• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors

    2022-06-29 08:56:40YanzheWang王彥喆WuchangDing丁武昌YongboSu蘇永波FengYang楊楓JianjunDing丁建君FuguiZhou周福貴andZhiJin金智
    Chinese Physics B 2022年6期
    關(guān)鍵詞:武昌

    Yanzhe Wang(王彥喆) Wuchang Ding(丁武昌) Yongbo Su(蘇永波) Feng Yang(楊楓)Jianjun Ding(丁建君) Fugui Zhou(周福貴) and Zhi Jin(金智)

    1School of Microelectronics,University of Chinese Academy of Sciences,Beijing 100049,China

    2High-Frequency High-Voltage Device and Integrated Circuits R&D Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: electromagnetic simulation, InP double-heterojunction bipolar transistor, parameter extraction,small-signal modeling

    1. Introduction

    Indium-phosphide-based heterojunction bipolar transistors (InP HBTs) have been exploited and investigated for integrated circuits operating during the last decades, with their high power and high-speed characteristics, it is widely used in many technology fields such as optical communications and telephone systems.[1]Compared to silicon-based technologies,InP HBTs have higher electron mobility,better noise performance,and anti-radiation characteristics.[2–4]InP HBTs also have higher thermal conductivity and higher electron mobility than GaAs-based devices, so InP is the most suitable semiconductor material for terahertz applications.[5]

    For most high-frequency electronic circuits, transistors are the core active components, they should be characterized and modeled before moving to the circuit design,so transistor modeling plays a fundamental role in its utility.De-embedding is the crucial step in device modeling, it can be conceptually understood as shifting the electrical reference planes closer to the actual DUT,[6]and intrinsic parameters can be extracted accurately only when extrinsic parts (such as probe pads and interconnects)are subtracted from the raw measurement data.De-embedding methods have been developing and improving in recent years,the most widely used open-short method[7]is based on lumped approximation,which is generally applicable within 30 GHz. The four step method[8]addresses issues of substrate coupling and contact effects. An improved three step method[9]was proposed and the method is applied not only toS-parameter measurements but also to large-signal measurements for the first time. The well-known 4-port method[1]treats the parasitic network as a 4-port network, which does not require any equivalent approximation and is compatible with noise de-embedding. The pad-thru-short[3]method accurately removes parasitic parts of the nonshielding input and output interconnects and dangling leg.

    As the application frequency of circuit design has reached the terahertz domain and the size of transistor is small enough,the values of extrinsic elements become comparable to values of intrinsic parameters, making it more challenging to de-embed and accurately characterize devices up to the submillimeter wave range.Normally,this is achieved by measurement methods like open-collector (to extract extrinsic resistances and inductances)and cut-off(to extract extrinsic capacitances), these traditional techniques have obvious disadvantages. Open-collector measurement requires a very high base current,which may damage the device and obtain inappropriate data. In addition,the resistances obtained are the mixture of the outer and inner parts. In cut-off measurement,it is difficult to separate the extrinsic capacitance and intrinsic capacitance. Electromagnetic(EM)simulation-based de-embedding is an alternative approach that can solve these problems. Electrical characteristics can be directly obtained from EM simulations if the port and simulation setups are defined properly,the process does not need any standards,and many measurements and errors from measurements can be avoided. Up to now,the method has been applied in the small-signal model building for kinds of transistors such as complementary metal-oxidesemiconductor field-effect transistors,[11,12]GaAs p-type high electron mobility transistors (HEMTs),[13]GaN HEMTs,[14]and InP HBTs.[15–18]Furthermore, the EM simulation approach can also be used in the noise model building for microwave transistors. In Ref.[19],a low-noise transistor model has been developed based on EM simulations.

    This paper presents a systematical EM simulation-based method to extract small-signal model for InP DHBTs with three steps. In the first step, the ports for simulations and setups are properly defined. An extended L-2L port calibration[2]is used to eliminate the port discontinuity, and the suitable simulation setups is determined by fitting the simulation results and measurements data of OPEN and SHORT structures, this step is illustrated in Section 2. In the second step, the parasitic elements of the device are de-embedded,seven 3D dummy structures are applied to extract parasitic parameters of probe pads, interconnection lines, and electrode fingers,all the dummy structures are simulated in EM simulation software and the simulation results are analyzed in Agilent advanced design system(ADS),this step is illustrated in Section 3.The last step is to extract intrinsic parameters,an intrinsic small-signal model simpler than conventional model[21,22]is proposed, the base-collector resistanceRμand the output resistanceRceare deleted for their relatively high value,Cceis introduced to characterize the capacitance generated from the collector finger and emitter ground bar,this step is illustrated in Section 4. In Section 5, experimental validations for the three transistors with different emitter sizes are performed at four bias points.

    2. EM simulation setups and port calibration

    The core procedure of this work is electromagnetic field simulation,simulation accuracy directly evolves with the success of the final modeling result, so the simulation settings should be the primary concern and ought to be set up properly to ensure the correctness of the simulation. There are three key aspects to note: Firstly, a radiation boundary should be applied to the airbox of the simulation structures because radiation boundary creates an approximation of free space that allows electromagnetic waves to radiate infinitely far into space.Secondly, lumped ports ought to be applied internally in the solution space. Analogous to a probe of a testing system,the lumped port inputs current signals into the structure, so we must set its port impedance to 50 Ω in order to make it consistent with the internal characteristic impedance of the test system. Thirdly,the lumped port must be calibrated. The excitation scheme in this work mainly refers to the surrounding ground ring approach reported in Ref.[2],the vertical 2D rectangle lumped port touches the simulation structure and the opposite side edge touches the vertical perfect electric conductor bridge, a perfect electric conductor (PEC) is an idealized material exhibiting infinite electrical conductivity or zero resistivity. Hence the parasitism of this excitation mainly comes from PEC bridges and the lumped ports.A lumped port generatesS,Y,Zparameters and fields in EM simulations,therefore its parasitic elements should be de-embedded. We use the extended L-2L method to calculate the parasitic inductance from the PEC bridge and the parasitic capacitance from the port.After port calibration, the two extracted parasitic values are estimated to be a 14 pH inductance and a 4.5 fF capacitance,which are almost independent of frequency as shown in Fig.1,indicating that the calibration technique is reliable. The two parasitic parameters will be subtracted from all the subsequent EM simulation data. All the conditions of simulation structures should be set as close as possible to the actual on-wafer measure conditions. The structure simulated consists of three layers. The top metal is set as gold material with conductivity 3.8×107S/m and a thickness of 0.5 μm. The layer below is BCB,its relative permittivity is set as 2.6,and thickness is set as 7 μm. The two materials above are laid on the InP substrate with a thickness of 600 μm and relative permittivity of 10.6.

    Experimental data within 0.1–50 GHz of conventional SHORT and OPEN structures are used as references for checking the correctness of the excitation scheme and simulation settings. Figure 2 shows that EM simulation results of OPEN and SHORT structures fit well with their measurement data,which explains that the simulation settings are reasonable.The determined setups from this procedure will be applied to the subsequent EM simulations.

    3. EM simulation assisted extraction of parasitic parameters

    The complete small-signal equivalent circuit of InP DHBTs is shown in Fig. 3. Before we start establishing the small-signal model of the intrinsic part,all the parasitic out of the intrinsic part should be de-embedded. The outermost parasitic capacitances (Cpbg,Cpcg,Cpbcg), resistances (Rbx,Rcx,Rex)and inductances(Lbx,Lcx,Lex)are from probe pads,and the similar RCL network of the inner part (Cpbg,Cpcg,Cpbcg,Rbx,Rcx,Rex,Lbx,Lcx,Lex) are the parasitic elements of the electrode fingers.

    TheZparameter of the inner electrodes RL network is calculated by subtracting pad parasitic elements and electrode parasitic capacitances from the full-short structure shown in Fig.4(d).

    Fig. 4. View of the InP HBT structure in Ansys HFSS. All sizes and layouts are strictly drawn in accordance with the actual device.

    Then we can obtain theZparameters of the intrinsic device with Eq.(5),whereYrawis the unprocessed measured data,andZdeemis the impedance parameter to extract intrinsic parameters in Section 4.

    As for the rest three structures in Fig.6,i.e.,short-base,short collector and short emitter, they are introduced for considering the influence of mutual inductance between the electrode fingers. As shown in Fig.7,after taking the influence of mutual inductance into account, there exist mutual inductancesMbc,MbeandMceamongLb,LcandLe. TheZparameters of the RL network circled with read dotted line in the full-short structure in Fig.7 should be

    Lb,LcandLethat can be calculated with the following equations:

    Now that values ofLb,LcandLehave already been solved,we can extractMbc,MbeandMceeasily. Figure 8 gives the extraction results (0.8×10 μm transistor). The electrode inductances with consideration of mutual inductanceLbm,Lcm,Lemcan be calculated by

    All the extracted extrinsic parameters are listed in Table 1,and emitter electrode resistance and inductance versus emitter length are shown in Fig.9,the inductance and resistance of the electrode increase as the length of the electrode increases,which proves the physical soundness and consistency of this de-embedding method.

    Elements 0.8×7 μm 0.8×10 μm 0.8×15 μm Elements 0.8×7 μm 0.8×10 μm 0.8×15 μm Cpbcg (fF) 1.868 1.814 2.208 Cpbc (fF) 1.972 2.108 2.030 Cpbg (fF) 14.55 14.60 20.65 Cpbe (fF) 8.347 9.739 9.975 Cpcg (fF) 14.49 14.53 20.61 Cpce (fF) 9.224 10.264 10.531 Lbx (pH) 41.55 40.50 40.86 Lbm (pH) 2.289 2.749 4.339 Lcx (pH) 39.75 40.19 40.34 Lcm (pH) 1.363 1.619 2.581 Lex (pH) 8.726 8.178 7.543 Lem (pH) 0.664 0.727 1.181 Rbx (Ω) 0.461 0.464 0.472 Rb (Ω) 2.003 2.669 3.777 Rcx (Ω) 0.449 0.459 0.468 Rc (Ω) 0.306 0.500 0.607 Rex (Ω) 0.160 0.130 0.103 Re (Ω) 0.007 0.009 0.034

    4. Extraction of intrinsic parameters

    The intrinsic equivalent circuit we proposed is shown in Fig. 10.Rbiis the intrinsic base resistances,Rπis the intrinsic base-emitter resistance.CμandCπare the intrinsic base-collector and base-emitter capacitance,respectively,andCcxis the extrinsic base-collector capacitance.Gm0is the DC transconductance andGmis the small signal transconductance,τis delay time.

    Considering the simplicity of the model,we omitted basecollector resistanceRμand the output resistanceRce,because these two parameters have relatively high values. CapacitanceCceis introduced for the characterization of the capacitive parasitic caused by the collector electrode finger and the emitter ground bar,as shown in Fig.12.

    First, we use theT–πtransformation[23,24]displayed in Fig. 11 for this equivalent circuit. The three impedance parameters in Fig.11 are

    TheYparameters of the intrinsic part can be expressed as

    Parameterτis obtained by fitting the measuredSparameters. Table 2 shows the intrinsic parameter extraction results of bias atVce=1.2 V,Ib=60 μA,Vce=1.7 V,Ib=40 μA,Vce=2.2 V,Ib=140 μA,Vce=2.7 V,Ib=160 μA. By this step,all the parameters in the small signal model of the three transistors are extracted.

    Vc=1.2 V,Ib=60 μA Vc=1.7 V,Ib=40 μA Elements 0.8×7 μm 0.8×10 μm 0.8×15 μm 0.8×7 μm 0.8×10 μm 0.8×15 μm Ccx (fF) 7.258 8.477 9.205 6.549 11.32 5.299 Cμ (fF) 4.417 4.862 12.32 8.363 5.15 15.05 Cπ (fF) 65.85 60.99 85.95 64.44 46.74 89.31 Cce (fF) 26.93 23.25 24.01 23.25 17.22 24.54 Rπ (Ω) 950 1003 1163 1300 1360 1127 Rbi (Ω) 14.29 13.62 7.860 15.15 16.74 6.908 Gm0 (S) 0.051 0.043 0.030 0.033 0.027 0.030 τ (ps) 0.949 0.918 1.161 1.163 1.02 1.260 Vc=2.2 V,Ib=140 μA Vc=2.2 V,Ib=160 μA Elements 0.8×7 μm 0.8×10 μm 0.8×15 μm 0.8×7 μm 0.8×10 μm 0.8×15 μm Ccx (fF) 8.679 11.22 10.32 5.996 12.89 9.353 Cμ (fF) 6.330 2.507 8.80 7.272 4.554 9.189 Cπ (fF) 122.5 117.5 170.25 92.70 133.3 195.69 Cce (fF) 21.37 26.94 17.38 23.25 26.35 15.04 Rπ (Ω) 545 508.9 452.2 500 421.38 342.06 Rbi (Ω) 13.69 14.73 6.01 12.63 15.06 5.113 Gm0 (S) 0.112 0.096 0.108 0.120 0.124 0.139 τ (ps) 1.418 1.001 1.314 1.02 1.205 1.50

    5. Verification and discussion

    In order to verify the correctness of the proposed smallsignal model building method, InGaAs/InP DHBT devices with the emitter sizes 0.8×7 μm,0.8×10 μm and 0.8×15 μm are used here for validation. The devices are manufactured in the Microwave Integrated Circuit Research Laboratory of the IMECAS.Measurements were performed at Agilent E8363B vector network analyzer(0.1–50 GHz)after an on-wafer shortopen-load-through(SOLT)calibration.[25]Cascade probe station is used.

    Fig.12. Introduced capacitance Cce (circled with red dotted square).

    Bias point Vce=1.2 V Vce=1.7 V Vce=2.2 V Vce=2.7 V Ib=60 μA Ib=40 μA Ib=140 μA Ib=160 μA Residual error 1.88% 2.36% 1.55% 1.26%

    6. Conclusion

    This paper presents an EM simulation-based small-signal model building method for InGaAs/InP DHBTs. Seven dummy structures are simulated to extract the parasitic elements rigorously,and port calibration is performed before simulation. Two typical structures OPEN and SHORT are used to determine the proper EM simulation settings. A simpler intrinsic equivalent circuit is proposed,Cceis introduced to the conventional intrinsic small signal model to characterize the parasitic capacitance generated from collector electrode finger and emitter ground bar,all the intrinsic parameters are obtained through mathematical method carefully.The simulation results of the small-signal model are compared to the measurement data of three kinds of InP HBT devices with different emitter sizes, within the frequency range 0.1–50 GHz, excellent agreements are achieved at four different biases, which proves the effectiveness of the method. The errors ofSparameters are also given. This accurate EM-based simulation method makes it convenient to extract parameters directly,and the method avoids several disadvantages of conventional methods,leading to a more reliable small-signal building technique.

    猜你喜歡
    武昌
    武昌工學(xué)院藝術(shù)設(shè)計(jì)學(xué)院作品選登
    武昌理工學(xué)院水彩作品選登
    武昌理工學(xué)院藝術(shù)設(shè)計(jì)學(xué)院作品選登
    武昌理工學(xué)院藝術(shù)設(shè)計(jì)學(xué)院作品選登
    武昌理工學(xué)院藝術(shù)設(shè)計(jì)學(xué)院設(shè)計(jì)作品選登
    武昌理工學(xué)院藝術(shù)設(shè)計(jì)學(xué)院水彩作品選登
    武昌理工學(xué)院藝術(shù)設(shè)計(jì)學(xué)院作品選登
    武昌理工學(xué)院室內(nèi)設(shè)計(jì)作品選登
    王亞南與武昌中華大學(xué)
    夜登武昌封建亭(外二首)
    岷峨詩稿(2019年4期)2019-04-20 09:02:10
    亚洲国产av影院在线观看| 黄色毛片三级朝国网站| 国产精品一区二区在线不卡| 看免费av毛片| 日韩免费高清中文字幕av| 亚洲欧美一区二区三区国产| 久热久热在线精品观看| 午夜福利视频在线观看免费| 尾随美女入室| 久久精品aⅴ一区二区三区四区 | 宅男免费午夜| 亚洲国产日韩一区二区| 肉色欧美久久久久久久蜜桃| 日韩av不卡免费在线播放| 青草久久国产| 性少妇av在线| 亚洲精品国产色婷婷电影| 欧美日韩国产mv在线观看视频| 亚洲国产精品成人久久小说| 国产爽快片一区二区三区| 免费黄频网站在线观看国产| 国产伦理片在线播放av一区| 成年美女黄网站色视频大全免费| 成人手机av| 中国三级夫妇交换| 人人妻人人添人人爽欧美一区卜| 精品少妇内射三级| 9热在线视频观看99| 激情视频va一区二区三区| 蜜桃国产av成人99| 亚洲图色成人| 精品一品国产午夜福利视频| 欧美激情极品国产一区二区三区| 肉色欧美久久久久久久蜜桃| 欧美精品一区二区免费开放| 日本av免费视频播放| 婷婷色综合大香蕉| 成人手机av| 久久久久精品久久久久真实原创| 最黄视频免费看| 国产成人免费观看mmmm| 激情五月婷婷亚洲| 国产1区2区3区精品| av不卡在线播放| 天美传媒精品一区二区| 视频在线观看一区二区三区| 欧美日韩成人在线一区二区| 亚洲人成电影观看| 街头女战士在线观看网站| 在线观看免费高清a一片| 日韩av在线免费看完整版不卡| 精品人妻在线不人妻| 亚洲av综合色区一区| 成人漫画全彩无遮挡| 这个男人来自地球电影免费观看 | 少妇猛男粗大的猛烈进出视频| 精品久久久久久电影网| 街头女战士在线观看网站| 亚洲av国产av综合av卡| 午夜日本视频在线| 国产av码专区亚洲av| 国产男女超爽视频在线观看| 日本黄色日本黄色录像| 国产一区二区三区综合在线观看| 亚洲国产精品国产精品| 久热久热在线精品观看| 亚洲av在线观看美女高潮| 国产xxxxx性猛交| 欧美激情 高清一区二区三区| 欧美激情极品国产一区二区三区| 国产熟女欧美一区二区| 可以免费在线观看a视频的电影网站 | 女人精品久久久久毛片| 在现免费观看毛片| 午夜免费观看性视频| 亚洲激情五月婷婷啪啪| www.精华液| av国产精品久久久久影院| 国产亚洲最大av| 99久久中文字幕三级久久日本| 亚洲av国产av综合av卡| 日本av手机在线免费观看| 美女xxoo啪啪120秒动态图| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区精品91| 亚洲精品日韩在线中文字幕| 亚洲av日韩在线播放| 黄频高清免费视频| 永久免费av网站大全| 91午夜精品亚洲一区二区三区| 日韩一本色道免费dvd| 日韩av不卡免费在线播放| 欧美日韩精品成人综合77777| 国产精品人妻久久久影院| 久久韩国三级中文字幕| 国产一区有黄有色的免费视频| 亚洲成人av在线免费| 视频在线观看一区二区三区| 少妇被粗大猛烈的视频| 日韩av不卡免费在线播放| 久久女婷五月综合色啪小说| 亚洲精品美女久久久久99蜜臀 | 亚洲国产精品999| 久久精品国产鲁丝片午夜精品| 亚洲五月色婷婷综合| 久久久久久免费高清国产稀缺| 999久久久国产精品视频| 欧美av亚洲av综合av国产av | 少妇的逼水好多| 国产一区二区激情短视频 | 激情视频va一区二区三区| 欧美亚洲日本最大视频资源| 午夜免费鲁丝| 精品国产一区二区久久| 亚洲色图 男人天堂 中文字幕| 99香蕉大伊视频| 成人18禁高潮啪啪吃奶动态图| 一区二区三区四区激情视频| 99久久精品国产国产毛片| 精品少妇内射三级| 天天躁日日躁夜夜躁夜夜| 国产精品久久久久久精品电影小说| 2021少妇久久久久久久久久久| 精品卡一卡二卡四卡免费| a级毛片黄视频| 一二三四在线观看免费中文在| 老司机影院成人| 人妻人人澡人人爽人人| 国产精品久久久久久精品电影小说| 亚洲国产色片| 亚洲精品成人av观看孕妇| 一区二区三区激情视频| 在线亚洲精品国产二区图片欧美| 丝袜在线中文字幕| 国产亚洲av片在线观看秒播厂| av在线app专区| 国产探花极品一区二区| 亚洲激情五月婷婷啪啪| 街头女战士在线观看网站| 国产免费福利视频在线观看| 成人亚洲精品一区在线观看| 男女无遮挡免费网站观看| 午夜福利一区二区在线看| 男人添女人高潮全过程视频| 美女高潮到喷水免费观看| 国产女主播在线喷水免费视频网站| 丝袜人妻中文字幕| 免费av中文字幕在线| 亚洲av免费高清在线观看| 国产精品蜜桃在线观看| 日韩精品免费视频一区二区三区| 国产免费现黄频在线看| 久久精品亚洲av国产电影网| 日本猛色少妇xxxxx猛交久久| 9191精品国产免费久久| 亚洲三区欧美一区| 亚洲成人一二三区av| 久久人人97超碰香蕉20202| 巨乳人妻的诱惑在线观看| 日韩精品免费视频一区二区三区| 欧美在线黄色| 高清在线视频一区二区三区| 日韩 亚洲 欧美在线| 色婷婷久久久亚洲欧美| 曰老女人黄片| 在线观看一区二区三区激情| 美女高潮到喷水免费观看| 欧美日韩一级在线毛片| 国产1区2区3区精品| 咕卡用的链子| 人妻人人澡人人爽人人| 国产黄色视频一区二区在线观看| 久久久久国产精品人妻一区二区| 久热久热在线精品观看| 极品少妇高潮喷水抽搐| 国产xxxxx性猛交| 人妻 亚洲 视频| 日韩在线高清观看一区二区三区| 色婷婷av一区二区三区视频| av网站在线播放免费| 黄片播放在线免费| 国产成人a∨麻豆精品| av国产久精品久网站免费入址| 欧美人与性动交α欧美软件| 曰老女人黄片| 亚洲欧美日韩另类电影网站| 在线亚洲精品国产二区图片欧美| 女人被躁到高潮嗷嗷叫费观| 亚洲图色成人| 欧美av亚洲av综合av国产av | 国产1区2区3区精品| 热re99久久国产66热| 亚洲av免费高清在线观看| 少妇熟女欧美另类| 老汉色∧v一级毛片| 一区福利在线观看| 精品酒店卫生间| 国产av码专区亚洲av| 国产黄色免费在线视频| 久久这里只有精品19| 夫妻午夜视频| av在线播放精品| av国产久精品久网站免费入址| 一本大道久久a久久精品| 美女国产高潮福利片在线看| a级毛片黄视频| 晚上一个人看的免费电影| 亚洲图色成人| 午夜影院在线不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产一区二区三区综合在线观看| 久久久久精品人妻al黑| 亚洲人成77777在线视频| 电影成人av| 日本色播在线视频| 日韩不卡一区二区三区视频在线| 美女国产视频在线观看| av又黄又爽大尺度在线免费看| 自拍欧美九色日韩亚洲蝌蚪91| 91久久精品国产一区二区三区| 国产成人av激情在线播放| 我要看黄色一级片免费的| 建设人人有责人人尽责人人享有的| 啦啦啦啦在线视频资源| 女的被弄到高潮叫床怎么办| 十八禁高潮呻吟视频| 亚洲精品美女久久久久99蜜臀 | 男女高潮啪啪啪动态图| 日日爽夜夜爽网站| 午夜91福利影院| a 毛片基地| 熟妇人妻不卡中文字幕| 午夜福利视频在线观看免费| 18+在线观看网站| 免费大片黄手机在线观看| 日本免费在线观看一区| 亚洲精品自拍成人| 久久精品国产自在天天线| 2018国产大陆天天弄谢| 黄片播放在线免费| 午夜激情av网站| 1024香蕉在线观看| 五月伊人婷婷丁香| 中文字幕最新亚洲高清| 久久精品夜色国产| 亚洲图色成人| 亚洲男人天堂网一区| 亚洲精品,欧美精品| 久久久久人妻精品一区果冻| 免费黄色在线免费观看| 国产野战对白在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲中文av在线| 亚洲av中文av极速乱| 日韩精品有码人妻一区| 有码 亚洲区| 中文字幕av电影在线播放| 中文乱码字字幕精品一区二区三区| 在线亚洲精品国产二区图片欧美| 欧美精品高潮呻吟av久久| 国产av精品麻豆| 国产精品偷伦视频观看了| 亚洲国产欧美在线一区| 欧美精品av麻豆av| 在现免费观看毛片| 久久精品国产a三级三级三级| 99国产精品免费福利视频| 大香蕉久久成人网| 一边亲一边摸免费视频| 丰满少妇做爰视频| 精品亚洲成a人片在线观看| 国产一区二区激情短视频 | 国产av精品麻豆| 69精品国产乱码久久久| 两个人看的免费小视频| 精品国产超薄肉色丝袜足j| 国产成人精品一,二区| 成人亚洲精品一区在线观看| freevideosex欧美| 丰满乱子伦码专区| 春色校园在线视频观看| 欧美亚洲日本最大视频资源| 国产成人午夜福利电影在线观看| 只有这里有精品99| 亚洲精品久久久久久婷婷小说| 日本wwww免费看| 精品少妇久久久久久888优播| 一级毛片我不卡| 青春草国产在线视频| 丁香六月天网| 国产熟女欧美一区二区| 伊人亚洲综合成人网| 精品一区二区免费观看| 国产片内射在线| 欧美日韩av久久| 极品少妇高潮喷水抽搐| 亚洲在久久综合| 精品福利永久在线观看| 各种免费的搞黄视频| 王馨瑶露胸无遮挡在线观看| 女的被弄到高潮叫床怎么办| 国产伦理片在线播放av一区| 成人毛片a级毛片在线播放| 最新的欧美精品一区二区| 99久久中文字幕三级久久日本| 成人18禁高潮啪啪吃奶动态图| 色婷婷久久久亚洲欧美| 97在线人人人人妻| 亚洲人成77777在线视频| 18禁裸乳无遮挡动漫免费视频| 一区二区三区乱码不卡18| 十八禁高潮呻吟视频| 成人亚洲欧美一区二区av| 视频区图区小说| av卡一久久| 亚洲精品国产av蜜桃| 日韩在线高清观看一区二区三区| 永久免费av网站大全| 国产精品欧美亚洲77777| 亚洲av免费高清在线观看| 国产一区有黄有色的免费视频| 亚洲精品美女久久久久99蜜臀 | 天堂8中文在线网| 韩国高清视频一区二区三区| 免费在线观看完整版高清| 国产精品 国内视频| √禁漫天堂资源中文www| 亚洲国产精品成人久久小说| 免费少妇av软件| videosex国产| 99热国产这里只有精品6| 久久人人爽av亚洲精品天堂| 久久精品夜色国产| 午夜福利视频在线观看免费| 成人毛片60女人毛片免费| √禁漫天堂资源中文www| 久热久热在线精品观看| av有码第一页| 亚洲伊人久久精品综合| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 黑丝袜美女国产一区| 爱豆传媒免费全集在线观看| 久久午夜福利片| 国产一级毛片在线| 精品少妇黑人巨大在线播放| 亚洲欧美成人综合另类久久久| 亚洲情色 制服丝袜| 黄网站色视频无遮挡免费观看| 熟女av电影| 日本色播在线视频| 精品一区在线观看国产| 性色av一级| 大陆偷拍与自拍| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 久久毛片免费看一区二区三区| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 国产精品久久久久久久久免| 波野结衣二区三区在线| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 一区二区av电影网| 香蕉精品网在线| 欧美人与性动交α欧美精品济南到 | 成人国语在线视频| 欧美av亚洲av综合av国产av | 精品一区二区免费观看| 一本久久精品| 在线观看一区二区三区激情| 国产极品天堂在线| 欧美精品国产亚洲| 国产精品免费视频内射| 熟女av电影| 制服诱惑二区| av在线播放精品| 久久精品久久久久久久性| 另类亚洲欧美激情| 大香蕉久久成人网| www.精华液| 在线免费观看不下载黄p国产| 国产亚洲精品第一综合不卡| 亚洲第一区二区三区不卡| 亚洲一级一片aⅴ在线观看| 亚洲一区中文字幕在线| 日韩在线高清观看一区二区三区| 午夜福利网站1000一区二区三区| 男女边吃奶边做爰视频| 午夜激情av网站| 精品酒店卫生间| 中文字幕色久视频| 黑人巨大精品欧美一区二区蜜桃| 最新中文字幕久久久久| 精品亚洲乱码少妇综合久久| 久久久久视频综合| 日韩欧美一区视频在线观看| av天堂久久9| 久久亚洲国产成人精品v| 欧美国产精品一级二级三级| 午夜福利,免费看| 校园人妻丝袜中文字幕| 免费大片黄手机在线观看| 久久热在线av| 天天影视国产精品| 日本色播在线视频| 久久国产亚洲av麻豆专区| 国产日韩欧美亚洲二区| 国产成人精品无人区| 有码 亚洲区| 丰满饥渴人妻一区二区三| 色94色欧美一区二区| 久久久久视频综合| 97人妻天天添夜夜摸| www.av在线官网国产| 69精品国产乱码久久久| 性色av一级| 永久网站在线| av网站在线播放免费| 国产精品一二三区在线看| 捣出白浆h1v1| 亚洲国产欧美在线一区| 蜜桃国产av成人99| 免费观看在线日韩| 欧美中文综合在线视频| 老熟女久久久| 寂寞人妻少妇视频99o| 成人漫画全彩无遮挡| 三上悠亚av全集在线观看| 精品国产乱码久久久久久男人| 天堂8中文在线网| 狠狠精品人妻久久久久久综合| 欧美激情极品国产一区二区三区| 久久久久国产一级毛片高清牌| 激情视频va一区二区三区| 久久人人爽人人片av| 精品亚洲成a人片在线观看| 亚洲中文av在线| 亚洲综合色惰| 欧美国产精品va在线观看不卡| 久久狼人影院| 日本av免费视频播放| 男男h啪啪无遮挡| 少妇精品久久久久久久| 麻豆av在线久日| 啦啦啦中文免费视频观看日本| 欧美 日韩 精品 国产| 大陆偷拍与自拍| 久久久久国产一级毛片高清牌| 亚洲精品日本国产第一区| 午夜免费男女啪啪视频观看| 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 亚洲第一av免费看| 91aial.com中文字幕在线观看| 久久综合国产亚洲精品| 成年av动漫网址| 美女脱内裤让男人舔精品视频| 多毛熟女@视频| 久久久久久人妻| 欧美精品人与动牲交sv欧美| 日本av手机在线免费观看| 免费黄网站久久成人精品| 丝袜美腿诱惑在线| 国产视频首页在线观看| 亚洲精品国产av蜜桃| 这个男人来自地球电影免费观看 | 国产成人精品久久二区二区91 | 最黄视频免费看| 成年人午夜在线观看视频| 免费在线观看完整版高清| 精品午夜福利在线看| 日韩中文字幕欧美一区二区 | 在线观看美女被高潮喷水网站| 国产日韩欧美亚洲二区| 亚洲精品久久久久久婷婷小说| 91精品伊人久久大香线蕉| 亚洲精品久久成人aⅴ小说| 精品一区二区免费观看| 亚洲国产精品成人久久小说| videosex国产| 国产一区二区 视频在线| 亚洲国产看品久久| 国产一区二区三区av在线| 久久久久网色| 宅男免费午夜| 久久久久视频综合| 如何舔出高潮| 最近中文字幕2019免费版| 人人澡人人妻人| 天天影视国产精品| 亚洲欧美成人综合另类久久久| 国产片特级美女逼逼视频| 99re6热这里在线精品视频| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久精品电影小说| 免费在线观看完整版高清| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 欧美激情高清一区二区三区 | 26uuu在线亚洲综合色| 亚洲四区av| 精品少妇黑人巨大在线播放| 可以免费在线观看a视频的电影网站 | 日韩一卡2卡3卡4卡2021年| 侵犯人妻中文字幕一二三四区| 国产成人精品福利久久| 欧美另类一区| 国产亚洲精品第一综合不卡| 在线观看免费日韩欧美大片| 我要看黄色一级片免费的| 国产探花极品一区二区| 亚洲欧洲日产国产| 欧美 日韩 精品 国产| 一级片免费观看大全| 高清欧美精品videossex| 深夜精品福利| www.精华液| 一个人免费看片子| 久久精品国产自在天天线| 久久久精品区二区三区| 精品福利永久在线观看| 亚洲综合精品二区| 91精品三级在线观看| 日本猛色少妇xxxxx猛交久久| 欧美日韩亚洲高清精品| 久久精品国产a三级三级三级| av.在线天堂| 黄片播放在线免费| 日韩精品免费视频一区二区三区| 亚洲美女视频黄频| 亚洲美女搞黄在线观看| 日本av免费视频播放| 亚洲三区欧美一区| 国产精品 国内视频| 美国免费a级毛片| 女性生殖器流出的白浆| 黄片播放在线免费| 久久亚洲国产成人精品v| 菩萨蛮人人尽说江南好唐韦庄| 欧美成人精品欧美一级黄| 交换朋友夫妻互换小说| 中文乱码字字幕精品一区二区三区| 黄色一级大片看看| 国产成人精品婷婷| 丁香六月天网| 26uuu在线亚洲综合色| 黄网站色视频无遮挡免费观看| 最近最新中文字幕大全免费视频 | 久久精品国产a三级三级三级| 亚洲美女黄色视频免费看| 侵犯人妻中文字幕一二三四区| 男女下面插进去视频免费观看| 在现免费观看毛片| 纵有疾风起免费观看全集完整版| av女优亚洲男人天堂| 亚洲一区二区三区欧美精品| 丰满饥渴人妻一区二区三| av免费观看日本| 如何舔出高潮| 亚洲美女视频黄频| 18禁国产床啪视频网站| 国产精品久久久久成人av| 日本午夜av视频| 亚洲精品久久成人aⅴ小说| 国产成人a∨麻豆精品| 亚洲av欧美aⅴ国产| 18禁观看日本| 久久ye,这里只有精品| 美女脱内裤让男人舔精品视频| 99热全是精品| 久久久久久伊人网av| 久久久欧美国产精品| 国产免费一区二区三区四区乱码| 日韩av在线免费看完整版不卡| 久久久久国产精品人妻一区二区| 男女边摸边吃奶| 日韩中文字幕欧美一区二区 | 国产免费视频播放在线视频| 亚洲久久久国产精品| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频在线观看免费| 亚洲美女视频黄频| 亚洲图色成人| 久久久精品国产亚洲av高清涩受| 少妇 在线观看| 欧美日韩成人在线一区二区| 欧美成人午夜精品| 国产精品一国产av| 黄色 视频免费看| 欧美bdsm另类| 国产成人欧美| 99热国产这里只有精品6| 伊人久久国产一区二区| 久久久久视频综合| 久久国产精品男人的天堂亚洲| 亚洲av.av天堂| 国产深夜福利视频在线观看| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| av福利片在线| 久久人人97超碰香蕉20202| 精品国产一区二区久久| 亚洲av在线观看美女高潮| 久久这里只有精品19| 国产乱人偷精品视频| 亚洲欧洲国产日韩| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| 老女人水多毛片| 菩萨蛮人人尽说江南好唐韦庄| 韩国精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 久久久a久久爽久久v久久| 国产成人免费观看mmmm|