• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ground States of K-component Coupled Nonlinear Schr?dinger Equations with Inverse-square Potential?

    2022-07-08 13:27:42PengCHENHuimaoCHENXianhuaTANG

    Peng CHEN Huimao CHEN Xianhua TANG

    1Three Gorges Mathematical Research Center,China Three Gorges University,Yichang,Hubei 443002,China;College of Science,China Three Gorges University,Yichang,Hubei 443002,China.E-mail: pengchen729@sina.com

    2College of Science,China Three Gorges University,Yichang,Hubei 443002,China.E-mail: huimaochen@yeah.net

    3School of Mathematics and Statistics,Central South University,Changsha,Hunan 410083,China.E-mail: tangxh@mail.edu.cn

    Abstract In this paper,the authors study ground states for a class of K-component coupled nonlinear Schr?dinger equations with a sign-changing potential which is periodic or asymptotically periodic.The resulting problem engages three major difficulties: One is that the associated functional is strongly indefinite,the second is that,due to the asymptotically periodic assumption,the associated functional loses the ZN-translation invariance,many effective methods for periodic problems cannot be applied to asymptotically periodic ones.The third difficulty is singular potential,which does not belong to the Kato’s class.These enable them to develop a direct approach and new tricks to overcome the difficulties caused by singularity and the dropping of periodicity of potential.

    Keywords Schr?dinger equations,Ground states,Strongly indefinite functionals,Non-Nehari manifold method.

    1 Introduction

    In this paper,we study standing waves for the following system of time-dependent nonlinear Schr?dinger equations:

    where Φ=(φ1,φ2,···,φK),μi(i=1,2,···,K) are non-negative constants.φj(t,x)(j=1,2,···,K) are the complex valued envelope functions.Suppose thatf(x,eiθΦ)=f(x,Φ) forθ∈[0,2π],x∈RN{0},N≥3.We will look for standing waves of the form

    which propagate without changing their shape and thus have a soliton-like behavior.It is well known that solutions of (1.1) are related to the solitary waves of the Gross-Pitaevskii equations,which have applications in many physical models,such as in nonlinear optics and in Bose-Einstein condensates for multi-species condensates(see[4,26])and the references therein.In general,the above coupled nonlinear Schr?dinger system leads to the elliptic system

    whereN≥3,fi(x,u)=?uiF(x,u) withu=(u1,u2,···,uK):RN→RK.

    Whenμi=0 (i=1,2,···,K),(1.2) reduces to

    In the past fifteen years,the two-coupled case of (1.3)(i.e.,k=2)has been studied extensively in the literature[5,11–12,14–15,17,21–25,28–29,37–40]and the references therein.By using variational methods,Lyapunov-Schmidt reduction methods or bifurcation methods,various theorems,about the existence,multiplicity and qualitative properties of nontrivial solutions of the two-coupled elliptic systems similar to (1.3),have been established in the literature under various assumptions.However,there are very few works aboutk≥3 in the context [18–19,35–36].It is worth to mention that most of them focused on the case thatVis non-negative constant or function,compared to this case,it is more difficult to consider the case thatVis a sign-changing function to which the energy functional corresponding has the strongly indefinite structure.Very recently,Mederski [20]considered (1.3) and obtained the existence of ground state solution for the case of periodic potential by applying a new linking-type result involving the Nehari-Pankov manifold.

    Forμi≠0,is called inverse square potential or Hardy potential which arises in many other areas such as quantum mechanics,nuclear,molecular physics and quantum cosmology.From the mathematical point of view,the inverse square potential is critical: Indeed,it has the same homogeneity as the Laplacian and does not belong to the Kato’s class,hence it cannot be regarded as a lower order perturbation term of second order operator,which may result in the change of the essential spectrum of the operator.Moreover,any nontrivial solutions of system(1.2)are singular atx=0 ifμ≠0.Since the appearance of inverse square potential,compared with system (1.3),system (1.2) becomes more complicated to deal with and therefore we have to face more difficulties.As far as we know,it seems that there are no existence results of solution for system (1.2),hence,it makes sense for us to investigate system (1.2) thoroughly.Due to the special physical importance and the above facts,in the present paper,we will study the existence and some properties of solutions of system (1.2).

    As a motivation,we recall that there are many of articles concerning the nonlinear Schr?dinger equations with the inverse square potentials

    see for example,[1–4,6–9,16,27–28]and the references therein.These authors studied the existence of positive solutions,nodal solutions,multiple solutions and ground state solutions under suitable assumptions.Most of them focused on the case thatVis non-negative constant or function in which the energy functional corresponding to(1.4)has the mountain pass structure.Only very recently,Guo and Mederski[10]studied the case thatVis a general periodic function,possibly sign-changing,and the corresponding energy functional may be strongly indefinite.Combining Nehari manifold technique (see [22–23,29]) and linking argument,they proved the existence of ground state solutions for the caseμ≥0 and the non-existence of ground state solutions was explored for the caseμi<0.Furthermore,some asymptotical behavior of ground state solutions are derived.

    Inspired by the aforementioned works,we are going to consider two situations in the present paper: Periodic case and asymptotically periodic case.Our aim is to find ground states for(1.2)on some suitable manifold,one difficulty is that the associated functional is strongly indefinite,i.e.,its quadratic part is respectively coercive and anti-coercive in infinitely dimensional subspace of the energy space.To tackle this difficulty,we adapt the properties of the spectrum of the corresponding opertor which had been analysed in [40],it is convenient to decompose the functional spaceL2into a direct sum of two subspacesE+andE?(Eis defined in Section 2),one of which is infinite dimensional.

    Another difficulty is lack of periodic assumption on potential.As a result,neither the periodic translation technique nor the compact inclusion method can be adapted.In this case,the functional loses the ZN-translation invariance.For the above reasons,many effective methods for periodic problems cannot be applied to asymptotically periodic ones.To the best of our knowledge,there are no results on the existence of ground state solutions to(1.2)whenViis not periodic.In this paper,we find new tricks to overcome the difficulties caused by getting rid of periodicity condition.

    The last difficulty is singular potential,which does not belong to the Kato’s class.This enables us to develop a direct approach and new tricks to overcome the difficulties caused by singularity.We find a new method to overcome the difficulty caused by the non-compactness of the embeddingH1(RN)→L2(BR(0),|x|?2dx).Our treatments presented in the paper differ from those in [10]and other existing literature.

    In this paper,we further develop the non-Nehari method in [32–33]which is completely different from the one of Szulkin-Weth [31]and Mederski [20]to find ground state solution of Nehari-Pankov type for (1.2).For the asymptotically periodic case,a nontrivial solution is obtained by using a generalized linking theorem and comparing with a ground state solution of the periodic problem associated with (1.2).More precisely,we will prove that system (1.2)possesses a ground state solution via variational methods for sufficiently smallμ≥0,and provide the comparison of the energy of ground state solutions for the caseμ >0 andμ=0.Moreover,we also give the convergence property of ground state solutions asμ→0+.

    To simplify notation,we set

    For the sake of convenience,letEbe the Hilbert spaces with an orthogonal decompositionE=E?⊕E+,and let Iμdenote the energy functional of system (1.2),whereEand Iμwill be defined in Section 2.A ground state solution stands for a critical point being a minimizer of Iμon the Nehari-Pankov manifold introduced in [22–23],

    the set Nμis a natural constraint and it contains all nontrivial critical points,any ground state solution is a nontrivial critical point with the least energy of Iμ.

    Letl0be a positive constant(l0will be given later in (2.3)).Now,we are ready to state the main results of the present paper as follows.

    1.1 Periodic potential

    (V1) Fori=1,2,···,K,Vi∈C(RN)∩L∞(RN) is ZN-periodic and

    for allx∈RN;

    (F1)fi:RN×RK→R is measurable,ZN-periodic inx∈RNand continuous inu∈RKfor a.e.x∈RN.Moreoverf=(f1,f2,···,fK)=?uF,whereF: RN×RK→R is differentiable with respect to the second variableu∈RKandF(x,0)=0 for a.e.x∈RN;

    (F2) there exist constantsC >0 and 2

    (F3)f(x,u)=o(u) as |u|→0 uniformly inx∈RN;

    (F5) for allκ≥0,u,v∈RK,

    (F6)?uF(x,·) is ofC1class for a.e.x∈RNand there existb1,b2>0 and 1

    Theorem 1.1Assume that(V1),(F1)–(F5)are satisfied andthensystem(1.2)has a ground state,i.e.,it has at least a solution uμ∈E such thatIμ(uμ)=

    Theorem 1.2Assume that(V1),(F1)–(F5)are satisfied and0≤Letuμbe a ground state solution ofIμand u0be a ground state solution ofI0.Then

    (i)there exist t>0and w∈E?such that tuμ+w∈N0and

    (ii)there exist t>0and w∈E?such that tu0+w∈Nμand

    Theorem 1.3Assume that(V1),(F1)–(F5)and(F6)are satisfied,let uμbe a ground state solution ofIμand u0be a ground state solution ofI0.Then

    (i)there holds

    (ii)for any sequence{μ(n)},there exists a subsequence uμ(n)such that

    1.2 Asymptotically periodic potential

    (V1’)Vi(x)=Ui(x)+Wi(x),i=1,2,···,K,whereUi∈C(RN)∩L∞(RN) is ZN-periodic and

    for allx∈RN,Wi∈C(RN) andMoreover,

    (F1’)fi(x,u)=gi(x,u)+hi(x,u),gi:RN×RK→R is measurable,ZN-periodic inx∈RNand continuous inu∈RKfor a.e.x∈RN,gi(x,u)=o(u) as |u|→0,uniformly inx∈RN;

    (F5’)?uG=(g1,g2,···,gK),whereGsatisfies that for allκ≥0,u,v∈RK,

    Furthermore,?uH=(h1,h2,···,hK) andHsatisfies that

    whereai∈C(RN),Moreover,

    Theorem 1.4Assume that(V1’),(F1’),(F2)–(F4),(F5’)are satisfied and0≤μ≤μ

    Theorem 1.5Assume that(V1’),(F1’),(F2)–(F4),(F5’)are satisfied andLet uμbe a ground state solution ofIμand u0be a ground state solution ofI0.Then

    (i)there exist t>0and w∈E?such that tuμ+w∈N0and

    (ii)there exist t>0and w∈E?such that tu0+w∈Nμand

    Theorem 1.6Assume that(V1’),(F1’),(F2)–(F4),(F5’),(F6)are satisfied,let uμbe a ground state solution ofIμand u0be a ground state solution ofI0.Then

    (i)there holds

    (ii)for any sequence{μ(n)},there exists a subsequence uμ(n)such that

    The present paper is organized as follows.Section 2 is dedicated to the variational form associated with problem (1.2).We recall the abstract linking theorem in [13],which is going to be used to prove the existence of solution in periodic case,as well as in the asymptotically periodic case.Some preliminaries are introduced in Section 3.Section 4 is dedicated to the periodic case.In order to do so,exploiting the profile of spectrum presented by the associated operator,we decompose the spaceEin appropriate subspaces for the linking structure.Subsequently,the requirements of the abstract result are verified: compactness,linking geometry and boundedness of Cerami sequences for the functional associated with problem(1.2).Section 5 is dedicated to asymptotically periodic case.Our greatest challenge in the asymptotically periodic case is the functional loses the ZN-translation invariance,many effective methods for periodic problems cannot be applied to asymptotically periodic ones.

    2 Variational Structure

    Let Ai=??+Vi,here and in what followsi=1,2,···,K.Then Aiare self-adjoint inL2(RN) with domain D(Ai)=H2(RN).Let {?i(λ):?∞≤λ≤∞} and |Ai| be the spectral family and the absolute value of Ai,respectively,and |Ai|12be the square root of Ai.Set Ui=id??i(0)??i(0?).Then Uicommutes with Ai,|Ai| and |Ai|12,and Ai=Ui|Ai| is the polar decomposition of Ai.

    Let

    Define

    and the corresponding norm

    For anyu∈H,fixingi=1,2,···,K,it is easy to see that

    Since 0/∈σ(??+Vi),the spectral theory asserts that we may find continuous projectionsP+iandPi?ofH1(RN) ontoHi+andHi?,respectively,such thatH1(RN)=Hi+⊕Hi?,then

    Belshazzar appears in the Old Testament as a Babylonian general and son of Nebuchadnezzar II; according to the Old Testament he was warned of his doom by divine handwriting on the wall that was interpreted by Daniel (6th century BC) (WordNet).Return to place in story.

    and norms are given by

    Let

    Note that anyu∈E:=H1(RN)Kadmits a unique decompositionu=u++u?,where

    We introduce a new norm onEgiven by

    Then

    Our hypotheses imply that Iμ∈C1(E,R) and a standard argument shows that critical points of Iμare solutions of (1.2).

    Lemma 2.1E is continuously embedded in Lq(RN,RK)and compactly embedded in(RN,RK),where2≤q≤2?,2≤q′<2?,2?is defined in(F2).

    By Lemma 2.1,there exist positive constantsl0,l1such that

    Observe that,in view of the Hardy inequality

    then we have

    To get the ground state solutions of (1.2),we define the generalized Nehari manifold

    This type of manifold was first introduced by Pankov[22–23].As is well known that ifuμ≠0 is a critical point of Iμ,thenuμ∈Nμ.The ground state solution will be obtained as a nontrivial critical point of Iμin Nμ.The next section will be used to get such points.

    3 Preliminaries

    Lemma 3.1(see [13])Let X be a real Hilbert space,X=X?⊕X+and X?⊥X+,and let ?∈C1(X,R)be of the form

    Suppose that the following assumptions are satisfied:

    (A1)ψ∈C1(X,R)is bounded from below and weakly sequentially lower semi-continuous;

    (A2)ψ′is weakly sequentially continuous;

    (A3)there exist r >ρ>0,e∈X+with‖e‖=1such that

    where

    Then for some c∈[κ,sup?(Q)],there exists a sequence{un}?X satisfying

    Set

    Employing a standard argument,one can check easily the following lemma.

    Lemma 3.2Assume that(V1’),(F1’)and(F2)–(F4),(F5’)are satisfied,thenFμis nonnegative,weakly sequentially lower semicontinuous,andF′μis weakly sequentially continuous.

    Lemma 3.3Assume that(V1’),(F1’)and(F2)–(F4),(F5’)are satisfied.Then for all κ≥0,u∈E,ζ=(ζ1,ζ2,···,ζK)∈E?,

    ProofFrom (2.1)–(2.2) and (F5’) we have

    Using Lemma 3.3,some important corollaries are given as follows,the proof process will be omitted.

    Corollary 3.1Assume that(V1’),(F1’)and(F2)–(F4),(F5’)are satisfied.Then for u∈Nμ,we have

    Corollary 3.2Assume that(V1’),(F1’)and(F2)–(F4),(F5’)are satisfied.Then for all u∈E,κ≥0,

    Lemma 3.4Assume that(V1’),(F1’)and(F2)–(F4),(F5’)are satisfied.Then

    (i)there exists ρ>0such that

    ProofSetIt follows from (V1’) that By (V1’) and (F2),there existp∈(2,2?) andC1>0 such that

    From Corollary 3.1,we have foru∈Nμ,

    This shows that there exists aρ>0 such that (i) holds.

    By Lemma 3.2,Fμ(u)>0 for all (x,u)∈RN×RK,so we have foru∈Nμ,

    With the help of the preceding two corollaries,an argument similar to the one used in [34]shows that we can now prove the following lemma in the same way as [34].

    Lemma 3.5Assume that(V1’),(F1)–(F4)are satisfied.Then for every e∈E+,we havesup Iμ(E?⊕R+e)<∞,and there exists Re>0such that

    ProofLete∈E+,t≥0 andu=te+u?∈E?⊕R+e.Sinceμi≥0,we have

    For the proof of the functional I0is standard,see [34].So we omit its details here.

    Corollary 3.3Assume that(V1’),(F1)–(F4)are satisfied.Let e∈E+with‖e‖=1.Then there exists r0>ρ such thatsup Iμ(?Q)≤0as r≥r0,where

    Lemma 3.6Assume that(V1’),(F1)–(F4)are satisfied andThenthere exist a constant cμ∈[Λμ,sup I(Q)]and a sequence{un}?E satisfying

    where Q is defined in(3.3).

    ProofCombining with Lemmas 3.1–3.2,3.4 and Corollary 3.3,it is easy to verify Lemma 3.6.The proof will be omitted.

    Lemma 3.7Assume that(V),(F1)–(F4)are satisfied andThenthere exist a constant cμ∈[Λμ,mμ]and a sequence{un}?E satisfying

    ProofThis is a standard result which can be found in [32–33],for the convenience of readers,we give the detailed proof process here.Chooseξk∈Nμsuch that

    Using Lemma 3.4,we can deriveLetThenek∈E+with‖ek‖=1.Applying Corollary 3.3,there exists a constantrk>max{ρ,‖ξk‖} satisfying sup Iμ(?Qk)≤0,where

    Then,by Lemma 3.6,there exist a constantck∈[Λμ,sup Iμ(Qk)]and a sequence {uk,n}n∈N?E,

    In virtue of Corollary 3.1,we get

    Sinceξk∈Qk,by (3.6) and (3.8) we have Iμ(ξk)=sup Iμ(Qk).Furthermore,by (3.5) and(3.7),we have

    We can choose {nk}?N such that

    Setuk=uk,nk,k∈N. Then we have

    Lemma 3.8Assume that(V1’),(F1)–(F4)are satisfied.Then for any u∈EE?,N?∩(E?⊕R+z)≠?,there exist η(u)>0,ζ(u)∈E?such that η(u)u+ζ(u)∈Nμ.

    ProofNote thatE?⊕R+u=E?⊕R+u+,then we may assume thatu∈E+.It follows from Lemma 3.5 that there exists a constantR >0 such that Iμ(u)≤0 for anyu∈(E?⊕R+z)BR(0).For sufficiently smalls≥0,we have Iμ(su)>0.Thus,0

    4 Periodic Case

    In this section,we assume thatVandfare 1-periodic in each ofx1,x2,···,xN,i.e.,(V1)and (F1) are satisfied.In this case,Vi=UiandWi=0.

    Lemma 4.1Assume that(V1),(F1)–(F4)are satisfied.Then for any{un}?E such that

    and

    is bounded in E,where

    ProofChooseM >0 such that |Iμ(n)(un)|≤M.We prove the boundedness of {un}by negation,if the assertion would not hold,then ‖un‖→∞.Denotevn=we have‖vn‖=1.Taking into account Sobolev embedding theorem,there exists a constantC1>0 such that ‖vn‖2≤C1.If

    it is easy to verify thatv+n→0 inLp(p∈(2,2?)) by using Lions’ concentration compactness principle.combining(F1) with (F2),we see that there exists a constantCε>0 such that

    This leads to a contradiction,soδ >0.

    Without loss of generality,we suppose the existence ofkn∈ZNsuch that

    Denoteζn(x)=vn(x+kn),then

    which is a contradiction.Hence the statement of Lemma 4.1 is proved.

    The following fact is very useful to deal with the Hardy type term and plays a very important role in the proof of the decomposition result.Their proofs are similar to those in [10],which we omit here.

    Lemma 4.2If|xn|→∞,then for any u∈E,

    Lemma 4.3Assume thatand let{un}be a bounded(C)cμ-sequence ofIμat level cμ≥0.Then there exists uμ∈E such thatI′μ(uμ)=0,and thereexist a number k∈N∪{0},nontrivial critical points u1,···,ukofI0and k sequences of points xin?ZN,1≤i≤k,such that

    Lemma 4.4Assume that Q∈C(RN×RK,R)and there exist a0,b1,b2>0,p∈(2,2?)and1

    If un?u in E,and

    then un→u in Lq1(RN).

    Proof of Theorem 1.1In light of Lemma 4.1,there exists a bounded sequence{un}?Esatisfying Lemma 3.6.Hence,there exists a constantC2>0 such that ‖un‖2≤C2.Ifthenun→0 inLp,wherep∈(2,2?).On the other hand,by virtue of (F1) and (F2),forthere exists a constantCε>0 such that

    Based on the above discussion,we have

    Thus,

    which is a contraction.Thenδ >0.

    Passing to the subsequence,we may assume that there existskn∈ZNsuch that

    Setζn(x)=un(x+kn),then

    Due to the periodic assumption ofV(x) andF(x,u),it follows that ‖ζn‖=‖un‖ and

    Thus,passing to the subsequence,suppose thatζn?ζinE,ζn→ζinL2loc,ζn(x)→ζ(x)a.e.on RN.In light of (4.4),we see thatζ≠0.For everyφ∈C∞0(RN),by (2.2),we haveHence,I′μ(ζ)=0,which implies thatζ∈Nμ.Then,Iμ(ζ)≥mμ.On the other way,it follows from (F2),(F3),(F4),Lemmas 3.4,3.7 and Fatou’s lemma that

    which implies Iμ(uμ)≤mμ.So Iμ(uμ)=mμ=The proof is completed.

    Next we claim thatuμ≠0.Indeed,forμ=0,by Lemma 3.7 and the concentration compactness arguments,it is easy to prove that I0has a nontrivial ground state solutionu0∈N0such that I0(u0)=m0=Now let us assume thatand consider

    Observe that,lettnu0+wn∈Q(u0),then passing to a subsequence we may assume thattn→t0,wn?w0inE?andandwn(x)→w0(x)a.e.on RN.Hencetnu0+wn?t0u0+w0∈Q(u0) by the weak lower semi-continuous of norm,which implies thatQ(z0) is weakly sequentially closed.It follows from Fatou’s lemma that

    this shows that Iμis weakly sequentially upper semi-continuous.Then Iμattains its maximum inQ(u0).Assume thatt0u0+w0∈Q(u0) such that

    thent0u0+w0∈Nμ.Therefore by Corollary 3.1,we have

    similar to the Lemma 4.3,we getun→uμinE,and souμ≠0.The proof is completed.

    Proof of Theorem 1.2Letuμ∈Nμbe a ground state solution of Iμand 0≤μ≤μ 0 andwμ∈E?such thattμuμ+wμ∈N0.Then,by Corollary 3.1 we have

    this shows that conclusion (i) holds.Similarly,letu0∈N0be a ground state solution of Iμ.By Lemma 3.8,there existt0>0 andw0∈E?such thatt0u0+w0∈Nμ.Then,by Corollary 3.1 we have

    which implies that conclusion (ii) holds.

    Proof of Theorem 1.3Sinceμi≥0,we get by (4.7),

    and by Lemma 4.1 we have {uμ} is bounded ifμ→0+.We take a sequenceμ(n)→0+and denoteun:=uμ(n).If

    then by Lions’concentration compactness principle,we getu+n→0 inLpfor 2

    then passing to a subsequence,we findu∈Esuch thatu+n(·+yn)→u+inL2locandu+≠0.Moreover,we may assume thatun(·+yn)?uinE,un(x+yn)→u(x),u+n(x+yn)→u+(x)a.e.on RN.Lettnun+wn∈N0andtn>0,wn∈E?.By (F6),we havef(x,u)·u?2F(x,u)≥0.Then

    which contradicts (4.9),thustnis bounded.Then ‖tnu+n‖ and ‖tnu?n+wn‖ are bounded,by the H?lder’s inequality and (2.4) we get

    Therefore,(4.6),(4.8) and (4.10) imply that conclusion (i) holds.

    Next,we will verify that (ii) holds.Let {uμ(n)} be a sequence of ground state solutions of Iμ(n),and we take a sequenceμ(n)→0+and denoteun:=uμ(n).It follows from Lemma 4.1 that {un} is bounded,then passing to a subsequence,we may assume thatun?u0inE,for 2≤p<2?andun(x)→u0(x) a.e.on RN.

    Noting thatVi(x) andf(x,u) are periodic inx,it follows that

    Thus,we have I′0(u0)=0,which implies thatu0is a nontrivial critical point of I0.We will claim thatu0is a ground state solution of I0.Sinceμ≥0,it is to show thatmμ=Iμ(u) is non-increasing onThen we obtain

    This implies

    Thus

    and

    It follows from (4.11)–(4.12) thatun→u0inE,which implies that (ii) holds.The proof is completed.

    5 Asymptotically Periodic Case

    In this section,we always assume thatV(x) satisfies (V1’).We define functional Jμas follows

    Then (V1’),(F1’),(F2)–(F5) imply that Jμ∈C1(E,R) and

    Similar to Lemma 3.3,we have the following lemma.

    Lemma 5.1Assume that(V1’),(F1’),(F2)–(F5)are satisfied.Then for all κ≥0,u∈E,ζ=(ζ1,ζ2,···,ζK)∈E?,

    Lemma 5.2Assume that(V1’),(F1’),(F2)–(F5)are satisfied.Then any sequence{un}?E satisfying(4.1)is bounded in E.

    ProofTo prove the boundedness of {un},arguing by contradiction,we suppose that‖un‖→∞.Letvn=Then ‖vn‖=1 .By Sobolev imbedding theorem,there exists a constantC4>0 such that ‖vn‖2≤C4.Passing to a subsequence,we havevn?vin E.There are two possible cases: (i)v=0 and (ii)v≠0.

    Case (i)v=0,i.e.,vn?0 inE.Thenv+n→0 andv?n→0 inLsloc(RN). By (V1’),it is easy to show that

    If

    then by Lions’ concentration compactness principle,v+n→0 inLs(RN) for 20,there existsCε>0 such that

    Letηn=Hence,by virtue of (4.1),(5.2)–(5.3) and Corollary 3.2,one can get that

    This leads to a contradiction,soδ >0.Without loss of generality,we suppose the existence ofkn∈ZNsuch thatDenoteωn(x)=vn(x+kn),then

    which is a contradiction.Hence the statement of Lemma 5.2 is proved.

    Case (ii)v≠0.In this case,we can also deduce a contradiction by a standard argument.

    Cases (i) and (ii) show that {un} is bounded inE.

    Proof of Theorem 1.4Applying Lemmas 3.7 and 4.1,we deduce that there exists a bounded sequence {un}?Esatisfying (3.4).Passing to a subsequence,we haveun?uinE.Next,we proveu≠0.

    Arguing by contradiction,suppose thatu=0,i.e.,un?0 inE,and soun?0 inLsloc(RN),2≤s<2?andun→0 a.e.on RN.By (V1’),(F1’) and (F5’),it is easy to show that

    and

    Note that

    and

    From (5.5)–(5.8),one can get that

    Analogous to the proof of Theorem 1.2,we can prove that there existskn∈ZNsuch that

    Denotevn(x)=vn(x+kn),then

    Passing to a subsequence,we havevn?vinE,vn→vinLsloc(RN),2≤s <2?andvn→va.e.on RN.Obviously,(5.10)implies thatv≠0.SinceUi(x) andgi(x,u) are periodic inx,by(5.9),we have

    In the same way as the last part of the proof of Theorem 1.2,we can prove that J′μ(v)=0 and Jμ(v)≤cμ.

    It is easy to show thatv+≠0.By Lemma 3.8,there existκ0=κ(v)>0 andw0=w(v)∈E?such thatκ0v+w0∈Nμ,and so Iμ(κ0v+w0)≥m.

    Hence,from the fact thatH(x,u)?forwe have

    sincev(x)0 forThis contradiction implies thatu≠0.In the same way as the last part of the proof of Theorem 1.2,we can certify that I′μ(u)=0 andThis shows thatu∈Eis a solution to (1.2) withThe proof is completed.

    Similar to the proofs of Theorems 1.2–1.3,we can prove Theorems 1.5–1.6,we omit the proof process.

    AcknowledgementThe authors would like to thank the anonymous reviewers for thelp and thoughtful suggestions that have helped to improve this paper substantially.

    午夜激情av网站| 国产成人精品在线电影| 国产精品一国产av| 一本—道久久a久久精品蜜桃钙片| av在线播放精品| 性色av一级| 亚洲少妇的诱惑av| 国产白丝娇喘喷水9色精品| 成人手机av| 999精品在线视频| 亚洲国产精品专区欧美| 五月伊人婷婷丁香| 亚洲伊人久久精品综合| 女人精品久久久久毛片| 日韩中文字幕视频在线看片| 亚洲av男天堂| 色婷婷av一区二区三区视频| 99热国产这里只有精品6| 国产一区二区在线观看日韩| 69精品国产乱码久久久| 久久久久精品久久久久真实原创| 久久精品国产自在天天线| 久久精品国产自在天天线| 男人操女人黄网站| 五月伊人婷婷丁香| 精品久久久久久电影网| 波多野结衣一区麻豆| 久久精品久久久久久噜噜老黄| www.色视频.com| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 一边亲一边摸免费视频| 熟女人妻精品中文字幕| 少妇被粗大的猛进出69影院 | 视频在线观看一区二区三区| 国产国拍精品亚洲av在线观看| 一本大道久久a久久精品| 亚洲精品国产av蜜桃| 80岁老熟妇乱子伦牲交| 少妇被粗大的猛进出69影院 | 男女边摸边吃奶| 国产 一区精品| 一本色道久久久久久精品综合| 亚洲精品国产色婷婷电影| 毛片一级片免费看久久久久| 欧美人与性动交α欧美软件 | 99精国产麻豆久久婷婷| 男女免费视频国产| 成人手机av| 日韩制服骚丝袜av| 26uuu在线亚洲综合色| 宅男免费午夜| 午夜福利视频精品| 亚洲成人手机| 亚洲欧美日韩卡通动漫| av国产久精品久网站免费入址| 黄色怎么调成土黄色| 啦啦啦视频在线资源免费观看| 99久久综合免费| 男男h啪啪无遮挡| 国产老妇伦熟女老妇高清| 免费日韩欧美在线观看| 最近的中文字幕免费完整| 亚洲成人一二三区av| 女的被弄到高潮叫床怎么办| 欧美亚洲日本最大视频资源| 老女人水多毛片| 中国美白少妇内射xxxbb| 亚洲一区二区三区欧美精品| 在线观看美女被高潮喷水网站| 天堂俺去俺来也www色官网| 国产精品不卡视频一区二区| 69精品国产乱码久久久| 亚洲精品国产av成人精品| 午夜影院在线不卡| av在线观看视频网站免费| 一边亲一边摸免费视频| 日日摸夜夜添夜夜爱| 9热在线视频观看99| 久久久久久久国产电影| 97在线人人人人妻| 天天躁夜夜躁狠狠躁躁| 一级爰片在线观看| 美女中出高潮动态图| 亚洲在久久综合| 90打野战视频偷拍视频| 母亲3免费完整高清在线观看 | 精品亚洲成a人片在线观看| 久久影院123| 精品国产国语对白av| 卡戴珊不雅视频在线播放| 2021少妇久久久久久久久久久| 久久精品夜色国产| 亚洲av综合色区一区| 高清在线视频一区二区三区| 日韩欧美一区视频在线观看| 亚洲国产日韩一区二区| 纵有疾风起免费观看全集完整版| 欧美人与性动交α欧美精品济南到 | 亚洲五月色婷婷综合| 久热久热在线精品观看| 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀 | 一级片'在线观看视频| 久久久久网色| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最新中文字幕久久久久| 王馨瑶露胸无遮挡在线观看| 国产一区二区三区av在线| 精品少妇久久久久久888优播| 飞空精品影院首页| 欧美激情国产日韩精品一区| 最近最新中文字幕免费大全7| 日韩免费高清中文字幕av| 国产精品久久久av美女十八| 一级片免费观看大全| 91久久精品国产一区二区三区| 韩国高清视频一区二区三区| 亚洲av电影在线进入| 亚洲av男天堂| 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 国产精品成人在线| 99九九在线精品视频| 国产xxxxx性猛交| 国产永久视频网站| 高清不卡的av网站| 久久国产精品男人的天堂亚洲 | 国产精品蜜桃在线观看| 久久99一区二区三区| 色哟哟·www| 99热6这里只有精品| 欧美激情国产日韩精品一区| 精品一区二区免费观看| 一边摸一边做爽爽视频免费| 人体艺术视频欧美日本| 男女边吃奶边做爰视频| 三上悠亚av全集在线观看| 国产精品久久久久久久电影| 人人澡人人妻人| 香蕉精品网在线| 九九在线视频观看精品| 日日撸夜夜添| 亚洲色图综合在线观看| 亚洲国产精品成人久久小说| 在线免费观看不下载黄p国产| 天堂俺去俺来也www色官网| 丝袜喷水一区| 国产av一区二区精品久久| 制服人妻中文乱码| 男女边吃奶边做爰视频| 嫩草影院入口| 亚洲人与动物交配视频| 老熟女久久久| 亚洲精华国产精华液的使用体验| 国产熟女欧美一区二区| 2022亚洲国产成人精品| 五月玫瑰六月丁香| 黄色毛片三级朝国网站| 在线观看www视频免费| 日本91视频免费播放| 国产精品人妻久久久久久| 国产女主播在线喷水免费视频网站| 极品人妻少妇av视频| 啦啦啦中文免费视频观看日本| 亚洲国产色片| av在线老鸭窝| 久久久国产精品麻豆| 亚洲成人一二三区av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美精品av麻豆av| 欧美日韩av久久| 丝袜喷水一区| 看十八女毛片水多多多| freevideosex欧美| 少妇的逼好多水| 亚洲欧美日韩卡通动漫| 亚洲美女黄色视频免费看| 日韩不卡一区二区三区视频在线| 大码成人一级视频| 国产精品熟女久久久久浪| 秋霞伦理黄片| a级毛片在线看网站| 国产成人91sexporn| 久久久久人妻精品一区果冻| 丰满饥渴人妻一区二区三| 国产不卡av网站在线观看| 精品人妻偷拍中文字幕| 亚洲欧洲精品一区二区精品久久久 | a 毛片基地| 久久精品熟女亚洲av麻豆精品| 精品国产露脸久久av麻豆| 亚洲精品日韩在线中文字幕| 亚洲性久久影院| 交换朋友夫妻互换小说| 十分钟在线观看高清视频www| 咕卡用的链子| 亚洲国产成人一精品久久久| 午夜福利乱码中文字幕| 天天操日日干夜夜撸| 丰满迷人的少妇在线观看| 人妻人人澡人人爽人人| 新久久久久国产一级毛片| av有码第一页| 亚洲成国产人片在线观看| 在线 av 中文字幕| 日日啪夜夜爽| 一级毛片黄色毛片免费观看视频| 久久久久视频综合| 黄色毛片三级朝国网站| 一区二区三区精品91| 免费播放大片免费观看视频在线观看| 一级a做视频免费观看| 热99国产精品久久久久久7| 国产在线一区二区三区精| 欧美最新免费一区二区三区| 搡女人真爽免费视频火全软件| 好男人视频免费观看在线| 亚洲图色成人| 深夜精品福利| 校园人妻丝袜中文字幕| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 久久久久国产网址| 男女免费视频国产| a级片在线免费高清观看视频| 欧美精品人与动牲交sv欧美| 七月丁香在线播放| 最近的中文字幕免费完整| 少妇被粗大的猛进出69影院 | 精品午夜福利在线看| 99久久综合免费| 色婷婷久久久亚洲欧美| 精品视频人人做人人爽| 高清黄色对白视频在线免费看| 七月丁香在线播放| 王馨瑶露胸无遮挡在线观看| 女人被躁到高潮嗷嗷叫费观| 少妇被粗大的猛进出69影院 | 日韩精品有码人妻一区| 成人无遮挡网站| 国产 精品1| 青青草视频在线视频观看| 亚洲欧美清纯卡通| 久久狼人影院| 伊人亚洲综合成人网| 成人午夜精彩视频在线观看| 中文天堂在线官网| 青青草视频在线视频观看| 少妇人妻 视频| 欧美日韩视频精品一区| 桃花免费在线播放| 午夜福利网站1000一区二区三区| 国产精品蜜桃在线观看| 亚洲欧美清纯卡通| 中国国产av一级| xxx大片免费视频| 色吧在线观看| 色哟哟·www| 国产亚洲最大av| 我要看黄色一级片免费的| 成年av动漫网址| 精品国产一区二区三区四区第35| 五月开心婷婷网| 久久99蜜桃精品久久| 欧美国产精品一级二级三级| 国产免费一区二区三区四区乱码| 欧美3d第一页| 成年动漫av网址| 波野结衣二区三区在线| 亚洲精品日韩在线中文字幕| 日本午夜av视频| 国产一区二区在线观看日韩| av网站免费在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| av免费观看日本| 日本猛色少妇xxxxx猛交久久| 欧美精品av麻豆av| 日本爱情动作片www.在线观看| 美女福利国产在线| 国产精品嫩草影院av在线观看| 99热全是精品| 亚洲三级黄色毛片| 国产成人精品福利久久| 亚洲av欧美aⅴ国产| 日韩制服骚丝袜av| 精品久久国产蜜桃| 国语对白做爰xxxⅹ性视频网站| 少妇 在线观看| 婷婷成人精品国产| 亚洲精品日本国产第一区| 熟女人妻精品中文字幕| 新久久久久国产一级毛片| 97超碰精品成人国产| 日本免费在线观看一区| 日日撸夜夜添| 亚洲综合精品二区| 亚洲国产成人一精品久久久| 18+在线观看网站| 男女边摸边吃奶| 国产日韩一区二区三区精品不卡| a级毛色黄片| 欧美+日韩+精品| 天天操日日干夜夜撸| 国产国语露脸激情在线看| 91久久精品国产一区二区三区| 美国免费a级毛片| 熟妇人妻不卡中文字幕| 欧美激情 高清一区二区三区| 亚洲欧美精品自产自拍| 国产国语露脸激情在线看| 免费观看性生交大片5| 一二三四在线观看免费中文在 | 成人国产av品久久久| 少妇人妻 视频| 精品第一国产精品| 在现免费观看毛片| 高清在线视频一区二区三区| 看免费成人av毛片| 日韩一本色道免费dvd| 色吧在线观看| videossex国产| 狠狠精品人妻久久久久久综合| 久久久久久久久久成人| 天天躁夜夜躁狠狠久久av| 日韩av免费高清视频| 国产精品久久久久久精品电影小说| 久久精品国产亚洲av天美| 91精品三级在线观看| 国产精品一区二区在线观看99| 老司机影院毛片| 国产 一区精品| 久久久久人妻精品一区果冻| 春色校园在线视频观看| 国产亚洲精品第一综合不卡 | 青春草亚洲视频在线观看| 欧美xxxx性猛交bbbb| 国产色婷婷99| 中文字幕人妻丝袜制服| 桃花免费在线播放| 9191精品国产免费久久| 国产69精品久久久久777片| 亚洲精品一二三| 九色成人免费人妻av| 91成人精品电影| 精品一区二区三区四区五区乱码 | 最新的欧美精品一区二区| 久久久久网色| 边亲边吃奶的免费视频| 丝袜脚勾引网站| 天堂中文最新版在线下载| 久久精品国产综合久久久 | 在线 av 中文字幕| 制服丝袜香蕉在线| 99久久精品国产国产毛片| 最近中文字幕2019免费版| 一二三四中文在线观看免费高清| 伦理电影大哥的女人| 色视频在线一区二区三区| 国产成人午夜福利电影在线观看| 91久久精品国产一区二区三区| 人妻 亚洲 视频| 高清av免费在线| 国产日韩欧美在线精品| 大码成人一级视频| 男人添女人高潮全过程视频| 国产一区亚洲一区在线观看| 少妇人妻久久综合中文| av黄色大香蕉| 欧美日韩精品成人综合77777| 啦啦啦视频在线资源免费观看| 九色亚洲精品在线播放| h视频一区二区三区| 伦理电影大哥的女人| 亚洲精品aⅴ在线观看| 人人妻人人澡人人看| 天堂8中文在线网| 日本欧美国产在线视频| 十八禁高潮呻吟视频| 成年人免费黄色播放视频| 91aial.com中文字幕在线观看| 美女xxoo啪啪120秒动态图| 天堂俺去俺来也www色官网| 欧美老熟妇乱子伦牲交| 波多野结衣一区麻豆| 91精品伊人久久大香线蕉| 亚洲精品国产av蜜桃| 欧美97在线视频| 满18在线观看网站| 一级毛片 在线播放| 亚洲综合精品二区| 久久久久久久久久成人| av片东京热男人的天堂| 一本大道久久a久久精品| 免费黄频网站在线观看国产| 久久久久久人人人人人| 亚洲欧美一区二区三区黑人 | 亚洲熟女精品中文字幕| 毛片一级片免费看久久久久| 国产xxxxx性猛交| 国产精品成人在线| 精品久久久精品久久久| 国产伦理片在线播放av一区| 五月玫瑰六月丁香| 激情视频va一区二区三区| 亚洲成人av在线免费| 日韩av免费高清视频| 国产在线一区二区三区精| 久久99蜜桃精品久久| 亚洲精品日本国产第一区| 成年人免费黄色播放视频| 国产视频首页在线观看| 18禁动态无遮挡网站| 免费在线观看黄色视频的| 人妻系列 视频| 国产精品 国内视频| 好男人视频免费观看在线| 久久国产精品男人的天堂亚洲 | 中文字幕亚洲精品专区| 2022亚洲国产成人精品| 欧美 亚洲 国产 日韩一| 国产成人精品福利久久| 久久人人爽av亚洲精品天堂| 男人添女人高潮全过程视频| 久久久久视频综合| 国产深夜福利视频在线观看| 91国产中文字幕| 少妇 在线观看| 成人毛片60女人毛片免费| 午夜91福利影院| 免费高清在线观看日韩| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| 国产激情久久老熟女| 极品少妇高潮喷水抽搐| 久久精品国产自在天天线| 久久人人爽人人片av| 成年美女黄网站色视频大全免费| 久久97久久精品| 久久av网站| 有码 亚洲区| 久久人人97超碰香蕉20202| 国产极品天堂在线| 欧美国产精品va在线观看不卡| 99国产综合亚洲精品| 免费观看性生交大片5| 日韩在线高清观看一区二区三区| 精品午夜福利在线看| 97在线人人人人妻| 最黄视频免费看| 国产精品国产三级国产专区5o| 亚洲av日韩在线播放| 亚洲av电影在线进入| 97在线视频观看| 涩涩av久久男人的天堂| 欧美人与性动交α欧美精品济南到 | 国产精品.久久久| 9色porny在线观看| 在线观看免费视频网站a站| 成人国语在线视频| 三上悠亚av全集在线观看| 大香蕉久久成人网| 一二三四在线观看免费中文在 | 满18在线观看网站| 日日爽夜夜爽网站| 十八禁网站网址无遮挡| 国国产精品蜜臀av免费| 青春草视频在线免费观看| 亚洲伊人久久精品综合| 女人被躁到高潮嗷嗷叫费观| 国产精品成人在线| 国产日韩欧美视频二区| 一级片免费观看大全| 美女国产高潮福利片在线看| 国产av码专区亚洲av| 国产免费一区二区三区四区乱码| 性高湖久久久久久久久免费观看| 青青草视频在线视频观看| 日韩成人伦理影院| 丰满乱子伦码专区| 久久精品熟女亚洲av麻豆精品| 中国三级夫妇交换| 在线观看人妻少妇| 最新中文字幕久久久久| 如何舔出高潮| 国产 一区精品| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| 曰老女人黄片| 寂寞人妻少妇视频99o| 亚洲高清免费不卡视频| 免费大片黄手机在线观看| 国产精品女同一区二区软件| 午夜福利,免费看| 久久综合国产亚洲精品| 亚洲精华国产精华液的使用体验| 亚洲欧洲精品一区二区精品久久久 | 久久女婷五月综合色啪小说| 热re99久久国产66热| videosex国产| 久久国产亚洲av麻豆专区| 九草在线视频观看| 黄色毛片三级朝国网站| 国产一区二区激情短视频 | 久久久国产一区二区| 欧美精品高潮呻吟av久久| 成人国语在线视频| 午夜福利视频在线观看免费| 日日撸夜夜添| tube8黄色片| 18禁裸乳无遮挡动漫免费视频| 午夜福利视频在线观看免费| 国产精品国产三级国产av玫瑰| 高清在线视频一区二区三区| 精品一区二区免费观看| 日日啪夜夜爽| 亚洲av.av天堂| 日日啪夜夜爽| 各种免费的搞黄视频| 国产色婷婷99| 丰满乱子伦码专区| 热99久久久久精品小说推荐| 免费av中文字幕在线| 日韩欧美一区视频在线观看| 欧美国产精品一级二级三级| h视频一区二区三区| 欧美少妇被猛烈插入视频| 午夜福利乱码中文字幕| 免费av中文字幕在线| 国产午夜精品一二区理论片| 伦理电影免费视频| 亚洲,欧美精品.| 久久人人爽av亚洲精品天堂| 人人妻人人爽人人添夜夜欢视频| 人人澡人人妻人| 国产探花极品一区二区| 亚洲欧美日韩卡通动漫| 波野结衣二区三区在线| 午夜福利影视在线免费观看| 日本-黄色视频高清免费观看| 人人妻人人添人人爽欧美一区卜| 深夜精品福利| 狂野欧美激情性xxxx在线观看| 免费在线观看完整版高清| 天堂8中文在线网| 国产成人精品福利久久| 欧美日韩国产mv在线观看视频| 免费观看av网站的网址| 下体分泌物呈黄色| 久久99精品国语久久久| 国产无遮挡羞羞视频在线观看| 少妇被粗大猛烈的视频| 十八禁高潮呻吟视频| 大码成人一级视频| 久久久精品免费免费高清| 成人影院久久| 亚洲国产日韩一区二区| 精品卡一卡二卡四卡免费| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 亚洲激情五月婷婷啪啪| 国产无遮挡羞羞视频在线观看| 国产国语露脸激情在线看| 午夜福利视频在线观看免费| 国产男女内射视频| 蜜桃在线观看..| 久久97久久精品| 最近中文字幕2019免费版| 成年人午夜在线观看视频| 男女啪啪激烈高潮av片| 在线观看www视频免费| 99热国产这里只有精品6| 精品人妻一区二区三区麻豆| 久久人人爽人人爽人人片va| 午夜视频国产福利| 亚洲情色 制服丝袜| videosex国产| 老司机亚洲免费影院| 1024视频免费在线观看| 美女视频免费永久观看网站| 久久久久精品久久久久真实原创| av在线app专区| 高清av免费在线| 深夜精品福利| av国产久精品久网站免费入址| 久久99一区二区三区| 亚洲五月色婷婷综合| 亚洲天堂av无毛| 国产乱人偷精品视频| 一级片'在线观看视频| 日韩在线高清观看一区二区三区| 国精品久久久久久国模美| 香蕉丝袜av| 丝袜脚勾引网站| 日本色播在线视频| 亚洲伊人色综图| 国产精品三级大全| 亚洲精品美女久久久久99蜜臀 | 国产高清三级在线| 欧美少妇被猛烈插入视频| 在线天堂中文资源库| 高清欧美精品videossex| 亚洲精品自拍成人| 韩国av在线不卡| 欧美日韩视频精品一区| 极品少妇高潮喷水抽搐| 男女国产视频网站| 黄色配什么色好看| 最近手机中文字幕大全| 亚洲精品乱码久久久久久按摩| 女人被躁到高潮嗷嗷叫费观| 亚洲精品色激情综合| 国产精品人妻久久久久久|