• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Critical Trace Trudinger-Moser Inequalities on a Compact Riemann Surface with Smooth Boundary?

    2022-07-08 13:28:14MengjieZHANG

    Mengjie ZHANG

    1School of Mathematics,Renmin University of China,Beijing 100872,China.E-mail: zhangmengjie@ruc.edu.cn

    Abstract In this paper,the author concerns two trace Trudinger-Moser inequalities and obtains the corresponding extremal functions on a compact Riemann surface (Σ,g) with smooth boundary ?Σ.Explicitly,let

    and

    where W1,2(Σ,g)denotes the usual Sobolev space and ?g stands for the gradient operator.By the method of blow-up analysis,we obtain

    Moreover,the author proves the above supremum is attained by a function uα ∈H∩C∞(Σ)for any 0≤α <λ1(?Σ).Further,he extends the result to the case of higher order eigenvalues.The results generalize those of[Li,Y.and Liu,P.,Moser-Trudinger inequality on the boundary of compact Riemannian surface,Math.Z.,250,2005,363–386],[Yang,Y.,Moser-Trudinger trace inequalities on a compact Riemannian surface with boundary,Pacific J.Math.,227,2006,177–200]and [Yang,Y.,Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two,J.Diff.Eq.,258,2015,3161–3193].

    Keywords Trudinger-Moser inequality,Riemann surface,Blow-up analysis,Extremal function

    1 Introduction

    Let ? ?R2be a smooth bounded domain and(?) be the completion ofC∞0(?) under the Sobolev normwhere ?R2is the gradient operator on R2and‖·‖2denotes the standardL2-norm.The classical Trudinger-Moser inequality (see [20,24–25,27,32]),as the limit case of the Sobolev embedding,says

    Moreover,4πis the best constant for this inequality in the sense that whenβ >4π,all integrals in (1.1) are finite and the supremum is infinite.It is interesting to know whether or not the supremum in(1.1)can be attained.For this topic,see Carleson-Chang[5],Flucher[11],Lin[17],Adimurthi-Struwe [2],Li [13–14],Zhu [38],Tintarev [26],Zhang [33–34,37]and the references therein.

    Trudinger-Moser inequalities were studied on Riemann manifolds by Aubin [3],Cherrier[6],Fontana [12]and others.In particular,let (Σ,g) be a compact Riemann surface with smooth boundary?Σ andW1,2(Σ,g) be the completion ofC∞(Σ) under the norm

    where ?gandvgstand for the gradient operator and the volume element on Σ with respect to the metricg,respectively.Liu [18]derived a trace Trudinger-Moser inequality in his doctoral thesis from the result of Osgood-Phillips-Sarnak [23]: For all functionsu∈W1,2(Σ,g),there holds some constantCdepending only on (Σ,g) such that

    wheresgdenotes the induced length element on?Σ with respect tog.Later Li-Liu[15]obtained a strong version of (1.2),namely

    for anyγ≤π.This inequality is sharp in the sense that all integrals in (1.3) are finite whenγ >πand the supremum is infinite.Moreover,for anyγ≤π,the supremum is attained.After that,Yang [28]established the boundary estimate without direct boundary conditions,which is

    Moreover,the supremum in (1.4) can be attained.

    A different form was also derived by Yang [30],namely

    for all 0≤α<λ1(Σ),where

    is the first eigenvalue of the Laplace-Beltrami operator ?g.Further,he extended (1.5) to the case of higher order eigenvalues.Precisely,letλ1(Σ)<λ2(Σ)<···be all distinct eigenvalues of the Laplace-Beltrami operator andEλk(Σ)={u∈W1,2(Σ,g):?gu=λk(Σ)u},k=1,2,···be associated eigenfunction spaces.For any positive integerk,we set

    and

    Then we have

    for all 0≤α <λk(Σ);moreover the above supremum can be attained by some functionuα∈E⊥k(Σ).

    In this paper,we will establish two new trace Trudinger-Moser inequalities,which are extensions of (1.5) and (1.6),respectively.Precisely we first have the following theorem.

    Theorem 1.1Let(Σ,g)be a compact Riemann surface with smooth boundary ?Σ,λ1(?Σ)be defined as

    and

    Then we have

    (i)when0≤α<λ1(?Σ),we have

    and it can be attained by some function uα∈H ∩C∞(Σ);

    (ii)when α≥λ1(?Σ),the above supremum is infinite.

    An interesting consequence of Theorem 1.1 is the following weak form of (1.8).

    Theorem 1.2Let(Σ,g)be a compact Riemann surface with smooth boundary ?Σ,λ1(?Σ)be defined as in(1.7).Then for any0≤α <λ1(?Σ),u∈W1,2(Σ,g)andudsg=0,thereexists a constant C >0depending only on α and(Σ,g),such that

    Moreover,we extend Theorem 1.1 to the case of higher order eigenvalues.Let us introduce some notations.For any positive integerk,we set

    where n denotes the outward unit normal vector on?Σ and

    Then we set

    which is the (k+1)-th eigenvalue of ?gon?Σ,where

    and

    We note thatW1,2(Σ,g)=Ek(?Σ)⊕E⊥k(?Σ).Then a generalization of Theorem 1.1 can be stated as follows.

    Theorem 1.3Let(Σ,g)be a compact Riemann surface with smooth boundary ?Σand λk+1(?Σ)be defined by(1.9).For any0≤α<λk+1(?Σ),let

    where E⊥k(?Σ)is defined as in(1.11).Then the supremum

    is attained by some function uα∈S ∩C∞().

    Clearly Theorems 1.1 and 1.3 extend (1.5) and (1.6) to the trace Trudinger-Moser inequalities,respectively.For theirs proofs,we employ the method of blow-up analysis,which was originally used by Carleson-Chang [5],Ding-Jost-Li-Wang [8],Adimurthi-Struwe [2],Li [13],Liu [18],Li-Liu [15]and Yang [28–29].This method is now standard.For related works,we refer Adimurthi-Druet [1],do ′O-de Souza [7,9],Nguyen [21–22],Zhu [39],Fang-Zhang [10],Mancini-Martinazzi [19]and Zhang [35–36].

    In the remaining part of this paper,we prove Theorem 1.1 in Section 2 and Theorem 1.3 in Section 3,respectively.

    2 The First Eigenvalue Case

    In this section,we will prove Theorem 1.1(ii) first,and then we will prove Theorem 1.1(i).Without loss of generality,we do not distinguish sequence and subsequence in the following.

    2.1 The case of α≥λ1(?Σ)

    Letλ1(?Σ) be defined in (1.7).It is easy to know thatλ1(?Σ) is attained by some functionu0∈W1,2(Σ,g)satisfyingBy a direct calculation,we derive thatu0satisfies the Euler-Lagrange equation

    where ?gdenotes the Laplace-Beltrami operator,n denotes the outward unit normal vector on?Σ.Applying elliptic estimates to (2.1),we haveu0∈W1,2(Σ,g)∩C0().Then we obtain thatλ1(?Σ)can be attained by some functiontu0∈W1,2(Σ,g)∩C0(Σ)for any positive integert.

    Sinceα≥λ1(?Σ),we have

    Then there holdstu0∈H ∩C0().In view ofu00,we obtain that there is a pointx0∈?Σ withu0(x0)>0.Moreover,there exists a neighborhood U ofx0satisfyingu0(x)≥>0 in U.Then we get

    Lettingt→+∞,one has Theorem 1.1(ii).

    2.2 The case of 0≤α <λ1(?Σ)

    In this subsection,we will prove Theorem 1.1(i)by four steps: Firstly,we consider the existence of maximizers for subcritical functionals and the corresponding Euler-Lagrange equation;secondly,we deal with the asymptotic behavior of the maximizers through blow-up analysis;thirdly,we deduce an upper bound of the supremumunder the assumption that blow-up occurs;finally,we construct a sequence of functions to show that Theorem 1.1(i)holds.

    Step 1Existence of maximizers for subcritical functionals.For any 0≤α<λ1(?Σ),we let

    We have the following lemma.

    Lemma 2.1For any0<ε <π,the supremumis attained by somefunction uε∈H ∩C∞().

    ProofLet 0<ε<πbe fixed.By the definition of supremum,we can choose a maximizing sequencein H such that

    Moreover,uiconverges to some functionuεweakly inW1,2(Σ,g) and strongly inLp(?Σ,g) for anyp >1.Then we haveAccording to the definition of weak convergence and the H?lder’s inequality,we getwhich gives ‖uε‖≤1.From Lagrange’s mean value theorem,the H?lder’s inequality and (1.3),there holds

    In view of (2.2),we have

    Suppose ‖uε‖<1,then one gets

    This result contradicts with (2.3).Hence ‖uε‖=1 holds anduε∈H.

    By a direct calculation,we derive thatuεsatisfies the Euler-Lagrange equation

    where?(?Σ) denotes the length of?Σ.Applying elliptic estimates to (2.4),we haveuε∈H ∩C∞().Then Lemma 2.1 follows.

    Moreover,we have

    from Lebesgue’s dominated convergence theorem.It follows from(2.5)and the fact of et≤1+tetfor anyt≥0 that

    From (2.6) anduε∈H,one gets

    Step 2Blow-up analysis.

    Let us perform the blow-up analysis.Without loss of generality,we setcε=|uε(xε)|=Ifcεis bounded,by elliptic estimates,we complete the proof of Theorem 1.1(i).In the following,we assumeandxε→pasε→0.Applying maximum principle to (2.4),we havep∈?Σ.Then we have the following lemma.

    Lemma 2.2There hold uε0weakly in W1,2(Σ,g)and uε→0strongly in L2(?Σ,g)as ε→0.Furthermore,|?guε|2dvgpin sense of measure,where δpis the usual Dirac measure centered at p.

    ProofSinceuεis bounded inW1,2(Σ,g),there exists some functionu0such thatuε?u0weakly inW1,2(Σ,g)anduε→u0strongly inL2(?Σ,g)asε→0.Then we haveand ‖u0‖≤1.

    Supposeu00,then one hasand

    Then we obtain ‖?g(uε?u0)‖22→1?‖u0‖asε→0.Lettingζ=1?‖u0‖,one has 0≤ζ <1.For sufficiently smallε,there holds

    From the H?lder’s inequality,(1.3) and (2.8),we get e(π?ε)u2εis bounded inLq(?Σ,g) for sufficiently smallε.Applying the elliptic estimate to(2.4),one gets thatuεis uniformly bounded,which contradictscε→+∞.That is to sayu0≡0.

    Suppose |?guε|2dvg?μ≠δpin sense of measure.Then there exists some positive numberr>0 such thatwhereBr(p)is a geodesic ball centered atpwith radiusr.Moreover,we obtainfor sufficiently smallε.We choose a cut-offfunctionρ∈C10(Br(p)),which is equal to 1 infor sufficiently smallε.Hence there holds

    for someq >1.In view of (1.3),we obtainis bounded inLq(Br2(p)∩?Σ,g) for sufficiently smallε.Applying the elliptic estimate to(2.4),we get thatuεis uniformly bounded inBr4(p)∩?Σ,which contradictscε→+∞.Therefore,Lemma 2.2 follows.

    Now we analyse the asymptotic behavior ofuεnear the concentration pointp.Let

    Following[31,Lemma 4],we can take an isothermal coordinate system(U,φ)nearx0,such thatφ(x0)=0,φ(U)=B+randφ(U∩?Σ)=?R2+∩Brfor some fixedr >0,where B+r={(x1,x2)∈R2:x21+x22≤r2,x2>0} and R2+={x=(x1,x2) ∈R2:x2>0}.In such coordinates,the metricghas the representationg=e2f(dx21+dx22) andfis a smooth function withf(0)=0.Denote=uε?φ?1,=φ(xε) andUε={x∈R2:+rεx∈φ(U)}.Define two blowing up functions inUε,

    and

    In view of (2.4) and (2.9)–(2.11),for any fixedR>0,we obtain

    and

    where ?R2denotes the Laplace operator on R2,v denotes the outward unit normal vector on?R2+,Br={x∈R2: dist(x,0)≤r} and B+r={x=(x1,x2) ∈Br:x2>0} for anyr >0.Applying elliptic estimates to (2.12),we havefor any fixedR >0 withψ(0)=1.According to (2.4),(2.7) and (2.9),we getThen there holds

    Using the same argument for (2.13) as above,we obtain

    where?satisfies

    It is not difficult to check that

    for any fixedR>0,that is to sayBy a result of Li-Zhu [16],we obtain

    A direct calculation gives

    Next we discuss the convergence behavior ofuεaway fromp.Denoteuε,β=min{βcε,uε}∈W1,2(Σ,g) for any real number 0<β <1.Following [29,Lemma 4.7],we can easily get

    Lemma 2.3Letting λεbe defined by(2.4),we obtain

    and

    ProofRecalling (2.4) and (2.18),one gets

    for any real number 0<β <1 and somer,s >1 withFrom (1.3) and (2.18),is bounded inLr(?Σ,g).Lettingε→0 first and thenβ→1,we obtain

    According tocε=(2.4) and Lemma 2.2,we have

    that is to say

    Combining (2.21) with (2.22),one gets (2.19).

    Applying (2.4) and (2.9)–(2.11),we have

    From (2.14)–(2.17),(2.20) holds.

    Next we consider the properties ofcεuε.Combining Lemma 2.3 with [29,Lemma 4.9],we obtain

    Furthermore,one has the follwing lemma.

    Lemma 2.4There hold

    where G is a Green function satisfying

    ProofFrom (2.4),there hold

    Combining (2.4) with (2.23),we obtain

    Moreover,it follows from the Poincar′e inequality that

    From the H?lder’s inequality and the Sobolev embedding theorem,one gets

    for someq >1.It is well known (see for example [15,Proposition 3.5]) that

    That is to say ‖?g(cεuε)‖Lq(Σ)≤C.The Poincar′e inequality implies thatcεuεis bounded inW1,q(Σ,g) for any 1

    For any fixedδ >0,we choose a cut-offfunctionη∈C∞() such thatη≡0 onBδ(p) andUsing Lemma 2.2,we haveHenceis bounded infor anys >1.It follows from (2.25) thatfor somes0>2. Applying the elliptic estimate to (2.25),we get thatcεuεis bounded inThen there holdsThis completes the proof of the lemma.

    Applying the elliptic estimate to (2.24),we can decomposeGnearp,

    wherer=dist(x,p) andApis a constant depending only onα,pand (Σ,g).

    Step 3Upper bound estimate.

    Lemma 2.5Under the hypotheses cε→+∞and xε→p∈?Σas ε→0,there holds

    ProofWe take an isothermal coordinate system (U,φ) nearpsuch thatφ(p)=0,φmapsUto R2+,andφ(U∩?Σ) ??R2+.In such coordinates,the metricghas the representationg=e2f(dx21+dx22) andfis a smooth function withf(0)=0.We claim that

    To confirm this claim,we setfor sufficiently smallδ >0 and some fixedR >0,whereIt follows from (2.30) and Lemma 2.4 that onwhich leads to

    whereoδ(1)→0,oε(1)→0 asε→0.According to (2.15)–(2.16),we have on?BRrε∩R2+,

    then there holds

    From a direct computation,there holds

    Define

    and

    Recalling (2.4) and (2.9),we have

    Letting∈Wa,bandu?ε=max{a,min{b,}},one getsfor sufficiently smallε.Further using ‖uε‖=1,we obtain

    Hence we have by Lemma 2.4,

    According to (2.11),(2.15) and (2.16),one gets

    whereoR(1)→0 asR→+∞.In view of (2.33)–(2.38),we obtain

    whereo(1)→0 asε→0 first,thenR→+∞andδ→0.Hence (2.32) follows.Combining(2.5),(2.32) with Lemma 2.3,we finish the proof of the lemma.

    Step 4Existence result.

    In this step,we always assume that 0≤α <λ1(?Σ).We take an isothermal coordinate system (U,φ) nearpsuch thatφ(p)=0,φmapsUto R2+,andφ(U∩?Σ) ??R2+.In such coordinates,the metricghas the representationg=andfis a smooth function withf(0)=0.Set a cut-offfunctionwithξ=1 onandDenoteβ=G+lnr?Apfor anyr >0,whereGis defined by (2.30).LetR=ln2ε,thenR→+∞andRε→0 asε→0.We construct a blow-up sequence of functions

    for some constantsB,cto be determined later,such that

    A delicate calculation shows

    and

    In view of (2.40)–(2.44),there holds

    Moreover,in order to assure thatvε∈W1,2(Σ,g),we obtain

    which is equivalent to

    According to (2.45)–(2.46),one gets

    It follows that in?Σ ∩BRε(p),

    Hence

    On the other hand,from the fact et≥t+1 for anyt>0 and (2.39),we get

    From (2.47)–(2.48)andR=ln2ε,there holds

    for sufficiently smallε>0.The contradiction between (2.31)and (2.49)indicates thatcεmust be bounded.Then Theorem 1.1 follows.

    3 Higher Order Eigenvalue Cases

    In this section,we will prove Theorem 1.3 involving higher order eigenvalues through blowup analysis.Letkbe a positive integer andEk(?Σ)be defined by(1.10).Denote the dimension ofEk(?Σ)bysk.From[4,Theorem 9.31],it is known thatskis a finite constant only depending onk.Then we can find a set of normal orthogonal basisofEk(?Σ) satisfying

    wherek0≤kis a positive integer.

    3.1 Blow-up analysis

    Letλk+1(?Σ)and S be defined by (1.9)and (1.12),respectively.In view of Lemma 2.1 and(3.1),we have the following lemma.

    Lemma 3.1Let0≤α<λk+1(?Σ)be fixed.For any0<ε<π,the supremum

    is attained by some function uε∈S ∩C∞(Σ).Moreover,the Euler-Lagrange equation of uεis

    Without loss of generality,we setcε=|uε(xε)|=We first assume thatcεis bounded,which together with elliptic estimates completes the proof of Theorem 1.3.In the remainder of Section 3,we assume

    andxε→pasε→0.Applying maximum principle to (3.2),we havep∈?Σ.Similar to Lemma 4,we get the following lemma.

    Lemma 3.2There hold cεuε?G weakly in W1,q(Σ,g) (?1

    Moreover,Gnearpcan be decomposed into

    wherer=dist(x,p) andApis a constant depending only onα,pand (Σ,g).Analogous to Lemma 2.5,using the capacity estimate,we derive an upper bound of the supremum (1.13):

    3.2 Existence result

    We always assume thatcε→+∞asε→0.Take an isothermal coordinate system (U,φ)nearpsuch thatφ(p)=0,φmapsUto R2+,andφ(U∩?Σ) ??R2+.In such coordinates,the metricghas the representationg=e2f(dx21+dx22) andfis a smooth function withf(0)=0.Set a cut-offfunctionξ∈withandDenoteβ=G+lnr?Ap,whereGis defined by (3.3).LetR=ln2ε,thenR→+∞andRε→0 asε→0.We construct a blow-up sequence of functions

    for some constantsB,cto be determined later,such that

    andvε?∈S,whereAnalogous to Subsection 2.4,we determine the constants

    and

    Then we get

    Setting

    for sufficiently smallε >0.The contradiction between (3.4) and (3.6) indicates that the assumption of=+∞is not true.Thencεmust be bounded and Theorem 1.3 follows from the elliptic estimate.

    av电影中文网址| 亚洲图色成人| 亚洲国产精品一区三区| 亚洲伊人久久精品综合| 久久天躁狠狠躁夜夜2o2o | 爱豆传媒免费全集在线观看| 女人精品久久久久毛片| 日韩视频在线欧美| 性色av乱码一区二区三区2| 一级,二级,三级黄色视频| 爱豆传媒免费全集在线观看| 中文乱码字字幕精品一区二区三区| 91成人精品电影| 国产三级黄色录像| 精品久久久久久电影网| 女人爽到高潮嗷嗷叫在线视频| 免费在线观看影片大全网站 | 高清黄色对白视频在线免费看| 丝袜人妻中文字幕| 亚洲色图 男人天堂 中文字幕| 满18在线观看网站| 国产精品.久久久| 久久精品熟女亚洲av麻豆精品| 欧美精品高潮呻吟av久久| 美女国产高潮福利片在线看| 免费在线观看视频国产中文字幕亚洲 | 热99久久久久精品小说推荐| a级片在线免费高清观看视频| 国产不卡av网站在线观看| 精品一品国产午夜福利视频| 99re6热这里在线精品视频| 成年人免费黄色播放视频| 叶爱在线成人免费视频播放| 51午夜福利影视在线观看| 久久人妻熟女aⅴ| 日韩大码丰满熟妇| 亚洲av成人精品一二三区| av片东京热男人的天堂| svipshipincom国产片| 亚洲av电影在线观看一区二区三区| 精品卡一卡二卡四卡免费| 亚洲精品成人av观看孕妇| 好男人电影高清在线观看| 国产日韩欧美在线精品| 久久国产精品男人的天堂亚洲| tube8黄色片| 亚洲av在线观看美女高潮| 下体分泌物呈黄色| 国产片内射在线| 黄片播放在线免费| 亚洲,一卡二卡三卡| 亚洲 欧美一区二区三区| 在线观看免费高清a一片| 亚洲色图综合在线观看| 黄片播放在线免费| 日日摸夜夜添夜夜爱| 每晚都被弄得嗷嗷叫到高潮| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站 | 午夜福利视频精品| 欧美人与性动交α欧美软件| 18在线观看网站| 日韩欧美一区视频在线观看| av视频免费观看在线观看| 亚洲精品美女久久av网站| 久9热在线精品视频| 精品少妇久久久久久888优播| 黑人猛操日本美女一级片| 精品欧美一区二区三区在线| 免费久久久久久久精品成人欧美视频| 日韩伦理黄色片| 国产极品粉嫩免费观看在线| 国产精品一国产av| 爱豆传媒免费全集在线观看| 国产精品秋霞免费鲁丝片| 天天添夜夜摸| 91精品国产国语对白视频| 精品一区在线观看国产| 久久ye,这里只有精品| 2018国产大陆天天弄谢| av网站在线播放免费| 一级片'在线观看视频| 亚洲情色 制服丝袜| 亚洲欧美日韩高清在线视频 | 1024视频免费在线观看| 一级毛片女人18水好多 | 99久久精品国产亚洲精品| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| 美女大奶头黄色视频| 日本猛色少妇xxxxx猛交久久| 一二三四在线观看免费中文在| av视频免费观看在线观看| 亚洲精品日韩在线中文字幕| 精品少妇久久久久久888优播| 狠狠精品人妻久久久久久综合| 日韩熟女老妇一区二区性免费视频| 人人妻人人澡人人看| 99久久99久久久精品蜜桃| 男女午夜视频在线观看| 母亲3免费完整高清在线观看| 欧美少妇被猛烈插入视频| 亚洲精品第二区| 高清视频免费观看一区二区| 亚洲国产av新网站| 五月天丁香电影| 国产亚洲av片在线观看秒播厂| www.999成人在线观看| 老司机影院毛片| 免费观看av网站的网址| 天天添夜夜摸| 老鸭窝网址在线观看| 免费在线观看黄色视频的| 69精品国产乱码久久久| 国产精品秋霞免费鲁丝片| 亚洲一区中文字幕在线| 日日夜夜操网爽| 午夜激情av网站| 18禁观看日本| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品第一综合不卡| 欧美av亚洲av综合av国产av| 精品人妻在线不人妻| 91精品三级在线观看| 美女中出高潮动态图| 每晚都被弄得嗷嗷叫到高潮| 老汉色∧v一级毛片| 一级黄片播放器| 日韩中文字幕欧美一区二区 | 交换朋友夫妻互换小说| 亚洲av日韩在线播放| 亚洲激情五月婷婷啪啪| 久久久精品区二区三区| 亚洲精品在线美女| 蜜桃国产av成人99| www.自偷自拍.com| 青春草视频在线免费观看| 高清视频免费观看一区二区| 国产在线视频一区二区| 大香蕉久久网| 交换朋友夫妻互换小说| 香蕉国产在线看| 中文字幕人妻熟女乱码| 久久午夜综合久久蜜桃| 国产片特级美女逼逼视频| 日本欧美视频一区| 捣出白浆h1v1| 日本a在线网址| 波多野结衣一区麻豆| 久久综合国产亚洲精品| 狠狠精品人妻久久久久久综合| 少妇裸体淫交视频免费看高清 | 首页视频小说图片口味搜索 | 成人黄色视频免费在线看| 国产成人a∨麻豆精品| 一个人免费看片子| 亚洲av国产av综合av卡| 精品卡一卡二卡四卡免费| 青春草视频在线免费观看| 大香蕉久久成人网| 热99国产精品久久久久久7| 久久毛片免费看一区二区三区| 国产精品一国产av| 美女国产高潮福利片在线看| 视频区欧美日本亚洲| 中文字幕色久视频| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人爽人人添夜夜欢视频| 日韩av在线免费看完整版不卡| 日本一区二区免费在线视频| av福利片在线| 国产激情久久老熟女| 国精品久久久久久国模美| 热99国产精品久久久久久7| 国产成人欧美| 波多野结衣av一区二区av| 亚洲国产欧美在线一区| 午夜日韩欧美国产| 亚洲国产精品国产精品| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲美女黄色视频免费看| 精品高清国产在线一区| 国产伦理片在线播放av一区| 爱豆传媒免费全集在线观看| 亚洲欧美清纯卡通| 黄色 视频免费看| 18禁观看日本| 久久久精品免费免费高清| 久久久国产精品麻豆| 成人亚洲精品一区在线观看| 午夜激情av网站| 狂野欧美激情性bbbbbb| 丁香六月天网| 中文字幕人妻丝袜一区二区| 亚洲欧美一区二区三区黑人| 亚洲一码二码三码区别大吗| 亚洲色图 男人天堂 中文字幕| 一本综合久久免费| 在线天堂中文资源库| 在线av久久热| 欧美日韩亚洲高清精品| 中国美女看黄片| 精品卡一卡二卡四卡免费| h视频一区二区三区| 久9热在线精品视频| 丰满少妇做爰视频| 五月天丁香电影| 十分钟在线观看高清视频www| 久久人人爽av亚洲精品天堂| 2021少妇久久久久久久久久久| 欧美亚洲日本最大视频资源| av在线老鸭窝| 欧美黑人欧美精品刺激| 香蕉丝袜av| 亚洲天堂av无毛| 亚洲国产精品一区三区| 超碰成人久久| 免费看av在线观看网站| 精品亚洲成国产av| 免费高清在线观看视频在线观看| 久久精品国产综合久久久| 国产又色又爽无遮挡免| 性少妇av在线| 国产亚洲一区二区精品| 亚洲第一青青草原| 亚洲美女黄色视频免费看| 成人影院久久| 夜夜骑夜夜射夜夜干| 免费在线观看影片大全网站 | 久久精品国产亚洲av涩爱| 国产av精品麻豆| av福利片在线| 高潮久久久久久久久久久不卡| 亚洲欧美精品综合一区二区三区| 久久久久久久国产电影| 99国产精品免费福利视频| 天天躁夜夜躁狠狠久久av| √禁漫天堂资源中文www| 男人爽女人下面视频在线观看| 999精品在线视频| 男女无遮挡免费网站观看| www.av在线官网国产| 大话2 男鬼变身卡| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区二区三区在线| 咕卡用的链子| 看免费成人av毛片| 中国国产av一级| 亚洲欧美色中文字幕在线| 观看av在线不卡| 水蜜桃什么品种好| 大型av网站在线播放| 日日摸夜夜添夜夜爱| 少妇被粗大的猛进出69影院| 91麻豆av在线| av在线老鸭窝| 日韩一卡2卡3卡4卡2021年| 韩国高清视频一区二区三区| 男女边摸边吃奶| 一级毛片我不卡| www.999成人在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕精品免费在线观看视频| 老熟女久久久| 赤兔流量卡办理| 亚洲一区二区三区欧美精品| 啦啦啦视频在线资源免费观看| 两个人免费观看高清视频| 99久久精品国产亚洲精品| 国产精品久久久久久精品古装| cao死你这个sao货| 2021少妇久久久久久久久久久| 美女高潮到喷水免费观看| 在线观看国产h片| 巨乳人妻的诱惑在线观看| 人人妻人人澡人人看| 丰满饥渴人妻一区二区三| 国产女主播在线喷水免费视频网站| 亚洲国产欧美网| 午夜免费男女啪啪视频观看| 国产精品偷伦视频观看了| 国产精品一区二区免费欧美 | 国产99久久九九免费精品| 天堂俺去俺来也www色官网| 99国产精品免费福利视频| 99久久精品国产亚洲精品| 久久久久网色| 精品人妻1区二区| 国产精品av久久久久免费| 国产成人91sexporn| 一本大道久久a久久精品| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| 亚洲av男天堂| 亚洲欧美精品综合一区二区三区| 99re6热这里在线精品视频| 大话2 男鬼变身卡| 成人手机av| 一级片'在线观看视频| 美国免费a级毛片| 国产主播在线观看一区二区 | 啦啦啦视频在线资源免费观看| 亚洲精品中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 亚洲九九香蕉| 热re99久久国产66热| 国产精品一区二区在线不卡| 国产av一区二区精品久久| 一本色道久久久久久精品综合| 男人舔女人的私密视频| 欧美成狂野欧美在线观看| 老司机在亚洲福利影院| 亚洲黑人精品在线| a 毛片基地| 精品国产乱码久久久久久男人| 亚洲中文日韩欧美视频| 亚洲av美国av| 首页视频小说图片口味搜索 | www.av在线官网国产| 午夜老司机福利片| 99国产精品99久久久久| av天堂在线播放| 久久九九热精品免费| 亚洲专区国产一区二区| 日韩av在线免费看完整版不卡| 中文乱码字字幕精品一区二区三区| 最近中文字幕2019免费版| 中文字幕av电影在线播放| 亚洲第一av免费看| 一级,二级,三级黄色视频| 国产高清国产精品国产三级| 日韩中文字幕欧美一区二区 | 一级毛片电影观看| 午夜视频精品福利| 免费高清在线观看日韩| 美女扒开内裤让男人捅视频| 美女午夜性视频免费| 亚洲av男天堂| 一个人免费看片子| 777米奇影视久久| 一个人免费看片子| 色综合欧美亚洲国产小说| av在线老鸭窝| 啦啦啦在线观看免费高清www| 国产精品麻豆人妻色哟哟久久| 国产熟女午夜一区二区三区| 热99国产精品久久久久久7| 免费看不卡的av| 亚洲天堂av无毛| av国产久精品久网站免费入址| 欧美av亚洲av综合av国产av| 亚洲国产精品一区二区三区在线| 精品第一国产精品| 亚洲成人免费av在线播放| 国产成人一区二区三区免费视频网站 | 亚洲 国产 在线| 免费在线观看黄色视频的| 久久久久久久大尺度免费视频| 久9热在线精品视频| 亚洲精品中文字幕在线视频| 最近最新中文字幕大全免费视频 | 成人午夜精彩视频在线观看| cao死你这个sao货| 成人影院久久| 三上悠亚av全集在线观看| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 麻豆乱淫一区二区| 色综合欧美亚洲国产小说| 下体分泌物呈黄色| 免费在线观看完整版高清| 老司机午夜十八禁免费视频| 又紧又爽又黄一区二区| 大陆偷拍与自拍| 一级毛片电影观看| 每晚都被弄得嗷嗷叫到高潮| 美女高潮到喷水免费观看| 大码成人一级视频| 亚洲成人免费电影在线观看 | 亚洲精品国产一区二区精华液| 天天躁夜夜躁狠狠躁躁| 久久精品成人免费网站| netflix在线观看网站| 亚洲第一青青草原| 国产精品秋霞免费鲁丝片| 水蜜桃什么品种好| 色网站视频免费| 亚洲人成网站在线观看播放| 国产精品av久久久久免费| 一边亲一边摸免费视频| 97精品久久久久久久久久精品| 深夜精品福利| 首页视频小说图片口味搜索 | 色94色欧美一区二区| svipshipincom国产片| 精品亚洲成a人片在线观看| 丝袜人妻中文字幕| 2021少妇久久久久久久久久久| 久久鲁丝午夜福利片| 一级毛片电影观看| 国产免费又黄又爽又色| 国产成人av教育| 天堂俺去俺来也www色官网| 亚洲黑人精品在线| 亚洲欧美清纯卡通| 国产在线视频一区二区| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 欧美xxⅹ黑人| 国产99久久九九免费精品| 赤兔流量卡办理| 亚洲伊人久久精品综合| 秋霞在线观看毛片| 看免费成人av毛片| 免费av中文字幕在线| 国产亚洲av片在线观看秒播厂| 亚洲人成电影免费在线| 国产亚洲一区二区精品| 国产成人精品久久二区二区91| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区蜜桃| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 欧美日本中文国产一区发布| 在线观看国产h片| 久久亚洲精品不卡| 少妇的丰满在线观看| 亚洲 国产 在线| 麻豆国产av国片精品| 水蜜桃什么品种好| 午夜福利免费观看在线| 国产视频首页在线观看| 侵犯人妻中文字幕一二三四区| 少妇 在线观看| 亚洲国产欧美一区二区综合| 热re99久久精品国产66热6| 成人黄色视频免费在线看| 丝瓜视频免费看黄片| 成人国语在线视频| 久久毛片免费看一区二区三区| 天堂8中文在线网| 日韩熟女老妇一区二区性免费视频| 国语对白做爰xxxⅹ性视频网站| 最近最新中文字幕大全免费视频 | 久久99精品国语久久久| 国产高清视频在线播放一区 | 咕卡用的链子| 老鸭窝网址在线观看| 性色av一级| 国产成人av教育| 在线观看一区二区三区激情| av天堂久久9| 亚洲第一青青草原| av一本久久久久| 久久亚洲精品不卡| 国产麻豆69| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 黄色a级毛片大全视频| 国产精品久久久av美女十八| 国产黄频视频在线观看| 曰老女人黄片| 90打野战视频偷拍视频| 高清av免费在线| 丝瓜视频免费看黄片| 交换朋友夫妻互换小说| 女人爽到高潮嗷嗷叫在线视频| 另类亚洲欧美激情| 中文精品一卡2卡3卡4更新| 一个人免费看片子| 激情五月婷婷亚洲| 成人免费观看视频高清| 不卡av一区二区三区| 男女边摸边吃奶| 亚洲国产欧美日韩在线播放| 在线av久久热| 亚洲第一青青草原| 久久精品国产综合久久久| 亚洲黑人精品在线| 老司机靠b影院| 18禁裸乳无遮挡动漫免费视频| 少妇被粗大的猛进出69影院| 91精品国产国语对白视频| 男女之事视频高清在线观看 | 国产有黄有色有爽视频| 欧美成人午夜精品| 日韩一卡2卡3卡4卡2021年| 久久亚洲精品不卡| 高清不卡的av网站| 日本a在线网址| 激情视频va一区二区三区| 婷婷色综合大香蕉| 欧美成人精品欧美一级黄| 日本av免费视频播放| 一级黄色大片毛片| 国产福利在线免费观看视频| 国产在视频线精品| 在线天堂中文资源库| 50天的宝宝边吃奶边哭怎么回事| 黄色一级大片看看| a级毛片黄视频| 国产精品一国产av| 国产精品久久久av美女十八| 国产精品一区二区免费欧美 | 日本vs欧美在线观看视频| 午夜免费观看性视频| 啦啦啦在线免费观看视频4| 香蕉丝袜av| 亚洲三区欧美一区| 女人精品久久久久毛片| 18禁国产床啪视频网站| 一级毛片我不卡| 最新的欧美精品一区二区| 国产爽快片一区二区三区| 亚洲国产欧美在线一区| 精品人妻熟女毛片av久久网站| 亚洲精品国产av成人精品| 免费高清在线观看视频在线观看| 精品人妻1区二区| 亚洲精品国产色婷婷电影| 国产亚洲欧美在线一区二区| 9热在线视频观看99| 麻豆国产av国片精品| 国产又爽黄色视频| 精品少妇久久久久久888优播| 亚洲九九香蕉| 久久久精品区二区三区| 爱豆传媒免费全集在线观看| 在线精品无人区一区二区三| 国产精品熟女久久久久浪| 国产黄频视频在线观看| 少妇精品久久久久久久| 色视频在线一区二区三区| 欧美xxⅹ黑人| 飞空精品影院首页| 又粗又硬又长又爽又黄的视频| 日本黄色日本黄色录像| 亚洲一区中文字幕在线| 日本一区二区免费在线视频| 精品人妻在线不人妻| 国产成人a∨麻豆精品| 天天躁夜夜躁狠狠久久av| 韩国精品一区二区三区| 国产人伦9x9x在线观看| 国产男女超爽视频在线观看| 亚洲熟女毛片儿| 在线av久久热| 十八禁网站网址无遮挡| 亚洲国产精品成人久久小说| 亚洲欧洲国产日韩| 考比视频在线观看| 天天躁日日躁夜夜躁夜夜| 久久精品亚洲av国产电影网| 在线观看一区二区三区激情| 久久99热这里只频精品6学生| 国产成人精品久久二区二区91| 中文字幕亚洲精品专区| 免费久久久久久久精品成人欧美视频| 看十八女毛片水多多多| 久久人人爽人人片av| 少妇人妻久久综合中文| a级片在线免费高清观看视频| 午夜福利视频精品| 久久人妻福利社区极品人妻图片 | 色94色欧美一区二区| 免费在线观看日本一区| 50天的宝宝边吃奶边哭怎么回事| 在线观看一区二区三区激情| 极品人妻少妇av视频| av天堂在线播放| 首页视频小说图片口味搜索 | 国产一区亚洲一区在线观看| 一本一本久久a久久精品综合妖精| 99九九在线精品视频| 亚洲美女黄色视频免费看| 日韩 欧美 亚洲 中文字幕| 啦啦啦在线免费观看视频4| 日韩一本色道免费dvd| 成年av动漫网址| 精品久久蜜臀av无| 国产精品香港三级国产av潘金莲 | 亚洲av成人不卡在线观看播放网 | 成年人黄色毛片网站| 免费看av在线观看网站| 日本av免费视频播放| 亚洲伊人色综图| 最近最新中文字幕大全免费视频 | 91精品国产国语对白视频| 在线看a的网站| 亚洲精品中文字幕在线视频| 首页视频小说图片口味搜索 | 久久久久久久久免费视频了| 免费高清在线观看日韩| 久热爱精品视频在线9| 少妇人妻 视频| 美女午夜性视频免费| 制服人妻中文乱码| 成人免费观看视频高清| 不卡av一区二区三区| 免费人妻精品一区二区三区视频| 久久久久久久大尺度免费视频| 可以免费在线观看a视频的电影网站| 午夜免费男女啪啪视频观看| 免费一级毛片在线播放高清视频 | 最近手机中文字幕大全| 日韩av在线免费看完整版不卡| 伊人久久大香线蕉亚洲五| 午夜激情久久久久久久| www.999成人在线观看| 不卡av一区二区三区|