• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of identification methods of key nodes in transportation network

    2022-06-29 08:57:06QiangLai賴強(qiáng)andHongHaoZhang張宏昊
    Chinese Physics B 2022年6期

    Qiang Lai(賴強(qiáng)) and Hong-Hao Zhang(張宏昊)

    School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China

    Keywords: transportation network,key node identification,KSD identification method,network efficiency

    1. Introduction

    With the development of science and technology, there are more and more ways to share information, and the networking of social groups is becoming more and more obvious.Social networks are considered to be the most powerful tool for disseminating useful information to users.The stable operation of various complex network systems is the guarantee of a safe life. The meanings of network elements are also different in different networks. For example,in the circle of friends,the nodes of the network represent users,and the edges of the network represent the communication between users;the network nodes in the transportation network represent stations,and the edges of the network represent the reachability of vehicles. In a complex network, there are some key nodes, which have a huge impact on the structure and function of the network. If the key nodes stop running when the system is under external attack, the entire network will quickly collapse. Accurately identifying and protecting key nodes in the network is of great significance to the stability of the network.For example,it will be more effective for influential people to forward positive energy topics in social networks. Controlling susceptible people in virus transmission networks can prevent large-scale virus infections, and protecting high-traffic sites in the transportation networks can effectively avoid traffic congestion.[1–10]

    In recent years,the identification of key nodes in complex networks has become a hot spot in network scientific research,and more and more scientific research results have been proposed. The key node identification methods can be divided into two categories,local identification,and global identification. The method starting from the attributes of the node itself is called the local identification method. Albertet al.[11]proposed a method to identify key nodes in the network based on node degree,which laid the foundation for future research.Chenet al.[12]proposed the cluster-rank indicator,which takes into account the degree of nodes and the clustering coefficient at the same time, the experimental results show that the recognition accuracy of the index is excellent. Zhenget al.[13]proposed a node centrality measurement index based on local topological information, which considers multiple influencing factors. Isaiahet al.[14]proposed a closeness centrality method for power grid voltage stability analysis. The simulation results show that the proposed index can be used as a tool for rapid and real-time evaluation of power system voltage stability. Chenet al.[15]proposed a semi-local centrality index,which expands the coverage of the node field. Ullahet al.[16]proposed a local centrality measurement algorithm.The experiments in different scales of real-world networks have proved its superiority in performance. Zhuet al.[17]found that it is more effective to combine the concentration information of the node itself with the concentration information of the neighboring nodes to identify key nodes. The method of identifying key nodes from the position of the node on the entire network is called global recognition. Kitsaket al.[18]proposed ak-shell decomposition algorithm. In this method,the highestk’s-value index node is called the core node of the network, and the smallestk’s-value index node is called the peripheral node. Yanget al.[19]improved thek-shell decomposition method by considering the location of the node to improve the recognition efficiency. Amritaet al.[20]consider the node degree and neighbor node degree to improve the KSD algorithm,which can significantly obtain the best propagation dynamics from different types of network connection structures. Huanget al.[21]proposed a weightedK-order propagation number algorithm, which only needs to remove a small number of key nodes to achieve complete damage to the network. The identification methods mentioned above have their strengths. For networks with different structures, choosing different key nodes identification methods may get different results, so it is meaningful to choose a suitable identification method.

    Based on the purpose of obtaining key node identification methods corresponding to various traffic networks,this paper establishes the topology model of Nanjing Metro,Wuhan Metro, Chengdu Metro, Chengdu Public Transport,Chongqing Public Transport,and Shenzhen Public Transport.The network efficiency and the largest connected subgraph are used as the effect indicators. The node degree identification method, the neighbor node degree identification method, the KSD identification method, the DKS identification method,and the DKSN identification method are used to identify the key nodes of the network.The results show that the KSD identification method has the best recognition effect.

    The paper is organized as follows. Section 2 introduces five identification methods. Section 3 establishes the topological structure model of the selected transportation network and analyzes the efficiency of the identification methods,and Section 4 summaries the conclusions.

    2. Key nodes identification method

    2.1. Node degree identification method

    The complex network degree refers to the number of edges of nodes, and in the transportation network, it refers to the reachability between two sites. This method is to arrange the nodes in descending turn of degree, and the nodes with a large degree are the key nodes. The formula for calculating the degree is as follows:[22]

    whereNis the total number of nodes in the network,nodejis a neighbor of nodeiwhenai j=1.

    2.2. Neighbor node degree identification method

    The neighbor recognition node degree identification method is a supplement to the degree identification method.A nodeiclassified as a non-key node may increase its importance level because of its connection with many key nodes.The neighbor node degree refers to the sum of all neighbor nodes’degrees of a node. The method is to arrange the nodes in descending turn of the neighbor node degree,the nodes with a large neighbor degree are the key nodes. The formula for calculating the neighbor node degree is given as follows:[23]

    whereN(i)is the neighbor set of a nodeiandkjis the neighbor node’s degree of nodei.

    2.3. DKS and DKSN identification method

    It may not be accurate enough to only use global indicators or local indicators to identify key nodes. Therefore, it is very meaningful to combine these two indicators to identify nodes. The degreek-shell identification method (DKS) is a combination ofk-shell and degree to change itsdksivalue,and the degreek-shell neighborhood identification method(DKSN)is a combination ofk-shell and neighbor node degree to change itsdksnwivalue. In these two methods, there is no weight between thek-shell index and the degree value. The formulas for calculatingdksianddksnwiare as follows:[20]

    whereksiandksjarek-shell indices of nodeiandjrespectively.kiandkjare the degree of nodeiandjrespectively.Γiare the nearest neighbors of a nodei,w′ijis the edge’s weight between the nodeiandj.

    2.4. KSD identification method

    Different from the DKS and the DKSN identification method,the weightedk-shell degree neighborhood identification method (KSD) combines degree, the neighbor node degree, andk-shell, with adjustable parametersαandμ. By changing the values ofαandμ,the weights of the three indicators can be adjusted to get the best results. The formulas for calculatingksdwiare as follows:[20]

    whereksiandksjarek-shell indices of nodeiandjrespectively.kiandkiare the degrees of nodeiandjrespectively.αandμare the positive tunable parameters whose range lies between[0,1].Γiare the nearest neighbors of a nodei,wijis the edge’s weight between the nodeiandj.

    In order to find the most suitable value ofαandμ, this article takes multiple samples in the interval of[0,1],figure 1 is a part of the experimental diagrams.

    Fig.1. The effect of the KSD identification method under different values of α and μ. (a)α =0.2,μ =0.9;(b)α =1,μ =1;(c)α =0.9,μ =0.2.

    In Fig. 1, the effect diagrams of the KSD identification method under some different values ofαandμare given. The index in the figure is the relative size of the largest connected subgraph. It can be seen from the figure that whenα=1,μ=1, and the node attack ratio is 0.055, the recognition effect of KSD is better than the other two identification methods for the first time, and the recognition effect for some time is not stable. As the ratio ofα/μdecreases,the recognition effect of KSD is getting worse. Whenα=0.2 andμ=0.9,the KSD recognition effect does not even appear to be the best,and basically,the neighbor node degree identification method has the best effect. As the ratio ofα/μincreases,the recognition effect of KSD is getting better. Whenα=0.9,μ=0.2,and attack ratio is 0.184 that the recognition effect of KSD is the best. In the following attacks, the recognition effect of KSD has always been better than the other two identification methods. Based on the above analysis,α=0.9,μ=0.2 andα=0.2,μ=0.9 are selected as the control experiments. In either case,the fastest index decline under the KSD identification method can prove that the KSD identification method has the best recognition effect.

    2.5. Evaluation indicators

    Evaluating the efficiency of key node recognition can be obtained by observing the robustness of the network. In this paper, the largest connected subgraph and network efficiency are selected as robustness indicators.

    The subgraph that connects all nodes of the network with the fewest edges is called the largest connected subgraph.If the system is attacked, the size of the largest connected subgraph will also change accordingly, which can reflect the changes in the internal structure of the network to a certain extent. The formula for calculating the largest connected subgraph is as follows:[24]

    whereN′is the number of remaining nodes in the network,Nis the total number of nodes in the network.

    Fig.2. Comparison chart of static attacks and dynamic attacks for(a)dynamic largest connected subgraph, (b)dynamic network efficiency, (c)static largest connected subgraph,(d)static network efficiency.

    The average value of the efficiency between pairs of nodes in the network is called the network efficiency. The formula for calculating the network efficiency is as follows:[25]

    whereNis the total number of nodes in the network,dijis the shortest path from nodeito nodej.

    All the above recognition effect is evaluated by observing the changes of the two indicators after the nodes are deleted.The faster the decline,the better the recognition effect.

    The deliberate attacks on the network are divided into two categories, one is static attacks and the other is dynamic attacks.[26]Static attacks are attacks on the network in the originally calculated turn. Dynamic attacks will recalculate the importance of nodes after each round of attacks, and attack the network based on the results of the recalculation. The following is a comparison chart of static attacks and dynamic attacks under the same conditions.

    As can be seen from the figures,dynamic attacks are generally much better than static attacks. The best effect under static attack is the degree identification method, When the node failure ratio is 0.05,the network efficiency is 0.07,while in dynamic attacks, the value is 0.06. Therefore, the article chooses to attack the network in a dynamic attack mode, so that more accurate results can be obtained.

    3. Simulation and analysis

    3.1. Topological model

    The article selects Nanjing Metro,[26–29]Wuhan Metro,Chengdu Metro,Chengdu Public Transport,Chongqing Public Transport,and Shenzhen Public Transport as the objects,and establishes its topology model with the stations as the nodes and the trajectory of the vehicles as the edges. The data used are all from the Internet, and the acquisition time is August 2020. Table 1 shows the topological data of the selected six networks, whereNis the number of nodes,Mis the number of edges,〈K〉is the average degree. Figure 3 gives the established topology models of the corresponding networks.

    Table 1. Topological data of six networks.

    Fig. 3. Topological structure diagram of transportation networks for (a1) Chengdu Metro, (b1) Chengdu Public Transport, (c1) Nanjing Metro, (a2)Wuhan Metro,(b2)Shenzhen Public Transport,(c2)Chongqing Public Transport.

    3.2. Recognition result

    The article uses dynamic attacks to attack the networks, and the changes in the two indicators obtained are shown in the following figures(Figs.4–9).

    It can be concluded from the above figures in the following points.

    (i)For Chengdu Metro,in the case ofα=0.2,μ=0.9,the network efficiency of each identification method is similar,but when the node failure ratio is 0.26,the maximum connected subgraph of the neighbor node degree identification method drops the fastest and remains until the network collapses. In the case ofα=0.9,μ=0.2,when the node failure ratio is 0.06,the two indicators of the KSD identification method have the fastest decline and remains until the network collapses. Sort the recognition effects from largest to smallest,and the result is the KSD method,the ND method,the DKSN method,the DKS method,and the degree method.

    Fig. 4. Change graph of the largest connected subgraph under different values of α and μ in Chengdu Metro for (a) α =0.9, μ =0.2; (b) α =0.2,μ =0.9.

    Fig.5. Change graph of the network efficiency under different values of α and μ in Chengdu Metro for(a)α =0.9,μ =0.2;(b)α =0.2,μ =0.9.

    Fig. 6. Change graph of the largest connected subgraph under different values of α and μ in Nanjing Metro for (a) α =0.9, μ =0.2; (b) α =0.2,μ =0.9.

    Fig.7. Change graph of the network efficiency under different values of α and μ in Nanjing Metro for(a)α =0.9,μ =0.2;(b)α =0.2,μ =0.9.

    (ii)For Nanjing Metro,in the case ofα=0.2,μ=0.9,the two indicators of the neighbor node degree identification method and the KSD identification method have little difference, and when the node failure ratio is 0.08, they are better than the other methods. In the case ofα=0.9,μ=0.2,the effect of the KSD identification method is slightly better than that of the neighbor node degree identification method when the node failure ratio is 0.15, which is the best of these identification methods. Sort the recognition effects from largest to smallest,and the result is the KSD method,the ND method,the DKSN method,the DKS method,and the degree method.

    Fig.8. Change graph of the largest connected subgraph under different values of α and μ in Wuhan Metro for(a)α =0.9,μ =0.2;(b)α =0.2,μ =0.9.

    Fig.9. Change graph of the network efficiency under different values of α and μ in Wuhan Metro for(a)α =0.9,μ =0.2;(b)α =0.2,μ =0.9.

    (iii)For Wuhan Metro,the two indicators of the neighbor node degree identification method decrease the fastest in the case ofα=0.2,μ=0.9 when the node failure ratio is 0.2,but in the case ofα=0.9,μ=0.2,the decline in the two indicators of the KSD identification method is slightly faster than that of the neighbor node degree identification method when the node failure ratio is 0.21 and remains until the network collapses. Sort the recognition effects from largest to smallest, and the result is the KSD method,the ND method,the DKSN method,the DKS method,and the degree method.

    Fig.10. Change graph of the largest connected subgraph under different values of α and μ in Chengdu Public Transport for(a)α =0.9, μ =0.2;(b)α =0.2,μ =0.9.

    Fig.11. Change graph of the network efficiency under different values of α and μ in Chengdu Public Transport for(a)α =0.9,μ =0.2;(b)α =0.2,μ =0.9.

    Fig.12. Change graph of the largest connected subgraph under different values of α and μ in Chongqing Public Transport for(a)α =0.9,μ =0.2;(b)α =0.2,μ =0.9.

    Fig.13. Change graph of the network efficiency under different values of α and μ in Chongqing Public Transport for(a)α=0.9,μ=0.2;(b)α=0.2,μ =0.9.

    Fig.14. Change graph of the largest connected subgraph under different values of α and μ in Shenzhen Public Transport for(a)α =0.9,μ =0.2;(b)α =0.2,μ =0.9.

    Fig.15. Change graph of the network efficiency under different values of α and μ in Shenzhen Public Transport for(a)α =0.9,μ =0.2;(b)α =0.2,μ =0.9.

    It can be concluded from Figs.10–15.

    (I)For Chengdu Public Transport,the network efficiency of the DKS identification method and the KSD identification method are not much different, when the node failure ratio is 0.075, the maximum connected subgraph of the two identification methods drop the fastest and remains until the network collapses. But in the case ofα=0.9,μ=0.2,the two indicators of the KSD identification method have the fastest decline when the node failure ratio is 0.08.Sort the recognition effects from largest to smallest, and the result is the KSD method,the DKS method,the ND method,the degree method,and the DKSN method.

    (II)For Chongqing Public Transport,whether in the case ofα=0.2,μ=0.9 orα=0.9,μ=0.2, the two indicators of the KSD identification method have the fastest decline,and both reach the optimum when the node failure ratio is 0.065.Sort the recognition effects from largest to smallest, and the result is the KSD method, the DKS method, the ND method,the degree method,and the DKSN method.

    (III) For Shenzhen Public Transport, in the case ofα=0.2,μ=0.9, the network efficiency of the node degree identification method drops the fastest when the node failure ratio is 0.07, but in the case ofα=0.9,μ=0.2, the decline in the two indicators of the KSD identification method drop the fastest when the node failure ratio is 0.11 and remains until the network collapses. Sort the recognition effects from largest to smallest, and the result is the KSD method, the ND method,the DKS method,the degree method,and the DKSN method.

    In general, whether it is for the subway network or the bus network, whenα=0.9,μ=0.2, the recognition effect of the KSD identification method is always better than other methods.

    4. Conclusions

    It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks,the article uses the largest connected subgraph and network efficiency as evaluation indicators,and selects the node degree identification method,the neighbor node degree identification method, the KSD identification method,the DKS identification method, and the DKSN identification method to study the recognition effect of different types of transportation networks.And the paper selects Nanjing Metro,Wuhan Metro, Chengdu Metro, Chengdu Public Transport,Chongqing Public Transport, and Shenzhen Public Transport as the objects.The simulation results show that whether it is in the subway network or the bus network,in the case ofα=0.9,μ=0.2, the recognition efficiency of the KSD identification method that considers both local factors and global factors is the best among the selected recognition methods. Therefore,to improve the recognition effect of key nodes needs to be considered comprehensively. Local factors are as important as global factors. By changing the weights of the factors, better recognition results can be obtained, which is of guiding significance for the planning of the transportation network. In addition, there is a community structure with relatively close node connections.The community structure has a guiding significance for practical problems. In the future,we plan to add a community structure to the identification method to further improve the recognition accuracy.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61961019) and the Youth Key Project of the Natural Science Foundation of Jiangxi Province of China(Grant No.20202ACBL212003).

    他把我摸到了高潮在线观看| 亚洲精品美女久久av网站| 亚洲中文av在线| 18在线观看网站| 老司机福利观看| 精品国产国语对白av| 美女视频免费永久观看网站| 久久天堂一区二区三区四区| 亚洲五月天丁香| 99久久综合精品五月天人人| av电影中文网址| 亚洲国产欧美日韩在线播放| 亚洲精品粉嫩美女一区| 波多野结衣一区麻豆| av天堂久久9| 激情在线观看视频在线高清 | 国产欧美日韩一区二区精品| 亚洲精品av麻豆狂野| 久久香蕉精品热| av视频免费观看在线观看| 精品久久久久久久毛片微露脸| 国产熟女午夜一区二区三区| 久久人人爽av亚洲精品天堂| 少妇粗大呻吟视频| 成人亚洲精品一区在线观看| 夜夜夜夜夜久久久久| 欧美最黄视频在线播放免费 | 99久久99久久久精品蜜桃| 男女床上黄色一级片免费看| 精品国产美女av久久久久小说| 国产91精品成人一区二区三区| 亚洲国产欧美日韩在线播放| 搡老熟女国产l中国老女人| 夫妻午夜视频| 免费在线观看日本一区| 我的亚洲天堂| 正在播放国产对白刺激| 精品第一国产精品| 久久久国产成人精品二区 | 久久久久久久久久久久大奶| 日本一区二区免费在线视频| 亚洲色图综合在线观看| 免费一级毛片在线播放高清视频 | 香蕉丝袜av| 亚洲av日韩在线播放| 视频在线观看一区二区三区| 国产一区二区三区综合在线观看| 亚洲五月天丁香| 黄色片一级片一级黄色片| 正在播放国产对白刺激| 午夜久久久在线观看| 人人妻人人添人人爽欧美一区卜| 免费观看精品视频网站| 国产成+人综合+亚洲专区| 国产精品98久久久久久宅男小说| 亚洲 国产 在线| 日韩精品免费视频一区二区三区| 十八禁网站免费在线| 最近最新中文字幕大全免费视频| 操出白浆在线播放| 国产激情久久老熟女| 日日夜夜操网爽| 美女国产高潮福利片在线看| 欧美日韩亚洲高清精品| 久热这里只有精品99| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片午夜丰满| 免费一级毛片在线播放高清视频 | 午夜日韩欧美国产| 久久国产精品男人的天堂亚洲| 男女之事视频高清在线观看| 欧美一级毛片孕妇| 黑人巨大精品欧美一区二区mp4| av视频免费观看在线观看| 又大又爽又粗| 国产精品一区二区在线不卡| 国产高清视频在线播放一区| 极品教师在线免费播放| 国产男女内射视频| 亚洲精品中文字幕在线视频| 久久久久久久午夜电影 | 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 男女下面插进去视频免费观看| 久久久国产一区二区| 欧美日韩av久久| 一区二区日韩欧美中文字幕| 后天国语完整版免费观看| 欧美最黄视频在线播放免费 | 精品视频人人做人人爽| 国产精华一区二区三区| 国产成人精品久久二区二区免费| 久久精品熟女亚洲av麻豆精品| 国产精品 国内视频| av天堂久久9| 亚洲精品中文字幕在线视频| 女性生殖器流出的白浆| 夜夜夜夜夜久久久久| ponron亚洲| 亚洲九九香蕉| 成人黄色视频免费在线看| 免费不卡黄色视频| 黄片播放在线免费| 欧美激情久久久久久爽电影 | 亚洲精品国产色婷婷电影| 亚洲中文字幕日韩| 国产精品一区二区免费欧美| 久久天堂一区二区三区四区| 亚洲国产欧美一区二区综合| 丝袜美腿诱惑在线| 久久久久久免费高清国产稀缺| 中文欧美无线码| 国产又爽黄色视频| 在线观看66精品国产| 看片在线看免费视频| 黄色丝袜av网址大全| 欧美丝袜亚洲另类 | 99国产精品一区二区蜜桃av | 色尼玛亚洲综合影院| 亚洲一区高清亚洲精品| 欧美亚洲 丝袜 人妻 在线| 黄色视频,在线免费观看| 性色av乱码一区二区三区2| 美女高潮喷水抽搐中文字幕| 黄色视频不卡| 黄色女人牲交| 午夜影院日韩av| 午夜福利一区二区在线看| 亚洲成av片中文字幕在线观看| 国产一区二区激情短视频| 国产男女超爽视频在线观看| 亚洲av电影在线进入| 深夜精品福利| 国产淫语在线视频| 国产免费av片在线观看野外av| 男女床上黄色一级片免费看| 国产野战对白在线观看| 黑人巨大精品欧美一区二区蜜桃| 午夜精品国产一区二区电影| 国产成人系列免费观看| 一进一出抽搐gif免费好疼 | 免费日韩欧美在线观看| 日日爽夜夜爽网站| 国产成人啪精品午夜网站| 国产单亲对白刺激| 69av精品久久久久久| 狠狠婷婷综合久久久久久88av| 日韩制服丝袜自拍偷拍| 国产精品欧美亚洲77777| 欧美激情 高清一区二区三区| 少妇 在线观看| 亚洲 欧美一区二区三区| 中文字幕色久视频| 免费观看a级毛片全部| 精品国产乱码久久久久久男人| 国产91精品成人一区二区三区| 日韩成人在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 国产在视频线精品| 欧美最黄视频在线播放免费 | av视频免费观看在线观看| 亚洲精品自拍成人| 国产1区2区3区精品| 老熟女久久久| 夜夜爽天天搞| 99精品在免费线老司机午夜| 亚洲伊人色综图| 国产精品av久久久久免费| 亚洲第一欧美日韩一区二区三区| 精品少妇一区二区三区视频日本电影| 久久精品人人爽人人爽视色| 美女扒开内裤让男人捅视频| 黄色 视频免费看| 视频区欧美日本亚洲| 夜夜夜夜夜久久久久| 不卡av一区二区三区| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 免费一级毛片在线播放高清视频 | 激情视频va一区二区三区| 捣出白浆h1v1| 欧美丝袜亚洲另类 | 热99国产精品久久久久久7| 一级a爱片免费观看的视频| 欧美在线一区亚洲| 久久人妻福利社区极品人妻图片| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三区在线| 亚洲av日韩精品久久久久久密| 热99re8久久精品国产| 高清欧美精品videossex| 国产高清激情床上av| 制服诱惑二区| 亚洲一区中文字幕在线| 国产一区二区三区综合在线观看| 精品久久蜜臀av无| 妹子高潮喷水视频| 免费女性裸体啪啪无遮挡网站| www.精华液| 动漫黄色视频在线观看| 狠狠婷婷综合久久久久久88av| 久久久久精品国产欧美久久久| 婷婷成人精品国产| 亚洲av日韩在线播放| 欧美久久黑人一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 久9热在线精品视频| 咕卡用的链子| 99精品欧美一区二区三区四区| 热99re8久久精品国产| 成年人午夜在线观看视频| 人妻一区二区av| 操美女的视频在线观看| 建设人人有责人人尽责人人享有的| 19禁男女啪啪无遮挡网站| 成人国语在线视频| 飞空精品影院首页| 国产精品久久久久久人妻精品电影| av天堂久久9| 亚洲全国av大片| 亚洲七黄色美女视频| 国产日韩一区二区三区精品不卡| 久久久国产欧美日韩av| 后天国语完整版免费观看| 天天躁日日躁夜夜躁夜夜| 欧美黑人精品巨大| 亚洲人成伊人成综合网2020| 亚洲熟女毛片儿| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩精品网址| 黄色视频,在线免费观看| 亚洲精品国产色婷婷电影| 三上悠亚av全集在线观看| 亚洲欧美一区二区三区黑人| 亚洲精品av麻豆狂野| 在线观看一区二区三区激情| 欧美色视频一区免费| 成人永久免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 可以免费在线观看a视频的电影网站| 国产亚洲一区二区精品| 亚洲七黄色美女视频| 亚洲精品久久午夜乱码| 国产xxxxx性猛交| 成人手机av| 香蕉久久夜色| 国产欧美日韩精品亚洲av| 亚洲成国产人片在线观看| 亚洲熟女毛片儿| 丝袜美腿诱惑在线| 久久 成人 亚洲| avwww免费| 久久久国产成人免费| av电影中文网址| 中文字幕人妻丝袜一区二区| 亚洲精品国产一区二区精华液| 亚洲精品中文字幕在线视频| 久久亚洲真实| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 久久久国产成人精品二区 | 美女高潮喷水抽搐中文字幕| 亚洲国产中文字幕在线视频| tube8黄色片| 欧美乱妇无乱码| 国产精品国产高清国产av | 老熟妇乱子伦视频在线观看| 亚洲性夜色夜夜综合| 国产精品一区二区免费欧美| 国产一卡二卡三卡精品| 99久久综合精品五月天人人| 男女午夜视频在线观看| 黄色片一级片一级黄色片| 国产精品亚洲一级av第二区| 亚洲av欧美aⅴ国产| 王馨瑶露胸无遮挡在线观看| 中文字幕人妻丝袜一区二区| 精品第一国产精品| 丰满的人妻完整版| 狂野欧美激情性xxxx| 午夜视频精品福利| 亚洲精品自拍成人| 久久久久国产精品人妻aⅴ院 | 老熟妇乱子伦视频在线观看| 最近最新中文字幕大全免费视频| 美国免费a级毛片| 亚洲av成人av| 高潮久久久久久久久久久不卡| 国产蜜桃级精品一区二区三区 | 国产不卡av网站在线观看| 国产成人欧美在线观看 | 精品午夜福利视频在线观看一区| 极品少妇高潮喷水抽搐| 美女 人体艺术 gogo| 丰满饥渴人妻一区二区三| 夜夜爽天天搞| 水蜜桃什么品种好| 国产成人精品久久二区二区91| 亚洲欧美一区二区三区久久| 成人亚洲精品一区在线观看| 50天的宝宝边吃奶边哭怎么回事| videos熟女内射| 国产黄色免费在线视频| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| 久久午夜综合久久蜜桃| 国产免费av片在线观看野外av| 91麻豆av在线| 99re在线观看精品视频| 久久精品国产99精品国产亚洲性色 | 成人国语在线视频| 久久久国产欧美日韩av| 国产成人免费观看mmmm| 精品一区二区三区视频在线观看免费 | 日韩免费av在线播放| 法律面前人人平等表现在哪些方面| 人人妻,人人澡人人爽秒播| 欧美日韩视频精品一区| 久久久精品区二区三区| 亚洲一区二区三区欧美精品| 成年版毛片免费区| 在线看a的网站| 欧美日韩国产mv在线观看视频| 亚洲av成人av| 99精品在免费线老司机午夜| 久久香蕉国产精品| 国精品久久久久久国模美| 精品乱码久久久久久99久播| 丰满迷人的少妇在线观看| 涩涩av久久男人的天堂| 免费在线观看黄色视频的| 身体一侧抽搐| 香蕉国产在线看| 国产亚洲一区二区精品| 午夜福利在线观看吧| 女人爽到高潮嗷嗷叫在线视频| av有码第一页| 少妇猛男粗大的猛烈进出视频| 国产精品二区激情视频| 精品久久久久久久久久免费视频 | 视频区欧美日本亚洲| 丝袜美足系列| 高清视频免费观看一区二区| 亚洲精品久久午夜乱码| 日韩三级视频一区二区三区| 日日夜夜操网爽| 高清视频免费观看一区二区| 一级毛片女人18水好多| 国产一区二区三区综合在线观看| 中文字幕av电影在线播放| 黄色女人牲交| 久久国产精品人妻蜜桃| 人妻一区二区av| 欧美精品av麻豆av| 国产一卡二卡三卡精品| 50天的宝宝边吃奶边哭怎么回事| 天堂√8在线中文| 亚洲精品久久午夜乱码| 国产精品.久久久| av国产精品久久久久影院| 高清视频免费观看一区二区| 99精品在免费线老司机午夜| 女性生殖器流出的白浆| 亚洲中文日韩欧美视频| 一个人免费在线观看的高清视频| 美国免费a级毛片| 久久中文字幕一级| 免费在线观看日本一区| 女人久久www免费人成看片| 亚洲色图综合在线观看| 五月开心婷婷网| 真人做人爱边吃奶动态| 露出奶头的视频| 美女福利国产在线| 免费高清在线观看日韩| 一本综合久久免费| 亚洲欧美一区二区三区黑人| 女性被躁到高潮视频| а√天堂www在线а√下载 | 免费观看a级毛片全部| 国产成人欧美| 日本wwww免费看| 黑人巨大精品欧美一区二区蜜桃| 久久久久久亚洲精品国产蜜桃av| 日韩 欧美 亚洲 中文字幕| 久久久国产一区二区| 99re在线观看精品视频| 伦理电影免费视频| 免费在线观看完整版高清| 淫妇啪啪啪对白视频| 国产精品二区激情视频| 美女福利国产在线| 精品国产乱码久久久久久男人| 两性午夜刺激爽爽歪歪视频在线观看 | 桃红色精品国产亚洲av| 不卡一级毛片| 国产成人一区二区三区免费视频网站| 日本五十路高清| 在线av久久热| 99re在线观看精品视频| 亚洲欧洲精品一区二区精品久久久| 黄色女人牲交| 国产成人av激情在线播放| 中文字幕人妻丝袜一区二区| 成人精品一区二区免费| 丝袜美腿诱惑在线| 成年版毛片免费区| 成人手机av| 国产高清视频在线播放一区| 免费不卡黄色视频| 免费少妇av软件| 人妻久久中文字幕网| 国产精品香港三级国产av潘金莲| 在线播放国产精品三级| 亚洲精品一二三| 亚洲情色 制服丝袜| 深夜精品福利| 丝袜美足系列| 高清黄色对白视频在线免费看| 色老头精品视频在线观看| 麻豆av在线久日| 999久久久精品免费观看国产| 波多野结衣一区麻豆| 午夜视频精品福利| 久久久久久亚洲精品国产蜜桃av| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| videosex国产| 老司机亚洲免费影院| 国产精品久久久久久人妻精品电影| 又紧又爽又黄一区二区| 男人操女人黄网站| av线在线观看网站| 成人三级做爰电影| 午夜福利,免费看| 一级毛片精品| 国产有黄有色有爽视频| 欧美日韩av久久| 最新的欧美精品一区二区| 老司机靠b影院| aaaaa片日本免费| 波多野结衣av一区二区av| 老司机在亚洲福利影院| 亚洲熟妇熟女久久| 一级毛片高清免费大全| 午夜亚洲福利在线播放| 下体分泌物呈黄色| 亚洲色图 男人天堂 中文字幕| 超碰97精品在线观看| 女警被强在线播放| 在线视频色国产色| 多毛熟女@视频| 在线免费观看的www视频| 淫妇啪啪啪对白视频| 国产成人精品在线电影| 国产在视频线精品| 高清黄色对白视频在线免费看| 麻豆成人av在线观看| 久久九九热精品免费| 欧美+亚洲+日韩+国产| 久久精品国产99精品国产亚洲性色 | 欧美大码av| 啦啦啦 在线观看视频| 精品国产国语对白av| 国产成人精品无人区| 日韩中文字幕欧美一区二区| 精品国产一区二区久久| 免费少妇av软件| 制服人妻中文乱码| 亚洲精品美女久久av网站| 亚洲av片天天在线观看| 精品福利永久在线观看| 国产成人欧美| 久久精品国产99精品国产亚洲性色 | 熟女少妇亚洲综合色aaa.| 亚洲第一青青草原| 亚洲中文日韩欧美视频| 啪啪无遮挡十八禁网站| 欧美日韩黄片免| 久久这里只有精品19| 在线视频色国产色| 成人影院久久| 国产亚洲欧美在线一区二区| 老司机深夜福利视频在线观看| av超薄肉色丝袜交足视频| 少妇 在线观看| 免费在线观看黄色视频的| 欧美精品高潮呻吟av久久| 成人18禁在线播放| 亚洲精品粉嫩美女一区| 色婷婷久久久亚洲欧美| 国产精品偷伦视频观看了| 91字幕亚洲| 欧美一级毛片孕妇| www.999成人在线观看| 香蕉久久夜色| 高清毛片免费观看视频网站 | 一a级毛片在线观看| 最近最新中文字幕大全电影3 | 欧美最黄视频在线播放免费 | 久久九九热精品免费| 新久久久久国产一级毛片| 色播在线永久视频| 男女免费视频国产| 美女视频免费永久观看网站| 成年女人毛片免费观看观看9 | 一级片'在线观看视频| 国产精品免费一区二区三区在线 | 国产免费av片在线观看野外av| 一级毛片精品| 交换朋友夫妻互换小说| 老司机靠b影院| 精品久久蜜臀av无| 亚洲熟妇中文字幕五十中出 | 国产在线观看jvid| 我的亚洲天堂| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲av高清不卡| 日本wwww免费看| 黄色女人牲交| 精品国产国语对白av| 高清黄色对白视频在线免费看| 婷婷成人精品国产| 婷婷丁香在线五月| 天堂动漫精品| 757午夜福利合集在线观看| 亚洲熟女精品中文字幕| 啦啦啦免费观看视频1| 亚洲情色 制服丝袜| 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| 日本vs欧美在线观看视频| 久久精品国产亚洲av香蕉五月 | 国产精品久久久久久人妻精品电影| 女人被躁到高潮嗷嗷叫费观| 欧美一级毛片孕妇| 啦啦啦 在线观看视频| 激情在线观看视频在线高清 | 在线观看一区二区三区激情| 精品少妇久久久久久888优播| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩黄片免| 自拍欧美九色日韩亚洲蝌蚪91| 天堂√8在线中文| 亚洲一区中文字幕在线| 免费在线观看黄色视频的| 国产高清激情床上av| 国产成人精品久久二区二区免费| a级毛片在线看网站| www.自偷自拍.com| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成77777在线视频| 亚洲欧美精品综合一区二区三区| 99久久国产精品久久久| 80岁老熟妇乱子伦牲交| 韩国av一区二区三区四区| 在线观看免费日韩欧美大片| 搡老岳熟女国产| 亚洲欧美日韩高清在线视频| 人成视频在线观看免费观看| 韩国精品一区二区三区| av一本久久久久| 国产精品av久久久久免费| 久久久久久免费高清国产稀缺| 精品欧美一区二区三区在线| 欧美激情极品国产一区二区三区| 曰老女人黄片| 日韩有码中文字幕| 日韩欧美一区视频在线观看| 亚洲欧美一区二区三区久久| а√天堂www在线а√下载 | 欧美精品一区二区免费开放| 成人av一区二区三区在线看| 丝袜人妻中文字幕| 中出人妻视频一区二区| 国产亚洲精品久久久久久毛片 | 亚洲一区中文字幕在线| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品古装| 操美女的视频在线观看| 国产一区有黄有色的免费视频| 国产aⅴ精品一区二区三区波| 久久久国产精品麻豆| 女性被躁到高潮视频| 欧美色视频一区免费| 欧美av亚洲av综合av国产av| 夫妻午夜视频| 丰满的人妻完整版| 欧美精品av麻豆av| 在线观看免费视频网站a站| 99久久精品国产亚洲精品| 亚洲av成人不卡在线观看播放网| 亚洲综合色网址| 在线免费观看的www视频| 天天躁日日躁夜夜躁夜夜| 亚洲av熟女| 超碰97精品在线观看| 国产成人欧美在线观看 | 人妻丰满熟妇av一区二区三区 | 免费在线观看亚洲国产| 欧美精品高潮呻吟av久久| 黄片播放在线免费| 亚洲性夜色夜夜综合| 精品少妇一区二区三区视频日本电影| 热99re8久久精品国产| 亚洲精品久久成人aⅴ小说| 亚洲精品久久午夜乱码| 俄罗斯特黄特色一大片| 热99国产精品久久久久久7| 18在线观看网站| 国产一区二区三区视频了| 很黄的视频免费| 精品一品国产午夜福利视频| 黄色a级毛片大全视频| 极品教师在线免费播放|