楊斌賓, 詹薔, 鄒密, 陳陟陽, 鞠振宇
運(yùn)動(dòng)促進(jìn)青春期小鼠造血干細(xì)胞造血重建功能*
楊斌賓, 詹薔, 鄒密, 陳陟陽, 鞠振宇△
(暨南大學(xué)教育部再生醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,衰老與再生醫(yī)學(xué)研究院,廣東 廣州 510632)
探討運(yùn)動(dòng)對青春期(4周齡)和成年(9周齡)小鼠骨髓造血干細(xì)胞造血重建功能的作用。使用跑步機(jī)分別對青春期和成年C57BL/6J雄性小鼠進(jìn)行跑步運(yùn)動(dòng)(運(yùn)動(dòng)14 d,前2 d運(yùn)動(dòng)速度為10 m/min,后12 d運(yùn)動(dòng)速度為12 m/min)。實(shí)驗(yàn)分為對照(安靜)組和運(yùn)動(dòng)組(=6);使用流式細(xì)胞儀分析運(yùn)動(dòng)后小鼠骨髓中造血干/祖細(xì)胞比例;采用全血分析儀分析運(yùn)動(dòng)后小鼠外周血中白細(xì)胞、紅細(xì)胞及血小板的數(shù)目;體外集落形成實(shí)驗(yàn)檢測造血干/祖細(xì)胞的集落形成能力;體內(nèi)競爭性移植實(shí)驗(yàn)檢測造血干細(xì)胞重建造血能力;BrdU實(shí)驗(yàn)分析造血干/祖細(xì)胞的增殖水平;ELISA檢測外周血中瘦素水平;流式細(xì)胞儀檢測骨髓和骨內(nèi)膜中間充質(zhì)干細(xì)胞的數(shù)目;體外集落形成實(shí)驗(yàn)檢測間充質(zhì)干細(xì)胞骨髓集落形成能力。(1)運(yùn)動(dòng)導(dǎo)致青春期小鼠外周血中血小板數(shù)目顯著升高(0.05);(2)運(yùn)動(dòng)處理后,青春期小鼠骨髓造血干/祖細(xì)胞的比例及體外短期集落形成能力無顯著差異(>0.05),然而運(yùn)動(dòng)促進(jìn)青春期小鼠骨髓造血干細(xì)胞體內(nèi)長期造血重建能力顯著增強(qiáng)(0.05);(3)成年小鼠運(yùn)動(dòng)后骨髓中造血干細(xì)胞比例顯著降低(0.05),但其造血重建能力無顯著差異(>0.05);(4)運(yùn)動(dòng)后,青春期小鼠造血干細(xì)胞增殖、機(jī)體瘦素分泌、間充質(zhì)干細(xì)胞數(shù)目和集落形成能力無顯著差異(>0.05)。運(yùn)動(dòng)促進(jìn)青春期小鼠造血干細(xì)胞造血重建能力。
運(yùn)動(dòng);造血干細(xì)胞;造血重建能力;間充質(zhì)干細(xì)胞
造血干細(xì)胞(hematopoietic stem cells, HSCs)是研究歷史最久、認(rèn)識較深入、實(shí)驗(yàn)技術(shù)最成熟的一類干細(xì)胞。在成年個(gè)體中,HSCs在骨髓中產(chǎn)生,具有自我更新和分化的能力,可以生成各種類型的血細(xì)胞(包括紅細(xì)胞、白細(xì)胞和血小板)的多潛能分化能力,維持著血液細(xì)胞的更新代謝以及機(jī)體損傷后血液系統(tǒng)的再生及修復(fù)[1]。胚胎期的HSCs增殖旺盛,進(jìn)入青春期后,HSCs逐漸由增殖旺盛階段過度到靜息階段[2]。此外,青春期HSCs的造血功能受到包括黃體生成素在內(nèi)的信號調(diào)控[2]。因此青春期對于HSCs是一個(gè)重要的轉(zhuǎn)換階段,然而對于青春期小鼠HSCs的造血重建調(diào)控機(jī)制尚不清晰。
運(yùn)動(dòng)可以預(yù)防和改善眾多慢性疾病,包括2型糖尿病和心血管疾病等[3]。在血液系統(tǒng)中,已有研究顯示,運(yùn)動(dòng)可以促進(jìn)成體小鼠HSCs細(xì)胞增殖,但不影響HSCs造血重建以及歸巢的能力[4]。與之相反,最近的一項(xiàng)研究顯示,運(yùn)動(dòng)可以通過降低小鼠血液中瘦素(leptin)水平,抑制HSCs增殖,從而減少血液中炎癥細(xì)胞的產(chǎn)生,降低心血管疾病發(fā)生的風(fēng)險(xiǎn)[5]。因此,運(yùn)動(dòng)對小鼠HSCs的作用尚待進(jìn)行進(jìn)一步的研究。此外,運(yùn)動(dòng)可以促進(jìn)包括睫狀神經(jīng)營養(yǎng)因子(ciliary neurotrophic factor, CNTF)、白細(xì)胞介素6(interleukin-6, IL-6)、睪酮(testosterone)、胰島素樣生長因子1(insulin-like growth factor-1, IGF-1)和生長激素(growth hormone, GH)等眾多影響青春期發(fā)育的因子分泌[6-8]。因此,綜合青春期對HSCs功能的重要影響,以及運(yùn)動(dòng)促進(jìn)眾多調(diào)控青春期生長發(fā)育因子的分泌,我們將對青春期(4周齡)和成年(9周齡)小鼠應(yīng)用跑步機(jī)進(jìn)行運(yùn)動(dòng)處理,探討相對于成年小鼠的HSCs,運(yùn)動(dòng)是否可以對青春期小鼠HSCs的功能產(chǎn)生特異的調(diào)控作用。
SPF級4周齡和9周齡C57BL/6J雄性小鼠(18~25 g)由廣東省醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物中心提供,許可證號為SCXK(粵)2018-0002。使用造血干細(xì)胞競爭性移植實(shí)驗(yàn)評估對照(sedation, SED)組和運(yùn)動(dòng)(exercise, EX)組HSCs造血重建能力的差異;為區(qū)別移植后受體小鼠外周血中不同來源的白細(xì)胞(供體、競爭及受體殘留),本研究使用白細(xì)胞表面特異性抗原CD45的不同亞型,CD45.1+和CD45.2+進(jìn)行區(qū)別(供體:CD45.2+小鼠;競爭者:CD45.1+小鼠;受體:CD45.1+CD45.2+雙陽性小鼠,各亞型之間沒有功能性的區(qū)別)[9-10]。受體和競爭者小鼠均為SPF級、8周齡小鼠(18~25 g,C57BL/6J雌鼠和雄鼠),來自暨南大學(xué)實(shí)驗(yàn)動(dòng)物中心,許可證號為SYXK(粵)2017-0174。實(shí)驗(yàn)小鼠飼養(yǎng)于暨南大學(xué)實(shí)驗(yàn)動(dòng)物中心SPF級動(dòng)物房,每籠5只小鼠,光照/黑暗12 h間隔更換,給予小鼠充足的食物和水。
流式細(xì)胞儀相關(guān)抗體:CD4(100508)、CD8(100704)、B220(103204)、Ter119(116212)、CD11b(101204)、PerCP-Cy5.5-IL-7R(135022)、PE-Cy7-Sca-1(122514)、APC-Cy7-SA(405208)、BV510-CD48(103443)、BV605-CD150(115927)、FITC-CD4(100510)、FITC-CD8(100706)、PE-CD45.2(109808)和APC-B220(103212)購自Invitrogen;抗體PE-Flt3(12-1351-83)、APC-c-Kit(17-1171-83)、AF700-CD16/32(56-0161-82)、Gr1(13-5931-86)、PerCP-Cy5.5-CD45.1(45-0453-82)和APC-Cy7-CD11b(47-0112-82)購自Thermo Fisher;抗體purified-CD16/32(101302)、APC-CD45(103112)和PE-Cy7-CD31(102524)購自Biolegend;APC-Ter119(17-5921-83)和SuperBright 436-O-PDGFRα(62-1401-82)購自eBioscience;Biotin-LepR(62-1401-82)購自R&D;FITC-CD34(553733)、BrdU kit(559619)和紅細(xì)胞裂解液(555899)購自BD Pharmingen;DMEM購自Gibco;Penicillin/Streptomycin (P/S)購自Invitrogen;Y-27632 dihydrochloride(1254)購自TOCRIS ;結(jié)晶紫(548-62-9)和DAPI(D9542-10MG)購自Sigma;0.01% Baytril購自Bayer;TPO(78072.1)、SCF(78064.1)和SFEM (serum-free expansion medium, 09655)購自STEMCELL Technologies;Mouse/Rat Leptin Quantikine ELISA Kit(MOB00)購自R&D Systems;liberase(5401020001)和DNase I(10104159001)購自Roche;70 μm濾膜(22363548)購自Fisherbrand;異氟烷(R510-22-2)購自RWD。
3.1實(shí)驗(yàn)分組及運(yùn)動(dòng)處理將4和9周齡小鼠分別分為SED和EX組,每組6只小鼠。EX組小鼠進(jìn)行維持14 d的跑步機(jī)運(yùn)動(dòng),每天1 h,前2 d運(yùn)動(dòng)速度為10 m/min(適應(yīng)期),后12 d運(yùn)動(dòng)速度為12 m/min[11-12],運(yùn)動(dòng)時(shí)間均為早上10~11點(diǎn)間。
3.2造血干/祖細(xì)胞的流式細(xì)胞儀分析犧牲SED組和EX組小鼠,每組6只,制備骨髓單細(xì)胞懸液,取1×107個(gè)細(xì)胞進(jìn)行骨髓造血干/祖細(xì)胞(hematopoietic stem/progenitor cells, HSPCs)染色。首先將分離的骨髓細(xì)胞與CD4、CD8、B220、Ter119、CD11b和Gr1與生物素(biotin)偶聯(lián)的抗體在4 ℃孵育30 min;1 mL染色緩沖液洗;再與FITC-CD34、PE-Flt3、PerCP-Cy5.5-IL-7R、PE-Cy7-Sca-1、APC-c-Kit、APC-Cy7-SA、AF700-CD16/32、BV510-CD48和BV605-CD150抗體染色,4 ℃避光孵育過夜后,1 mL染色緩沖液洗,288×離心5 min,棄上清,使用400 μL染色緩沖液重懸細(xì)胞。使用BD Fortessa流式細(xì)胞儀分析,分析前加入DAPI(1 g/L)標(biāo)記死細(xì)胞[13-14]。
3.3間充質(zhì)干細(xì)胞的流式細(xì)胞儀分析及集落形成實(shí)驗(yàn)犧牲SED組和EX組小鼠,每組6只,制備小鼠間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)單細(xì)胞懸液,進(jìn)行流式抗體染色[15]。MSC集落培養(yǎng),使用DMEM培養(yǎng)液(Gibco),含有20% FBS、1% P/S和10 μmol/L Y-27632(TOCRIS),在37 ℃、5% CO2、5% O2條件下培養(yǎng)8 d,隔天換液[5, 16]。第9天棄去細(xì)胞培養(yǎng)液,用4%多聚甲醛固定10 min后,進(jìn)行0.5%結(jié)晶紫(Sigma-Aldrich)染色,顯微鏡下計(jì)集落數(shù)[16]。
3.4BrdU實(shí)驗(yàn)給予SED組和EX組小鼠腹腔注射BrdU(100 mg/kg)[17],每組6只,同時(shí)給予小鼠含0.8 g/L BrdU的飲用水(每天換水,避光),持續(xù)兩周[18]。第15天犧牲小鼠,取1×107個(gè)骨髓細(xì)胞,進(jìn)行骨髓HSPC表面標(biāo)記染色(見3.2)。BrdU染色按照BrdU檢測試劑盒(559619,BD)實(shí)驗(yàn)流程操作。流式細(xì)胞儀分析前,細(xì)胞進(jìn)行DAPI(5 g/L)染色,4 ℃孵育0.5 h。
3.5造血干/祖細(xì)胞競爭性移植實(shí)驗(yàn)流式細(xì)胞儀分選SED組和EX組供體小鼠1 000個(gè)HSCs或10 000個(gè)LSK (lin-Sca-1+c-Kit+),同2×106個(gè)競爭者骨髓細(xì)胞一同經(jīng)尾靜脈注射的方式移植到經(jīng)致死量照射的受體小鼠中(8 Gy的X射線),移植后給予受體小鼠持續(xù)2周的抗生素溶液(0.01% Baytril)[13, 19]。移植后每隔一個(gè)月取外周血,使用BD Fortessa流式進(jìn)行嵌合率分析。
3.6外周血嵌合率分析使用異氟烷麻醉小鼠后,從SED組和EX組小鼠眼后靜脈叢取外周血(每只20 μL),每組6只小鼠,使用FITC-CD4,F(xiàn)ITC-CD8, PE-CD45.2,PerCP-Cy5.5-CD45.1,APC-B220和APC-Cy7-CD11b抗體,于4 ℃染色30 min。加入1 mL紅細(xì)胞裂解液,充分混勻,室溫靜置5 min,加入1 mL染色緩沖液終止反應(yīng),于4 ℃、288×離心5 min,去除上清液,加入200 μL染色緩沖液重懸細(xì)胞,使用流式細(xì)胞儀分析[10,13]。
3.7造血干/祖細(xì)胞集落形成實(shí)驗(yàn)通過流式細(xì)胞儀分選HSCs(每孔5個(gè)細(xì)胞)和多潛能祖細(xì)胞(mutipotent progenitor cell, MPP)(每孔10個(gè)細(xì)胞),在U型底96孔板中進(jìn)行培養(yǎng)(SFEM培養(yǎng)液:10 μg/L SCF, 10 μg/L TPO, 1% P/S),14 d后記錄集落大?。?9-20]。
3.8ELISA取SED組和EX組小鼠的外周血(每只200 μL)于含有20 μL 0.5 mol/L EDTA抗凝劑的EP管中,充分混勻后進(jìn)行離心(2 000×,20 min)。取20 μL上清液,使用PBS稀釋20倍后[18],按照Mouse/Rat Leptin Quantikine ELISA Kit實(shí)驗(yàn)流程檢測血液中瘦素水平。
采用GraphPad Prism 8.0軟件進(jìn)行統(tǒng)計(jì)分析。所有數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。兩組間比較采用Student's檢驗(yàn)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
成年小鼠運(yùn)動(dòng)后(圖1A),小鼠的體重結(jié)果顯示EX組與SED組無顯著差異(>0.05),見圖1B;與SED組相比,成年EX組小鼠血液中白細(xì)胞、紅細(xì)胞及血小板數(shù)目無顯著差異(>0.05),見圖1C~E;然而,與SED組相比,運(yùn)動(dòng)顯著降低了成年小鼠HSCs比例(<0.01),見圖1F。青春期小鼠運(yùn)動(dòng)后(圖1G),小鼠的體重結(jié)果顯示EX組與SED組無顯著差異(>0.05),見圖2H;與SED組相比,青春期EX組小鼠血液中白細(xì)胞和紅細(xì)胞數(shù)目無顯著差異(>0.05),血小板數(shù)目顯著升高(<0.05),見圖1I~K;骨髓HSCs比例分析結(jié)果顯示,青春期小鼠運(yùn)動(dòng)后骨髓中HSCs比例無顯著差異(>0.05),見圖1L。
Figure 1. Effect of exercise on the numbers of blood cells and the proportion of bone marrow (BM) HSCs in puberty and adult mice. A: schematic diagram of the exercise program of adult mice; B: body weight changes of adult mice after exercise; C, D and E: peripheral blood (PB) from adult mice was analyzed by whole blood analyzer, including white blood cell (WBC; C), red blood cell (RBC; D), and platelets (E); F: proportion of HSCs (CD48- CD150+ CD34- LSK) in BM of adult mice; G: schematic diagram of the exercise program of puberty mice; H: body weight changes of puberty mice after exercise; I, J and K: PB from puberty mice was analyzed by whole blood analyzer, including WBC (I), RBC (J), and platelets (K); L: proportion of HSCs (CD48-CD150+ CD34-LSK) in BM of puberty mice. Mean±SD. *P<0.05,**P<0.01 vs SED group.
HSCs和MPP體外集落培養(yǎng)實(shí)驗(yàn)顯示,與SED組相比,青春期EX組HSCs和MPP體外集落形成能力無顯著差異(>0.05),見圖2A。競爭性移植(圖2B)后檢測外周血嵌合率(圖2C)的實(shí)驗(yàn)結(jié)果顯示,與SED組相比,青春期EX組小鼠HSCs移植后的造血重建能力顯著提高(<0.05或<0.01),見圖2D、E。與SED組相比,成年EX組小鼠HSCs移植后重建造血能力無顯著差異(>0.05),見圖2F。
Figure 2. Effect of exercise on function of bone marrow HSCs in pubertal and adult mice. A: HSCs and multipotent progenitor cells (MPPs) of puberty mice were sorted for colony-forming assay in vitro, and the colony size was measured on day 14; B: schematic diagram of competitive transplantation of HSCs; C: schematic diagram of peripheral blood chimerism rate analyzed by flow cytometry; D: HSCs were transplanted into recipients along with competitors BM cells and the chimerism in PB was detected at the indicated time points (donor mice: 4-week-old); E: after the 1st round transplantation (D), HSCs from recipients were serially transplanted into the 2nd round recipients, and the donor-derived cells in PB were measured by FACS at the indicated time points; F: HSCs were transplanted along with competitors BM cells into recipients and the chimerism in PB was analyzed every 4 weeks after transplantation (donor mice: 9-week-old). Mean±SD. *P<0.05,**P<0.01 vs SED group.
BrdU增殖實(shí)驗(yàn)結(jié)果顯示,與SED組相比,青春期EX組小鼠HSCs增殖能力無顯著差異(>0.05),見圖3A。ELISA實(shí)驗(yàn)結(jié)果顯示,與SED組相比,青春EX組小鼠的leptin分泌水平無顯著差異(>0.05),見圖3B。流式分析和CFU實(shí)驗(yàn)結(jié)果顯示,與SED組相比,青春期EX組小鼠的MSCs數(shù)目(圖3C、D)和集落形成能力(圖3E)均無顯著差異(>0.05)。
Figure 3. Exercise did not affect the proliferation rate of HSCs, leptin secretion, the number and colony forming capacity of MSC. A: flow cytometry analysis of the proportion of BrdU+ cells in puberty mice in LSK (Lin- Sca-1+ c-Kit+), HSCs (CD150+ CD34- LSK), and MPP (CD34+ LSK); B: blood leptin levels of puberty mice; C: the number of MSC in BM of puberty mice (LepR+ MSC, LepR+ CD51+ CD31- MSC, PDGFα+ MSC, and PDGFα+ CD51+ CD31- MSC) was analyzed by flow cytometry; D: the number of MSC (LepR+ MSC, LepR+ CD51+ CD31- MSC, PDGFα+ MSC, and PDGFα+ CD51+ CD31- MSC) in the endosteum of puberty mice was analyzed by flow cytometry; E: the number of MSC colonies was measured. Mean±SD. *P<0.05,**P<0.01 vs SED group.
HSCs作為血液系統(tǒng)最重要的一群穩(wěn)態(tài)維持的細(xì)胞,運(yùn)動(dòng)對其調(diào)控作用報(bào)道較少,部分報(bào)道結(jié)論不一致[4, 16, 18]。已有的報(bào)導(dǎo)顯示,針對14~18周齡小鼠使用另一種持續(xù)增加的跑步速度的運(yùn)動(dòng)模型(8 m/min逐漸增加到16 m/min,每10 min增加2 m/min的速度,持續(xù)20 min),導(dǎo)致小鼠HSCs增殖顯著增加[21]。然而,最新的研究顯示,6~8周小鼠在跑步輪中自由運(yùn)動(dòng)6周或10周后,HSCs增殖顯著下降,同時(shí)HSCs分化能力受到抑制[18]。我們比較青春期和成年小鼠在運(yùn)動(dòng)后對HSCs的穩(wěn)態(tài)維持的影響,研究結(jié)果顯示,運(yùn)動(dòng)降低成年小鼠骨髓中HSCs比例,但是不影響青春期小鼠骨髓中HSCs比例,提示動(dòng)物模型的年齡差異可能會導(dǎo)致運(yùn)動(dòng)對HSCs增殖產(chǎn)生影響,因此,小鼠的年齡可能是運(yùn)動(dòng)影響小鼠HSCs增殖的一個(gè)重要因素。
以往的研究表明,8周齡成年小鼠進(jìn)行每天1 h,每周3 d,持續(xù)8周的跑步運(yùn)動(dòng),其HSCs的造血重建能力無顯著差異[4]。我們的結(jié)果顯示,運(yùn)動(dòng)對成年小鼠HSCs的造血重建能力無顯著影響,然而,運(yùn)動(dòng)可以有效的提高青春期小鼠HSCs的造血重建能力。這些結(jié)果提示,小鼠的年齡可能是影響運(yùn)動(dòng)對HSCs功能效果的一個(gè)重要因素。
關(guān)于運(yùn)動(dòng)如何影響HSCs的機(jī)制研究較少,以往的研究顯示,運(yùn)動(dòng)可以影響HSCs增殖、血液中瘦素水平以及通過調(diào)控MSC數(shù)目而間接影響HSCs功能[18]。然而,在本研究中使用的動(dòng)物模型實(shí)驗(yàn)中并沒有顯示持續(xù)兩周的跑步運(yùn)動(dòng)可以從細(xì)胞周期、瘦素分泌和MSC的角度對HSCs產(chǎn)生影響。這些結(jié)果提示,運(yùn)動(dòng)模式的差異,運(yùn)動(dòng)強(qiáng)度的差異,運(yùn)動(dòng)個(gè)體的年齡差異等眾多因素可能會從不同信號通路影響HSCs的功能。運(yùn)動(dòng)對于調(diào)控青春期小鼠骨髓HSCs的機(jī)制有待進(jìn)一步的研究。
[1] Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation[J]. Wiley Interdiscip Rev Syst Biol Med, 2010, 2(6):640-653.
[2] Peng YJ, Yu H, Hao X, et al. Luteinizing hormone signaling restricts hematopoietic stem cell expansion during puberty[J]. EMBO J, 2018, 37(17):e98984.
[3] Ruegsegger GN, Booth FW. Health benefits of exercise[J]. Cold Spring Harb Perspect Med, 2018, 8(7):a029694.
[4] De Lisio M, Parise G. Characterization of the effects of exercise training on hematopoietic stem cell quantity and function[J]. J Appl Physiol (1985), 2012, 113(10):1576-1584.
[5] Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014, 15(2):154-168.
[6] McGregor NE, Poulton IJ, Walker EC, et al. Ciliary neurotrophic factor inhibits bone formation and plays a sex-specific role in bone growth and remodeling[J]. Calcif Tissue Int, 2010, 86(3):261-270.
[7] Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells[J]. Nat Med, 2011, 17(11):1481-1489.
[8] Kraemer WJ, Ratamess NA, Nindl BC. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise[J]. J Appl Physiol (1985), 2017, 122(3):549-558.
[9] Holmes N. CD45: all is not yet crystal clear[J]. Immunology, 2006, 117(2):145-155.
[10] Challen GA, Boles N, Lin KK, et al. Mouse hematopoietic stem cell identification and analysis [J]. Cytometry A, 2009, 75(1):14-24.
[11] Chen K, Zheng Y, Wei JA, et al. Exercise training improves motor skill learning via selective activation of mTOR[J]. Sci Adv, 2019, 5(7):eaaw1888.
[12] Chen K, Zhang L, Tan M, et al. Treadmill exercise suppressed stress-induced dendritic spine elimination in mouse barrel cortex and improved working memory via BDNF/TrkB pathway [J]. Transl Psychiatry, 2017, 7(3):e1069.
[13] Chen Z, Yi W, Morita Y, et al. Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways[J]. Nat Commun, 2015, 6:6808.
[14] Comazzetto S, Murphy MM, Berto S, et al. Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow[J]. Cell Stem Cell, 2019, 24(3):477-486.
[15] 謝嘉怡,王瑨,趙萌. 小鼠骨髓與骨內(nèi)膜間充質(zhì)干細(xì)胞分析[J]. Bio-protocol, 2019, 9(22):e1010338.
Xie JY, Wang J, Zhao M. Flow cytometry analysis of mouse bone marrow and endosteum mesenchymal stromal cells[J]. Bio-protocol, 2019, 9(2):e1010338.
[16] Maredziak M, ?mieszek A, Chrzastek K, et al. Physical activity increses the total number of bone-marrow-derived mesenchymal stem cells, enhances their osteogenic potential, and inhibits their adipogenic properties[J]. Stem Cells Int, 2015, 2015:379093.
[17] Lüscher-Firzlaff J, Chatain N, Kuo CC, et al. Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l[J]. Sci Rep, 2019, 9(1):8262.
[18] Frodermann V, Rohde D, Courties G, et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells[J]. Nat Med, 2019, 25(11):1761-1771.
[19] Chen Z, Amro EM, Becker F, et al. Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation [J]. J Exp Med, 2019, 216(1):152-175.
[20] Nakamura S, Oshima M, Yuan J, et al. Bmi1 confers resistance to oxidative stress on hematopoietic stem cells[J]. PLoS One, 2012, 7(5):e36209.
[21] Emmons R, Niemiro GM, Owolabi O, et al. Acute exercise mobilizes hematopoietic stem and progenitor cells and alters the mesenchymal stromal cell secretome[J]. J Appl Physiol (1985), 2016, 120(6):624-632.
Exercise promotes the reconstitution capacity of hematopoietic stem cells in puberty mice
YANG Bin-bin, ZHAN Qiang, ZOU Mi, CHEN Zhi-yang, JU Zhen-yu△
(,,,,510632,)
To investigate the effect of exercise on the function of bone marrow hematopoietic stem cells (HSCs) in puberty (4 weeks old) and adult (9 weeks old) mice.Treadmill running was used as an exercise model in this study. Puberty and adult male mice were subject to exercise for 14 days in total, with the speed of 10 m/min in the first 2 days and 12 m/min in the last 12 days. The mice were divided into control (sedation) group and exercise group (=6). Flow cytometry was used to analyze the proportion of hematopoietic stem and progenitor cells (HSPCs) in bone marrow after exercise. Whole blood analyze assay was applied to analyze the number of white blood cells, red blood cells and platelets in the peripheral blood (PB) of mice. Colony-forming unit (CFU) assay was used to detect the colony forming ability of HSPCs. Competitive transplantation experiment was used to analyze the reconstitution capacity of HSCs. BrdU assay was used to analyze the proliferation rate of HSPCs. The level of leptin in PB was detected by ELISA. Flow cytometry was used to analyze the number of mesenchymal stem cells (MSCs). The CFU assay was used to analyze the colony forming ability of MSCsExercise significantly increased platelet count in PB of puberty mice (<0.05). After exercise treatment, there was no significant difference in the proportion of bone marrow HSPCs and short-term colony forming ability of puberty mice(>0.05). However, exercise significantly enhanced the long-term hematopoietic reconstitution capacity of bone marrow HSCs in puberty mice (<0.05). In adult mice, the proportion of HSCs in bone marrow decreased significantly after exercise (<0.05), but there was no significant difference in hematopoietic reconstitution capacity (>0.05). Exercise had no effects on the proliferation rate of HSCs and the level of leptin secretion in PB of puberty mice (>0.05). The number of MSCs and their colony forming capacity of puberty mice were also not changed upon exercise (>0.05).Exercise promotes the reconstitution capacity of hematopoietic stem cells in puberty mice.
Exercise; Hematopoietic stem cells; Hematopoietic reconstitution capacity; Mesenchymal stem cells
R331.2; R322.2
A
10.3969/j.issn.1000-4718.2022.06.013
1000-4718(2022)06-1056-07
2021-06-30
2022-03-01
國家自然科學(xué)基金資助項(xiàng)目(No. 81901403);中國科學(xué)院再生生物學(xué)重點(diǎn)實(shí)驗(yàn)室開放課題資助項(xiàng)目(No. KLRB201902)
Tel: 020-85220610; E-mail: zhenyuju@163.com
(責(zé)任編輯:宋延君,李淑媛)