李鳳儀, 周楊, 張嚴焱, 邱方, 高騰, 石麗君△
妊娠期運動對自發(fā)性高血壓大鼠子代心血管功能的影響*
李鳳儀1, 周楊1, 張嚴焱1,2, 邱方1, 高騰1, 石麗君1,2△
(1北京體育大學運動生理學教研室,北京 100084;2北京體育大學運動與體質(zhì)健康教育部重點實驗室,北京 100084)
探究妊娠期運動對高血壓大鼠子代心血管反應和心功能的影響。自發(fā)性高血壓大鼠(SHR)和正常血壓Wistar-Kyoto(WKY)大鼠懷孕后隨機分為安靜組(p-WKY-SED組和p-SHR-SED組)和運動組(p-WKY-EX組和p-SHR-EX組),每組12只。運動組自妊娠第1天(GD1)開始進行無負重游泳干預,至GD20停訓待產(chǎn)。檢測3月齡雄性子代體重、血壓和心率;股動靜脈置管術在體監(jiān)測心血管反應;HE染色觀察腸系膜動脈和心肌形態(tài);麥胚凝集素染色分析心肌細胞橫截面積;Masson染色分析心肌膠原容積分數(shù)(CVF);超聲心動圖測定心臟功能。(1)妊娠期運動可有效降低SHR 3月齡雄性子代大鼠血壓(<0.01)。(2)p-SHR-SED組股靜脈注射去甲腎上腺素(NE)后血壓升高幅度較p-WKY-SED組顯著增加(<0.05),妊娠期運動能有效抑制SHR對NE的血壓反應(<0.05)。(3)p-SHR-SED組子代血管中膜厚度與內(nèi)徑比值顯著高于p-WKY-SED組(<0.01),妊娠期運動顯著降低SHR子代血管中膜厚度與內(nèi)徑比值(<0.01)。(4)p-SHR-SED組CVF和心肌細胞橫截面積顯著高于p-WKY-SED組(<0.01),p-SHR-EX組CVF顯著低于p-SHR-SED組(<0.01),心肌細胞橫截面積無顯著性差異(>0.05)。(5)p-SHR-SED組心輸出量、每搏輸出量和左室射血分數(shù)均顯著低于p-WKY-SED組(<0.05),左室短軸縮短率也顯著下降(<0.01),運動組與各自安靜對照組相比無顯著性差異(>0.05)。妊娠期運動可以顯著降低SHR 3月齡雄性子代大鼠血壓,改善血管結構和功能,但并未明顯改善靜息狀態(tài)下心臟的泵血功能。
自發(fā)性高血壓大鼠;妊娠;運動;子代;心血管功能
原發(fā)性高血壓是一種遺傳和環(huán)境多因素疾病,約占高血壓總患病人數(shù)的95%,易引發(fā)心、腦、腎等靶器官的功能或器質(zhì)性損傷,是造成全球疾病負擔最主要的危險因素[1]。高血壓時,外周阻力持續(xù)增加,伴隨阻力血管的平滑肌細胞增生、膠原沉積增多,進而誘發(fā)血管壁增厚、中膜/管腔內(nèi)徑比值增加等表型的代償性改變,造成血管收縮力下降、血管反應性減弱。不良血管重塑還會引起后負荷持續(xù)性增加,使心臟(心肌細胞、非心肌細胞及細胞外基質(zhì))的形態(tài)結構和功能發(fā)生病理性重塑,主要表現(xiàn)為左心室肥厚(left ventricular hypertrophy, LVH)、心肌纖維化和心肌收縮力下降,嚴重可發(fā)展為高血壓性心臟?。╤ypertensive heart disease, HHD)[2]。1986年,Barker等[3]首次提出“健康與疾病發(fā)育起源(developmental origins of health and disease, DOHaD)”學說,初步揭示了胚胎和胎兒期宮內(nèi)環(huán)境的變化與子代慢性病易感性之間的可能聯(lián)系。胎兒期的血管新生以及心臟形態(tài)發(fā)生(心肌細胞的增殖和成熟)在很大程度上取決于子宮環(huán)境,孕期缺氧或營養(yǎng)不良會限制胎兒生長,并導致新生兒血管的舒縮功能下降,還會使子代發(fā)生心室肥厚,心肌細胞數(shù)量與質(zhì)量均發(fā)生改變,同時通過減少β-腎上腺素受體表達和影響交感神經(jīng)功能[4]。妊娠期合并慢性高血壓、糖尿病等疾病易導致胎兒在缺血缺氧環(huán)境中發(fā)育,可致心臟和腎臟發(fā)育不良,成年后出現(xiàn)代償性高血壓,增加子代患早發(fā)性心血管疾病和代謝綜合征的風險[5]。
研究表明,妊娠期運動可以增強骨骼肌線粒體酶活性、胰島素敏感性和葡萄糖穩(wěn)態(tài)進而優(yōu)化子宮環(huán)境,促進子代成年后機體的健康發(fā)育,故成為慢性疾病生命早期干預的有效手段。妊娠期運動可以通過加強血管壁剪切力改善血管功能,還可以上調(diào)胎兒心臟中線粒體基因表達水平與酶活性,改善肥胖子代的心臟肥大和心功能障礙,然而對于妊娠期運動能否改善高血壓子代血管和心臟的表型尚不明確[6, 7]。因此,本項工作選用自發(fā)性高血壓大鼠(spontaneously hypertensive rats, SHR)及正常血壓對照Wistar-Kyoto(WKY)大鼠為研究對象,旨在觀察妊娠期運動對SHR子代大鼠血管和心臟形態(tài)、功能的影響,為高血壓生命早期運動干預的可能性提供實驗依據(jù)。
將SPF級SHR和WKY大鼠[購自北京維通利華實驗動物技術有限公司,生產(chǎn)許可證號SCXK(京)2016-0006]分別采用12周齡雄性(250~280 g)和11周齡雌性(180~200 g)按1∶1的比例進行合籠配種,以見栓且陰道涂片見精子確定為妊娠第1天(gestation day 1, GD1),配種成功后將雄鼠取出。將成功妊娠的WKY大鼠和SHR隨機分為WKY安靜組(p-WKY-SED)、WKY運動組(p-WKY-EX)、SHR安靜組(p-SHR-SED)和SHR運動組(p-SHR-EX),每組12只,飼養(yǎng)于北京體育大學動物房,選用國家標準嚙齒類動物繁殖專用飼料,自由飲食飲水,室溫(22~24 ℃),相對濕度(45%~55%),12/12小時晝夜光照循環(huán)。子代出生后,常規(guī)維持飼料喂養(yǎng),自由飲食飲水,環(huán)境條件同上,每組隨機選取12只不同母鼠所生的3月齡雄性子代大鼠為研究對象。本研究所有動物實驗均經(jīng)北京體育大學運動科學實驗倫理委員會批準(批準號:2020150A)。
蘇木素、伊紅染液和Masson染色試劑盒(北京索萊寶科技有限公司);麥胚凝集素(wheat germ agglutinin, WGA)、去甲腎上腺素(norepinephrine, NE)和戊巴比妥鈉(Sigma);青霉素(山東圣旺藥業(yè)集團有限公司);肝素鈉(中國國藥集團有限公司)。
BP-2010A小動物血壓監(jiān)測儀(Softron Biotechnology);VINNO 6 LAB小動物彩色多普勒超聲成像系統(tǒng)[飛依諾科技(蘇州)有限公司];小動物呼吸麻醉系統(tǒng)(北京萊艾特科技發(fā)展有限公司);PowerLab生物信號采集記錄系統(tǒng)(ADInstruments);DMI4000 B倒置熒光顯微鏡(Leica)。
3.1運動方案孕期運動方案參照Volpato[8],雌鼠在一周的適應性飼養(yǎng)后,配種前5 d進行水環(huán)境適應,水深10 cm,水溫34~35 ℃,每天適應15 min。配種成功后,運動組孕鼠自GD1開始進行游泳訓練,前4 d為適應性訓練,水深40 cm,水溫34~35 ℃,訓練時間從20 min開始,每天遞增10 min,第5天起訓練時間為每天60 min,每周6 d,至GD20停訓待產(chǎn);與此同時,安靜組置于水深10 cm的相同水環(huán)境中。記錄孕鼠的產(chǎn)崽數(shù)和流產(chǎn)率,子代大鼠飼養(yǎng)至3月齡后測定各組大鼠體重(body weight, BW),監(jiān)測子代尾動脈的收縮壓(systolic blood pressure, SBP)、舒張壓(diastolic blood pressure, DBP)、平均動脈壓(mean arterial pressure, MAP)和心率(heart rate, HR)。
3.2股動靜脈插管在體監(jiān)測子代大鼠心血管反應子代大鼠滿3月齡后,每組隨機選取6只實施股動靜脈置管術。將麻醉后大鼠固定于操作臺,行股動、靜脈插入導管,另一端沿背部皮下頸部切口穿出。分別縫合固定腹股溝和頸部切口,并注射青霉素(2×105U·kg-1·d-1)。術后8 h左右使用肝素鈉通管,1 d大鼠恢復良好,空載校準后連接壓力換能器,待大鼠狀態(tài)穩(wěn)定后,使用PowerLab Chart生物信號采集記錄系統(tǒng)記錄基礎血壓和心率30 min,于股靜脈注射NE(18 μg/kg),觀察各組大鼠對NE的血壓反應。
3.3HE染色觀察子代大鼠腸系膜動脈(mesenteric artery, MA)和心肌形態(tài)取材前對包括安靜組在內(nèi)的全部大鼠禁食不禁水12 h,使用戊巴比妥鈉(50 mg/kg)腹腔麻醉大鼠后,開胸剪斷主動脈取出心臟,快速將其置于4 ℃生理鹽水中,用注射器沖凈心腔內(nèi)殘留血液,剪去心臟周圍多余組織后用濾紙蘸干殘留液體,使用電子天平稱取心臟重量(heart weight, HW)。去除左右兩個心房和右心室游離心室壁,稱量左心室重量(left ventricular weight, LVW)。開腹取出3級MA,將周圍脂肪組織小心剝離干凈,MA分級標準參照文獻[9]。樣本經(jīng)4%多聚甲醛固定后流水沖洗24 h,逐級乙醇脫水,常規(guī)石蠟包埋,切片厚3 μm;脫蠟至水,經(jīng)過HE染色,置于光學顯微鏡下觀察并拍照。每組取6個不同樣本的切片,每張切片隨機選取不重疊的6個視野,采用ImageJ軟件測量血管內(nèi)徑和中膜厚度。血管內(nèi)徑=2×內(nèi)環(huán)半徑;中膜厚度=外環(huán)半徑-內(nèi)環(huán)半徑。
3.4WGA染色檢測子代大鼠心肌細胞橫截面積大鼠心肌樣本常規(guī)石蠟包埋,切片厚5 μm,脫蠟至水,EDTA抗原修復緩沖液孵育組織切片,使用微波爐進行抗原修復。室溫冷卻后用PBS溶液漂洗終止消化,滴加WGA染液(1∶500稀釋),避光孵育30 min后漂洗,DAPI復染細胞核,避光孵育10 min后漂洗后封片,置于熒光顯微鏡下觀察心肌細胞并拍照,每組取6個不同樣本的切片,每張切片隨機選取約100個細胞(取自3個不同區(qū)域),采用ImageJ軟件測量心肌細胞橫截面積并計算平均值[10]。
3.5Masson染色檢測子代大鼠心肌膠原容積分數(shù)大鼠心肌樣本常規(guī)石蠟包埋,切片厚5 μm,脫蠟至水,通過Masson染色制成組織切片,置于光學顯微鏡下觀察并拍照,每組取6個不同樣本的切片,每張切片隨機選取不重疊的6個視野,采用ImageJ軟件測量心肌膠原面積,將膠原面積與所測視野面積比值作為膠原容積分數(shù)(collagen volume fraction, CVF)。
3.6超聲心動圖檢測子代大鼠心功能每組各選取6只,應用小動物多普勒超聲成像系統(tǒng)與高頻線陣探頭(6.5~18 MHz)進行超聲心動圖檢查。大鼠吸入體積分數(shù)1.5%~2%的異氟烷麻醉后,置于操作臺胸部備皮后涂上耦合劑,取胸骨旁左室長軸切面和左室短軸乳頭肌水平切面進行測量。選用心輸出量(cardiac output, CO)、每搏輸出量(stroke volume, SV)、左室射血分數(shù)(left ventricular ejection fraction, LVEF)和左室短軸縮短率(left ventricular fractional shortening, LVFS)作為反映心臟功能的指標。各測量值均取3個連續(xù)完整心動周期的平均值。
采用SPSS 22.0軟件進行統(tǒng)計學分析。數(shù)據(jù)以均數(shù)±標準誤(mean±SEM)表示。組間均數(shù)比較采用雙因素方差分析(two-way ANOVA)。以<0.05為差異有統(tǒng)計學意義。
對配種成功孕鼠的流產(chǎn)率和產(chǎn)崽數(shù)統(tǒng)計結果表明,4組孕鼠的產(chǎn)崽數(shù)之間沒有顯著差異;根據(jù)流產(chǎn)率的統(tǒng)計結果,p-WKY-SED組、p-WKY-EX組和p-SHR-EX組均未出現(xiàn)孕鼠的流產(chǎn)情況,p-SHR-SED組僅出現(xiàn)1例孕鼠流產(chǎn),見表1。
表1 妊娠期運動對孕鼠產(chǎn)崽數(shù)和流產(chǎn)率的影響
與p-WKY-SED組相比,p-SHR-SED組3月齡雄性子代BW顯著下降(<0.01),SBP(<0.01)、DBP(<0.01)、MAP(<0.05)和HR(<0.05)均顯著升高,p-WKY-EX組BW和血壓無顯著性差異(>0.05)。與p-SHR-SED組相比,p-SHR-EX組BW、SBP和HR無顯著性差異(>0.05),DBP和MAP顯著下降(<0.01),見表2。
表2 妊娠期運動對子代3月齡大鼠體重、血壓和心率的影響
SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure.*<0.05,**<0.01p-WKY-SED group;##<0.01p-SHR-SED group.
采用股靜脈注射升壓藥物NE觀察各組大鼠血壓的變化。如圖1所示,NE(18 μg/kg)可明顯升高各組大鼠動脈血壓。與p-WKY-SED組相比,p-SHR-SED組SBP、DBP和MAP的最大增幅均顯著升高(<0.01);妊娠期運動干預后高血壓子代SBP、DBP和MAP的最大增幅均顯著降低(<0.05)。
Figure 1. Norepinephrine (NE)-induced cardiovascular response measured by femoral, arterial and venous cannulation. A, B and C: the systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) response caused by intravenous injection of NE (18 μg/kg) in 3-month-old male offspring; D, E and F: changes of SBP, DBP and MAP maximum response. The time point 0 min indicates the time of the intravenous injection of drugs. Mean±SEM. n=6. **P<0.01 vs p-WKY-SED group;#P<0.05 vs p-SHR-SED group.
采用HE染色觀察子代3月齡大鼠3級MA和心肌結構,Masson染色觀察子代3月齡大鼠心肌膠原纖維沉積程度。如圖2所示,與p-WKY-SED組相比,p-SHR-SED組大鼠的MA平滑肌層明顯增厚,平滑肌細胞排列紊亂,血管內(nèi)徑顯著減小(<0.01),血管中膜厚度以及中膜厚度與內(nèi)徑比值均顯著增加(<0.01);心肌細胞腫脹肥大,細胞間排列疏松,間隙增寬并伴有炎性細胞浸潤,心肌CVF顯著增加(<0.01)。妊娠期運動干預后,子代大鼠的血管內(nèi)徑顯著增加(<0.05),血管中膜厚度(<0.01)以及中膜厚度與內(nèi)徑比值(<0.05)均顯著減小;心肌細胞腫脹、細胞間排列和心肌纖維斷裂程度相對較低,CVF顯著降低(<0.05)。以HW/BW、左心室肥大指數(shù)(LVW/HW)和心肌細胞橫截面積作為評價大鼠心臟肥大程度的相關指標,結果見表3,p-SHR-SED組HW/BW、LVW/HW和心肌細胞橫截面積顯著高于p-WKY-SED組(<0.01),而與p-SHR-SED組相比,p-SHR-EX組HW/BW、LVW/HW和心肌細胞橫截面積無顯著差異(>0.05)。
Figure 2. Effect of exercise during pregnancy on morphological changes of the mesenteric artery (MA) and heart in offspring rats. A: the morphological structure of MA and myocardium in each group [HE staining of MA, scale bar=100 μm, arrows indicate media layer thickness; HE staining of heart, scale bar=50 μm; wheat germ agglutinin (WGA) staining of heart, scale bar=50 μm; Masson staining of heart, scale bar=50 μm]; B: MA lumen diameter; C: MA medial layer thickness; D: ratio of MA medial layer thickness to MA lumen diameter; E: the cross-sectional area of myocardial cells (>100 cells per group); F: myocardial collagen volume fraction (CVF). Mean±SE. n=6. **P<0.01 vs p-WKY-SED group;#P<0.05,##P<0.01 vs p-SHR-SED group.
表3 妊娠期運動對子代大鼠心臟肥大程度的影響
HW: heart weight; BW: body weight; LVW: left ventricular weight.**<0.01p-WKY-SED group
使用超聲心動圖檢測子代3月齡大鼠的心臟功能,結果顯示,p-SHR-SED組CO、SV和LVEF均顯著低于p-WKY-SED組(<0.05),LVFS也顯著下降(<0.01),運動組與各自安靜對照組相比無顯著性差異(>0.05),見圖3和表4。
Figure 3. Echocardiograms of the offspring rats in each group.
表4 妊娠期運動對子代大鼠心功能的影響
CO: cardiac output; SV: stroke volume; LVEF: left ventricular ejection fraction; LVFS: left ventricular fractional shortening.P<0.05,P<0.01p-WKY-SED group
近年來,心血管疾?。╟ardiovascular diseases, CVD)發(fā)病率不斷上升,尋找生命早期的有效干預手段降低患病風險成為預防保健的重點。越來越多證據(jù)表明,除遺傳和不良生活方式等風險因素外,妊娠期宮內(nèi)環(huán)境對子代健康也起到關鍵作用。妊娠期宮內(nèi)環(huán)境分為外源暴露環(huán)境和母體健康環(huán)境,其中母體健康環(huán)境主要包含孕婦的營養(yǎng)狀況和疾病狀態(tài)。研究表明,妊娠期運動可以改善母體肥胖、糖尿病和高血壓等疾病所致的不良宮內(nèi)環(huán)境,進而對生命早期胎兒發(fā)育產(chǎn)生深遠影響,改善子代代謝和心血管健康[11]。
由Wistar品系大鼠培育的SHR模型,已被大量研究證明是常染色體多基因遺傳的自發(fā)性高血壓動物模型,這種造模條件下產(chǎn)生的高血壓特征與人類高血壓相似,因此SHR被廣泛應用于原發(fā)性高血壓及其并發(fā)癥的實驗研究中[12]。妊娠期不良血管編程會增加后代CVD的患病風險,這可能與血管活性物質(zhì)過表達、氧化應激水平異常升高或血流動力學紊亂有關。阻力血管的血管平滑肌的舒縮活動會影響血管直徑的大小,進而改變血壓。妊娠期高血壓使胎鼠處于缺血缺氧環(huán)境中發(fā)育,激發(fā)抗血管生成因子的過表達,進而抑制內(nèi)皮生長,造成子代大鼠MA結構功能紊亂[13]。本研究中,SHR子代大鼠的血管內(nèi)徑顯著減小,血管中膜厚度以及中膜厚度與內(nèi)徑比值均顯著增加,說明血管平滑肌排列的改變可能促使MA中膜向腔內(nèi)增生,從而導致中膜厚度與內(nèi)徑的比值增加,這與既往研究結果相符[14]。NE是一種腎上腺素能藥物,其與α受體結合后可誘發(fā)全身性血管收縮,升高血壓。本研究通過股靜脈注射NE觀察各組大鼠的心血管反應,顯示SHR子代大鼠血壓的升高幅度明顯增加,提示MA對NE收縮反應性的增強可能在血管阻力升高過程中起到關鍵作用,加劇了高血壓的病理進程?,F(xiàn)有研究多集中于探究由妊娠期營養(yǎng)不良或肥胖所致的不良宮內(nèi)環(huán)境對成年子代大鼠血管功能的影響,對于妊娠期健康行為是否可以改善成年后代的血管健康尚不明確。大量研究證實,運動是改善慢性疾病的重要干預手段,中等強度有氧運動可降低高血壓患者的血壓,降低心血管疾病的發(fā)病率和死亡率[15]。近年來,體育鍛煉被認為是一種有效預防和治療孕婦妊娠期并發(fā)癥的方法,加拿大孕期身體活動指南建議孕婦每周應累積至少150 min的中等強度的體力活動[16]。本研究中,妊娠期游泳運動并未明顯改變孕鼠的產(chǎn)崽數(shù)和流產(chǎn)率,可見游泳對于孕鼠是一種較為安全的運動干預方式。此外,我們觀察到妊娠期運動能夠緩解SHR子代大鼠成年后的血管重構以及改善阻力動脈對NE的敏感性,提示妊娠期運動可能通過增強SHR子代3月齡大鼠血壓的調(diào)控能力,改善血管結構和功能,這些結果與妊娠期進行自主轉輪訓練的大鼠和跑臺訓練的豬中的報道一致[17-18]。妊娠期運動可以通過減少胎盤灌注促進胎盤發(fā)育及細胞增殖,進而改善胎盤血管生成和內(nèi)皮功能,還可以通過釋放抗炎和促蛋白合成因子以滿足肌肉的能量需求進而提升內(nèi)皮生長因子水平、增強內(nèi)皮功能和血管順應性、促進血管生成平衡,間接改善血管功能[19]。
高血壓作為常見的不良妊娠結局之一,嚴重影響子代心血管系統(tǒng)的發(fā)育軌跡。胎兒心臟發(fā)育過程中壓力負荷的改變會增加其青春期子代的平均相對室壁厚度,減少左室舒張末期內(nèi)徑[20],母體缺氧還會增加胎鼠心肌細胞凋亡水平和心肌組織膠原含量[21]。心肌細胞肥大是心臟為減輕左室壁壓力超負荷所產(chǎn)生的代償效應,心肌細胞的生長幅度在LVH的發(fā)生發(fā)展中起到重要作用。本研究結果顯示,SHR子代大鼠出現(xiàn)心肌細胞肥大增生、心肌間質(zhì)纖維化并伴有靜息狀態(tài)下心臟收縮和舒張功能的明顯下調(diào),這可能與血壓增高引起子宮和臍帶血流量不足致使宮內(nèi)缺血缺氧,胎兒血氧飽和度下降,進而影響胎兒心臟發(fā)育有關。在妊娠期進行藥物刺激不僅可以降低SHR子代大鼠的血壓,還可以緩解心肌纖維化水平[22-23]。然而,妊娠期運動對于SHR子代大鼠心臟形態(tài)和功能的影響目前尚不明確。妊娠期運動對胎心產(chǎn)生的積極影響主要體現(xiàn)在促進胎盤血液循環(huán)、改善心率調(diào)節(jié)、提高心臟線粒體效率和增強自主神經(jīng)控制[24]。本研究通過妊娠期游泳訓練干預觀察到SHR子代大鼠的血壓顯著降低,心肌膠原纖維含量減少,但似乎并未改善心臟肥大程度和心功能,推測在其年齡進一步增長或病理刺激的作用時,妊娠期運動在早期生命窗口對子代心功能的重編程作用才能顯現(xiàn)。據(jù)報道,妊娠期運動可以促進成年后代小鼠的運動能力,有益于肥胖后代的心臟健康[7, 25]。綜合以上研究結果,妊娠期運動干預會顯著下調(diào)SHR子代3月齡大鼠的血壓,但并未有效緩解其左心室肥厚以及改善靜息狀態(tài)下的心臟功能。
綜上所述,本研究結果提示妊娠期運動可以顯著降低SHR雄性子代3月齡大鼠血壓,改善血管結構和功能,但并未明顯改善靜息狀態(tài)下心臟的泵血功能。本研究為生命早期心血管疾病防治提供了實驗室依據(jù)。
[1] GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258):1223-1249.
[2]馬茜鈺,李存存,張錦. 沉默信息調(diào)節(jié)因子在高血壓發(fā)病機制中的研究進展[J]. 中國病理生理雜志, 2021, 37(11):2100-2106.
Ma XY, Li CC, Zhang J. Research progress of sirtuins in pathogenesis of hypertension[J]. Chin J Pathophysiol, 2021, 37 (11):2100-2106.
[3] Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales[J]. Lancet, 1986, 1(8489):1077-1081.
[4] Fernandez-Twinn DS, Ekizoglou S, Wayman A, et al. Maternal low-protein diet programs cardiac beta-adrenergic response and signaling in 3-mo-old male offspring[J]. Am J Physiol Regul Integr Comp Physiol, 2006, 291(2):R429-R436.
[5] Zandi-Nejad K,Luyckx VA, Brenner BM. Adult hypertension and kidney disease: the role of fetal programming[J]. Hypertension, 2006, 47(3):502-508.
[6] Grimm H, Kretzschmar J, Cook MD, et al. The effects of exercise, aspirin, and celecoxib in an atherogenic environment[J]. Med Sci Sports Exerc, 2018, 50(10):2033-2039.
[7] Beeson JH, Blackmore HL, Carr SK, et al. Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring[J]. Mol Metab, 2018, 16:35-44.
[8] Volpato GT, Damasceno DC, Kempinas WG, et al. Effect of exercise on the reproductive outcome and fetal development of diabetic rats[J]. Reprod Biomed Online, 2009, 19(6):852-858.
[9] Ley K, Pries AR, Gaehtgens P. Topological structure of rat mesenteric microvessel networks[J]. Microvasc Res, 1986, 32(3):315-332.
[10] Zhang P, Hu X, Xu X, et al. AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice[J]. Hypertension, 2008, 52(5):918-924.
[11] Harris JE, Baer LA, Stanford KI. Maternal exercise improves the metabolic health of adult offspring[J]. Trends Endocrinol Metab, 2018, 29(3):164-177.
[12] Lerman LO, Kurtz TW, Touyz RM, et al. Animal models of hypertension: a scientific statement from the american heart association[J]. Hypertension, 2019, 73(6):e87-e120.
[13] Zhong Y, Feng X, Xu T, et al. Inherited risk plus prenatal insult caused malignant dysfunction in mesenteric arteries in adolescent SHR offspring[J]. PLoS One, 2019, 14(4):e0215994.
[14] 萬明慧,宋偉國,梁英. 高血壓大鼠大小動脈血管重構的差異比較[J]. 中國病理生理雜志, 2017, 33(9):1564-1573.
Wan MH, Song WG, Liang Y, et al. Comparison of vascular remodeling between small artery and aorta in spontaneous hypertensive rats[J]. Chin J Pathophysiol, 2017, 33 (9):1564-1573.
[15] Dimmeler S, Zeiher AM. Exercise and cardiovascular health: get active to "AKTivate" your endothelial nitric oxide synthase[J]. Circulation, 2003, 107(25):3118-3120.
[16] Mottola MF, Davenport MH, Ruchat SM, et al. 2019 Canadian guideline for physical activity throughout pregnancy[J]. Br J Sports Med, 2018, 52(21):1339-1346.
[17] Gilbert JS, Banek CT, Bauer AJ, et al. Placental and vascular adaptations to exercise training before and during pregnancy in the rat[J]. Am J Physiol Regul Integr Comp Physiol, 2012, 303(5):R520-R526.
[18] Bahls M, Sheldon RD, Taheripour P, et al. Mother's exercise during pregnancy programmes vasomotor function in adult offspring[J]. Exp Physiol, 2014, 99(1):205-219.
[19] Witvrouwen I, Mannaerts D, Van Berendoncks AM, et al. The effect of exercise training during pregnancy to improve maternal vascular health: focus on gestational hypertensive disorders[J]. Front Physiol, 2020, 11:450.
[20] Kurbasic A, Fraser A, Mogren I, et al. Maternal hypertensive disorders of pregnancy and offspring risk of hypertension: a population-based cohort and sibling study[J]. Am J Hypertens, 2019, 32(4):331-334.
[21] Bae S, Xiao Y, Li G, et al. Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart[J]. Am J Physiol Heart Circ Physiol, 2003, 285(3):H983-H990.
[22] Care AS, Sung MM, Panahi S, et al. Perinatal resveratrol supplementation to spontaneously hypertensive rat dams mitigates the development of hypertension in adult offspring[J]. Hypertension, 2016, 67(5):1038-1044.
[23] Torres Tda S, Aguila MB, Mandarim-de-Lacerda CA. Rosiglitazone reverses cardiac adverse remodeling (fibrosis and vascularization) in perinatal low protein rat offspring[J]. Pathol Res Pract, 2010, 206(9):642-646.
[24] May LE, Suminski RR,Berry A, et al. Maternal physical activity mode and fetal heart outcome[J]. Early Hum Dev, 2014, 90(7):365-369.
[25] Eclarinal JD, Zhu S, Baker MS, et al. Maternal exercise during pregnancy promotes physical activity in adult offspring[J]. FASEB J, 2016, 30(7):2541-2548.
Effects of exercise during pregnancy on cardiovascular function in offspring of spontaneously hypertensive rats
LI Feng-yi1, ZHOU Yang1, ZHANG Yan-yan1,2, QIU Fang1, GAO Teng1, SHI Li-jun1,2△
(1,,100084,;2,,100084,)
To investigate the effects of exercise during pregnancy on cardiovascular reactivity and cardiac function in 3-month-old male offspring of spontaneously hypertensive rats (SHR).Pregnant SHR and Wistar-Kyoto rats (WKY) were randomly divided into sedate control groups (p-WKY-SED group and p-SHR-SED group) and exercise groups (p-WKY-EX group and p-SHR-EX group). The rats in exercise groups were subjected to swimming (60 min/day, 6 day/week, from gestation day 1 to day 19). Body weight, blood pressure and heart rate were measured in 3-month-old male offspring, cardiac function was determined by echocardiography, and cardiovascular reactivity was monitoredby femoral arterial cannulation. The morphological changes of mesenteric artery and heart tissues were observed by HE staining, cardiomyocyte cross-sectional area was evaluated by wheat germ agglutinin (WGA) staining, and collagen volume fraction (CVF) was evaluated by Masson staining.(1) Exercise during pregnancy significantly decreased the blood pressure in the offspring of SHR (<0.01). (2) Exercise during pregnancy significantly reduced the blood pressure after treatment with norepinephrine in the male offspring (<0.05). (3) Exercise during pregnancy significantly decreased the ratio of mesenteric artery medial layer thickness to lumen diameter (<0.01). (4) The rats in p-SHR-SED group had significantly higher CVF and cardiomyocyte cross-sectional area than those in p-WKY-SED group (<0.01). Exercise during pregnancy significantly decreased the CVF in SHR (<0.01), but did not change the cardiomyocyte cross-sectional area (>0.05). (5) Cardiac output, stroke volume, left ventricular ejection fraction and left ventricular fractional shortening in p-SHR-SED group were significantly lower than those in p-WKY-SED group (<0.05 or<0.01), while exercise did not change these parameters (>0.05).Exercise during pregnancy significantly reduces blood pressure and improves vascular structure and function in 3-month-old male offspring of SHR, but does not improve the cardiac pump function.
Spontaneously hypertensive rats; Pregnancy; Exercise; Offspring; Cardiovascular function
R714.252; R363.2
A
10.3969/j.issn.1000-4718.2022.06.009
1000-4718(2022)06-1024-08
2022-01-06
2022-04-12
國家自然科學基金資助項目(No. 32071174)
Tel: 010-62989582; E-mail: shilj@bsu.edu.cn
(責任編輯:林白霜,羅森)