• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial defect engineering and photocatalysis properties of hBN/MX2(M =Mo,W,and X =S,Se)heterostructures

    2022-06-29 08:56:10ZhiHaiSun孫志海JiaXiLiu劉佳溪YingZhang張穎ZiYuanLi李子源LeYuPeng彭樂宇PengRuHuang黃鵬儒YongJinZou鄒勇進(jìn)FenXu徐芬andLiXianSun孫立賢
    Chinese Physics B 2022年6期
    關(guān)鍵詞:志海張穎李子

    Zhi-Hai Sun(孫志海), Jia-Xi Liu(劉佳溪), Ying Zhang(張穎), Zi-Yuan Li(李子源),Le-Yu Peng(彭樂宇), Peng-Ru Huang(黃鵬儒), Yong-Jin Zou(鄒勇進(jìn)),Fen Xu(徐芬), and Li-Xian Sun(孫立賢)

    School of Material Science and Engineering,Guilin University of Electronic Technology,Guangxi Key Laboratory of Information Materials,Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials,Guilin 541004,China

    Keywords: hBN/MX2 heterostructures,interfacial defect,electronic state,photocatalytic properties

    1. Introduction

    Two-dimensional(2D)materials have attracted intensive research interest since the discovery of graphene,in which excellent photoelectric, thermoelectric, mechanical, and chemical properties have been reported, making these materials ideal candidates for new-generation nanoscale devices.[1–6]Most of the 2D materials, including hexagonal boron nitride(hBN),[7]transition metal dichalcogenides(TMDCs),[8]black phosphorus (BP),[9]layered double hydroxides (LDHs),[10]antimonene,[11]and germanene,[12]can be prepared by the methods such as mechanical exfoliation[13]and chemical vapor deposition (CVD).[14]For two decades of investigations,extensive efforts have been devoted to tailoring 2D materials to meet the desired properties for practical applications. One of the most popular strategies is to stack different 2D components together to form heterostructures of different functionalities, and has open up a new paradigm of interface engineering.[15,16]

    When two 2D materials are vertically stacked together,owing to the work function differences and charge transfer,the band alignment at the interface will be modified. For instance, Denget al.[17]reported that the Schottky barrier height (SBH) of graphene/g-GaN heterostructures are effectively turned by controlling the interlayer distance. Sunet al.[18]developed a method of tuning the electrical characteristics of graphene/WSe2heterostructures through changing the interlayer coupling and a perpendicular electric field. In addtion, the physicochemical properties of heterostructures can be changed when defects exist in the interface. Fanget al.[19]demonstrated that interfacial defects give rise to a significant influence on the electronic states of AlN/MoS2heterostructures, in which different types of vacancies and dopants have different effects on the band arrangement and magnetic properties modifications. Zhaoet al.[20]found that the heptazine/triazine based g-C3N4heterostructure with the(F, Ti) co-doped interface can not only improve visible light absorption, but also promote electron–hole pairs separation and inhibit carrier recombination. Xuet al.[21]designed a Ztype photocatalyst (hBN/g-C3N4) through interfacial defectengineereing and revealed the effects of different defects on the interface of hBN/g-C3N4heterostructures. All these studies highlight the important role of interfacial defect engineering in developing of efficient novel nanoscale devices.

    Here in this work, We construct a heterostructure composed ofMX2(M=Mo,W,andX=S,Se)and hBN,and investigate the influences of interfacial defects on the electronic structures and photocatalytic properties of heterostructures in detail by using density functional theory calculations. The results exhibit that interfacial defect engineering can not only change the band aligment of heterostructures but also control the types of photocatalysts,thereby providing a detailed guidance of design the new photocatalysts.

    2. Computational methods

    In this work,all calculations are performed using the Viennaab initiosimulation package(VASP),which is based on density functional theory(DFT)in a plane-wave basis set with the projector augmented wave (PAW) method.[22–24]The exchange correlation functional is approximated by the generalized gradient approximation of Perdew, Burke, and Ernzerhof(GGA-PBE).[25]The DFT-D3 in the Grimme approach is adopted since the GGA for exchange and correlation fails to explain the interaction between the layered structures.[26]In all calculations spin-polarization is taken into account. After the convergence test,the energy cutoff for plane-wave expansion is set to be 500 eV and aK-mesh to be 11×11×1 within the Brillouin zone. The energy convergence value of the Kohn–Sham equation using the self-consistent loop is set to be 1×10-5eV/atom, and the maximum stress is controlled to be within 0.01 eV/°A. To avoid the interaction between adjacent periodic images, a large vacuum spacing of 20 °A is introduced. The electron configurations of the outer nucleus considered in the pseudopotential calculation are Be(2s2), B(2s22p1), C(2s22p2), N(2s22p3), O(2s22p4),Mg(3s2),Si(3s23p2),S(3s23p4),Se(3d104s24p4),Mo(4d55s1),and W(4f145d46s2). The VASPKIT program is used for data post-processing.[27]

    The values of binding energy(Eb)between the hBN andMX2(M=Mo,W,andX=S,Se)monolayers are calculated from[17]

    whereEBN/MX2,EBN,andEMX2are energy of the heterostructure, isolated hBN andMX2monolayers, respectively; andNB/Nis the number of boron(nitrogen)atoms in the supercell.The negative value ofEbdenotes a bound system, the more strongly the hBN andMX2monolayers are bound together,the smaller the value is.

    To obtain a better understanding of interlayer interaction,the difference in charge density Δρbetween hBN andMX2is calculated from

    in whichEVB(VN)-BN/MX2,EDB(DN)-BN/MX2,EBN, andEMX2are the total energy of VB(VN)-hBN/MX2,DB(DN)-hBN/MX2,hBN, andMX2, respectively.μB,μN(yùn), andμDare the chemical potential of B,N,and D atoms,respectively. The negative value ofEfrepresents exothermic reaction in the experimental synthetic process,and lowerEfimplies a more stable state.

    3. Results and discussion

    3.1. Pristine hBN/MX2 heterostructures

    Firstly, we optimize the geometry of monolayer MoS2,MoSe2, WS2, WSe2, hBN, and hBN without defects. All of these 2D materials possess a hexagonal crystal structure(space group:P63/mmc) separately with the calculated lattice constant of 2.512 °A, 3.190 °A, 3.327 °A, 3.191 °A, and 3.327 °A.The calculated geometries are consistent well with the experimental values.[28]Figure 1 shows the supercell of hBN/MS2heterostructure composed of 5×5×1 hBN and 4×4×1MS2(M= Mo or W) and that of hBN/MSe2composed of 4×4×1 hBN and 3×3×1MSe2(M=Mo or W).The lattice mismatches of the two kind of heterostructures are 1.6% and 0.7%,respectively. The detailed geometry and binding energy of the structures can be seen in Fig.S1 in supporting information.

    Fig.1. Schematic illustration of crystal structures of(a)hBN/MoS2,(b)hBN/WS2,(c)hBN/MoSe2,and(d)hBN/WSe2.

    Figure 2 shows the band structures and atomic projected densities of states (PDOSs) of the heterostructures and their components. As can be seen from the band structures, the band gap of monolayer hBN,MoS2,WS2,MoSe2,and WSe2are calculated to be 4.35 eV, 1.61 eV, 1.80 eV, 1.42 eV, and 1.53 eV, respectively. As is well known, the PBE functional underestimates the band gap of hBN monolayer andMX2monolayer(Table 1). However, here in this work, we mainly focus on the trend of variation. Generally, the band gap and electronic states of the hBN/MX2heterostructure are significantly influenced by the interlayer contact. The electrons fromM(M=Mo or W)atoms contribute to the valence band maximum (VBM) and the conduction band minimum (CBM) in the PDOS(Figs.2(a)–2(d)),indicating that the band alignment of the heterostructure is of type-I. When they are stacked together,the band gap of the composed structures will be modified.For example,the band gap of the hBN/MoS2heterostructure is about 1.73 eV, slightly larger than that of the smaller band gap (herein MoS2) of component. However, the trend for the hBN/MoSe2is opposite, in which the 1.38 eV band gap value is 1.38 eV,smaller than minimum band gap of components(herein MoSe2).

    It can be concluded that the electronic properties of the hBN/MX2(M=Mo, W, andX=S, Se) heterostructures are not simply a superposition of the two different materials even though the hBN andMX2layers are combined by van der Waals forces.

    System Method Eg (eV) Reference hBN PBE+D3 4.35 this work PBE 4.37 Ref.[29]GW 5.54 Ref.[30]HSE 5.56 Ref.[29]EXP 5.92,5.57 Refs.[31,32]MoS2 PBE+D3 1.61 this work PBE 1.59,1.67,1.8 Refs.[33–35]GW 2.66 Ref.[34]HSE 2.02,2.25 Refs.[33,34]EXP 2.06 Ref.[36]WS2 PBE+D3 1.80 this work PBE 1.55,1.81 Refs.[33,34]GW 2.91 Ref.[34]HSE 1.98,2.32 Refs.[33,34]EXP 1.97 Ref.[37]MoSe2 PBE+D3 1.42 this work PBE 1.33,1.44 Refs.[33,34]GW 2.31 Ref.[34]HSE 1.72,1.99 Refs.[33,34]EXP 1.55 Ref.[38]WSe2 PBE+D3 1.53 this work,Ref.[18]PBE 1.25,1.55 Refs.[33,34]GW 2.51 Ref.[34]HSE 1.63,2.10 Refs.[33,34]EXP 1.65 Ref.[39]hBN/MoS2 PBE+D3 1.73 this work EXP 1.74 Ref.[40]hBN/WS2 PBE+D3 1.90 this work EXP 2.14 Ref.[41]hBN/MoSe2 PBE+D3 1.38 this work PBE+optB86b 1.49 Ref.[42]hBN/WSe2 PBE+D3 1.47 this work GW 2.30 Ref.[43]

    3.2. Heterostructures with vacancies in hBN

    Vacancy defects usually exist in the experimental process of single-layer hBN prepared by electron beam irradiation and thermal annealing.[44,45]And vacancy defects have great effects on the excitation, migration, and recombination of photo-generated electron–hole pairs in semiconductor materials.Therefore,it is necessary to study the interface vacancy defects of heterostructures in detail. Here,the influences of B vacancy(VB)and N vacancy(VN),in hBN layer on the electronic structures of hBN/MX2(M=Mo, W, andX=S, Se)are investigated. Figure 3 shows the position of VBand VN,blue and red represent the removed nitrogen atoms and boron atoms,respectively.

    Figure 4 shows the calculated energy band structures and atomic PDOSs of the heterostructures. The Fermi level of VB/MX2remains unchanged, while the Fermi level of VN/MX2shifts up to the conduction band. In addition, the energy band arrangement of VB/MX2is of type-II,while that of VN/MX2remains in type-I.Particularly,the degenerate energy level induced by boron vacancy is split in VB/MX2heterostructures. However, the system with vacancy defect still maintains semiconductor properties though their Fermi level crosses the energy band. It can be concluded that the interface vacancy defects can introduce the defect energy level into the band structure and change the energy band arrangement.

    3.3. Heterostructures with substitutions in hBN

    Doping is routinely employed to tune the electronic properties of semiconductors in many experiments.[46,47]The atoms of group(II,IV,VI)A are chosen as substitutional dopants to replace the B or N atoms of interface in hBN/MX2. These systems are described asD-hBN/MX2(D=BeB,MgB,CB,SiB,CN,SiN,ON,and SN). The top views of doped geometrical configurations are depicted in Fig.3. To achieve n-type doping,more than one electron will be inserted into the heterostructure for each of CB,ON,SiB,and SNdoping. On the other hand,CN,BeB,MgB,and SiNare examined for the effects of p-type doping in hBN/MX2,which a p-type doping hole is introduced into. Figure 5 shows the calculated energy band structures and atomic projected PDOSs of the atom-doped heterostructures. It can be seen that the energy band arrangement of CB/MX2is of type-I, while that of CN/MX2remains in type-II. The Fermi level of CB/MX2shifts up to the conduction band, while the Fermi level of CN/MX2keep unchanged. The carbon doped systems are greatly similar to the systems with vacancy defects. From this,it can be inferred that VN/VBhas n/p-type semiconductor properties. Figures S2 and S3(in supporting information)show other types of atomic substitution systems in detail.

    Figure 6(a) shows the variation of formation energy(Ef) for vacancy VB(VN)-hBN/MX2and for doping DB(VN)-hBN/MX2.In the experimental synthesis process,a positiveEfvalue means an endothermic reaction and a negativeEfvalue indicates an exothermic reaction. The lower theEfvalue,the more easily the reaction occurs. We find that among the four heterostructures based on MoS2,MoSe2,WS2,and WSe2,the hBN layer interface defect engineering is more likely to be realized on MoS2and WS2substrates. In addition, we can see that only ON/MX2reaction is exothermic, while other defect types of reactions are endothermic. This can be related to the differences in atomic radius and electronegativity between impurity atoms and B(N)atoms.

    For different types of substituted atoms,electronic properties of the heterostructures will change differently. Simultaneously, the work function of the host material will be modified as impurity atoms are introduced, thereby affecting the ability to bind electrons. The work function can be defined as the difference between the vacuum and the Fermi level, and calculated from[48]

    in whichEvacandEFare the vacuum level and Fermi level,respectively. Electrons will flow from the material with the low work function through the interface to the material with the high work function, making the two different materials positively and negatively charged,respectively,resulting in an internal electric field created at the interface.

    Figure 6(b) shows the work functions ofD-hBN, with light blue,light magenta and light yellow regions representing the vacancy defects, n-type doping defects and p-type doping defects, respectively. Compared with intrinsic hBN, the work functions ofD-hBN (D=VN, CB, SiB, ON, SN, SiN,MgB, and CN) are reduced whileD-hBN (D=VBand BeB)become larger. Since the work functions ofD-hBN(D=VN,CB, SiB, ON, SN, and SiN) are lower than that of the idealMX2, the electrons will easily flow from theD-hBN toMX2through the interface. This contributes to speeding up the separation of photo-generated electron–hole combination due to a built-in field that points fromD-hBN (D= VN, CB, SiB,ON,SN,and SiN)to anMX2. Moreover,the direction of electric field points fromD-hBN(D=MgBor CN)toMX2in the heterostructures of MgB-hBN/MoS2,CN-hBN/MoS2,and CNhBN/WS2while the opposite orientation of electric field exists in the heterostructures of MgB-hBN/WS2,MgB-hBN/MoSe2,MgB-hBN/WSe2, CN-hBN/MoSe2, and CN-hBN/WSe2. We can preliminarily indicate that theMX2monolayer in the heterostructureD-hBN/MX2(D= VN, CB, SiB, ON, SN, and SiN) are acceptors of electrons and theD-hBN (D= VN,CB, SiB, ON, SN, and SiN) are donors of electrons. Conversely, theD-hBN (D=VBor BeB) andMX2act as acceptor and donor of electrons in the heterostructures (VB/MX2,BeB/MX2),respectively. Figure 6(c)shows the work function ofD-hBN/MX2. With respect to the ideal hBN/MX2, theDhBN/MX2reduces the work function to some extent,which is conducive to the electrons escaping from the hBN monolayer through the interface.

    In order to understand the variations of the interface charge transfer and distribution with defect type and substrate materials in heterostructures,we plot the plane-averaged electron density differences along thezdirection of the hBN/MX2heterostructures as shown in Fig.7. Interestingly,we can find that in comparision with the ideal hBN/MX2, the transferred charge quantity of n-type dopedD-hBN/MX2(D=CB, ON,SiB,and SN)are significantly increased by 4 to 12 times. Especially in ON/MoSe2, the transfered charge quantity is the highest (1.5×10-2e), which is much higher than intrinsic hBN/MX2(1.4×10-3e),indicating that the interface interaction in ON/MoSe2is the strongest. In general, the larger the transferred charge quantity, the more conducive to the separation of photo-generated electron–hole pairs it is. It can be seen from Figs. 7(c) and 7(d) that the interface electrons ofD-hBN/MSe2(D=VBor BeB) are depleted on the upper of MoSe2or WSe2layer,while accumulate in hBN at the lower surface,thereby generating an electric field directing from theD-hBN (D=VBor BeB) to MSe2. Accordingly, the significant interfacial interaction makes the defect degeneracy level split in VB/MSe2electronic band structure. Furthermore, the induced shift in the electrostatic potential caused by the interface creation is depicted in Fig.S4,convincingly demonstrating the charge transfer direction.

    As is well known,in order to improve the photocatalytic activity, not only photo-generated electron–hole pairs are required to efficiently be generated, separated and transmitted,but also the occurrence of reverse reaction must be inhibited.These are closely related to the band gap value and band arrangement of heterogeneous composite photocatalysts. The band arrangement relative to the vacuum level can be achieved by calculating the band edge potentials of conduction band(CB)and valence band(VB)from the following formulae:[48]

    The higher the CBM of photocatalyst(the more negative),the stronger the photoreduction capability is, while the lower the VBM(the more positive),the stronger the photooxidation capability is. As shown in Fig.8,the potential at the CB edge position ofD-hBN/MoS2(D=CB,ON,SN,and BeB)andDhBN/MoSe2(D=VN, CB, SiB, ON, SN, and BeB) are more negative than ideal reduction potential(0 V),while the potential at the VB edge position is more positive than ideal oxidation potential (1.23 V). This indicates thatD-hBN/MoS2(D=CB,ON,SN,and BeB)andD-hBN/MoSe2(D=VN,CB,SiB,ON,SN,and BeB)heterostructures can complete the redox reactions due to their suitable band edge potential.

    Optical absorptivity,redox capability related to the position of conduction valence band, and effective separation of photo-generated carriers are the main reasons for the restriction on photocatalytic efficiency of traditional single semiconductor materials. But in the Z-type photocatalytic reaction system a two-photon excitation process is used to complete the oxidation reaction(2H2O+4h+→O2+4H+) and the reduction reaction(2H++2e-→H2)on different photocatalysts, respectively.[49–51]It can effectively inhibit the inverse reaction, showing significant advantages. We investigate the electronic properties of the BeB/MoS2, BeB/MoSe2,and VN/MoSe2vdW heterostructure,the results are shown in Figs. 9(a)–9(c), respectively. Although the energy band of defect-engineered hBN crosses the Fermi level, BeB/MoS2,BeB/MoSe2, and VN/MoSe2still maintain their semiconductor properties. Theoretically, there are three N atoms around each B atom in the hBN monolayer. When a single B atom is replaced by a Be atom,one N 2sp2and one N 2pzdangling bond will be left,resulting in an additional hole and making it a p-type semiconductor. In addition,removing one N atom to form VNwill induce three-B 2sp2and three-B 2pzelectronic dangling bond in the plane and make it an n-type semiconductor.

    The highest occupied molecular orbital(LUMO)and the lowest unoccupied molecular orbital (HOMO) are marked with red numbers 1 and 2 in band structures as shown in Figs. 9(a)–9(c). In terms of real space, the HOMO of BeB/MoX2(X=S or Se)primarily derives from the hBN layer,with Pzorbital of N atom formingπbond, while LUMO is contributed by MoX2(X=S or Se)layer, forming aσbond.However, the situation of VN/MoSe2is opposite. These can be further demonstrated through the corresponding PDOS of BeB/MoS2,BeB/MoSe2,and VN/MoSe2,respectively. On the one hand,the appropriate band gap is 1.61 eV for BeB/MoS2,1.35 eV for BeB/MoSe2, and 1.33 eV for VN/MoSe2. On the other hand, the separation between the reduction process and oxidation process can effectively separate and transport photogenerated electron–hole pairs. Therefore,we can confirm that the BeB/MoS2, BeB/MoSe2, and VN/MoSe2heterostructure form a Z-type photocatalytic reaction system.

    Figure 9(d) shows two Z-type photocatalytic reactions processes with opposite photo-generated carriers transferring directions. In BeB/MoS2or BeB/MoSe2,the photo-generated electrons of CB in MoX2(X= S or Se) with reduction reaction are prone to combining the photo-excited holes of VB in hBN(VN) with oxidation reaction. However, the direction of carriers transferring in VN/MoSe2is opposite to that in BeB/MoSe2. Compared with the traditional type-II heterostructure, the Z-type photocatalyst only needs to meet the requirement for its respective photoexcitation process and corresponding semi reactions, providing a tremendous space for the selection and design of photocatalytic materials. Generally, the optical absorption properties of photocatalytic semiconductor material are the macroscopic representation of its energy band structure. The calculated optical absorption coefficient of isolated monolayer, intrinsic and defect-engineered hBN/MX2bilayers are shown in Fig. 9(e). We can see that the defect-engineered hBN/MX2bilayers will effectively improve the absorption coefficient of visible light and make the red shift obviously appear at the absorption boundary.In short,our results indicate that the defect-engineered interfacial heterostructures can remarkly improve the photocatalytic properties of hBN/MX2(M=Mo,W,andX=S,Se)by tuning band arrangement,enhancing the interface charge transfer and light response, specifically the creation of Z-type heterostructures with high redox capability.

    4. Conclusions

    In this paper,the effects of interfacial defects on the electronic structure, charge transfer across the interface and photocatalytic properties of hBN/MX2(M=Mo, W, andX=S,Se) have been systematically investigated by the first principles calculation. After introducing vacancy and element doping, the n-type doped hBN/MX2(M= Mo, W, andX= S,Se) heterostructures maintain the I-type band arrangement,while the p-type doping changes the band arrangement from I-type to II-type. Comparing with the ideal hBN/MX2(M=Mo, W, andX= S, Se), the transferred charge quantity of n-type dopedD-hBN/MX2(D=CB, ON, SiB, and SN) are significantly increased by 4 to 12 times, in which the interface interaction of ON-hBN/MoSe2is the strongest. Two Ztype photocatalytic reaction processes with opposite photogenerated carriers transferring directions are achieved by defect engineering. With the help of two-photon excitation process, the reduction process and oxidation process are separated from each other. It includes efficiently separating and transmitting photo-generated electron–hole pairs, enhancing interfacial charge transfer and light response, and improving the stability of photocatalytic system. These theoretical results are expected to provide useful guidance for designing the novel high-efficiency photocatalyst based on hBN/TMDCs heterostructure.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3802400),the National Natural Science Foundation of China (Grant Nos. 52161037, U20A20237, 51871065, and 51971068),the Scientific Research and Technology Development Program of Guangxi Zhuang Autonmous Region Province,China(Grant Nos. AD19110037, AA19182014, AD17195073, and AA17202030-1), the Guangxi Natural Science Foundation, China (Grant Nos. 2017JJB150085 and 2019GXNSFGA245005), the Innovation Project of GUET Graduate Education, China (Grant No. 2022YCXS197), the Guangxi Bagui Scholar Foundation, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands, Chinesisch-Deutsche Kooperationsgruppe, China (Grant No. GZ1528),and the Guangxi Key Laboratory of Information Material,China(Grant No.201025-Z).

    猜你喜歡
    志海張穎李子
    Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
    張穎
    大江南北(2023年2期)2023-02-11 05:45:56
    張穎
    大江南北(2022年11期)2022-11-08 12:04:18
    “特戰(zhàn)隊”工作法:當(dāng)好疫情救治急先鋒
    張穎
    大江南北(2022年3期)2022-03-12 01:19:16
    一次難忘的生日
    秋天
    李子有多少
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    分手了,我們還能做朋友嗎
    幸福家庭(2017年1期)2017-04-11 17:31:01
    青春草亚洲视频在线观看| 久久影院123| 搡老熟女国产l中国老女人| 亚洲中文字幕日韩| 国产精品国产av在线观看| 少妇裸体淫交视频免费看高清 | 国产99久久九九免费精品| 亚洲精品第二区| 美女中出高潮动态图| 欧美日韩亚洲综合一区二区三区_| 精品熟女少妇八av免费久了| 亚洲 欧美一区二区三区| 久久久久国产精品人妻一区二区| 精品一品国产午夜福利视频| 男女之事视频高清在线观看| 亚洲精品乱久久久久久| 亚洲自偷自拍图片 自拍| 在线亚洲精品国产二区图片欧美| 精品人妻1区二区| 精品少妇黑人巨大在线播放| 五月开心婷婷网| 中亚洲国语对白在线视频| 亚洲综合色网址| 亚洲专区字幕在线| 精品一区在线观看国产| 精品久久久精品久久久| 丝袜喷水一区| 69av精品久久久久久 | 国产亚洲精品一区二区www | 自线自在国产av| 亚洲精品粉嫩美女一区| 在线观看免费午夜福利视频| 国产成人精品久久二区二区免费| 新久久久久国产一级毛片| 久久精品人人爽人人爽视色| 国产成人一区二区三区免费视频网站| 伦理电影免费视频| 黄色毛片三级朝国网站| av电影中文网址| 欧美日韩av久久| 久久人人97超碰香蕉20202| 日韩视频在线欧美| 捣出白浆h1v1| 国产免费福利视频在线观看| 如日韩欧美国产精品一区二区三区| 少妇人妻久久综合中文| 久久久精品94久久精品| 真人做人爱边吃奶动态| 五月天丁香电影| 老汉色∧v一级毛片| 欧美精品高潮呻吟av久久| 亚洲国产精品999| 99国产综合亚洲精品| 欧美日韩成人在线一区二区| 国产区一区二久久| 精品第一国产精品| 无限看片的www在线观看| 一区二区三区激情视频| 免费黄频网站在线观看国产| 欧美黑人欧美精品刺激| 免费观看人在逋| 国产黄频视频在线观看| 亚洲成国产人片在线观看| 91大片在线观看| 夜夜骑夜夜射夜夜干| 秋霞在线观看毛片| 丁香六月天网| 高清视频免费观看一区二区| 香蕉丝袜av| 欧美精品一区二区免费开放| 日韩中文字幕视频在线看片| 我的亚洲天堂| 丝袜美足系列| 精品福利观看| 一二三四在线观看免费中文在| 九色亚洲精品在线播放| 亚洲自偷自拍图片 自拍| 每晚都被弄得嗷嗷叫到高潮| 日本91视频免费播放| av视频免费观看在线观看| 肉色欧美久久久久久久蜜桃| 中文欧美无线码| 日韩有码中文字幕| 中文字幕色久视频| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区久久| 国产精品99久久99久久久不卡| 亚洲成人免费电影在线观看| 亚洲 国产 在线| 免费黄频网站在线观看国产| av视频免费观看在线观看| 99精品欧美一区二区三区四区| 精品人妻熟女毛片av久久网站| 国产亚洲欧美在线一区二区| 黄频高清免费视频| 久久人妻福利社区极品人妻图片| 久久精品亚洲av国产电影网| 中文字幕人妻熟女乱码| 在线观看免费日韩欧美大片| 视频区图区小说| 国产成人一区二区三区免费视频网站| 精品一区在线观看国产| 成人影院久久| 伦理电影免费视频| 亚洲成人手机| 色老头精品视频在线观看| 亚洲国产欧美日韩在线播放| 蜜桃国产av成人99| 国产深夜福利视频在线观看| 久久av网站| 亚洲精品中文字幕一二三四区 | 国产精品香港三级国产av潘金莲| 在线永久观看黄色视频| 久久久水蜜桃国产精品网| 亚洲欧美一区二区三区黑人| 99精品久久久久人妻精品| 久久ye,这里只有精品| 国产精品熟女久久久久浪| 好男人电影高清在线观看| 亚洲男人天堂网一区| 亚洲精品久久久久久婷婷小说| 精品第一国产精品| 丝袜喷水一区| 久久精品成人免费网站| 国精品久久久久久国模美| 精品亚洲成a人片在线观看| 亚洲七黄色美女视频| 亚洲avbb在线观看| 丝袜在线中文字幕| 99国产综合亚洲精品| 免费久久久久久久精品成人欧美视频| 美女视频免费永久观看网站| 精品免费久久久久久久清纯 | av片东京热男人的天堂| 国产亚洲av高清不卡| 久久久水蜜桃国产精品网| 少妇人妻久久综合中文| 三上悠亚av全集在线观看| 亚洲国产精品999| 18禁黄网站禁片午夜丰满| 精品久久久精品久久久| 国产免费av片在线观看野外av| 日本av免费视频播放| 亚洲中文日韩欧美视频| 国产精品麻豆人妻色哟哟久久| 最近最新免费中文字幕在线| 久久人人爽av亚洲精品天堂| 一个人免费看片子| 久9热在线精品视频| 人妻人人澡人人爽人人| 欧美激情 高清一区二区三区| 精品熟女少妇八av免费久了| 欧美精品亚洲一区二区| 性高湖久久久久久久久免费观看| 国产精品欧美亚洲77777| 国产一级毛片在线| 男女之事视频高清在线观看| 亚洲色图综合在线观看| 亚洲国产毛片av蜜桃av| 亚洲熟女精品中文字幕| a 毛片基地| 99re6热这里在线精品视频| 精品一区二区三区四区五区乱码| 一边摸一边做爽爽视频免费| 欧美日韩亚洲综合一区二区三区_| 国产精品 欧美亚洲| 婷婷成人精品国产| 欧美在线一区亚洲| 丝袜美足系列| 人人妻人人爽人人添夜夜欢视频| 国产成人av教育| 欧美精品啪啪一区二区三区 | 亚洲欧洲日产国产| av线在线观看网站| 国产精品偷伦视频观看了| 99久久综合免费| 青春草视频在线免费观看| 香蕉国产在线看| 欧美日韩国产mv在线观看视频| 一区二区日韩欧美中文字幕| 精品久久久久久电影网| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 亚洲综合色网址| 蜜桃国产av成人99| 亚洲精华国产精华精| av国产精品久久久久影院| av在线老鸭窝| tocl精华| 老熟妇乱子伦视频在线观看 | 中文字幕最新亚洲高清| 少妇精品久久久久久久| 中文字幕人妻熟女乱码| 久久人人爽人人片av| 免费高清在线观看日韩| 午夜免费鲁丝| 欧美黑人精品巨大| 久久久久久亚洲精品国产蜜桃av| 激情视频va一区二区三区| 黄色视频,在线免费观看| 免费久久久久久久精品成人欧美视频| 亚洲少妇的诱惑av| 欧美日韩视频精品一区| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | 日韩视频在线欧美| 国产极品粉嫩免费观看在线| 99热全是精品| 最近中文字幕2019免费版| 亚洲欧洲精品一区二区精品久久久| 18禁观看日本| 久久九九热精品免费| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区二区三区在线观看 | 国产三级黄色录像| 欧美大码av| 新久久久久国产一级毛片| 黄片大片在线免费观看| 一边摸一边抽搐一进一出视频| 在线天堂中文资源库| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 中文字幕人妻丝袜制服| 日日摸夜夜添夜夜添小说| 久久精品熟女亚洲av麻豆精品| 欧美日韩视频精品一区| 一二三四在线观看免费中文在| 日韩视频一区二区在线观看| 脱女人内裤的视频| 亚洲精品一二三| 最新在线观看一区二区三区| 亚洲国产成人一精品久久久| 欧美亚洲 丝袜 人妻 在线| 夜夜骑夜夜射夜夜干| www.999成人在线观看| 日韩中文字幕视频在线看片| av天堂在线播放| 18在线观看网站| 夜夜骑夜夜射夜夜干| 国产欧美日韩精品亚洲av| 欧美黄色淫秽网站| 岛国在线观看网站| 久久天堂一区二区三区四区| 亚洲五月婷婷丁香| 黑人欧美特级aaaaaa片| 亚洲精品一卡2卡三卡4卡5卡 | 在线看a的网站| 国产精品免费大片| 欧美日韩精品网址| 欧美午夜高清在线| 两性夫妻黄色片| 黄色怎么调成土黄色| 久久久久久久大尺度免费视频| 女性生殖器流出的白浆| 日本wwww免费看| 老司机影院成人| 一区二区日韩欧美中文字幕| 免费人妻精品一区二区三区视频| 人人妻人人添人人爽欧美一区卜| 中文字幕制服av| 香蕉丝袜av| 国产精品欧美亚洲77777| 婷婷色av中文字幕| 俄罗斯特黄特色一大片| 欧美少妇被猛烈插入视频| 老汉色∧v一级毛片| 日本a在线网址| 国产av国产精品国产| 久热这里只有精品99| 性少妇av在线| 久久精品国产a三级三级三级| 国产精品偷伦视频观看了| 亚洲一区中文字幕在线| 国产免费福利视频在线观看| 一本大道久久a久久精品| 国产三级黄色录像| 国产av国产精品国产| 国产不卡av网站在线观看| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| a在线观看视频网站| 国产精品熟女久久久久浪| 性高湖久久久久久久久免费观看| 国产av国产精品国产| 亚洲第一青青草原| 正在播放国产对白刺激| 国产精品久久久人人做人人爽| 国产精品一区二区精品视频观看| 岛国毛片在线播放| 亚洲精品久久午夜乱码| 高清视频免费观看一区二区| 国产精品一区二区免费欧美 | av国产精品久久久久影院| 91麻豆精品激情在线观看国产 | 亚洲成av片中文字幕在线观看| 99久久国产精品久久久| 国产精品久久久久成人av| av有码第一页| 我的亚洲天堂| 99re6热这里在线精品视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人不卡在线观看播放网 | 免费黄频网站在线观看国产| 两人在一起打扑克的视频| 亚洲精品国产av蜜桃| 18在线观看网站| 老司机在亚洲福利影院| 国产成人精品无人区| 黑人操中国人逼视频| 久久久水蜜桃国产精品网| 一级毛片电影观看| 国产熟女午夜一区二区三区| 啦啦啦免费观看视频1| 亚洲国产av影院在线观看| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区精品| 国产无遮挡羞羞视频在线观看| 久久免费观看电影| 97人妻天天添夜夜摸| 国产伦人伦偷精品视频| 中文字幕精品免费在线观看视频| 国产伦人伦偷精品视频| 丰满少妇做爰视频| 国产精品av久久久久免费| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 在线观看免费高清a一片| 精品人妻熟女毛片av久久网站| 久久国产精品人妻蜜桃| 久久av网站| 久久午夜综合久久蜜桃| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 国产一卡二卡三卡精品| 中文字幕最新亚洲高清| 午夜福利一区二区在线看| 亚洲avbb在线观看| 欧美97在线视频| 日韩中文字幕视频在线看片| 亚洲欧美色中文字幕在线| 操美女的视频在线观看| 精品亚洲成a人片在线观看| 亚洲国产av影院在线观看| 91字幕亚洲| 操出白浆在线播放| 好男人电影高清在线观看| av福利片在线| 黄色 视频免费看| 大香蕉久久成人网| 国产一级毛片在线| 一进一出抽搐动态| 亚洲第一青青草原| 久久综合国产亚洲精品| 国产精品二区激情视频| 久久久久久久精品精品| 美女高潮到喷水免费观看| 国产99久久九九免费精品| 99国产精品免费福利视频| 9色porny在线观看| 日韩,欧美,国产一区二区三区| 久久久久久久久免费视频了| 久久久水蜜桃国产精品网| 亚洲精品久久午夜乱码| 国产亚洲欧美在线一区二区| 99九九在线精品视频| 成在线人永久免费视频| av不卡在线播放| 精品免费久久久久久久清纯 | 一级毛片女人18水好多| 岛国毛片在线播放| 黑人操中国人逼视频| 国产av精品麻豆| 欧美日韩国产mv在线观看视频| 国产精品自产拍在线观看55亚洲 | 日本av手机在线免费观看| 91精品三级在线观看| av天堂久久9| 国产日韩欧美亚洲二区| 免费高清在线观看视频在线观看| 美女福利国产在线| 精品一品国产午夜福利视频| 亚洲五月婷婷丁香| 搡老熟女国产l中国老女人| 亚洲精品一二三| 一本色道久久久久久精品综合| 动漫黄色视频在线观看| 高清黄色对白视频在线免费看| 日日爽夜夜爽网站| 欧美变态另类bdsm刘玥| 免费不卡黄色视频| 黄网站色视频无遮挡免费观看| 欧美xxⅹ黑人| 亚洲 欧美一区二区三区| av视频免费观看在线观看| 桃花免费在线播放| 动漫黄色视频在线观看| 69av精品久久久久久 | 亚洲一区中文字幕在线| 精品久久久久久久毛片微露脸 | 久久国产精品男人的天堂亚洲| 国产精品秋霞免费鲁丝片| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲欧美精品永久| 91成人精品电影| 别揉我奶头~嗯~啊~动态视频 | 国产成人一区二区三区免费视频网站| 美女福利国产在线| 十八禁高潮呻吟视频| 91av网站免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 五月天丁香电影| 男女无遮挡免费网站观看| 美女脱内裤让男人舔精品视频| 欧美在线一区亚洲| 欧美日韩亚洲国产一区二区在线观看 | 青草久久国产| 黑人猛操日本美女一级片| 老司机在亚洲福利影院| 亚洲第一青青草原| 国产熟女午夜一区二区三区| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 国产福利在线免费观看视频| √禁漫天堂资源中文www| 建设人人有责人人尽责人人享有的| 日韩欧美一区视频在线观看| 视频在线观看一区二区三区| 精品一区在线观看国产| 日韩一区二区三区影片| 欧美黄色片欧美黄色片| 欧美日韩视频精品一区| 在线观看舔阴道视频| 日本91视频免费播放| 大型av网站在线播放| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 久久中文看片网| 精品熟女少妇八av免费久了| 在线观看舔阴道视频| 精品国产一区二区三区四区第35| 成年人黄色毛片网站| 真人做人爱边吃奶动态| 国产亚洲av片在线观看秒播厂| 亚洲精品中文字幕一二三四区 | 国产精品成人在线| 国产免费视频播放在线视频| 免费少妇av软件| 天天操日日干夜夜撸| 制服人妻中文乱码| 18禁观看日本| 成年美女黄网站色视频大全免费| 亚洲欧洲日产国产| 久久久精品区二区三区| 性高湖久久久久久久久免费观看| 十分钟在线观看高清视频www| 一级a爱视频在线免费观看| 一本一本久久a久久精品综合妖精| bbb黄色大片| 欧美国产精品va在线观看不卡| 在线永久观看黄色视频| 最黄视频免费看| 一本久久精品| 久久天堂一区二区三区四区| 午夜老司机福利片| 免费日韩欧美在线观看| 另类亚洲欧美激情| 国产黄频视频在线观看| 99九九在线精品视频| 蜜桃在线观看..| 国产国语露脸激情在线看| 丰满少妇做爰视频| 国产91精品成人一区二区三区 | 久久久久久久久久久久大奶| xxxhd国产人妻xxx| 少妇精品久久久久久久| 汤姆久久久久久久影院中文字幕| 高清欧美精品videossex| 国产不卡av网站在线观看| 成年人黄色毛片网站| 欧美人与性动交α欧美软件| 99re6热这里在线精品视频| 欧美黄色淫秽网站| 国产精品国产三级国产专区5o| av有码第一页| 欧美另类一区| www.自偷自拍.com| 啪啪无遮挡十八禁网站| xxxhd国产人妻xxx| 国产一区有黄有色的免费视频| 亚洲精品久久久久久婷婷小说| 99国产精品99久久久久| 一区福利在线观看| 国产精品秋霞免费鲁丝片| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 老司机午夜福利在线观看视频 | 亚洲精品乱久久久久久| 中文字幕制服av| 精品福利永久在线观看| 精品一区二区三区av网在线观看 | 国产日韩一区二区三区精品不卡| 亚洲精品国产av蜜桃| cao死你这个sao货| 日日爽夜夜爽网站| 精品国产一区二区三区四区第35| 波多野结衣一区麻豆| 老司机深夜福利视频在线观看 | 狂野欧美激情性xxxx| 老汉色∧v一级毛片| 男女之事视频高清在线观看| 日日夜夜操网爽| 十八禁网站免费在线| 成人三级做爰电影| 午夜精品国产一区二区电影| 日本a在线网址| 国产99久久九九免费精品| 美女午夜性视频免费| 99精品久久久久人妻精品| 色老头精品视频在线观看| 啦啦啦 在线观看视频| 久久久国产一区二区| 伊人久久大香线蕉亚洲五| 色精品久久人妻99蜜桃| 大片免费播放器 马上看| 1024香蕉在线观看| 各种免费的搞黄视频| 激情视频va一区二区三区| 免费观看人在逋| 人人妻人人添人人爽欧美一区卜| 美女午夜性视频免费| 操出白浆在线播放| 9热在线视频观看99| 中文字幕另类日韩欧美亚洲嫩草| 真人做人爱边吃奶动态| 久久亚洲国产成人精品v| 十分钟在线观看高清视频www| 麻豆乱淫一区二区| 免费观看av网站的网址| 一级毛片精品| 在线永久观看黄色视频| 在线av久久热| 久久久久久久大尺度免费视频| 久久免费观看电影| 国产成+人综合+亚洲专区| 成年人午夜在线观看视频| 精品少妇黑人巨大在线播放| 精品一区在线观看国产| 国产av一区二区精品久久| 操美女的视频在线观看| 在线观看www视频免费| 久久99一区二区三区| 丰满少妇做爰视频| 久久精品人人爽人人爽视色| 丰满迷人的少妇在线观看| 国产淫语在线视频| 国产一区二区在线观看av| 999久久久精品免费观看国产| 欧美在线一区亚洲| 色播在线永久视频| 一二三四社区在线视频社区8| 法律面前人人平等表现在哪些方面 | 男人舔女人的私密视频| 丝袜人妻中文字幕| 岛国在线观看网站| 日韩视频一区二区在线观看| 久久久久久久精品精品| 国产欧美日韩一区二区三 | 丰满迷人的少妇在线观看| 在线观看一区二区三区激情| 一区二区av电影网| 亚洲国产欧美日韩在线播放| a在线观看视频网站| 岛国在线观看网站| 最近中文字幕2019免费版| 亚洲国产欧美网| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 国产成人系列免费观看| 国产成人av教育| 亚洲国产欧美日韩在线播放| 国产黄色免费在线视频| 国产精品久久久久久精品电影小说| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久| 久久久水蜜桃国产精品网| 中国国产av一级| 另类亚洲欧美激情| 久久国产精品影院| 亚洲黑人精品在线| 不卡av一区二区三区| 老司机影院毛片| 91精品伊人久久大香线蕉| 91精品三级在线观看| 精品第一国产精品| 国产又色又爽无遮挡免| 制服人妻中文乱码| 80岁老熟妇乱子伦牲交| 精品久久蜜臀av无| 午夜福利视频在线观看免费| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 欧美日韩视频精品一区| 建设人人有责人人尽责人人享有的| 母亲3免费完整高清在线观看| 女性被躁到高潮视频| 国产男女超爽视频在线观看| 午夜福利视频精品| 国产欧美亚洲国产| 免费在线观看日本一区| 在线精品无人区一区二区三| 国产精品一区二区在线不卡|