡| 免费在线观看亚洲国产| 男人舔奶头视频| 香蕉国产在线看| 国产黄片美女视频| 色播亚洲综合网| av电影中文网址| 美女高潮到喷水免费观看| 欧美久久黑人一区二区| 1024香蕉在线观看| 国产人伦9x9x在线观看| 丰满的人妻完整版| svipshipincom国产片| 亚洲国产精品sss在线观看| 国产成人av教育| 国产一区二区三区视频了| 中国美女看黄片| 亚洲国产精品合色在线| 国产高清有码在线观看视频 | 在线观看66精品国产| 亚洲精品中文字幕一二三四区| 亚洲国产欧美网| 在线天堂中文资源库| 最近最新中文字幕大全电影3 | 国内久久婷婷六月综合欲色啪| 熟女电影av网| 色播亚洲综合网| 亚洲自偷自拍图片 自拍| 午夜免费观看网址| 日韩欧美国产在线观看| 久久亚洲精品不卡| 99精品久久久久人妻精品| 亚洲电影在线观看av| 人成视频在线观看免费观看| 久久国产亚洲av麻豆专区| 日本 av在线| 欧美黑人巨大hd| 国产精品永久免费网站| 亚洲中文字幕日韩| 久久人妻福利社区极品人妻图片| 国产精品永久免费网站| 在线观看免费视频日本深夜| 深夜精品福利| 精品一区二区三区四区五区乱码| 怎么达到女性高潮| 午夜视频精品福利| 51午夜福利影视在线观看| 级片在线观看| 久久久久久九九精品二区国产 | 欧美zozozo另类| 夜夜躁狠狠躁天天躁| 国产三级在线视频| 亚洲精品久久国产高清桃花| 99久久99久久久精品蜜桃| 久久精品aⅴ一区二区三区四区| 麻豆国产av国片精品| 99国产精品一区二区三区| 国产精品一区二区三区四区久久 | 男男h啪啪无遮挡| 国产又色又爽无遮挡免费看| 精品乱码久久久久久99久播| 精品第一国产精品| 天堂动漫精品| 可以在线观看毛片的网站| 免费高清视频大片| 日日爽夜夜爽网站| 成人亚洲精品一区在线观看| 亚洲国产日韩欧美精品在线观看 | 午夜激情av网站| cao死你这个sao货| 亚洲欧美精品综合一区二区三区| 久久久久国内视频| 精品国产超薄肉色丝袜足j| 十八禁人妻一区二区| 精品少妇一区二区三区视频日本电影| 俺也久久电影网| 欧美成人午夜精品| 香蕉国产在线看| 久久久久久免费高清国产稀缺| 一本久久中文字幕| 亚洲一区二区三区色噜噜| 成人手机av| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 麻豆久久精品国产亚洲av| 嫁个100分男人电影在线观看| 欧美成人午夜精品| 国产av又大| 老汉色∧v一级毛片| 精品欧美国产一区二区三| 国产一区二区三区视频了| 两性夫妻黄色片| 亚洲中文字幕一区二区三区有码在线看 | 国产精品香港三级国产av潘金莲| 国产精品 欧美亚洲| 男女做爰动态图高潮gif福利片| √禁漫天堂资源中文www| 久热这里只有精品99| 欧美国产日韩亚洲一区| 免费在线观看完整版高清| 久久久久久久久免费视频了| 19禁男女啪啪无遮挡网站| 亚洲精品av麻豆狂野| 亚洲中文av在线| 成人精品一区二区免费| 国内毛片毛片毛片毛片毛片| 色婷婷久久久亚洲欧美| 1024视频免费在线观看| 欧美三级亚洲精品| 99精品久久久久人妻精品| 久久久久久九九精品二区国产 | 精品国产国语对白av| 成人亚洲精品一区在线观看| 国产亚洲精品一区二区www| 国内毛片毛片毛片毛片毛片| 美女国产高潮福利片在线看| 又大又爽又粗| 悠悠久久av| 国产极品粉嫩免费观看在线| 欧美日本亚洲视频在线播放| 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 观看免费一级毛片| 国产午夜精品久久久久久| 男男h啪啪无遮挡| 嫩草影院精品99| 国产伦一二天堂av在线观看| 亚洲黑人精品在线| 亚洲三区欧美一区| 亚洲人成电影免费在线| 国产男靠女视频免费网站| 欧美中文日本在线观看视频| 一区二区日韩欧美中文字幕| 亚洲在线自拍视频| 亚洲无线在线观看| 日韩国内少妇激情av| 日韩av在线大香蕉| 又紧又爽又黄一区二区| 1024手机看黄色片| 婷婷精品国产亚洲av在线| 国产精品亚洲av一区麻豆| 日韩 欧美 亚洲 中文字幕| svipshipincom国产片| 国产精品,欧美在线| 午夜免费鲁丝| 嫩草影院精品99| 国产精品乱码一区二三区的特点| 视频在线观看一区二区三区| 悠悠久久av| 精品无人区乱码1区二区| 精品久久久久久,| 美女扒开内裤让男人捅视频| 岛国视频午夜一区免费看| 99精品在免费线老司机午夜| 国产精品av久久久久免费| 久久精品亚洲精品国产色婷小说| 一级片免费观看大全| 国产亚洲精品久久久久久毛片| 国产欧美日韩一区二区精品| 国产男靠女视频免费网站| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 精品国产乱子伦一区二区三区| av有码第一页| 国产精品乱码一区二三区的特点| 99riav亚洲国产免费| 悠悠久久av| xxxwww97欧美| 草草在线视频免费看| 亚洲人成网站高清观看| or卡值多少钱| 老司机在亚洲福利影院| 国产欧美日韩一区二区精品| 午夜影院日韩av| 亚洲国产中文字幕在线视频| 波多野结衣高清作品| 亚洲av成人一区二区三| 色播亚洲综合网| 精品国产超薄肉色丝袜足j| 国产成人av教育| 亚洲国产精品sss在线观看| 日本在线视频免费播放| 国产av在哪里看| 久久久久国产一级毛片高清牌| 国产蜜桃级精品一区二区三区| 我的亚洲天堂| 久久中文字幕一级| 在线观看66精品国产| 久9热在线精品视频| 国产男靠女视频免费网站| 美女扒开内裤让男人捅视频| 亚洲国产欧洲综合997久久, | 午夜福利在线观看吧| 老司机靠b影院| 成年免费大片在线观看| 在线永久观看黄色视频| 看片在线看免费视频| 精品免费久久久久久久清纯| 亚洲熟女毛片儿| 国产成人av教育| 97碰自拍视频| bbb黄色大片| 少妇粗大呻吟视频| 这个男人来自地球电影免费观看| 国产精品乱码一区二三区的特点| 美女高潮到喷水免费观看| 午夜免费鲁丝| 国产精品久久久人人做人人爽| www国产在线视频色| 午夜福利在线在线| 午夜免费激情av| 婷婷精品国产亚洲av| 国产高清有码在线观看视频 | 美女扒开内裤让男人捅视频| 精品久久久久久,| 精品一区二区三区四区五区乱码| 丝袜在线中文字幕| 亚洲五月婷婷丁香| 欧美不卡视频在线免费观看 | 又大又爽又粗| 婷婷精品国产亚洲av| 日韩三级视频一区二区三区| 伦理电影免费视频| 久久精品夜夜夜夜夜久久蜜豆 | 制服诱惑二区| 黄网站色视频无遮挡免费观看| 视频在线观看一区二区三区| 欧美精品亚洲一区二区| 亚洲黑人精品在线| 成人av一区二区三区在线看| 精品日产1卡2卡| 十八禁网站免费在线| 国产免费男女视频| 欧美乱妇无乱码| 亚洲自拍偷在线| 九色国产91popny在线| 听说在线观看完整版免费高清| 一二三四在线观看免费中文在| 中文字幕人妻熟女乱码| 在线观看一区二区三区| 丁香六月欧美| 一级片免费观看大全| 18禁观看日本| 国产久久久一区二区三区| 琪琪午夜伦伦电影理论片6080| 亚洲av五月六月丁香网| 18禁黄网站禁片午夜丰满| 国内揄拍国产精品人妻在线 | 精品乱码久久久久久99久播| 精品高清国产在线一区| 亚洲人成网站在线播放欧美日韩| 在线看三级毛片| 午夜免费观看网址| 好看av亚洲va欧美ⅴa在| 嫁个100分男人电影在线观看| 免费看a级黄色片| 最新美女视频免费是黄的| 欧美性猛交╳xxx乱大交人| 熟女电影av网| 久久久国产成人精品二区| 深夜精品福利| 色婷婷久久久亚洲欧美| 在线观看免费午夜福利视频| 久热这里只有精品99| 人人妻人人看人人澡| 午夜福利在线观看吧| 国产精品影院久久| 国产aⅴ精品一区二区三区波| 女生性感内裤真人,穿戴方法视频| 欧美不卡视频在线免费观看 | 亚洲av片天天在线观看| 日韩高清综合在线| 午夜福利18| 欧美一级a爱片免费观看看 | 日本三级黄在线观看| 淫秽高清视频在线观看| 中文亚洲av片在线观看爽| 最新在线观看一区二区三区| 国产精品二区激情视频| 亚洲国产精品合色在线| 国产国语露脸激情在线看| 国产精品久久久久久精品电影 | 18美女黄网站色大片免费观看| 人人妻,人人澡人人爽秒播| 最新美女视频免费是黄的| 国产伦人伦偷精品视频| 少妇粗大呻吟视频| 亚洲国产精品久久男人天堂| 亚洲性夜色夜夜综合| 动漫黄色视频在线观看| 特大巨黑吊av在线直播 | 久久久久国产精品人妻aⅴ院| 欧美日韩福利视频一区二区| 婷婷六月久久综合丁香| 国产熟女xx| 香蕉国产在线看| av在线播放免费不卡| 久久久久久久久中文| 黄片大片在线免费观看| 欧美在线黄色| 看黄色毛片网站| 一区二区三区精品91| 巨乳人妻的诱惑在线观看| 国产1区2区3区精品| 久久久久国内视频| 成人三级黄色视频| 国产1区2区3区精品| 18禁裸乳无遮挡免费网站照片 | 非洲黑人性xxxx精品又粗又长| 香蕉av资源在线| 不卡av一区二区三区| 可以在线观看的亚洲视频| 免费av毛片视频| 超碰成人久久| 国产麻豆成人av免费视频| 国产精品,欧美在线| 少妇熟女aⅴ在线视频| 国产成人av教育| 欧美黄色片欧美黄色片| 成人国产综合亚洲| aaaaa片日本免费| 亚洲熟妇中文字幕五十中出| 国产精品98久久久久久宅男小说| 国产区一区二久久| 日韩三级视频一区二区三区| 日本成人三级电影网站| 精品欧美一区二区三区在线| 90打野战视频偷拍视频| 国产99白浆流出| 日本三级黄在线观看| 制服丝袜大香蕉在线| 亚洲全国av大片| 久久热在线av| 啪啪无遮挡十八禁网站| 91成人精品电影| 久久 成人 亚洲| 国产亚洲av嫩草精品影院| 亚洲精品久久成人aⅴ小说|