• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rotational Hypersurfaces with Constant Gauss-Kronecker Curvature

    2022-07-08 13:27:50YuhangLIUYunchuDAI

    Yuhang LIU Yunchu DAI

    1Beijing International Center for Mathematical Research,Peking University,Beijing 100871,China.E-mail: liuyuhang@bicmr.pku.edu.cn

    2Department of Mathematics,Building 380,Stanford University,California 94305,USA.E-mail: daviddai20030815@gmail.com

    Abstract The authors study rotational hypersurfaces with constant Gauss-Kronecker curvature in Rn.They solve the ODE associated with the generating curve of such hypersurface using integral expressions and obtain several geometric properties of such hypersurfaces.In particular,they discover a class of non-compact rotational hypersurfaces with constant and negative Gauss-Kronecker curvature and finite volume,which can be seen as the higher-dimensional generalization of the pseudo-sphere.

    Keywords Differential geometry,Gauss-Kronecker curvature,Ordinary differential equation

    1 Introduction

    In the field of differential geometry,curvature is the quantity used to measure the extent to which a geometrical object bends.In the study of submanifold geometry,the principal curvatures describe how the submanifold bends in each principal directions.The mean curvature is the mean value of all principal curvatures,while the Gauss-Kronecker curvature is the product of principal curvatures.For the rest of the paper we will call it Gauss curvature for short.Various notions of curvatures have many applications in science and industry.The problems on various restrictions on those curvatures have a long history.In particular we focus on the study of submanifolds with constant or prescribed curvature,and most of the time we only consider hypersurfaces,namely,codimension one submanifolds.The constant mean curvature(CMC for short)submanifolds can be seen as generalizations of minimal submanifolds,which are characterized as having zero mean curvature.CMC hypersurfaces enjoy good variational and geometric properties.For a detailed survey on CMC hypersurfaces in Rn,we refer the readers to [1].We mention a few results here,which motivate our work.In terms of rotational CMC surfaces in R3,Delaunay proposed a beautiful classification theorem which indicates that the generating curves of these surfaces are formed geometrically by rolling a conic along a straight line without slippage (see [5]).In the 1980s,Hsiang and Yu generalized Delaunay’s theorem to rotational hypersurfaces in Rn(see [6–7]).Recently Buenoa,Galvezb and Mirac studied the more general question about rotational hypersurfaces with prescribed mean curvature and obtained Delaunay-type classification theorems (see [2]).

    On the other hand,higher order symmetric functions of the principal curvatures are also interesting.Ther-th symmetric function of the principal curvatures is called “r-mean curvature”,which covers the notions of mean curvature and Gauss curvature whenris equal to 1 and the dimension of the hypersurface,respectively.In 1987,Ros proved that a closed hypersurface embedded into the Euclidean space with constantr-mean curvature is a round sphere (see [9,11]).There are also results on hypersurfaces with constant or prescribed Gauss curvature in other ambient spaces.See e.g.[12–13].

    However,we notice that few examples on constant Gauss curvature hypersurfaces in Rnhave been constructed and studied in the literature,other than the round spheres and flat planes.According to Ros’theorem,either such hypersurfaces are non-compact or they have non-empty boundary,if they are not the round spheres.They could still carry interesting geometric and analytic properties.The condition of having constant Gauss curvature is characterized by a Monge-Ampere type equation,and special explicit solutions to such equations can shed light on the study of general solutions.Looking for constant Gauss curvature hypersurfaces with enough symmetry could be an initial step of the study of general hypersurfaces with constant Gauss curvature.Just as Delaunay-type hypersurfaces have been built blocks of general CMC hypersurfaces in Rn,hypersurfaces with special symmetry conditions can be testgrounds for general hypersurfaces with constant or prescribed Gauss curvature.

    In this paper,we focus on rotational hypersurfacesMwith constant Gauss curvatureKin Rn.Letγ(t)=(?(t),ψ(t)) be a parametrization of the generating curve ofM.We derive the following ODE for?(t):

    We solve this equation and obtain the following result.

    Theorem 1.1Let M?Rnbe a rotational hypersurface with constant Gauss curvature K such that its generating curve γ is a graph over the axis of rotation.Let γ(t)=(?(t),ψ(t))be a parametrization of the generating curve,where ?(t)is the radius of the meridian(n?2)-sphere,ψ(t)is the height function and t is the arclength parameter.Then:

    (1)When K=0,M is a circular cone or a circular cylinder.

    (2)When K≠0,the expression of the inverse function of ? is locally given by

    where the sign of the integrand agrees with the sign of ?′,t0is the initial time,CKis a realconstant.Moreover,ψ is given by

    (3)When K <0and CK=?1,the corresponding hypersurface is a complete Riemannian manifold(with boundary)diffeomorphic to Sn?2×[0,+∞)and has finite volume.It can be seen as a higher-dimensional generalization of the pseudosphere in dimension two.

    More precise statements are made in Theorems 3.2–3.4.The pictures of the generating curves are displayed in Figures 1–2.The hypersurface in (3) in Theorem 1.1 is the only noncompact example.We also note that whenn=3,classifying constant curvature surfaces of revolution is a classical problem and was completely solved long ago.See e.g.[3,Chapter 3–3,Exercise 7].Using the explicit formula for the solutions,we also study how the shape of the generating curve changes as the Gauss curvatureKvaries,see Subsection 3.3.

    We remark that rotational hypersurfaces in space forms have been systematically studied,e.g.in [4,8,10].In particular,Palmas concluded that the only complete rotational hypersurfaces (without boundary) with constant Gauss curvature in the Euclidean spaces are hyperplanes,cylinders and round spheres (see [10]).We follow the orbit geometry approach in their papers,and we allow the hypersurfaces to have boundary or to be singular.In particular,we discover a class of non-compact rotational hypersurfaces with constant and negative Gauss curvature which have finite volume.To the best of our knowledge,we have not seen such examples discussed in the literature.

    2 Rotational Hypersurfaces and Its Curvatures

    We set up notations and state the formulae for principal curvatures and Gauss curvature of a rotational hypersurface in Rn.Letx1,x2,···,xndenote the standard coordinates of Rnand we assume thatxnis the axis of rotation.Letf:R→(0,+∞) be a smooth function.

    Definition 2.1A hypersurface M is called a rotational hypersurface if it is produced by rotating the generating curve x1=f(xn)in the x1xn-plane around the xn-axis.It is characterized by the following equation

    Note thatf(xn) is the radius of the horizontal subsphere at heightxn.Throughout this paper,Mwill always denote a rotational hypersurface in Rnunless otherwise stated.

    We choose an appropriate parametrization of the generating curve to facilitate the calculation.Let?(t) denote the radius of then?2 dimensional hypersphere andψ(t) denote the corresponding height.We choose the parametertto be the arclength parameter,that is,?′2+ψ′2=1.Under the above parametrization,the generating curvex1=f(xn) is parametrized as (x1,xn)=(?(t),ψ(t)).Note that?(t)≥0 since it is the radius,and we requireψ′(t)≥0 so that the generating curve is a graph over thexn-axis.

    We use the hypersphere coordinate (?,θ1,···,θn?2) to parametrize the rotational hypersurface.The position vector field of rotational hypersurfaceMcan be written as

    Under the above parametrization,the principal curvatures and the Gauss curvature ofMare given in the following theorems,respectively.

    Theorem 2.1The principal curvatures k1,···,kn?1of M are given below:

    Theorem 2.2The Gauss curvature K of M is given below:

    Detailed calculations can be found in [2,Section 2].

    3 Analysis of Rotational Hypersurface with Constant Gauss Curvature

    We require the Gauss curvature of rotational hypersurfaceMto be a constantK.Then the equation in Theorem 2.2 is transformed into an ODE as below:

    This equation will be the main equation that we study in this paper.Here we require thatψ′≥0,so that the generating curve is a graph over thexn-axis.In this section,we will solve this equation by separation of variables.

    3.1 Solutions to the ODE

    WhenK=0,we get

    Obviously,we must have?′′≡0 or?′≡±1. Both yields

    Thus we have the following theorem.

    Theorem 3.1A rotational hypersurface with constant Gauss curvature K=0is one of the following:

    (1)A right straight cylinder inRn.

    (2)A right circular cone inRn.

    ProofFrom (3.2),we know that the generating curve is a straight line in the case whereK=0.Consider the equation

    whenc1=0,?is a constant in which caseMis a right straight cylinder.Otherwise,whenc1≠0,Mis a right circular cone.

    Remark 3.1In fact,the Gauss curvature of any cylinder or cone is 0.

    In the rest of the paper,we will therefore discuss the case whereK≠0.We rewrite (3.1)in the following form:

    Multiply both sides by?′and integrate both sides,we have

    whereCKis a constant to be chosen.

    Since?is the radius parameter,we only consider the case where?≥0.First,we notice that the solution?is bounded.

    Lemma 3.1? is a bounded function such that

    (1)for K >0,where CK>?1;

    (2)for K <0,where CK<0.

    ProofFrom (3.4),we get

    ForK >0,we further yield

    Since we only consider the case where?≥0,we have

    Here,we must haveCK>?1 to make sure that

    Similarly,we can deduce the inequality forK <0,

    Here,we must haveCK<0 to make sure that

    Now we solve the ODE whenK >0 andK <0,respectively.

    Theorem 3.2Suppose K >0.Let ? be a solution to the ODE(3.3),then:

    (1)The inverse function of ? is given by

    where t0is a fixed initial time.

    (2)The solution ? can be defined on the interval I=[C′,C′+T],where C′is a real number,

    and ?(C′)=?(C′+T)=

    (3)The sign of the integrand is+for t∈and?fororthe other way around if the orientation of the generating curve is reversed.

    ProofFrom (3.4),we get

    and

    Here,the sign of dtagrees with the sign of?′.

    Then integrate both sides of the above equation,and we get

    We also note that the solution?is invariant under time translation and reversion,and thus the value oft0does not affect the shape of the generating curve.

    Now,we should consider the interval of definition for this solution.From Lemma 3.1,we know that the integrand in (3.6) is bounded from both above and below.We try to integrate from the lower bound to the upper bound and show that the integral converges,that is,we claim

    To prove the claim,we only need to check the singularity when?reachesLetand the Taylor expansion of the integrand asA??→0 is given below:

    Since the order of the main term of the integrand in terms of (??A) is greater than?1,the claim is clearly true.

    Thus the solution?(t) can be defined on a time interval of lengthT′,say [t0,t0+T′].Without loss of generality,we may assume that?(t) is increasing on [t0,t0+T′],that is,the sign of the integrand in (3.6) is positive.In this way?(t) reaches its minimum att=t0and its maximum att=t0+T′.

    Now we extend the solution?(t) to the interval [t0,t0+2T′]by reflection.Namely,we define?(t)=?(2t0+2T′?t).Since(3.3)is invariant under time translation and reversion,this extension of?is a solution to the equation.By checking that the (2n+1)storder derivatives of?att=t0+T′equal zero,we know that the left derivatives and right derivatives of?agree att=t0+T′.Therefore,we know that?(t) is smooth fort∈[t0,t0+2T′].

    Thus we obtain a solution?on [t0,t0+T]satisfying all the desired properties,where

    Remark 3.2WhenCK=0,the solution becomes?(t)=In this case,Mis the round sphere of constant Gauss curvatureK.

    Recall that?′2+ψ′2=1,by (3.4) we have

    Thus using the parametrization (?(t),ψ(t)) of the generating curve,we draw the pictures of the generating curves using Mathematica.Figures 1(a)and 1(b) show the generating curves forK=1,CK=?0.5 andK=1,CK=2,respectively.

    Similarly,we can describe the solution forK <0 as follows.

    Theorem 3.3Suppose K <0.Let ? be a solution to the ODE(3.3),then:

    (1)The inverse function of ? is given by

    Figure 1

    where t0is a fixed initial time.

    (2)When CK≠?1,? can be defined on[C′,C′+T]∪[D′?T,D′],where C′,D′are tworeal numbers such that ?(C′)=?(D′)=where

    and

    In this case,the sign of the integrand is?in the interval[C′,C′+T]and+in the interval[D′?T,D′].Or the other way around if the orientation of the generating curve is reversed.

    (3)When CK=?1,we fix the sign of the integrand to be positive.Under this convention,the interval of definition of the solution to(3.3)extends to?∞.In particular,the corresponding hypersurface is non-compact complete and unbounded in the xn-direction.

    ProofSimilar to Theorem 3.2,we can derive the inverse function of?as follows

    WhenCK≠?1,we also claim

    To prove the claim,we similarly letThen,the Taylor expansion of the integrand as??A→0 is given by

    Clearly,the integral converges since the order of the integrand’s main term is greater than?1.

    Thus by the same reflection argument as in the proof of Theorem 3.2,we can show that?can be extended to a smooth solution defined on[t0,t0+2T],whereTis the above integral andt0can be any real number.Moreover,we can prescribe its monotonicity by fixing the orientation of the generating curve.However,in this way?can be negative somewhere.After deleting the interval on which?is negative,we obtain the desired form of the domain of definition of?.

    Finally,whenCK=?1,we need to prove that the integral in (3.3) diverges,namely

    Thus the interval of definition of?can extend to?∞.

    We consider the behavior of the integrand when

    Letx=K?n?1,wherex<0.Then let

    After expandingf(x) atx=0 with Taylor Series,we get

    Then we can rewrite the integrand as

    Clearly,we know that the order of the integrand in terms of?is equal to the order of its main term,namelybecausex=K?n?1.Whenn >3,we know that the order of the integrand is less than?1,which implies that the integral diverges when?→0.

    Now we see that astgoes to?∞,?→0 and?′=→0 (we have fixed the sign of?′to be positive).Thusψ′=andψ→?∞(because we lettdecrease to?∞).Recall thatψis the height function.This shows that the generating curve is an unbounded curve asymptotic to the axis of rotation.Thus the rotational hypersurface corresponding toCK=?1 is complete as a metric space.

    Remark 3.3The hypersurface corresponding toCK=?1 in the above theorem can be seen as a higher-dimensional generalization of the pseudo-sphere in dimension two.Our results do not contradict Ros’ theorem in [11]since the hypersurfaces in our theorem have non-empty boundary.We also note that we can find a non-compact solution only whenK <0 andCK=?1.In all other cases,the corresponding hypersurfaces are compact with boundary or compact with conical singularities at the axis of rotation.

    Using Mathematica,we draw the generating curves forK <0.Figure 2(a) depicts the generating curve of the non-compact hypersurface corresponding toCK=?1,while Figures 2(b) and 2(c) show the generating curves forK=?1,CK=?0.5 andK=?1,CK=?2,respectively.

    Using the integral expression of the solution?,we can calculate its Taylor expansions at critical points in order to extract more information about the local behavior of?.

    Lemma 3.2The series expansion of ?(t)near ?(t0)=?maxwhen K >0is given by

    ProofBy (3.5),we know that the first order derivative of?near its maximum is zero.Then,we can further compute its second order derivative as

    Similarly,we can compute its 4thorder derivative,and so on.Notice that the sign of these derivatives are negative near?max,we can get the series shown above by using Taylor expansion.

    Lemma 3.3The series expansion of ?(t)near ?(t0)=?minwhen K <0and CK

    Figure 2

    ProofSimilar to Lemma 3.2,we can compute the 2kthorder derivatives near the minimum

    For the non-compact hypersurface,we also have the asymptotic expansion of?near infinity.

    Lemma 3.4Up to time translation,the asymptotic expansion of ?(t)for K <0and CK=?1in Theorem3.3near?∞is given by

    Here,f,g are given by

    and

    where

    ProofBy expanding the integrand in Theorem 3.3,we get

    Note that the integral in the first line gives us an undetermined constant.Up to a translation oft,we can take that constant to be 0.Letwe can compute that

    3.2 Finite volume of the noncompact hypersurfaces

    For the hypersurface described in Theorem 3.3 whenCK=?1,we will show that its“surface area” and “volume” of the region enclosed by the hypersurface are indeed finite.

    Before the proof,we introduce the following notations.LetVn(r) denote the volume of ann-dimensional ball of radiusr,andSn(r) denote the area of ann-dimensional sphere of radiusr.It is well-known that

    Theorem 3.4The surface area of the hypersurface in Theorem3.3when CK=?1is finite.Moreover,the volume of the region enclosed by the hypersurface and the horizontal disk at the end of the hypersurface is also finite.

    ProofThe surface area of the rotational hypersurface is

    Here,t=t0is the point where?(t) reaches its maximum.Without loss of generality,we can taket0=0 since?(t) is invariant under translation,namely

    From Theorem 3.3,we know that?′→0 ast→?∞,which also impliesψ′→1 since?′2+ψ′2=1.

    So,we know that ast→?∞,

    Consider

    Let ord(S) be the order ofS(t) in terms of |t|,namelyS(t)=O(|t|ord(S)).

    From Theorem 3.3,we know that the order of the integral in (3.6) is,which indicates that the order of |t| in terms of?is. Therefore,the order of?in terms of |t| is

    Then,we get

    Sincen>3,we know that

    Therefore,the surface area of this non-compact hypersurface is finite.

    Similarly,we can derive the expression of the volume of the enclosed region

    Consider

    Then we get

    Whenn>3,we know that

    Clearly,it indicates that the integral converges ast→?∞,and thus the volume is also finite.

    Remark 3.4We also compute the approximate value of the volume of the enclosed region and the surface area of this hypersurface whenn=4 andK=1 by Mathematica,which are 1.82 and 19.74,respectively.

    3.3 A comparison theorem

    From (3.6),we know that the value of?(t) for a given value oftis dependent on the Gauss curvatureK.When the Gauss curvature is a constantK,let?Kdenote the solution to (3.6)described in Theorems 3.2 or 3.3 andψKdenote the corresponding height function.We would like to study the behavior of the solution?KwhenKchanges.

    In the following theorem,we show that forK >0,the value of?Kat a fixed heightψK=ydecreases asKincreases if the maximum of?Kis fixed.Geometrically the generating curve drops faster to the axis of rotation for greater positive Gauss curvature.

    Theorem 3.5Take a,b∈Rand a >b>0.Assume that both ?aand ?bobtain the same maximum at t=t0,namely ?a(t0)=?b(t0)=?max=C.We also assume that on a small interval D=[t0,t0+δ],both ?aand ?bare monotonically decreasing,and ψaand ψbare increasing.Then?y∈ψa(D)∪ψb(D),we get

    ProofFrom Theorem 3.1,we get

    Recall that?′2+ψ′2=1 and the expression of?′in (3.5),we get

    Thus,we have

    Obviously,we know that the integrandincreases as|K| increases.

    Therefore,for a fixed maximum?a(t0)=?b(t0)=Cand negative?′,we must have?a(ψ?1a(y))≤?b(ψ?1b(y)) to make sure that the left side of (3.14) remains the same.

    Similarly,we propose a parallel theorem forK <0.In this case,the generating curve stays further away from the axis of rotation when |K| increases.

    Theorem 3.6Take a,b∈Rand0>a >b.Assume that both ?aand ?bobtain the same minimum at t=t0,namely ?a(t0)=?b(t0)=?min=C.We also assume that on a small interval D=[t0,t0+δ],both ?aand ?bare monotonically increasing,and ψaand ψbare increasing.Then?y∈ψa(D)∪ψb(D),we get

    ProofFirst consider the case whereC=?min≠0.

    Similarly to Theorem 3.5,we get

    Thus,we have

    From Theorem 3.5,we know that the integrandincreases as|K| increase.

    Therefore,for a fixed minimum?a(t0)=?b(t0)=Cand positive?′,we must have?a(ψ?1a(y))≤?b(ψ?1b(y)) to make sure that the left side of (3.15) remains the same.

    WhenC=?min=0,thenCKwill be a constant that is independent ofK.In this case,the proof is exactly the same.

    AcknowledgementsWe would like to thank Robert Bryant for valuable comments on solving the equations.We also thank Harold Rosenberg for the information on Montiel and Ros’work on the rigidity of compact embedded hypersurfaces with constantr-mean curvature.Our gratitude also goes to Ao Sun and Renato Bettiol,who gave many suggestions on the presentation of this paper.Finally we thank Peking University for providing financial support for the first author.

    亚洲精华国产精华液的使用体验| 国产亚洲欧美精品永久| 我的老师免费观看完整版| 国产成人freesex在线| 午夜免费观看性视频| 中文资源天堂在线| 国产久久久一区二区三区| 韩国高清视频一区二区三区| 亚洲婷婷狠狠爱综合网| 国产精品一二三区在线看| 久久97久久精品| tube8黄色片| 国产一级毛片在线| 国产黄色视频一区二区在线观看| 国产精品久久久久成人av| 99久久精品国产国产毛片| 久久精品国产亚洲网站| 九九爱精品视频在线观看| 免费黄频网站在线观看国产| 精品视频人人做人人爽| 国产av一区二区精品久久 | 99热这里只有是精品50| 成人美女网站在线观看视频| 久久久久久久久久成人| 国产精品一区二区在线观看99| 大又大粗又爽又黄少妇毛片口| 国产一区有黄有色的免费视频| 久久久久久久国产电影| 中文字幕久久专区| 成人高潮视频无遮挡免费网站| 欧美日韩综合久久久久久| 男女啪啪激烈高潮av片| 国产精品无大码| 五月玫瑰六月丁香| 久久青草综合色| 最后的刺客免费高清国语| 一本久久精品| 精品久久久精品久久久| 成人无遮挡网站| 下体分泌物呈黄色| 超碰97精品在线观看| 国产深夜福利视频在线观看| 国产av一区二区精品久久 | 久久久亚洲精品成人影院| 免费人妻精品一区二区三区视频| 久久精品国产自在天天线| 精品久久久久久久久av| 女人十人毛片免费观看3o分钟| 久久久久网色| 王馨瑶露胸无遮挡在线观看| 黄色视频在线播放观看不卡| 美女视频免费永久观看网站| 日本欧美视频一区| 欧美人与善性xxx| 日本黄色日本黄色录像| 免费大片黄手机在线观看| 肉色欧美久久久久久久蜜桃| 亚洲真实伦在线观看| 久久精品久久久久久噜噜老黄| 欧美日韩在线观看h| 又大又黄又爽视频免费| 免费播放大片免费观看视频在线观看| 交换朋友夫妻互换小说| 亚洲欧美精品专区久久| 色婷婷av一区二区三区视频| 一本—道久久a久久精品蜜桃钙片| 大片电影免费在线观看免费| 狂野欧美激情性xxxx在线观看| 久久午夜福利片| 一级黄片播放器| 国产乱来视频区| 久久影院123| 欧美国产精品一级二级三级 | 99re6热这里在线精品视频| 在线精品无人区一区二区三 | 我要看日韩黄色一级片| 美女xxoo啪啪120秒动态图| 六月丁香七月| 久久久精品94久久精品| 又爽又黄a免费视频| 99热这里只有精品一区| 天堂俺去俺来也www色官网| 最近2019中文字幕mv第一页| 少妇人妻精品综合一区二区| 极品教师在线视频| 国产免费一区二区三区四区乱码| 亚洲欧美日韩东京热| av在线老鸭窝| 中文字幕制服av| 国产久久久一区二区三区| 热re99久久精品国产66热6| 久久久久精品性色| 妹子高潮喷水视频| 国产欧美日韩一区二区三区在线 | 久久女婷五月综合色啪小说| 日本黄大片高清| 国产精品久久久久久久电影| 天天躁夜夜躁狠狠久久av| 久久久亚洲精品成人影院| 午夜福利在线在线| 草草在线视频免费看| 一级a做视频免费观看| 嫩草影院入口| 国产黄色视频一区二区在线观看| 极品少妇高潮喷水抽搐| 精品视频人人做人人爽| 伦精品一区二区三区| 久久久久久久久久人人人人人人| 欧美 日韩 精品 国产| 少妇人妻 视频| 99九九线精品视频在线观看视频| 日韩亚洲欧美综合| 我要看黄色一级片免费的| 校园人妻丝袜中文字幕| 在线观看国产h片| 丝袜脚勾引网站| 精品一区二区三区视频在线| 嘟嘟电影网在线观看| 又黄又爽又刺激的免费视频.| 亚洲av二区三区四区| 天天躁夜夜躁狠狠久久av| 国产女主播在线喷水免费视频网站| 婷婷色麻豆天堂久久| 日本色播在线视频| 内射极品少妇av片p| 天天躁夜夜躁狠狠久久av| 国产一区二区在线观看日韩| xxx大片免费视频| 日日摸夜夜添夜夜爱| 欧美 日韩 精品 国产| h视频一区二区三区| 在线播放无遮挡| 波野结衣二区三区在线| 纵有疾风起免费观看全集完整版| 自拍偷自拍亚洲精品老妇| 亚洲熟女精品中文字幕| 亚洲av.av天堂| 国产亚洲最大av| 亚洲精品久久午夜乱码| 在现免费观看毛片| 亚洲国产精品999| 国产真实伦视频高清在线观看| 亚洲精品久久午夜乱码| 乱码一卡2卡4卡精品| 日本免费在线观看一区| 国产精品精品国产色婷婷| 亚洲成人一二三区av| 国产探花极品一区二区| 99久久中文字幕三级久久日本| 最后的刺客免费高清国语| 中文在线观看免费www的网站| 一级毛片黄色毛片免费观看视频| 国产精品免费大片| 国产欧美日韩一区二区三区在线 | 亚洲精品456在线播放app| 国产精品.久久久| www.色视频.com| 2021少妇久久久久久久久久久| 亚洲丝袜综合中文字幕| 99热国产这里只有精品6| 欧美成人一区二区免费高清观看| 80岁老熟妇乱子伦牲交| 亚洲天堂av无毛| 久久国产亚洲av麻豆专区| 国产在线一区二区三区精| av.在线天堂| 国产精品三级大全| 成年av动漫网址| 美女脱内裤让男人舔精品视频| 美女主播在线视频| 国产午夜精品久久久久久一区二区三区| 老师上课跳d突然被开到最大视频| 97在线人人人人妻| 亚洲中文av在线| 亚洲精品乱码久久久久久按摩| 99热国产这里只有精品6| 丰满乱子伦码专区| 亚洲精品日本国产第一区| 国产成人a区在线观看| 久久精品国产亚洲av涩爱| 久久热精品热| 我的女老师完整版在线观看| 欧美成人a在线观看| 欧美成人精品欧美一级黄| 免费少妇av软件| 免费大片黄手机在线观看| 国内少妇人妻偷人精品xxx网站| 十分钟在线观看高清视频www | 3wmmmm亚洲av在线观看| 一边亲一边摸免费视频| 嫩草影院入口| 亚洲精品456在线播放app| 成人一区二区视频在线观看| 国产男女超爽视频在线观看| 久久精品国产自在天天线| 国产精品女同一区二区软件| 色婷婷久久久亚洲欧美| 国产在线一区二区三区精| 亚洲国产精品999| 你懂的网址亚洲精品在线观看| 免费播放大片免费观看视频在线观看| 午夜福利在线在线| 日韩三级伦理在线观看| 亚洲av免费高清在线观看| 黄色欧美视频在线观看| 天堂中文最新版在线下载| 看非洲黑人一级黄片| 亚洲国产欧美人成| 深爱激情五月婷婷| 色婷婷久久久亚洲欧美| 久久久a久久爽久久v久久| 亚洲成色77777| 最新中文字幕久久久久| 久久精品久久精品一区二区三区| 建设人人有责人人尽责人人享有的 | 亚洲欧美中文字幕日韩二区| 精品人妻一区二区三区麻豆| 国产精品一区二区三区四区免费观看| 一区二区三区精品91| 欧美少妇被猛烈插入视频| 一本久久精品| 欧美 日韩 精品 国产| 亚洲久久久国产精品| 国产精品无大码| 男女边吃奶边做爰视频| 高清欧美精品videossex| 久久久a久久爽久久v久久| 欧美日韩一区二区视频在线观看视频在线| 久久久国产一区二区| 免费黄色在线免费观看| 亚洲精品一二三| 亚洲美女黄色视频免费看| 舔av片在线| 国产精品一二三区在线看| 亚洲av中文字字幕乱码综合| 日本欧美视频一区| 国产白丝娇喘喷水9色精品| 国产高潮美女av| 久久久成人免费电影| 欧美zozozo另类| 狂野欧美白嫩少妇大欣赏| 国产日韩欧美亚洲二区| 国产欧美亚洲国产| 精品久久久久久久久亚洲| 在线观看国产h片| 亚洲精品乱码久久久v下载方式| 中文字幕av成人在线电影| 免费观看无遮挡的男女| 在线播放无遮挡| 十分钟在线观看高清视频www | 色视频www国产| 在线天堂最新版资源| 在线观看国产h片| 免费黄频网站在线观看国产| av免费观看日本| 男人和女人高潮做爰伦理| 在线精品无人区一区二区三 | 日日摸夜夜添夜夜添av毛片| 亚洲国产欧美在线一区| 又爽又黄a免费视频| 久久99精品国语久久久| 精品人妻熟女av久视频| 国产熟女欧美一区二区| 久久ye,这里只有精品| 日日啪夜夜爽| 欧美bdsm另类| 欧美丝袜亚洲另类| 亚洲第一区二区三区不卡| 嫩草影院新地址| 午夜免费观看性视频| 日韩制服骚丝袜av| 亚洲欧美日韩另类电影网站 | 精品少妇久久久久久888优播| av在线老鸭窝| 免费观看a级毛片全部| 女性被躁到高潮视频| 日本黄色日本黄色录像| 精品一区在线观看国产| 中文字幕久久专区| 免费不卡的大黄色大毛片视频在线观看| 性色av一级| 男女免费视频国产| 精品久久久精品久久久| 中国美白少妇内射xxxbb| 十分钟在线观看高清视频www | 亚洲av综合色区一区| 国产成人精品久久久久久| 高清不卡的av网站| 国产在线男女| 国产成人精品婷婷| 国产色爽女视频免费观看| 精华霜和精华液先用哪个| 黄色视频在线播放观看不卡| 网址你懂的国产日韩在线| 久久久精品94久久精品| 美女中出高潮动态图| 一区二区av电影网| 超碰97精品在线观看| 男的添女的下面高潮视频| 国产成人免费无遮挡视频| 亚洲欧美成人精品一区二区| 夫妻午夜视频| 免费人成在线观看视频色| 亚洲伊人久久精品综合| 国产爽快片一区二区三区| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| 看十八女毛片水多多多| 久久久久久久精品精品| 国产伦在线观看视频一区| 国产亚洲欧美精品永久| 国产一区有黄有色的免费视频| 久久精品久久久久久噜噜老黄| 人妻系列 视频| 永久免费av网站大全| 精品久久久精品久久久| 久久国产精品大桥未久av | 麻豆精品久久久久久蜜桃| 永久网站在线| 一本久久精品| 九九在线视频观看精品| 精品久久久久久久末码| 女人久久www免费人成看片| 18禁在线播放成人免费| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 精品亚洲成国产av| 99热网站在线观看| 欧美高清性xxxxhd video| 国产精品成人在线| 国产中年淑女户外野战色| 三级国产精品欧美在线观看| 久久国内精品自在自线图片| 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| h日本视频在线播放| 一级毛片久久久久久久久女| 亚洲性久久影院| 精品一区二区免费观看| 最近的中文字幕免费完整| 久久国产精品男人的天堂亚洲 | 久久97久久精品| 毛片一级片免费看久久久久| 国产精品国产三级国产专区5o| 免费少妇av软件| 欧美亚洲 丝袜 人妻 在线| 婷婷色综合www| 国产探花极品一区二区| 国产亚洲欧美精品永久| 如何舔出高潮| 午夜福利在线观看免费完整高清在| 国产亚洲欧美精品永久| 亚洲精品中文字幕在线视频 | 亚洲美女搞黄在线观看| 国产有黄有色有爽视频| 欧美精品国产亚洲| 国产成人aa在线观看| 久久久欧美国产精品| 少妇人妻一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 在线观看一区二区三区激情| 中文天堂在线官网| 久久影院123| 国产在线一区二区三区精| 国产精品一区二区性色av| 久久综合国产亚洲精品| 一个人免费看片子| 日本av免费视频播放| 亚洲欧洲日产国产| 1000部很黄的大片| 欧美少妇被猛烈插入视频| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 久久99热这里只频精品6学生| 久久精品国产亚洲av天美| 亚洲欧美精品自产自拍| 精品久久久久久久久av| 国产中年淑女户外野战色| 国产毛片在线视频| 亚洲国产精品专区欧美| 夜夜骑夜夜射夜夜干| 欧美变态另类bdsm刘玥| 最黄视频免费看| 黄色视频在线播放观看不卡| 一个人看的www免费观看视频| 成人影院久久| 极品少妇高潮喷水抽搐| 久久99蜜桃精品久久| 国产片特级美女逼逼视频| 免费大片黄手机在线观看| 国产精品一区二区在线不卡| 日本欧美视频一区| 亚洲av.av天堂| 中文字幕制服av| 婷婷色麻豆天堂久久| 国产老妇伦熟女老妇高清| 国产精品一区二区在线观看99| 精品一区在线观看国产| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 水蜜桃什么品种好| 欧美日韩一区二区视频在线观看视频在线| 午夜免费鲁丝| 久久久精品免费免费高清| www.色视频.com| 天堂俺去俺来也www色官网| 男女免费视频国产| 亚洲色图综合在线观看| 国产午夜精品一二区理论片| 亚洲人成网站高清观看| 国产av码专区亚洲av| 18禁在线播放成人免费| 欧美97在线视频| 美女主播在线视频| 亚洲综合精品二区| 岛国毛片在线播放| 夫妻午夜视频| 国产色爽女视频免费观看| av网站免费在线观看视频| 性色avwww在线观看| 不卡视频在线观看欧美| 男女国产视频网站| 在线观看免费视频网站a站| 美女国产视频在线观看| 国产精品伦人一区二区| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲欧美一区二区三区黑人 | 2022亚洲国产成人精品| 亚洲成人手机| 中文资源天堂在线| 一级a做视频免费观看| 成人美女网站在线观看视频| 日本wwww免费看| 久久精品久久久久久久性| 三级国产精品欧美在线观看| 亚洲内射少妇av| 精品久久久久久电影网| 亚洲精品国产成人久久av| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 一本一本综合久久| 亚洲色图av天堂| 欧美一区二区亚洲| 秋霞伦理黄片| 丰满人妻一区二区三区视频av| 亚洲精品国产av蜜桃| 国产爱豆传媒在线观看| 我要看黄色一级片免费的| 亚洲国产日韩一区二区| 我要看日韩黄色一级片| 观看免费一级毛片| 日本午夜av视频| 啦啦啦啦在线视频资源| 男女啪啪激烈高潮av片| 日本一二三区视频观看| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 美女脱内裤让男人舔精品视频| 一级毛片我不卡| 我的老师免费观看完整版| 少妇人妻精品综合一区二区| 五月伊人婷婷丁香| 精品亚洲成国产av| 97在线视频观看| 欧美老熟妇乱子伦牲交| 久久韩国三级中文字幕| 欧美日韩一区二区视频在线观看视频在线| 国产美女午夜福利| 自拍偷自拍亚洲精品老妇| 晚上一个人看的免费电影| 亚洲国产av新网站| 免费黄频网站在线观看国产| 九色成人免费人妻av| 亚洲国产精品999| 亚洲aⅴ乱码一区二区在线播放| 黑丝袜美女国产一区| 成年人午夜在线观看视频| 久久久午夜欧美精品| 干丝袜人妻中文字幕| 国产精品av视频在线免费观看| 一个人免费看片子| 成人特级av手机在线观看| 国产精品不卡视频一区二区| 日本爱情动作片www.在线观看| 国产高清不卡午夜福利| 熟女人妻精品中文字幕| 日本午夜av视频| videos熟女内射| 日本一二三区视频观看| 国产精品一区二区性色av| 日韩一区二区三区影片| 亚洲美女视频黄频| 美女中出高潮动态图| 深爱激情五月婷婷| 欧美日韩综合久久久久久| 麻豆成人午夜福利视频| 欧美日韩视频精品一区| 又爽又黄a免费视频| 国产精品免费大片| 国产一区二区三区综合在线观看 | 18+在线观看网站| 亚洲欧美日韩卡通动漫| 国产成人精品久久久久久| 人妻系列 视频| 成人国产麻豆网| 日韩视频在线欧美| 美女xxoo啪啪120秒动态图| 成人亚洲精品一区在线观看 | 一个人看的www免费观看视频| 男人和女人高潮做爰伦理| 午夜福利网站1000一区二区三区| 插阴视频在线观看视频| 国产有黄有色有爽视频| 中文天堂在线官网| 免费观看性生交大片5| 蜜桃在线观看..| 久久久精品94久久精品| 夜夜爽夜夜爽视频| av免费在线看不卡| 精品人妻一区二区三区麻豆| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 一区在线观看完整版| 亚洲精品456在线播放app| 久久99蜜桃精品久久| 久久人人爽人人片av| 国产爱豆传媒在线观看| 女性被躁到高潮视频| 午夜福利在线观看免费完整高清在| 一区二区三区乱码不卡18| 成人亚洲欧美一区二区av| 日本av手机在线免费观看| 在线播放无遮挡| 狂野欧美激情性xxxx在线观看| 午夜视频国产福利| 高清av免费在线| 一级爰片在线观看| 99久久中文字幕三级久久日本| videos熟女内射| 国产高清国产精品国产三级 | 高清av免费在线| 国产一区二区三区综合在线观看 | 我的老师免费观看完整版| 亚洲精品中文字幕在线视频 | 91久久精品国产一区二区三区| 亚洲在久久综合| 日本欧美国产在线视频| 国产精品成人在线| 国产精品麻豆人妻色哟哟久久| 国产精品精品国产色婷婷| 欧美区成人在线视频| 国产乱来视频区| 亚洲综合色惰| 色5月婷婷丁香| 能在线免费看毛片的网站| 免费高清在线观看视频在线观看| 精品亚洲成a人片在线观看 | 波野结衣二区三区在线| 亚洲精品成人av观看孕妇| 日本vs欧美在线观看视频 | 亚洲av国产av综合av卡| 国产久久久一区二区三区| a级毛片免费高清观看在线播放| 黄色日韩在线| 免费在线观看成人毛片| 99久久中文字幕三级久久日本| 亚洲无线观看免费| 亚洲四区av| 观看av在线不卡| 久久精品熟女亚洲av麻豆精品| 久久6这里有精品| 两个人的视频大全免费| 18禁动态无遮挡网站| 日韩av免费高清视频| 精品酒店卫生间| 狂野欧美白嫩少妇大欣赏| 久久久成人免费电影| 久久亚洲国产成人精品v| 97热精品久久久久久| 在线观看免费日韩欧美大片 | 极品教师在线视频| 2018国产大陆天天弄谢| 看十八女毛片水多多多| 亚洲人与动物交配视频| 久久久久久久久大av| 伦精品一区二区三区| 在线 av 中文字幕| 亚洲欧洲国产日韩| 在线播放无遮挡| 国产亚洲精品久久久com| 欧美日韩精品成人综合77777| 午夜免费观看性视频| av国产久精品久网站免费入址| freevideosex欧美| 丝袜喷水一区| 校园人妻丝袜中文字幕| 欧美精品人与动牲交sv欧美| 亚洲人成网站在线播| 免费av中文字幕在线| 精品国产露脸久久av麻豆| 免费看日本二区| 亚洲欧洲日产国产| 精品国产一区二区三区久久久樱花 | 联通29元200g的流量卡| 欧美成人a在线观看| 久久99精品国语久久久| 日本欧美视频一区| 美女福利国产在线 | 亚洲四区av| 国内揄拍国产精品人妻在线| 蜜桃在线观看..| 一本一本综合久久| 国产精品av视频在线免费观看| 亚洲无线观看免费|