• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of strain on charge density wave order in α-U

    2022-06-29 08:56:10LiuhuaXie謝劉樺HongkuanYuan袁宏寬andRuizhiQiu邱睿智
    Chinese Physics B 2022年6期

    Liuhua Xie(謝劉樺) Hongkuan Yuan(袁宏寬) and Ruizhi Qiu(邱睿智)

    1School of Physical Science and Technology,Southwest University,Chongqing 400715,China

    2Institute of Materials,China Academy of Engineering Physics,Mianyang 621907,China

    Keywords: uranium,charge density wave,strain effect,density-functional theory

    1. Introduction

    Charge density wave (CDW), which is a simple periodic reorganization of electronic charge accompanied by a periodic modulation of the atomic structure, is still poorly understood and continue to bear surprises.[1–9]This macroscopic quantum state occurs in a variety of materials including quasi-one-dimensional organic chain TTF-TCNG,[6]layered transition-metal chalcogenide,[3,7]and in particular,three-dimensional elemental metal uranium.[4]Uranium is the only element in the periodic table to exhibit a phase transition to CDW states at ambient pressure.[4]The existence of these low-temperature CDW states inα-uranium is wellestablished after several decades of thorough experimental work including the measurement of elastic constants,[10]lattice parameters,[11,12]phonon dispersion,[13,14]and neutron back-reflection.[15]The transitions into CDW states take place at 43 K, 37 K, and 22 K, and then the corresponding CDW phases are denoted asα1,α2, andα3.[4]The first transition fromαintoα1,involving only a doubling of the conventional unit cell ofα-U along theaaxis, is very simple and attracts considerable attention.[16–20]

    Since the effect of strain on the CDW materials could in principles induces transitions into a different order, the relevant studies increase significantly in the past decade.[9,21–26]The application of strain could alter the band structure and thus provides the specific insight into the nature of a CDW phase, such as exploring the nature of Fermi surface nesting.[16,27]Unusual phenomena may emerge at the quantum critical points of strain-induced structural quantum phase transitions.[8]From the experimental point of view, strain is one of the few available handles that could be utilized to controllably and reversibly tune electronic structures. In bulk single crystal, strain can be applied by attaching materials to piezoelectric substrates. While in thin films,strain can be generated by using the lattice mismatch between the film and the substrate.

    For uranium, the epitaxial thin film, in which the strain is present,has already led to the discovery of a wide range of new structural, magnetic, and electronic phenomena.[21,28–32]The hcp phase of uranium, which does no exist in the bulk,could be stabilized on Gd/Nb substrate.[31]All the allotropic phases of uranium are known as non-magnetic and confirmed by the theoretical calculation, while hcp-U is predicted to order magnetically. In addition,the CDW transition temperature increases from 43 K in the bulk to 120 K in the thin film of uranium on W.[21]Similar behavior could be found in the other CDW materials.[5,33,34]From the angle-resolved photoemission spectroscopy of uranium films on W(110),large spectral weight was observed around the Fermi level.[32]

    Most of the theoretical works on the CDW of uranium have been within first-principles density-functional theory(DFT)[16,17,19,21,35,36]and mainly focus on the transition fromαtoα1.The pioneering work[16]constructed the model ofα1-U from displacing the atoms in the 2×1×1 supercell ofα-U(see Fig. 1) and employed the full-potential linearized augmented plane wave(FP-LAPW)method to evaluate the energy difference betweenα-U andα1-U.It was found that the small displacement (~0.028 °A) is energetically favorable and the energy gain is in agreement with the CDW transition temperature 43 K.In particular,the structural distortion could be interpreted using the nesting features of the Fermi surface inα-U.Phonon calculations using pseudopotential method also show that the energy of theΣ4phonon mode along [100] direction varies between negative and positive for different pressure[17]and strain.[21]However,despite of these abundant researches,relatively little is known regarding the effect of strain on the CDW order in the three-dimensional elemental metal U,rather than the other two-dimensional CDW materials.[9,22–26]

    The main purpose of this work is a systematic investigation of the effect of the uniaxial strain on the CDW order inα-U from first-principles calculation in an attempt to establish a primary connection between strain and CDW order.It is found that the CDW charge order could be significantly enhanced by the tensile strain alongaorbaxis, and particularly the compressive strain alongcaxis. The rest of this paper is organized as follow. In Section 2,we present the computational details.Section 3 describes the results and gives our discussion. Our main conclusion is summarized in Section 4.

    2. Computational details

    The calculation of electronic structure, total energy,and force is performed within the framework of DFT[37,38]using the Perdew–Burke–Ernzerhof generalized gradient approximation.[39]The inclusion of relativistic effect is treated using spin–orbit coupling (SOC). Note that the main conclusion of this work could also been drawn from the DFT calculations of total energy without SOC. However, the nesting of Fermi surface could not be obtained from the calculation without SOC.The atomic structures in Fig.1 are constructed from the experimental lattice parameters[14,16]and used in the calculations. Here the qualitative conclusion on the strain effect on CDW order is independent of the lattice parameters.Note that a 2×1×1 supercell of conventional cell is used here forα-U to keep the number of atoms being equal to that inα1-U.To solve the Kohn–Sham equation,both the FP-LAPW method[40]and the projected augment wave(PAW)pseudopotential scheme[41,42]are used. On the one hand,the FP-LAPW method is applied here to accurately calculate the total energy and electronic structure. On the other hand,the evaluation of the force and the related phonon mode in uranium, which is the shortcoming of the FP-LAPW method,is carried out using the PAW pseudopotential scheme.[36,43–46]

    The FP-LAPW method is implemented in the WIEN2k code.[47]The cutoff parameter isRMTKMAX=11.0, and the muffin-tin radius for theUatom is fixed at 2.45 Bohr. The Brillouin zone integration is done on a 13×16×13 mesh,resulting in 343kpoints in the irreducible wedge of the first Brillouin zone.

    The VASP code[48]is used to employ the pseudopotential calculation,in which the plane wave basis is taken as 600 eV and the Brillouin zone integration is based on 11×11×11kpoint meshes. The total energies and Fermi surfaces from PAW calculations are compared with those from FP-LAPW(see Appendix A). The force constants are calculated within the framework of density-functional perturbation theory[49]and the phonon modes are obtained from the postprocessing using the phonopy package.[50]

    3. Results and discussion

    From the perspective of experiment,the most straightforward and measurable effect of strain on the CDW order inα-U is the modification of transition temperatureTCDW. Since the phase transition fromαtoα1is recognized to be first order,[12]TCDWis closely related to the energy difference betweenα1-U andα-U,[16]i.e.,the CDW formation energy,

    in whichEα1-UandEα-Uare the total energies per atom ofα1-U andα-U,respectively. Figure 2 plots the energy difference ΔEas a function of distortionu. The double-well shape,which is found in Ref.[16]and reproduced in our calculation,indicates thatα1-U with finite distortion is stable with respect to undistortedα-U. Our calculations are consistent with the results from Ref. [16] not only in the energy difference but also in the Fermi surface,which is shown in Fig.A1(see Appendix A).The topological change of the Fermi surface close to the pointU(1/2, 0, 1/2) in the reciprocal space is also shown here. This implies that one band splits at the Fermi level at the correspondingkpoints,which could be seen from the band structures in Fig.A2(see Appendix A).This kind of band splitting due to a symmetry breaking distortion is often referred as Peierls distortion.[1]In addition, let us note that the magnitude ofuto minimize the total energyumax~0.08 °A and the corresponding energy change ΔEmin~-1.8 meV per atom. The energy change is equivalent to 21 K,which is consistent with the experimental temperature of 43 K to transformα1-U toα-U.This quantitative discrepancy from that in Ref.[16]may result from the different computational parameters or lattice parameters. In particular, the specific lattice parameters are not given in the literature.[16]In our test calculations, the values ofumaxand ΔEminare very sensitive to the lattice parameters. Here for the sake of unambiguity and reproducibility,the experimental lattice parameters are used to show the effect of strain.

    Now let us investigate the evolution of the CDW order ofα-U under the uniaxial compressive and tensile strains. Figure 3 shows the minimum CDW formation energy and the corresponding atomic displacement in the CDW phase as a function of uniaxial strain alonga,b, andcaxes. When the tensile strain is applied alongaandbaxes,the formation energy ΔEmingradually decreases and the maximum displacementumaxincreases,indicating that the CDW phase becomes more stable and the CDW transition temperatureTCDWincreases. In contrast, the compressive strain alongaandbaxes gradually suppresses the CDW stability andTCDWis very likely to decrease. This kind of strain effect,which is similar to the effect of pressure,[4,16,19,51]can be easily understood.By analogy, the effect of tensile strain is equivalent to that of negative pressure and the transition temperature would be lift.The compressive strain is analogous to the positive pressure and suppress the CDW transition. From the viewpoint of onedimensional atomic chain,[27]the tensile strain alongaaxis would increase the atomic distance and favor the Peierls transition.

    Opposite behavior occurs for the strain alongcaxis. In this case, the CDW formation energy ΔEincreases with the increase of the tensile strain and decreases when the compressive strain is applied. This means that the CDW stability is suppressed by the tensile strain alongcaxis rather than the compressive strain alongcstrain. This result is quite counterintuitive and not easily understood. Here let us first attempt to discuss this anomalous behavior from the perspective of atomic structure. In Fig.4,theα-U structure in 2×2×2 supercell is presented. The structure can be conceived as a group of corrugated rectangular layers stacked in thebaxis.The degree of corrugation is controlled by the angleθc=arctan(4yb/c),which is a monotonically decreasing function ofcfor positive 4yb/c. As the tensile strain alongcaxis is increased,the degree of corrugation decreases,resulting in the formation of one-dimensional atomic chain alongcaxis. This atomic chain would affect the pre-exist atomic chain alongaaxis(see Fig.1)where the CDW transition intoα1-U occurs. The spacing of the new and pre-exist atomic chains is the first and the second nearest-neighbor distances, respectively. This shorter interatomic distance means that the formation of atomic chain alongcaxis yields the decrease of the tendency of CDW transition alongaaxis. Therefore, the tensile strain alongcaxis makes the CDW unstable and the compressive strain alongcaxis stabilizes the CDW phases.

    Another perspective of atomic structure could be obtained from the variation of experimental lattice constants inα-U at low temperature.[11,12]As the temperature is decreased, the lattice constantsaandbfirst decrease to a minimum at 43 K and then rapidly increase whilecdecreases more rapidly below this temperature. That is to say,the cell dimensionsaandbshould expand andcshould contract for the stabilization of CDW order. This experimental observation is in agreement with our theoretical evaluation of strain effect on the CDW order.

    Figure 3 also indicates that one can use the strain to effectively tune the CDW order. A very small strain, such as 0.5% tensile strain alongaaxis, would double the CDW formation energy and is very likely to increase the transition temperatureTCDW. This magnitude of strain is easily accessible in the experiment through the lattice mismatch between the substrate and the uranium film.[21]Compared to the layered transition-metal chalcogenide such as 1T-TiSe2,[24]the magnitude of strain to take effect is much smaller,which illustrates the sensitivity of 5f electrons. This sensitivity could be attributed to the narrow 5f bands that are actively bonding in the uranium.[51]

    The effect of strain on the CDW order could also be viewed from the perspective of electronic structure. Let us go back to the topological change of Fermi surface aroundUpoint in Fig.A1. When comparing the Fermi surfaces ofα-U andα1-U,one can find that an ellipsoid object disappears due to the CDW distortion. It is equivalent to the band splitting at the Fermi level at the correspondingkpoints, i.e., Peierls distortion. The smaller the ellipsoid object is, the easier the Peierls distortion occurs. In Fig. 5, we plot the Fermi surfaces ofα-U when the tensile and compressive strains alongaandcaxes are applied. Clearly, the ellipsoid object is very small for the tensile strain alongaaxis and compressive strain alongcaxis. On the contrary, this object becomes larger for the compressive strain alongaaxis and tensile strain alongcaxis. To clarify this, the band structures corresponding to the Fermi surfaces in Fig. 5 are plotted in Fig. A3 (see Appendix A). One can find that the Dirac cone is closer to the Fermi level for the tensile strain alongaaxis and compressive strain alongcaxis, which means that the splitting is easier in these cases. These electronic structure calculations reconfirm that the effect of strain alongcaxis on the CDW order inα-U is abnormal.

    Furthermore, the energetical instability usually indicates an intrinsic soft mode inα-U, i.e., the dynamical instability that drives the formation of the CDW transition.[17]Theαphase of uranium (see Figs. 1 and 4) is unstable at zero temperature,as demonstrated by the results in Fig.6(black solid line). Our calculation is consistent with the experimental data at room temperature.[4]From the other calculations in Fig.6,α-U is even more stable for the compressive strain alongaaxis and tensile strain alongcaxis. In particular,α-U is dynamically stable for a compressive strain of-0.5%,which is in agreement with the previous theoretical computation.[21]In contrast,α-U is even more unstable for the tensile strain alongaaxis and compressive strain alongcaxis. Overall,our argument about the abnormal effect of strain alongcaxis is also supported by the phonon calculations.

    4. Conclusion

    In summary, we investigate the effect of the uniaxial strain on the charge density wave(CDW)order inα-U within the framework of relativistic density-functional theory. When the strains alonga,b, andcare applied, the total energy,Fermi surface, and phonon mode are compared between theα-U structure with and without CDW distortion. From the calculation of the total energy difference, it is found that the tensile strain alonga/baxis increases the CDW instability and makesα-U even more unstable. The compressive strain alonga/baxis takes the opposite effect. This is very similar to the effect of pressure,in agreement with the previous literature,and intuitive. On the contrary,the effect of strain alongcaxis is counter-intuitive, in which the compressive/tensile strain increases/decreases the energetical instability ofα-U.This could be understood from the perspective of atomic,electronic, and phonon structures. From the atomic structure ofα-U, the increase of cell dimensioncmeans the emergence of a new one-dimensional atomic chain which is the rival of previous one-dimensional atomic chain for CDW distortion.The calculated Fermi surfaces and phonon modes for different strain also present the abnormal effect of strain alongcaxis with respect to that of strain alonga/baxis.

    It is noteworthy that only the first CDW transition inα-U is considered here.Apparently,the strain would take effects on the other two CDW transitions. But the supercell for the structures with more CDW transitions is too huge and unreachable for modern supercomputer. In addition, the biaxial, triaxial,and more complex strains should take place in the experiment and the researches would be pursued in the near future.

    Acknowledgements

    The work was supported by the National Natural Science Foundation of China(Grant Nos. 22176181, 11874306,and 12174320), the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No. WDZC202101), and the Natural Science Foundation of Chongqing,China(Grant No. cstc2021jcyj-msxmX0209).

    Appendix A

    In this appendix, the supporting materials are provided.In Fig. A1, the Fermi surface ofα-U with and without distortion is presented. Our calculation is compared with that from the literature and the agreement is good. In particular,the topological change around theUpoint is very clear. The band structures corresponding to Figs.A1 and 5 are presented in Figs. A2 and A3, respectively. From the band structures,the band splitting of Peierls distortion is visible.

    For an evaluation of PAW scheme, the CDW formation energy and distortion magnitude are also calculated using VASP and shown in Fig.A4. The Fermi surface ofα-U with different strains is presented in Fig.A5.The results from PAW calculations are in agreement with those from LAPW calculations.

    久久久久久九九精品二区国产| 纵有疾风起免费观看全集完整版| 国产亚洲5aaaaa淫片| 美女国产视频在线观看| 18禁在线无遮挡免费观看视频| 妹子高潮喷水视频| 欧美人与善性xxx| 国产永久视频网站| 日本猛色少妇xxxxx猛交久久| 春色校园在线视频观看| 亚洲av成人精品一区久久| 黄色日韩在线| 久久久久久久久大av| 国产成人免费无遮挡视频| 免费在线观看成人毛片| 91狼人影院| 欧美日韩综合久久久久久| 国产精品一区二区在线观看99| 大话2 男鬼变身卡| 免费人妻精品一区二区三区视频| 五月伊人婷婷丁香| 亚洲综合色惰| 多毛熟女@视频| 青春草亚洲视频在线观看| 久久 成人 亚洲| 日本欧美国产在线视频| 少妇熟女欧美另类| 免费黄网站久久成人精品| 联通29元200g的流量卡| 人人妻人人看人人澡| 日本黄色日本黄色录像| 大陆偷拍与自拍| 国产高潮美女av| 街头女战士在线观看网站| 亚洲欧洲国产日韩| 国产男人的电影天堂91| 久久人人爽av亚洲精品天堂 | 熟妇人妻不卡中文字幕| 人妻 亚洲 视频| 久久精品国产亚洲av涩爱| 性高湖久久久久久久久免费观看| 亚洲欧美精品自产自拍| 国产精品国产三级专区第一集| 欧美bdsm另类| 久久人人爽人人爽人人片va| 天美传媒精品一区二区| 插阴视频在线观看视频| 99热6这里只有精品| 直男gayav资源| 80岁老熟妇乱子伦牲交| 少妇高潮的动态图| 交换朋友夫妻互换小说| 哪个播放器可以免费观看大片| 爱豆传媒免费全集在线观看| av在线播放精品| 免费观看的影片在线观看| 国产乱来视频区| 久久久久久人妻| 一级毛片aaaaaa免费看小| 国产在线免费精品| 国产高潮美女av| 国产永久视频网站| 精品国产乱码久久久久久小说| 亚洲一级一片aⅴ在线观看| 精品一区在线观看国产| 亚洲aⅴ乱码一区二区在线播放| 久久久久网色| 狠狠精品人妻久久久久久综合| 黄色欧美视频在线观看| 99re6热这里在线精品视频| 色网站视频免费| 亚洲真实伦在线观看| 亚洲国产欧美在线一区| 观看美女的网站| 国产精品熟女久久久久浪| 最近2019中文字幕mv第一页| 蜜桃久久精品国产亚洲av| a级一级毛片免费在线观看| 欧美激情极品国产一区二区三区 | 十分钟在线观看高清视频www | 一本—道久久a久久精品蜜桃钙片| 精品一区在线观看国产| 日韩欧美精品免费久久| 色视频www国产| 国产一区有黄有色的免费视频| 国产伦理片在线播放av一区| 亚洲国产高清在线一区二区三| 日韩av在线免费看完整版不卡| 亚洲国产av新网站| 黑人猛操日本美女一级片| 毛片一级片免费看久久久久| 黑人猛操日本美女一级片| 亚洲成人手机| 99热6这里只有精品| 国产 一区 欧美 日韩| 麻豆成人av视频| 高清黄色对白视频在线免费看 | 一区在线观看完整版| 在线观看三级黄色| 亚洲,一卡二卡三卡| 黄色视频在线播放观看不卡| 熟妇人妻不卡中文字幕| 中国美白少妇内射xxxbb| 亚洲欧美精品自产自拍| 26uuu在线亚洲综合色| 欧美国产精品一级二级三级 | 国产 精品1| 久久久久久久久久久丰满| 国产精品不卡视频一区二区| 国产熟女欧美一区二区| 国产 一区精品| 高清av免费在线| 国产免费一区二区三区四区乱码| 欧美丝袜亚洲另类| 国产高清三级在线| 日韩,欧美,国产一区二区三区| 日韩欧美 国产精品| 少妇丰满av| 国产高清国产精品国产三级 | 寂寞人妻少妇视频99o| 在线观看一区二区三区| 我要看日韩黄色一级片| 免费观看的影片在线观看| 午夜精品国产一区二区电影| 国产午夜精品一二区理论片| 在线天堂最新版资源| 国内揄拍国产精品人妻在线| 伦理电影免费视频| 国产精品久久久久成人av| 如何舔出高潮| 一级毛片aaaaaa免费看小| 成人亚洲欧美一区二区av| 深夜a级毛片| 有码 亚洲区| 春色校园在线视频观看| 欧美极品一区二区三区四区| 亚洲精品一二三| 亚洲欧美精品自产自拍| 日韩不卡一区二区三区视频在线| 久久影院123| av女优亚洲男人天堂| 国产亚洲av片在线观看秒播厂| 久久鲁丝午夜福利片| 日韩av不卡免费在线播放| 亚洲av男天堂| 国产av国产精品国产| 少妇熟女欧美另类| 久久精品熟女亚洲av麻豆精品| 三级经典国产精品| 日本午夜av视频| 久久影院123| 六月丁香七月| 啦啦啦啦在线视频资源| 精品视频人人做人人爽| 九九在线视频观看精品| 日韩中字成人| 欧美性感艳星| 国产乱来视频区| a级一级毛片免费在线观看| 日本黄大片高清| 亚洲av男天堂| 王馨瑶露胸无遮挡在线观看| 纯流量卡能插随身wifi吗| 国产免费又黄又爽又色| 久久久久久久久久人人人人人人| 深夜a级毛片| 久久影院123| 欧美xxxx性猛交bbbb| 欧美一级a爱片免费观看看| .国产精品久久| 精品国产乱码久久久久久小说| 国产精品女同一区二区软件| 精品人妻熟女av久视频| 免费少妇av软件| 高清午夜精品一区二区三区| 看非洲黑人一级黄片| 国产综合精华液| 青春草国产在线视频| 久久这里有精品视频免费| 午夜福利在线观看免费完整高清在| 草草在线视频免费看| 免费观看无遮挡的男女| 一级av片app| 午夜免费男女啪啪视频观看| 国产高潮美女av| 五月玫瑰六月丁香| 欧美日韩国产mv在线观看视频 | 精华霜和精华液先用哪个| 国产精品爽爽va在线观看网站| 老司机影院成人| 久久久a久久爽久久v久久| 网址你懂的国产日韩在线| 日韩中字成人| 国产av国产精品国产| 成人二区视频| 人妻一区二区av| 国产极品天堂在线| 丰满乱子伦码专区| 国产黄色视频一区二区在线观看| 男人添女人高潮全过程视频| 制服丝袜香蕉在线| 亚洲精品乱久久久久久| 一本久久精品| 中文在线观看免费www的网站| h日本视频在线播放| 精品国产三级普通话版| 天堂8中文在线网| 少妇人妻精品综合一区二区| 欧美97在线视频| 免费观看av网站的网址| 国产精品国产三级国产av玫瑰| 最新中文字幕久久久久| 丰满迷人的少妇在线观看| 18禁裸乳无遮挡免费网站照片| 女的被弄到高潮叫床怎么办| 国产又色又爽无遮挡免| 欧美亚洲 丝袜 人妻 在线| av一本久久久久| 直男gayav资源| 亚洲精品日韩在线中文字幕| 好男人视频免费观看在线| 午夜视频国产福利| 亚洲国产av新网站| 亚洲精品第二区| 国产av精品麻豆| 噜噜噜噜噜久久久久久91| 伊人久久国产一区二区| 亚洲成人中文字幕在线播放| 亚洲精品第二区| 99精国产麻豆久久婷婷| 久久99热这里只频精品6学生| 夜夜爽夜夜爽视频| 少妇人妻久久综合中文| 少妇熟女欧美另类| 交换朋友夫妻互换小说| 99久久精品国产国产毛片| 内射极品少妇av片p| 国产精品人妻久久久影院| 香蕉精品网在线| 成人毛片60女人毛片免费| 久久6这里有精品| 久热这里只有精品99| 亚洲美女视频黄频| 极品教师在线视频| 亚洲真实伦在线观看| 亚洲四区av| 国产一区二区三区综合在线观看 | 国产成人午夜福利电影在线观看| 精品午夜福利在线看| 久久久久久久大尺度免费视频| 久久热精品热| 久久久久网色| 波野结衣二区三区在线| 久久97久久精品| 国产午夜精品一二区理论片| 免费久久久久久久精品成人欧美视频 | 在线亚洲精品国产二区图片欧美 | 你懂的网址亚洲精品在线观看| 午夜免费鲁丝| 欧美日本视频| 丰满乱子伦码专区| 成人一区二区视频在线观看| 大码成人一级视频| videos熟女内射| 国产一区二区三区av在线| 下体分泌物呈黄色| 亚洲欧美一区二区三区黑人 | 亚洲av在线观看美女高潮| 汤姆久久久久久久影院中文字幕| 国产成人aa在线观看| 欧美区成人在线视频| 一级毛片久久久久久久久女| h视频一区二区三区| 久久久久久久久大av| 极品教师在线视频| 亚洲熟女精品中文字幕| 狂野欧美激情性bbbbbb| 亚洲av欧美aⅴ国产| 日日摸夜夜添夜夜爱| 蜜桃在线观看..| 成人国产av品久久久| 国产精品久久久久久av不卡| 不卡视频在线观看欧美| 超碰av人人做人人爽久久| 精品一区二区三卡| 各种免费的搞黄视频| 九九爱精品视频在线观看| 街头女战士在线观看网站| 亚洲国产精品成人久久小说| 午夜福利在线观看免费完整高清在| 美女福利国产在线 | 日韩av免费高清视频| 99久久人妻综合| 亚洲熟女精品中文字幕| 亚洲成人一二三区av| 22中文网久久字幕| 中文乱码字字幕精品一区二区三区| 久久久久久久久久人人人人人人| 国产精品久久久久久av不卡| 亚洲色图av天堂| 精品少妇久久久久久888优播| 久久毛片免费看一区二区三区| 97超视频在线观看视频| 国产亚洲av片在线观看秒播厂| 精品国产乱码久久久久久小说| 久久精品久久久久久久性| 久久久久久九九精品二区国产| 国产精品久久久久成人av| 人人妻人人澡人人爽人人夜夜| 校园人妻丝袜中文字幕| 国产精品99久久久久久久久| 超碰av人人做人人爽久久| 午夜视频国产福利| a级毛片免费高清观看在线播放| 国产成人精品一,二区| www.色视频.com| 中文字幕免费在线视频6| 国产精品成人在线| 超碰97精品在线观看| 婷婷色麻豆天堂久久| av女优亚洲男人天堂| 免费观看av网站的网址| av不卡在线播放| 国产男女超爽视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产欧美亚洲国产| 91久久精品国产一区二区成人| 国产精品99久久久久久久久| 黄色怎么调成土黄色| 亚洲精品一二三| 激情五月婷婷亚洲| 国产午夜精品一二区理论片| 狂野欧美激情性xxxx在线观看| 99久久精品一区二区三区| 亚洲精品色激情综合| 精品亚洲成a人片在线观看 | 日韩在线高清观看一区二区三区| 国产视频首页在线观看| 亚洲精品一二三| 91久久精品国产一区二区三区| 成年女人在线观看亚洲视频| 有码 亚洲区| 男人添女人高潮全过程视频| 精品久久国产蜜桃| 国产午夜精品一二区理论片| 中国国产av一级| 国产成人午夜福利电影在线观看| 成人18禁高潮啪啪吃奶动态图 | 少妇熟女欧美另类| 在线观看免费日韩欧美大片 | 女性被躁到高潮视频| 插逼视频在线观看| 亚洲欧美清纯卡通| 亚洲欧美精品自产自拍| av女优亚洲男人天堂| 国产免费一级a男人的天堂| 一本一本综合久久| 欧美精品人与动牲交sv欧美| 午夜激情福利司机影院| 中文字幕av成人在线电影| 日韩亚洲欧美综合| 国产av精品麻豆| 国模一区二区三区四区视频| 夜夜看夜夜爽夜夜摸| 亚洲国产最新在线播放| 全区人妻精品视频| 在线 av 中文字幕| av网站免费在线观看视频| 久久久久性生活片| 国产一区二区三区av在线| 亚洲av综合色区一区| 街头女战士在线观看网站| 美女高潮的动态| 自拍偷自拍亚洲精品老妇| 韩国高清视频一区二区三区| 成人黄色视频免费在线看| 免费黄色在线免费观看| 日产精品乱码卡一卡2卡三| 少妇熟女欧美另类| 精品人妻视频免费看| 干丝袜人妻中文字幕| 国产午夜精品久久久久久一区二区三区| 韩国高清视频一区二区三区| 3wmmmm亚洲av在线观看| 亚洲精品一区蜜桃| 国产欧美另类精品又又久久亚洲欧美| 又爽又黄a免费视频| 七月丁香在线播放| 欧美97在线视频| 国产精品免费大片| 久久毛片免费看一区二区三区| 国产精品爽爽va在线观看网站| 日韩在线高清观看一区二区三区| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| 99久久综合免费| 免费av不卡在线播放| 国模一区二区三区四区视频| 国产成人精品久久久久久| 日韩亚洲欧美综合| 亚洲av国产av综合av卡| 亚洲成人一二三区av| 婷婷色综合大香蕉| av在线app专区| 黑人高潮一二区| 成人综合一区亚洲| 亚洲精品国产色婷婷电影| 日韩成人伦理影院| 欧美zozozo另类| 亚洲色图av天堂| 最后的刺客免费高清国语| 一级毛片黄色毛片免费观看视频| 在线免费十八禁| 男女啪啪激烈高潮av片| 婷婷色av中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 国产亚洲91精品色在线| 小蜜桃在线观看免费完整版高清| 欧美一区二区亚洲| 亚洲在久久综合| 91精品伊人久久大香线蕉| 免费av不卡在线播放| 春色校园在线视频观看| 久久热精品热| 男人狂女人下面高潮的视频| 亚洲怡红院男人天堂| 国产高清三级在线| 亚州av有码| 涩涩av久久男人的天堂| 午夜激情久久久久久久| 国产精品人妻久久久久久| 综合色丁香网| 成人亚洲欧美一区二区av| 一本一本综合久久| 日产精品乱码卡一卡2卡三| 久热久热在线精品观看| 久久久成人免费电影| 国产精品麻豆人妻色哟哟久久| 啦啦啦在线观看免费高清www| 国产在线男女| 啦啦啦中文免费视频观看日本| 亚洲av二区三区四区| 免费观看的影片在线观看| 国产爱豆传媒在线观看| 久久99热6这里只有精品| 欧美日韩精品成人综合77777| 亚洲av在线观看美女高潮| 五月玫瑰六月丁香| 熟女av电影| 高清不卡的av网站| 亚洲第一区二区三区不卡| 简卡轻食公司| 久久国产乱子免费精品| 久久久久久久久久久丰满| 777米奇影视久久| 免费看不卡的av| 午夜免费鲁丝| 熟女电影av网| 在线免费观看不下载黄p国产| 精品人妻视频免费看| 直男gayav资源| 中文精品一卡2卡3卡4更新| 国产av一区二区精品久久 | 国产精品久久久久久久久免| 日本午夜av视频| 直男gayav资源| 国产成人精品婷婷| 亚洲精华国产精华液的使用体验| 国产免费视频播放在线视频| 大话2 男鬼变身卡| 热re99久久精品国产66热6| 亚洲美女视频黄频| 日韩电影二区| 最近中文字幕高清免费大全6| 色网站视频免费| 精品人妻熟女av久视频| 五月伊人婷婷丁香| 一级爰片在线观看| 搡老乐熟女国产| 国产精品一区二区三区四区免费观看| av不卡在线播放| 国产极品天堂在线| av线在线观看网站| 多毛熟女@视频| 日本黄色日本黄色录像| av不卡在线播放| 只有这里有精品99| 尤物成人国产欧美一区二区三区| 欧美少妇被猛烈插入视频| 亚洲国产日韩一区二区| 美女cb高潮喷水在线观看| 久久久午夜欧美精品| 免费黄网站久久成人精品| 午夜激情久久久久久久| 伊人久久精品亚洲午夜| 亚洲综合精品二区| 日日啪夜夜撸| 精品亚洲乱码少妇综合久久| a级毛片免费高清观看在线播放| 看免费成人av毛片| av不卡在线播放| 国产黄频视频在线观看| 又爽又黄a免费视频| 久久久精品94久久精品| 国产黄片美女视频| 下体分泌物呈黄色| 日韩伦理黄色片| 大又大粗又爽又黄少妇毛片口| 一级毛片久久久久久久久女| 欧美日韩一区二区视频在线观看视频在线| 一级黄片播放器| 国产伦精品一区二区三区视频9| 久久国产精品男人的天堂亚洲 | 久久久久久久久久人人人人人人| 51国产日韩欧美| 视频区图区小说| 精品一品国产午夜福利视频| 亚洲色图综合在线观看| 永久免费av网站大全| 晚上一个人看的免费电影| 久久久久视频综合| 在线精品无人区一区二区三 | 免费人妻精品一区二区三区视频| 精品人妻一区二区三区麻豆| 亚洲内射少妇av| 免费大片黄手机在线观看| 女性被躁到高潮视频| 哪个播放器可以免费观看大片| 亚洲人成网站高清观看| 校园人妻丝袜中文字幕| 在线看a的网站| 如何舔出高潮| 九色成人免费人妻av| 免费看光身美女| 老司机影院成人| 免费观看a级毛片全部| 免费少妇av软件| 国产黄片视频在线免费观看| 永久免费av网站大全| 在线亚洲精品国产二区图片欧美 | 亚洲综合色惰| 中国美白少妇内射xxxbb| 亚洲精品国产av成人精品| 自拍偷自拍亚洲精品老妇| av在线老鸭窝| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人 | 色综合色国产| 亚洲人与动物交配视频| www.色视频.com| 熟女av电影| 婷婷色综合www| 日本av免费视频播放| 亚洲国产毛片av蜜桃av| 国产综合精华液| 大话2 男鬼变身卡| 亚洲国产成人一精品久久久| 男女边吃奶边做爰视频| 亚洲成色77777| 久久精品国产亚洲网站| 国产精品国产三级国产av玫瑰| 亚洲久久久国产精品| 久久久色成人| 日韩精品有码人妻一区| 国产又色又爽无遮挡免| 国产在视频线精品| 亚洲天堂av无毛| 欧美97在线视频| 久久韩国三级中文字幕| 日韩人妻高清精品专区| 免费看av在线观看网站| 欧美精品国产亚洲| 亚洲色图av天堂| 秋霞在线观看毛片| 免费不卡的大黄色大毛片视频在线观看| 国产精品99久久久久久久久| av女优亚洲男人天堂| 国产精品秋霞免费鲁丝片| 亚洲欧美成人精品一区二区| 日本一二三区视频观看| 最黄视频免费看| 小蜜桃在线观看免费完整版高清| 插阴视频在线观看视频| 哪个播放器可以免费观看大片| 秋霞伦理黄片| 最后的刺客免费高清国语| 午夜日本视频在线| 久久久久久久久久久丰满| 一级二级三级毛片免费看| 精品熟女少妇av免费看| 午夜精品国产一区二区电影| 狂野欧美激情性xxxx在线观看| 免费观看av网站的网址| 纯流量卡能插随身wifi吗| 国产精品爽爽va在线观看网站| 亚洲国产高清在线一区二区三| 女的被弄到高潮叫床怎么办| 精品一区在线观看国产| 肉色欧美久久久久久久蜜桃| 特大巨黑吊av在线直播| 伦理电影免费视频| 午夜福利在线观看免费完整高清在| 在线亚洲精品国产二区图片欧美 | 一级毛片我不卡| 少妇人妻一区二区三区视频| 99久久精品一区二区三区| 亚洲va在线va天堂va国产| 五月伊人婷婷丁香| 蜜桃在线观看..| 男人和女人高潮做爰伦理| 少妇人妻 视频| 亚洲国产精品999| 丝袜脚勾引网站| 国产成人免费观看mmmm|