• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploration of structural,optical,and photoluminescent properties of(1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications

    2022-06-29 09:23:34ZeinHeibaMohamedBakrMohamedNouraFaragandAliBadawi
    Chinese Physics B 2022年6期

    Zein K Heiba Mohamed Bakr Mohamed Noura M Farag and Ali Badawi

    1Physics Department,Faculty of Science,Ain Shams University,Cairo,Egypt

    2Physics Department,Faculty of Science,Taibah University,Al-Madina al Munawarah,Saudi Arabia

    3Department of Physics,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia

    4Department of Physics,University College of Turabah,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia

    Keywords: NiCo2O4 and PbS,nanocomposite,FTIR,optical,photoluminescence

    1. Introduction

    The rapid progress of nanocomposites materials enables a high degree of control over their optical and electronic characteristics.[1]The NiCo2O4(nickel cobaltite; NCO)is of a mixed metal oxide spinel type, where nickel atoms occupy the octahedral sites while cobalt ones distribute over both octahedral and tetrahedral sites.[2]The NCO has attractive features such as low cost, low toxicity, eco-environmentally and natural abundance.[2]Lead sulfide (PbS) is a member of IV–VI group chalcogenide semiconductors has optical and optoelectronic characteristics made it able to be used in solar cells,optoelectronic devices,photoconductors,sensors,and infrared detector devices applications.[3]Nanocomposites of different oxides and/or sulfides reveal the interesting characteristics as compared with those of parent compounds. For instant,the 304 stainless steel was protected upon being coated by MnS/TiO2nanotube films under simulated solar light.[4]The 0.2ZnMn2O4/0.8ZnFe2O4nanocomposite sample revealed a good nonlinear optical behavior at low frequency.[5]The CuCoOx/BiVO4multifunctional catalyst was applied to the organics’ degradation, water oxidation and O2reduction under visible light.[6]Moreover, NiO/NiCo2O4tubular structures with surface microporosity could have various applications such as the catalytic oxidation of harmful gases.[7]For(1-x)CuCo2O4-xCuS nanocomposites, the absorption spectrum ofx=0.1 sample displays a plateau in the visible region, that has a constant value in comparison with those of other composite samples.[8]The Ni/NiCo2O4nanocomposite displayed a high nonlinearity and has tailorable linear and nonlinear optical features, which is beneficial to device applications.[9]The improvement in the electrical characteristics together with a reduction in the optical band gap of CeO2combined with PbS makes the resulting nanocomposite suitable for the solar cell uses.[10]The NCO@ZrO2exhibited an excellent performance in solar thermochemical procedure.[11]Ullahet al.demonstrated that the coupling of PbS with TiO2extended their photo response to visible range.[12]Adding PbS to MoS2adapted its fast response to the speed of mechanical exfoliation in detecting NO2.[13]The intercalation of PbS into the layered space of K2La2Ti3O10greatly enhanced the absorption edge and the photocatalytic activity.[14]

    In the present study,the(1-x)NiCo2O4/xPbS(x=0,0.1,0.15, 0.2) nanocomposite samples are synthesized by the hydrothermal method and the thermolysis method. The effect of alloying NCO and PbS phases in a heterostructure nanocomposite matrix on the structure, optical, and photoluminescent characteristics are studied in detail using x-ray diffraction,Fourier-transform infrared spectroscopy,transmission electron microscope, photoluminescence, and UV-diffused absorption techniques.

    2. Methods and materials

    Nano NiCo2O4sample was synthesized by dissolving a stoichiometric ratio of(nickel and cobalt)nitrates and urea in deionized water (35 ml) under magnetic stirring for 30 min.Then the solution was transferred into a teflon-lined stainlesssteel autoclave and heated at 120°C for one day. The autoclave allowed the solution to be cooled down to a room temperature. The formed solution was centrifuged and washed many times using deionized water and ethanol. The resulting powder was dried and annealed in an electric oven at 350°C for 2 h(see Fig.1(a)). To synthesize the(1-x)NiCo2O4/xPbS(x=0, 0.1, 0.15, 0.2), the first step was to dissolve a stoichiometric ratio (1:1) of lead acetate and thiourea in 10 ml of deionized water in the presence the desired amount (x) of nano NiCo2O4sample. The solution was stirred in a magnetic stirrer for 0.5 h then annealed at 250°C for 2 h to avoid oxidizing the PbS (see Fig. 1(b)). All produced samples were explored by the techniques mentioned in Table 1. Tauc’s and Beer–Lambert’s formulas were used to find the direct optical bandgap[15]

    whereA,d,Eg,B,hν,λg,h,c, (D1=[B(hc)n-1d/2.303],D2),λ,andRare the absorbance,thickness,optical band gap,constant,incident photon energy,the wavelength related to the optical gap,Planck’s constant,light velocity,constants represent the reflection,the wavelength,and the reflectance,respectively.

    Investigation technique Devices and conditions X-ray diffraction(XRD) PANalytical diffractometer,copper source,LaB6 standard for instrumental correction High-resolution transmission electron microscope(TEM)JEOL JEM-2100,200 keV Fourier-transform infrared spectroscopy(FTIR) FTIR spectrometer(Bruker Tensor 27)UV diffuse reflectance Double-beam spectrophotometer(Shimadzu UV-VIS-2600)with attached integrating sphere assembly Photoluminescence spectrofluorometer Jasco FP-6500,Japan,Xenon lamb,150 Watt

    3. Results and discussion

    3.1. Structural analysis

    Using a line-detector, high quality x-ray diffraction (XRD) patterns have been recorded for the nanocomposite samples(1-x)NiCo2O4/xPbS (x=0, 0.1, 0.15, and 0.2) and depicted in Fig. 2(a). Accurate phase identification, using search-match program X’Pert HighScore Plus,can be performed due to the high quality of the diffraction patterns. Rietveld quantitative phase analysis[17]sreveals a single cubic spinel phase for the pristine NiCo2O4(x=0.0),while for compositesx=0.1,0.15,and 0.2 three phases are identified: cubic spinel NiCo2O4as a major phase(>95%),PbS,and PbSO4as minor phases. Table 2 lists the resulting structural and microstructure parameters obtained from Rietveld analysis and figure 2(b)shows the resulting diffraction pattern fitting. To determine the crystallite size of the minor phases, first the size is constrained within the size of the major phase NCO,then in subsequent final refinement the size parameter is freely refined. From Table 2 it may follow that the phase percentages of PbS and PbSO4are less than composition parameter (x) used for preparation which suggests the incorporation of some Pb and S ions into the NiCo2O4lattice. The suggestion may be confirmed by the slight increase in the NiCo2O4cell parameter due to the insertion of Pb ions which are larger than that of Ni or Co ones. The crystallite size of the NiCo2O4phase is isotropic and almost the same(≈15 nm)for all samples(see Table 2). For PbSO4phase,the crystallite size is≈17 nm while the PbS phase is large as given in Table 2. The TEM images given in Fig.3 show very uniform particle morphology throughout the sample and good crystallinity. The particle size is almost isotropic with a very narrow size distribution as indicated by Rietveld analysis.

    x NiCo2O4 PbS PbSO4 Size(°A) a(°A) %Size(°A) a(°A) %Size(°A) a(°A) b(°A) c(°A) %0.0 14.1 8.0989(4) 100– – –– – – –0.1 15.2 8.0999 97.3 143 5.933(1) 2.0 17.2 8.488 5.397 6.961 0.7 0.15 16.1 8.1007 95.4 116 5.935 2.8 17.1 8.462 5.392 6.954 1.8 0.2 16.3 8.0992 95.2 125 5.935 2.9 17.1 8.460(1) 5.390 6.953 1.9

    Fig.3. TEM images with different magnifications for 0.8NiCo2O4/0.2PbS sample.

    Infrared spectroscopy is used as an effective tool for investigating the local structure of transition metal oxides.[18]The measured Fourier-transform infrared (FTIR) spectra for the (1-x)NCO/xPbS nanocomposites are given in Fig. 4.There exist two sharp vibrational modes at 545.9 cm-1and 648.9 cm-1which can be assigned to primarily motion of the octahedral and tetrahedral metal–O,respectively.[18–20]For the composite samples (x=0.1, 0.15, 0.2), the spectra contain two extra weak peaks observed around 1034 cm-1and 1160 cm-1which are characteristic peaks of the heteropolar diatomic molecules of Pb–S band.[21–23]Because the bond of Pb–S is mainly an electrovalent bond, the FTIR spectra of the samples do not show strong bands associated with Pb–S stretching nor those with bending vibrations.

    3.2. Optical properties

    The diffused absorption data for (1-x)NCO/xPbS nanocomposite samples are displayed in Fig. 5. As revealed from the graph,NCO sample exhibits a substantial amount of absorption in a range of 400 nm–800 nm similar to the absorption amount of CoMn2O4sample.[24]This observation reveals the importance of this sample in visible light driven catalyst.The wide absorption of NCO sample may be caused by the absorption of the surface plasmons of nanoparticle and coupling of plasmon modes of the neighboring particle.[25]The absorption spectrum is modified due to NCO doped with PbS.The absorbance of NCO/xPbS nanocomposites decreases in the UV range while it increases in the visible range as compared with NCO as shown in Fig.5(a).This behavior indicates that the absorption of the(1-x)NCO/xPbS nanocomposite is affected due to the presence of PbS in the sample. In contrary to the NCO@ZrO2composite,the NCO is predominant as reported in Ref.[11]. Furthermore, the absorption slightly increases as the amount of PbS and PbSO4phases increase in the nanocomposite matrix(see Table 2).

    The values of direct optical band gap (Eg) for different samples are obtained from extrapolating the linear part of the plots between (αhν)2versus hνto zero absorption (see Fig.6). As revealed from the graph,NCO has two band gaps of 1.35 eV and 2.33 eV which are in agreement with the values in Ref. [26]. These two energy gaps are ascribed to the electron movement from the O-2p valence band to the transition metals-3d(t2g,eg)conduction bands.[27]Furthermore,the two bands are attributed to the presence of high spin and low spin sates of Co3in the NCO sample.[27]As the NCO alloyed with PbS,the optical band gap increases to(3.3 eV,4.06 eV),(3.33 eV, 4.1 eV), and (3.27 eV, 4.15 eV) as the amount of PbS becomes 10%, 15%, and 20%, respectively. The optical band gap of ZnO increases as the amount of Pb doping augments.[28]As indicated from XRD analysis in Table 2,the nanocomposite contain PbS and PbSO4beside the main phase of NCO.In addition,some Pb and S atoms are introduced into NCO lattice as indicated by XRD results. All these variables affect the values of the optical energy gaps.

    The refractive indexnand absorption indexk, related to refraction and absorption,respectively,rely on the interference between the samples under investigation and incident light:nis related to the phase velocity and associated with the dispersion, whilekis linked to the coefficient of mass reduction and allows the determining of dissipation rate of the electromagnetic wave in the medium. The changing of the extinction coefficient (k) with the wavelength (λ) for (1-x)NCO/xPbS nanocomposite samples is displayed in Fig.7.

    In the case of NCO sample,kincreases as the wavelength augments, and so does the scenario in the (1-x)NCO/xPbS nanocomposite samples. In addition, as the percentage of PbS increases in the nanocomposite samples,thekvalues decrease at the lower wavelengths while they increase at higher wavelengths. The enhancement or decrease inkvalue may be linked to the strengthening or weakening of the absorption process depending on whether the excess free carriers exists or not.[29]The variation of the refractive index (n)with the wavelength for the (1-x)NCO/xPbS nanocomposite samples is shown in Fig. 7(b). Thenvalue for the NCO and(1-x)NCO/xPbS nanocomposite samples decrease as the wavelength is increased. Therefore, thenvalues in all samples describe the degrees of the normal dispersion. Furthermore,thenvalue in the nanocomposite sample is higher than that of NCO sample; the situation is reversed in a higher wavelength range. In addition, as the content of PbS increases in the nanocomposite sample, thenvalue decreases slightly. The difference of value ofnamong different samples may be caused by the variations in the polarizability of the samples.[30]The variations in the real part(εr)and imaginary part(εi)of the dielectric constant and the optical conductivity(σopt)for(1-x)NCO/xPbS nanocomposite samples are shown in Fig. 8. Bothεrandεicurves exhibit similar manners to thenandkcurves, respectively for the corresponding samples. The value ofεrdecreases while the values ofεiandσoptincrease as the wavelength augments for each of all samples. Also, the values ofεrof the nanocomposite samples in a lower wavelength range are higher than those of NCO samples. The values ofεiandσoptof the nanocomposite samples in a lower wavelength range are lower than those of NCO samples. In a higher wavelength range,the behaviors ofεr,εi,andσoptin the nanocomposite samples are reversed as compared with those of the NCO samples. The values ofεr,εi,andσoptincrease slightly as the amount of PbS increases in nanocomposite matrix. The variations of the values ofεrandσoptare linked to the changing of the density of the localized states in an optical bandgap of the host material and theεivaries with the modification of the dipole movement.[31]

    The nonlinear optical (NLO) characteristics such asχ1andn2play a crucial role in realizing the high performance communication networks devices. The values ofχ1,χ3, andn2are dependent on the wavelengthλfor all nanocomposite samples and shown in Fig. 9. The three parameters vary in a similar way, where the three parameters decrease withλincreasing in NCO and nanocomposite samples. The values ofχ1,χ3, andn2values of the nanocomposite samples are higher than those of NCO samples. In addition,the values ofχ1,χ3, andn2decrease slightly as the percentage of PbS increase in the nanocomposite matrix. The changing in the nonlinear parameters may be due to the variation in the number of defect centers and hence the changing in the local polarizabilities present in the different samples. The improvement in the values ofχ3andn2in the nanocomposite samples makes the samples deserve to further studied so as to be used in numerous NLO and future photonic applications depending on the frequency range.

    3.3. Photoluminescence analysis

    Figure 10(a) shows the photoluminescence (PL) spectra emitted from (1-x)NCO/xPbS (x=0.0, 0.1, 0.15, and 0.2)system under an excitingλof 300 nm at room temperature.The PL intensity increases as the amount of PbS becomes 10%and 15%in the nanocomposite system relative to NCO sample,while it decreases as the content of PbS increases further in the matrix. The intensification or suppression in the luminescence intensity may be caused by the increasing or decreasing of the recombination rate between the photo-induced electrons(e-)and holes(h+)pairs which depends on the trap levels existent in the bandgaps of the different samples.[32]A similar result was observed in two-dimensional PbS/amorphous MoSxheterojunction composites.[33]The enhancement and reduction in the PL intensity of the different samples may make these materials able to possess the LED and photocatalytic applications.Using Gaussian function,the PL spectrum for each of all samples can be decomposed into ultraviolet color and violet colos(see Figs. 8(b)–8(e)). The direct recombination of the electrons via an exciton-exciton collision process produces the ultraviolet color and violet color.[34]

    4. Conclusions

    The pristine NiCo2O4(NCO) has a single cubic spinel phase, while the (1-x)NCO/xPbS nanocomposite samples withx=0.1, 0.15, and 0.2 have three phases: cubic spinel NCO as a major phase (>95%), PbS, and PbSO4as minor phases. Some Pb and S ions are incorporated into the NCO lattice. The cell parameter of NCO phase increases as the amount of PbS augments in the nanocomposite sample. The crystallite size of the NCO phase is isotropic and almost the same (≈15 nm) for all samples. For the PbSO4phase, the crystallite size is≈17 nm while for PbS phase it is very large (~130 nm). The FTIR spectra reveal the heteropolar diatomic molecules of Pb–S band existent in the nanocomposite’s samples. The NCO sample exhibits a substantial amount of absorption in the visible light range. For the NCO alloyed with PbS, the absorption decreases in the UV range while it increases in the visible range. The NCO has two band gaps of 1.35 eV and 2.33 eV which increase to (3.3 eV, 4.06 eV),(3.33 eV,4.1 eV),and(3.27 eV,4.15 eV)upon increasing PbS to 10%, 15%, and 20%, respectively. In all samples, the values ofn,εr,and the nonlinear optical behavior decrease while the values ofk,εi, andσoptincrease as the wavelength augments. For the PbS alloyed with NCO,the dielectric constant,optical conductivity, and the nonlinear optical parameters are enhanced as compared with counterparts for the NCO sample.As the percentage of PbS increases, the values ofk,n,εr,εi,σopt, and NLO decrease slightly. The PL spectra for all samples can be decomposed into ultraviolet and violet colors. The enhancement and reduction in the PL intensity of the different samples may make these materials able to possess the LED and photocatalytic applications.

    Acknowledgment

    The authors thank the support of Taif University Researchers Supporting Project Number TURSP-2020/12, Taif University,Taif,Saudi Arabia.

    午夜激情av网站| 999久久久国产精品视频| 亚洲情色 制服丝袜| 免费观看a级毛片全部| 精品国产乱码久久久久久男人| 国产真人三级小视频在线观看| 我要看黄色一级片免费的| 日韩大片免费观看网站| 国产一区二区三区在线臀色熟女 | 欧美国产精品一级二级三级| 纵有疾风起免费观看全集完整版| 日韩精品免费视频一区二区三区| 欧美日韩精品网址| 搡老乐熟女国产| tocl精华| 国产成人精品在线电影| 亚洲少妇的诱惑av| 中文字幕最新亚洲高清| 国产亚洲精品久久久久5区| 久久精品国产a三级三级三级| 黄片播放在线免费| 亚洲美女黄色视频免费看| 少妇精品久久久久久久| 不卡av一区二区三区| 国产精品欧美亚洲77777| 国产一区二区在线观看av| 69精品国产乱码久久久| 啪啪无遮挡十八禁网站| 亚洲精品美女久久av网站| 久久毛片免费看一区二区三区| av在线app专区| 国产无遮挡羞羞视频在线观看| 黑人欧美特级aaaaaa片| 欧美在线一区亚洲| 亚洲精品国产精品久久久不卡| 日韩欧美一区视频在线观看| 国产亚洲精品第一综合不卡| 激情视频va一区二区三区| 美女福利国产在线| 色婷婷av一区二区三区视频| 老司机影院毛片| 国产淫语在线视频| 999久久久国产精品视频| 丰满人妻熟妇乱又伦精品不卡| 69精品国产乱码久久久| 丝袜人妻中文字幕| 亚洲欧美精品自产自拍| 老司机影院毛片| 十八禁网站网址无遮挡| 欧美+亚洲+日韩+国产| 精品国产超薄肉色丝袜足j| 777久久人妻少妇嫩草av网站| 女人爽到高潮嗷嗷叫在线视频| 成人影院久久| 老鸭窝网址在线观看| 男女床上黄色一级片免费看| 久久精品国产亚洲av香蕉五月 | 精品人妻熟女毛片av久久网站| 亚洲伊人色综图| 亚洲熟女毛片儿| 免费在线观看视频国产中文字幕亚洲 | 日韩有码中文字幕| 亚洲欧美精品自产自拍| 免费少妇av软件| 丰满饥渴人妻一区二区三| 亚洲av成人一区二区三| 午夜成年电影在线免费观看| 免费观看a级毛片全部| 91av网站免费观看| 1024香蕉在线观看| 成人国产一区最新在线观看| 老司机影院成人| 久久国产亚洲av麻豆专区| 免费在线观看日本一区| 日韩有码中文字幕| 久久99一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产不卡av网站在线观看| 久久精品国产亚洲av香蕉五月 | 狠狠狠狠99中文字幕| 精品国产乱码久久久久久男人| 一个人免费在线观看的高清视频 | 亚洲第一青青草原| 老司机靠b影院| 狂野欧美激情性bbbbbb| 成年人午夜在线观看视频| 不卡av一区二区三区| 久久精品国产综合久久久| 久久久久久亚洲精品国产蜜桃av| av超薄肉色丝袜交足视频| 久久精品国产a三级三级三级| 男人舔女人的私密视频| 三上悠亚av全集在线观看| 国产欧美日韩一区二区三区在线| 亚洲精品中文字幕在线视频| 国产老妇伦熟女老妇高清| 美国免费a级毛片| 美女福利国产在线| av在线播放精品| 一级毛片女人18水好多| 精品少妇久久久久久888优播| √禁漫天堂资源中文www| 最黄视频免费看| 久久女婷五月综合色啪小说| 欧美在线黄色| 亚洲第一av免费看| 亚洲精品一二三| 纯流量卡能插随身wifi吗| 午夜激情av网站| 亚洲va日本ⅴa欧美va伊人久久 | 啦啦啦视频在线资源免费观看| 一级片'在线观看视频| 亚洲五月婷婷丁香| 亚洲国产精品一区二区三区在线| www.av在线官网国产| 国产不卡av网站在线观看| 国产真人三级小视频在线观看| 国产xxxxx性猛交| av欧美777| 宅男免费午夜| 国产不卡av网站在线观看| 国产一区有黄有色的免费视频| 成年av动漫网址| 精品亚洲成国产av| 国产深夜福利视频在线观看| 少妇精品久久久久久久| 国产精品香港三级国产av潘金莲| 欧美精品高潮呻吟av久久| 热re99久久国产66热| 亚洲欧美激情在线| 精品亚洲成国产av| 在线观看免费视频网站a站| 91麻豆精品激情在线观看国产 | 午夜视频精品福利| 超碰97精品在线观看| 亚洲精品第二区| 秋霞在线观看毛片| 韩国高清视频一区二区三区| 在线亚洲精品国产二区图片欧美| 日韩制服丝袜自拍偷拍| 日本五十路高清| 欧美+亚洲+日韩+国产| 久久人人97超碰香蕉20202| 亚洲第一av免费看| 久久精品熟女亚洲av麻豆精品| 国产一卡二卡三卡精品| 亚洲精品国产精品久久久不卡| 美女高潮到喷水免费观看| 国产一区二区激情短视频 | 精品欧美一区二区三区在线| 夜夜夜夜夜久久久久| 亚洲综合色网址| 人妻久久中文字幕网| 9色porny在线观看| 黑人操中国人逼视频| 9191精品国产免费久久| 精品国内亚洲2022精品成人 | 国产免费视频播放在线视频| 黄色毛片三级朝国网站| 成人影院久久| 成人18禁高潮啪啪吃奶动态图| 国产高清videossex| av一本久久久久| 91老司机精品| 亚洲av片天天在线观看| 中文字幕av电影在线播放| 正在播放国产对白刺激| av又黄又爽大尺度在线免费看| 大码成人一级视频| 爱豆传媒免费全集在线观看| 亚洲国产欧美在线一区| 日本猛色少妇xxxxx猛交久久| 久久综合国产亚洲精品| 国产精品欧美亚洲77777| 欧美少妇被猛烈插入视频| 中文字幕色久视频| www.熟女人妻精品国产| 黄色a级毛片大全视频| 9191精品国产免费久久| 热99国产精品久久久久久7| 老司机在亚洲福利影院| 悠悠久久av| 日本91视频免费播放| 亚洲国产看品久久| 伊人久久大香线蕉亚洲五| 婷婷色av中文字幕| 午夜精品国产一区二区电影| 丝袜喷水一区| 国产一卡二卡三卡精品| 国产精品.久久久| 国产精品二区激情视频| 亚洲,欧美精品.| 啦啦啦 在线观看视频| 色94色欧美一区二区| 国产有黄有色有爽视频| 亚洲人成电影观看| 日本vs欧美在线观看视频| 亚洲欧洲日产国产| 一区二区三区四区激情视频| 久久精品国产综合久久久| 亚洲欧美日韩另类电影网站| 啦啦啦啦在线视频资源| 日本91视频免费播放| 99精品欧美一区二区三区四区| 免费女性裸体啪啪无遮挡网站| 大香蕉久久成人网| 女人精品久久久久毛片| 欧美少妇被猛烈插入视频| 久久久精品94久久精品| 日日爽夜夜爽网站| 又黄又粗又硬又大视频| 欧美成人午夜精品| 亚洲第一av免费看| 久久毛片免费看一区二区三区| 国产免费av片在线观看野外av| 亚洲精品一二三| 亚洲精品国产精品久久久不卡| 成在线人永久免费视频| 国产福利在线免费观看视频| 十八禁人妻一区二区| 欧美日韩一级在线毛片| 免费不卡黄色视频| 久久午夜综合久久蜜桃| 看免费av毛片| 精品卡一卡二卡四卡免费| 高清欧美精品videossex| 老熟妇乱子伦视频在线观看 | 欧美一级毛片孕妇| 日韩有码中文字幕| 桃花免费在线播放| 高清av免费在线| svipshipincom国产片| 国产日韩一区二区三区精品不卡| 黄色怎么调成土黄色| www日本在线高清视频| 国产深夜福利视频在线观看| 一二三四社区在线视频社区8| 天堂中文最新版在线下载| 国产成人一区二区三区免费视频网站| 国产精品 欧美亚洲| av电影中文网址| 婷婷色av中文字幕| 久久av网站| videosex国产| 母亲3免费完整高清在线观看| 精品国产一区二区久久| 丰满人妻熟妇乱又伦精品不卡| 99久久99久久久精品蜜桃| 999久久久精品免费观看国产| 国产主播在线观看一区二区| 在线天堂中文资源库| a级毛片在线看网站| 老司机午夜十八禁免费视频| 免费在线观看日本一区| 欧美成人午夜精品| 日韩 欧美 亚洲 中文字幕| 啦啦啦 在线观看视频| 51午夜福利影视在线观看| 男女边摸边吃奶| 视频区图区小说| 一本色道久久久久久精品综合| 精品一区二区三区av网在线观看 | 亚洲av日韩在线播放| 午夜福利乱码中文字幕| 精品国产乱码久久久久久小说| 日韩有码中文字幕| 国产精品欧美亚洲77777| 一本综合久久免费| 狠狠精品人妻久久久久久综合| avwww免费| 国产欧美亚洲国产| 日本黄色日本黄色录像| 男女下面插进去视频免费观看| 午夜福利在线免费观看网站| 日韩人妻精品一区2区三区| 一本色道久久久久久精品综合| 黄色毛片三级朝国网站| 国产亚洲一区二区精品| 美女中出高潮动态图| 91成年电影在线观看| 男女免费视频国产| 99久久国产精品久久久| 久久青草综合色| 秋霞在线观看毛片| 久久亚洲精品不卡| 黄频高清免费视频| 国产欧美日韩一区二区精品| 精品久久蜜臀av无| 久久99热这里只频精品6学生| 水蜜桃什么品种好| 日本91视频免费播放| 丝袜美腿诱惑在线| 国产熟女午夜一区二区三区| 2018国产大陆天天弄谢| 精品国产乱子伦一区二区三区 | 亚洲国产看品久久| 亚洲精品美女久久久久99蜜臀| 日本a在线网址| 欧美日韩一级在线毛片| 可以免费在线观看a视频的电影网站| 黄片播放在线免费| 欧美国产精品va在线观看不卡| 老汉色∧v一级毛片| 美女中出高潮动态图| 亚洲av日韩精品久久久久久密| 国产黄频视频在线观看| 人妻久久中文字幕网| 亚洲专区字幕在线| 亚洲国产毛片av蜜桃av| 久久精品人人爽人人爽视色| 久久久国产成人免费| 高清av免费在线| 9191精品国产免费久久| 少妇粗大呻吟视频| 国产一卡二卡三卡精品| 免费高清在线观看视频在线观看| www.熟女人妻精品国产| 狂野欧美激情性bbbbbb| 精品国产一区二区三区四区第35| 俄罗斯特黄特色一大片| 国产成人一区二区三区免费视频网站| 日日夜夜操网爽| 欧美日韩黄片免| 在线精品无人区一区二区三| 麻豆av在线久日| www.精华液| 欧美 亚洲 国产 日韩一| 久久久久久久大尺度免费视频| 美女高潮喷水抽搐中文字幕| 高清黄色对白视频在线免费看| 国产区一区二久久| 99久久99久久久精品蜜桃| 亚洲av成人不卡在线观看播放网 | 少妇的丰满在线观看| 免费日韩欧美在线观看| 日本91视频免费播放| 国产亚洲欧美在线一区二区| 在线观看免费午夜福利视频| 久久综合国产亚洲精品| 97精品久久久久久久久久精品| 国产淫语在线视频| 俄罗斯特黄特色一大片| 日韩制服骚丝袜av| 丝袜美足系列| 精品人妻一区二区三区麻豆| 亚洲中文av在线| 国产欧美日韩综合在线一区二区| 少妇猛男粗大的猛烈进出视频| 丝瓜视频免费看黄片| 岛国毛片在线播放| 欧美日韩一级在线毛片| av在线播放精品| 黑人巨大精品欧美一区二区蜜桃| 老司机影院毛片| av又黄又爽大尺度在线免费看| 一本久久精品| 欧美在线黄色| 免费高清在线观看日韩| 国产精品偷伦视频观看了| av天堂久久9| 亚洲精品在线美女| 欧美日韩中文字幕国产精品一区二区三区 | 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区91| 久久久久久亚洲精品国产蜜桃av| 99久久99久久久精品蜜桃| 日韩欧美国产一区二区入口| 国产精品麻豆人妻色哟哟久久| 美女高潮到喷水免费观看| 国产熟女午夜一区二区三区| 久久国产精品人妻蜜桃| 日韩 亚洲 欧美在线| avwww免费| 国产成人精品久久二区二区91| 国产精品亚洲av一区麻豆| 精品国产国语对白av| 男人舔女人的私密视频| 欧美日本中文国产一区发布| 香蕉国产在线看| 黄片播放在线免费| 国产亚洲一区二区精品| 人妻 亚洲 视频| 母亲3免费完整高清在线观看| 一级片'在线观看视频| 欧美精品啪啪一区二区三区 | 日本精品一区二区三区蜜桃| 青草久久国产| 久久久久精品国产欧美久久久 | 久久亚洲精品不卡| 日韩大码丰满熟妇| 国产片内射在线| 黑人巨大精品欧美一区二区mp4| a级片在线免费高清观看视频| 欧美成狂野欧美在线观看| 少妇猛男粗大的猛烈进出视频| 日本91视频免费播放| 国产精品 国内视频| 亚洲情色 制服丝袜| 老熟妇仑乱视频hdxx| 日韩欧美免费精品| 熟女少妇亚洲综合色aaa.| 国产精品国产三级国产专区5o| 国产伦理片在线播放av一区| 日韩有码中文字幕| 亚洲av片天天在线观看| 成人国产一区最新在线观看| 黄色视频,在线免费观看| 亚洲免费av在线视频| 水蜜桃什么品种好| 久久久久精品人妻al黑| 国产麻豆69| 免费日韩欧美在线观看| 国产精品国产av在线观看| 黄片大片在线免费观看| 国产99久久九九免费精品| 黑人巨大精品欧美一区二区蜜桃| 精品国产乱码久久久久久男人| 丰满人妻熟妇乱又伦精品不卡| 黄网站色视频无遮挡免费观看| 国产一区二区激情短视频 | 天堂俺去俺来也www色官网| av有码第一页| 国产成人欧美在线观看 | 一个人免费在线观看的高清视频 | 国产免费视频播放在线视频| 久久精品国产a三级三级三级| 欧美在线一区亚洲| 淫妇啪啪啪对白视频 | 国产一区二区三区综合在线观看| 日韩大片免费观看网站| 日韩大码丰满熟妇| 这个男人来自地球电影免费观看| 亚洲中文日韩欧美视频| h视频一区二区三区| 亚洲欧美成人综合另类久久久| 老司机影院成人| 精品乱码久久久久久99久播| 日韩一卡2卡3卡4卡2021年| 一边摸一边做爽爽视频免费| 五月开心婷婷网| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品电影小说| 国产不卡av网站在线观看| 91国产中文字幕| 久久青草综合色| 亚洲精品一区蜜桃| 亚洲av日韩在线播放| √禁漫天堂资源中文www| 性色av一级| 久久人妻福利社区极品人妻图片| 国产片内射在线| 日韩制服丝袜自拍偷拍| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 日韩制服丝袜自拍偷拍| 久久免费观看电影| 黄色毛片三级朝国网站| 亚洲第一av免费看| 国产精品久久久久久人妻精品电影 | 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 国产免费视频播放在线视频| 精品人妻在线不人妻| 黄色片一级片一级黄色片| 成年人午夜在线观看视频| 免费在线观看完整版高清| 亚洲免费av在线视频| 亚洲三区欧美一区| 亚洲九九香蕉| 人人澡人人妻人| 日本91视频免费播放| tocl精华| 五月天丁香电影| 日韩,欧美,国产一区二区三区| 成人国语在线视频| 女性被躁到高潮视频| 国产91精品成人一区二区三区 | 在线看a的网站| 欧美大码av| 一个人免费看片子| 日本av免费视频播放| 一本久久精品| www.av在线官网国产| 色婷婷av一区二区三区视频| 久久人人爽人人片av| 国产亚洲精品久久久久5区| 看免费av毛片| avwww免费| 狂野欧美激情性xxxx| 久久久久久免费高清国产稀缺| 五月开心婷婷网| 亚洲av电影在线观看一区二区三区| 极品少妇高潮喷水抽搐| 成年人黄色毛片网站| 欧美性长视频在线观看| 啦啦啦 在线观看视频| 欧美中文综合在线视频| 欧美激情久久久久久爽电影 | 最新在线观看一区二区三区| 老司机靠b影院| 母亲3免费完整高清在线观看| 天天躁日日躁夜夜躁夜夜| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 亚洲少妇的诱惑av| 桃红色精品国产亚洲av| 黄色毛片三级朝国网站| 国产真人三级小视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 在线 av 中文字幕| 大香蕉久久网| 欧美久久黑人一区二区| 精品视频人人做人人爽| 亚洲人成电影免费在线| 下体分泌物呈黄色| 国产亚洲欧美在线一区二区| 国产高清国产精品国产三级| tube8黄色片| 中文字幕人妻熟女乱码| 久久久久国产精品人妻一区二区| 亚洲人成77777在线视频| 久久热在线av| 搡老岳熟女国产| 日本vs欧美在线观看视频| 少妇粗大呻吟视频| 汤姆久久久久久久影院中文字幕| 欧美精品啪啪一区二区三区 | 精品福利永久在线观看| 午夜老司机福利片| 侵犯人妻中文字幕一二三四区| 国产伦人伦偷精品视频| 亚洲 欧美一区二区三区| 欧美激情 高清一区二区三区| 欧美中文综合在线视频| www.自偷自拍.com| 九色亚洲精品在线播放| 国产一区二区 视频在线| 国产高清videossex| 国产真人三级小视频在线观看| 精品一区二区三区四区五区乱码| 午夜视频精品福利| 如日韩欧美国产精品一区二区三区| 久久精品亚洲熟妇少妇任你| 黄色视频,在线免费观看| 91精品伊人久久大香线蕉| 19禁男女啪啪无遮挡网站| 欧美少妇被猛烈插入视频| 亚洲欧美色中文字幕在线| 女警被强在线播放| 动漫黄色视频在线观看| av超薄肉色丝袜交足视频| 亚洲av片天天在线观看| 精品人妻熟女毛片av久久网站| 午夜成年电影在线免费观看| 波多野结衣av一区二区av| 亚洲人成电影免费在线| 午夜两性在线视频| 电影成人av| 99久久综合免费| 日本欧美视频一区| 国产欧美日韩综合在线一区二区| 五月天丁香电影| 亚洲精品一二三| av网站在线播放免费| 无遮挡黄片免费观看| 夜夜夜夜夜久久久久| 久久精品国产a三级三级三级| 国产国语露脸激情在线看| 老司机靠b影院| 成人手机av| 国产精品久久久久久精品古装| 黄片大片在线免费观看| 国产精品国产三级国产专区5o| 天天操日日干夜夜撸| 国产成+人综合+亚洲专区| 色94色欧美一区二区| 日日爽夜夜爽网站| 国产精品九九99| 看免费av毛片| 久久久水蜜桃国产精品网| 淫妇啪啪啪对白视频 | 宅男免费午夜| av一本久久久久| 国产免费av片在线观看野外av| 亚洲avbb在线观看| 日韩电影二区| 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 大码成人一级视频| 精品国产一区二区三区四区第35| 91麻豆av在线| 日韩电影二区| 午夜久久久在线观看| av欧美777| 91麻豆av在线| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 精品亚洲成a人片在线观看| 国产一区二区在线观看av| 精品人妻一区二区三区麻豆| 首页视频小说图片口味搜索| 久久久国产欧美日韩av| 久久久久视频综合| 美女中出高潮动态图| 欧美少妇被猛烈插入视频| 国产精品久久久人人做人人爽| 欧美中文综合在线视频| av视频免费观看在线观看| 伦理电影免费视频| 亚洲男人天堂网一区| 免费在线观看日本一区| 国产一区二区激情短视频 | 一区二区日韩欧美中文字幕| av天堂久久9| 精品乱码久久久久久99久播|