• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial defect engineering and photocatalysis properties of hBN/MX2(M =Mo,W,and X =S,Se)heterostructures

    2022-06-29 08:56:10ZhiHaiSun孫志海JiaXiLiu劉佳溪YingZhang張穎ZiYuanLi李子源LeYuPeng彭樂宇PengRuHuang黃鵬儒YongJinZou鄒勇進(jìn)FenXu徐芬andLiXianSun孫立賢
    Chinese Physics B 2022年6期
    關(guān)鍵詞:志海張穎李子

    Zhi-Hai Sun(孫志海), Jia-Xi Liu(劉佳溪), Ying Zhang(張穎), Zi-Yuan Li(李子源),Le-Yu Peng(彭樂宇), Peng-Ru Huang(黃鵬儒), Yong-Jin Zou(鄒勇進(jìn)),Fen Xu(徐芬), and Li-Xian Sun(孫立賢)

    School of Material Science and Engineering,Guilin University of Electronic Technology,Guangxi Key Laboratory of Information Materials,Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials,Guilin 541004,China

    Keywords: hBN/MX2 heterostructures,interfacial defect,electronic state,photocatalytic properties

    1. Introduction

    Two-dimensional(2D)materials have attracted intensive research interest since the discovery of graphene,in which excellent photoelectric, thermoelectric, mechanical, and chemical properties have been reported, making these materials ideal candidates for new-generation nanoscale devices.[1–6]Most of the 2D materials, including hexagonal boron nitride(hBN),[7]transition metal dichalcogenides(TMDCs),[8]black phosphorus (BP),[9]layered double hydroxides (LDHs),[10]antimonene,[11]and germanene,[12]can be prepared by the methods such as mechanical exfoliation[13]and chemical vapor deposition (CVD).[14]For two decades of investigations,extensive efforts have been devoted to tailoring 2D materials to meet the desired properties for practical applications. One of the most popular strategies is to stack different 2D components together to form heterostructures of different functionalities, and has open up a new paradigm of interface engineering.[15,16]

    When two 2D materials are vertically stacked together,owing to the work function differences and charge transfer,the band alignment at the interface will be modified. For instance, Denget al.[17]reported that the Schottky barrier height (SBH) of graphene/g-GaN heterostructures are effectively turned by controlling the interlayer distance. Sunet al.[18]developed a method of tuning the electrical characteristics of graphene/WSe2heterostructures through changing the interlayer coupling and a perpendicular electric field. In addtion, the physicochemical properties of heterostructures can be changed when defects exist in the interface. Fanget al.[19]demonstrated that interfacial defects give rise to a significant influence on the electronic states of AlN/MoS2heterostructures, in which different types of vacancies and dopants have different effects on the band arrangement and magnetic properties modifications. Zhaoet al.[20]found that the heptazine/triazine based g-C3N4heterostructure with the(F, Ti) co-doped interface can not only improve visible light absorption, but also promote electron–hole pairs separation and inhibit carrier recombination. Xuet al.[21]designed a Ztype photocatalyst (hBN/g-C3N4) through interfacial defectengineereing and revealed the effects of different defects on the interface of hBN/g-C3N4heterostructures. All these studies highlight the important role of interfacial defect engineering in developing of efficient novel nanoscale devices.

    Here in this work, We construct a heterostructure composed ofMX2(M=Mo,W,andX=S,Se)and hBN,and investigate the influences of interfacial defects on the electronic structures and photocatalytic properties of heterostructures in detail by using density functional theory calculations. The results exhibit that interfacial defect engineering can not only change the band aligment of heterostructures but also control the types of photocatalysts,thereby providing a detailed guidance of design the new photocatalysts.

    2. Computational methods

    In this work,all calculations are performed using the Viennaab initiosimulation package(VASP),which is based on density functional theory(DFT)in a plane-wave basis set with the projector augmented wave (PAW) method.[22–24]The exchange correlation functional is approximated by the generalized gradient approximation of Perdew, Burke, and Ernzerhof(GGA-PBE).[25]The DFT-D3 in the Grimme approach is adopted since the GGA for exchange and correlation fails to explain the interaction between the layered structures.[26]In all calculations spin-polarization is taken into account. After the convergence test,the energy cutoff for plane-wave expansion is set to be 500 eV and aK-mesh to be 11×11×1 within the Brillouin zone. The energy convergence value of the Kohn–Sham equation using the self-consistent loop is set to be 1×10-5eV/atom, and the maximum stress is controlled to be within 0.01 eV/°A. To avoid the interaction between adjacent periodic images, a large vacuum spacing of 20 °A is introduced. The electron configurations of the outer nucleus considered in the pseudopotential calculation are Be(2s2), B(2s22p1), C(2s22p2), N(2s22p3), O(2s22p4),Mg(3s2),Si(3s23p2),S(3s23p4),Se(3d104s24p4),Mo(4d55s1),and W(4f145d46s2). The VASPKIT program is used for data post-processing.[27]

    The values of binding energy(Eb)between the hBN andMX2(M=Mo,W,andX=S,Se)monolayers are calculated from[17]

    whereEBN/MX2,EBN,andEMX2are energy of the heterostructure, isolated hBN andMX2monolayers, respectively; andNB/Nis the number of boron(nitrogen)atoms in the supercell.The negative value ofEbdenotes a bound system, the more strongly the hBN andMX2monolayers are bound together,the smaller the value is.

    To obtain a better understanding of interlayer interaction,the difference in charge density Δρbetween hBN andMX2is calculated from

    in whichEVB(VN)-BN/MX2,EDB(DN)-BN/MX2,EBN, andEMX2are the total energy of VB(VN)-hBN/MX2,DB(DN)-hBN/MX2,hBN, andMX2, respectively.μB,μN(yùn), andμDare the chemical potential of B,N,and D atoms,respectively. The negative value ofEfrepresents exothermic reaction in the experimental synthetic process,and lowerEfimplies a more stable state.

    3. Results and discussion

    3.1. Pristine hBN/MX2 heterostructures

    Firstly, we optimize the geometry of monolayer MoS2,MoSe2, WS2, WSe2, hBN, and hBN without defects. All of these 2D materials possess a hexagonal crystal structure(space group:P63/mmc) separately with the calculated lattice constant of 2.512 °A, 3.190 °A, 3.327 °A, 3.191 °A, and 3.327 °A.The calculated geometries are consistent well with the experimental values.[28]Figure 1 shows the supercell of hBN/MS2heterostructure composed of 5×5×1 hBN and 4×4×1MS2(M= Mo or W) and that of hBN/MSe2composed of 4×4×1 hBN and 3×3×1MSe2(M=Mo or W).The lattice mismatches of the two kind of heterostructures are 1.6% and 0.7%,respectively. The detailed geometry and binding energy of the structures can be seen in Fig.S1 in supporting information.

    Fig.1. Schematic illustration of crystal structures of(a)hBN/MoS2,(b)hBN/WS2,(c)hBN/MoSe2,and(d)hBN/WSe2.

    Figure 2 shows the band structures and atomic projected densities of states (PDOSs) of the heterostructures and their components. As can be seen from the band structures, the band gap of monolayer hBN,MoS2,WS2,MoSe2,and WSe2are calculated to be 4.35 eV, 1.61 eV, 1.80 eV, 1.42 eV, and 1.53 eV, respectively. As is well known, the PBE functional underestimates the band gap of hBN monolayer andMX2monolayer(Table 1). However, here in this work, we mainly focus on the trend of variation. Generally, the band gap and electronic states of the hBN/MX2heterostructure are significantly influenced by the interlayer contact. The electrons fromM(M=Mo or W)atoms contribute to the valence band maximum (VBM) and the conduction band minimum (CBM) in the PDOS(Figs.2(a)–2(d)),indicating that the band alignment of the heterostructure is of type-I. When they are stacked together,the band gap of the composed structures will be modified.For example,the band gap of the hBN/MoS2heterostructure is about 1.73 eV, slightly larger than that of the smaller band gap (herein MoS2) of component. However, the trend for the hBN/MoSe2is opposite, in which the 1.38 eV band gap value is 1.38 eV,smaller than minimum band gap of components(herein MoSe2).

    It can be concluded that the electronic properties of the hBN/MX2(M=Mo, W, andX=S, Se) heterostructures are not simply a superposition of the two different materials even though the hBN andMX2layers are combined by van der Waals forces.

    System Method Eg (eV) Reference hBN PBE+D3 4.35 this work PBE 4.37 Ref.[29]GW 5.54 Ref.[30]HSE 5.56 Ref.[29]EXP 5.92,5.57 Refs.[31,32]MoS2 PBE+D3 1.61 this work PBE 1.59,1.67,1.8 Refs.[33–35]GW 2.66 Ref.[34]HSE 2.02,2.25 Refs.[33,34]EXP 2.06 Ref.[36]WS2 PBE+D3 1.80 this work PBE 1.55,1.81 Refs.[33,34]GW 2.91 Ref.[34]HSE 1.98,2.32 Refs.[33,34]EXP 1.97 Ref.[37]MoSe2 PBE+D3 1.42 this work PBE 1.33,1.44 Refs.[33,34]GW 2.31 Ref.[34]HSE 1.72,1.99 Refs.[33,34]EXP 1.55 Ref.[38]WSe2 PBE+D3 1.53 this work,Ref.[18]PBE 1.25,1.55 Refs.[33,34]GW 2.51 Ref.[34]HSE 1.63,2.10 Refs.[33,34]EXP 1.65 Ref.[39]hBN/MoS2 PBE+D3 1.73 this work EXP 1.74 Ref.[40]hBN/WS2 PBE+D3 1.90 this work EXP 2.14 Ref.[41]hBN/MoSe2 PBE+D3 1.38 this work PBE+optB86b 1.49 Ref.[42]hBN/WSe2 PBE+D3 1.47 this work GW 2.30 Ref.[43]

    3.2. Heterostructures with vacancies in hBN

    Vacancy defects usually exist in the experimental process of single-layer hBN prepared by electron beam irradiation and thermal annealing.[44,45]And vacancy defects have great effects on the excitation, migration, and recombination of photo-generated electron–hole pairs in semiconductor materials.Therefore,it is necessary to study the interface vacancy defects of heterostructures in detail. Here,the influences of B vacancy(VB)and N vacancy(VN),in hBN layer on the electronic structures of hBN/MX2(M=Mo, W, andX=S, Se)are investigated. Figure 3 shows the position of VBand VN,blue and red represent the removed nitrogen atoms and boron atoms,respectively.

    Figure 4 shows the calculated energy band structures and atomic PDOSs of the heterostructures. The Fermi level of VB/MX2remains unchanged, while the Fermi level of VN/MX2shifts up to the conduction band. In addition, the energy band arrangement of VB/MX2is of type-II,while that of VN/MX2remains in type-I.Particularly,the degenerate energy level induced by boron vacancy is split in VB/MX2heterostructures. However, the system with vacancy defect still maintains semiconductor properties though their Fermi level crosses the energy band. It can be concluded that the interface vacancy defects can introduce the defect energy level into the band structure and change the energy band arrangement.

    3.3. Heterostructures with substitutions in hBN

    Doping is routinely employed to tune the electronic properties of semiconductors in many experiments.[46,47]The atoms of group(II,IV,VI)A are chosen as substitutional dopants to replace the B or N atoms of interface in hBN/MX2. These systems are described asD-hBN/MX2(D=BeB,MgB,CB,SiB,CN,SiN,ON,and SN). The top views of doped geometrical configurations are depicted in Fig.3. To achieve n-type doping,more than one electron will be inserted into the heterostructure for each of CB,ON,SiB,and SNdoping. On the other hand,CN,BeB,MgB,and SiNare examined for the effects of p-type doping in hBN/MX2,which a p-type doping hole is introduced into. Figure 5 shows the calculated energy band structures and atomic projected PDOSs of the atom-doped heterostructures. It can be seen that the energy band arrangement of CB/MX2is of type-I, while that of CN/MX2remains in type-II. The Fermi level of CB/MX2shifts up to the conduction band, while the Fermi level of CN/MX2keep unchanged. The carbon doped systems are greatly similar to the systems with vacancy defects. From this,it can be inferred that VN/VBhas n/p-type semiconductor properties. Figures S2 and S3(in supporting information)show other types of atomic substitution systems in detail.

    Figure 6(a) shows the variation of formation energy(Ef) for vacancy VB(VN)-hBN/MX2and for doping DB(VN)-hBN/MX2.In the experimental synthesis process,a positiveEfvalue means an endothermic reaction and a negativeEfvalue indicates an exothermic reaction. The lower theEfvalue,the more easily the reaction occurs. We find that among the four heterostructures based on MoS2,MoSe2,WS2,and WSe2,the hBN layer interface defect engineering is more likely to be realized on MoS2and WS2substrates. In addition, we can see that only ON/MX2reaction is exothermic, while other defect types of reactions are endothermic. This can be related to the differences in atomic radius and electronegativity between impurity atoms and B(N)atoms.

    For different types of substituted atoms,electronic properties of the heterostructures will change differently. Simultaneously, the work function of the host material will be modified as impurity atoms are introduced, thereby affecting the ability to bind electrons. The work function can be defined as the difference between the vacuum and the Fermi level, and calculated from[48]

    in whichEvacandEFare the vacuum level and Fermi level,respectively. Electrons will flow from the material with the low work function through the interface to the material with the high work function, making the two different materials positively and negatively charged,respectively,resulting in an internal electric field created at the interface.

    Figure 6(b) shows the work functions ofD-hBN, with light blue,light magenta and light yellow regions representing the vacancy defects, n-type doping defects and p-type doping defects, respectively. Compared with intrinsic hBN, the work functions ofD-hBN (D=VN, CB, SiB, ON, SN, SiN,MgB, and CN) are reduced whileD-hBN (D=VBand BeB)become larger. Since the work functions ofD-hBN(D=VN,CB, SiB, ON, SN, and SiN) are lower than that of the idealMX2, the electrons will easily flow from theD-hBN toMX2through the interface. This contributes to speeding up the separation of photo-generated electron–hole combination due to a built-in field that points fromD-hBN (D= VN, CB, SiB,ON,SN,and SiN)to anMX2. Moreover,the direction of electric field points fromD-hBN(D=MgBor CN)toMX2in the heterostructures of MgB-hBN/MoS2,CN-hBN/MoS2,and CNhBN/WS2while the opposite orientation of electric field exists in the heterostructures of MgB-hBN/WS2,MgB-hBN/MoSe2,MgB-hBN/WSe2, CN-hBN/MoSe2, and CN-hBN/WSe2. We can preliminarily indicate that theMX2monolayer in the heterostructureD-hBN/MX2(D= VN, CB, SiB, ON, SN, and SiN) are acceptors of electrons and theD-hBN (D= VN,CB, SiB, ON, SN, and SiN) are donors of electrons. Conversely, theD-hBN (D=VBor BeB) andMX2act as acceptor and donor of electrons in the heterostructures (VB/MX2,BeB/MX2),respectively. Figure 6(c)shows the work function ofD-hBN/MX2. With respect to the ideal hBN/MX2, theDhBN/MX2reduces the work function to some extent,which is conducive to the electrons escaping from the hBN monolayer through the interface.

    In order to understand the variations of the interface charge transfer and distribution with defect type and substrate materials in heterostructures,we plot the plane-averaged electron density differences along thezdirection of the hBN/MX2heterostructures as shown in Fig.7. Interestingly,we can find that in comparision with the ideal hBN/MX2, the transferred charge quantity of n-type dopedD-hBN/MX2(D=CB, ON,SiB,and SN)are significantly increased by 4 to 12 times. Especially in ON/MoSe2, the transfered charge quantity is the highest (1.5×10-2e), which is much higher than intrinsic hBN/MX2(1.4×10-3e),indicating that the interface interaction in ON/MoSe2is the strongest. In general, the larger the transferred charge quantity, the more conducive to the separation of photo-generated electron–hole pairs it is. It can be seen from Figs. 7(c) and 7(d) that the interface electrons ofD-hBN/MSe2(D=VBor BeB) are depleted on the upper of MoSe2or WSe2layer,while accumulate in hBN at the lower surface,thereby generating an electric field directing from theD-hBN (D=VBor BeB) to MSe2. Accordingly, the significant interfacial interaction makes the defect degeneracy level split in VB/MSe2electronic band structure. Furthermore, the induced shift in the electrostatic potential caused by the interface creation is depicted in Fig.S4,convincingly demonstrating the charge transfer direction.

    As is well known,in order to improve the photocatalytic activity, not only photo-generated electron–hole pairs are required to efficiently be generated, separated and transmitted,but also the occurrence of reverse reaction must be inhibited.These are closely related to the band gap value and band arrangement of heterogeneous composite photocatalysts. The band arrangement relative to the vacuum level can be achieved by calculating the band edge potentials of conduction band(CB)and valence band(VB)from the following formulae:[48]

    The higher the CBM of photocatalyst(the more negative),the stronger the photoreduction capability is, while the lower the VBM(the more positive),the stronger the photooxidation capability is. As shown in Fig.8,the potential at the CB edge position ofD-hBN/MoS2(D=CB,ON,SN,and BeB)andDhBN/MoSe2(D=VN, CB, SiB, ON, SN, and BeB) are more negative than ideal reduction potential(0 V),while the potential at the VB edge position is more positive than ideal oxidation potential (1.23 V). This indicates thatD-hBN/MoS2(D=CB,ON,SN,and BeB)andD-hBN/MoSe2(D=VN,CB,SiB,ON,SN,and BeB)heterostructures can complete the redox reactions due to their suitable band edge potential.

    Optical absorptivity,redox capability related to the position of conduction valence band, and effective separation of photo-generated carriers are the main reasons for the restriction on photocatalytic efficiency of traditional single semiconductor materials. But in the Z-type photocatalytic reaction system a two-photon excitation process is used to complete the oxidation reaction(2H2O+4h+→O2+4H+) and the reduction reaction(2H++2e-→H2)on different photocatalysts, respectively.[49–51]It can effectively inhibit the inverse reaction, showing significant advantages. We investigate the electronic properties of the BeB/MoS2, BeB/MoSe2,and VN/MoSe2vdW heterostructure,the results are shown in Figs. 9(a)–9(c), respectively. Although the energy band of defect-engineered hBN crosses the Fermi level, BeB/MoS2,BeB/MoSe2, and VN/MoSe2still maintain their semiconductor properties. Theoretically, there are three N atoms around each B atom in the hBN monolayer. When a single B atom is replaced by a Be atom,one N 2sp2and one N 2pzdangling bond will be left,resulting in an additional hole and making it a p-type semiconductor. In addition,removing one N atom to form VNwill induce three-B 2sp2and three-B 2pzelectronic dangling bond in the plane and make it an n-type semiconductor.

    The highest occupied molecular orbital(LUMO)and the lowest unoccupied molecular orbital (HOMO) are marked with red numbers 1 and 2 in band structures as shown in Figs. 9(a)–9(c). In terms of real space, the HOMO of BeB/MoX2(X=S or Se)primarily derives from the hBN layer,with Pzorbital of N atom formingπbond, while LUMO is contributed by MoX2(X=S or Se)layer, forming aσbond.However, the situation of VN/MoSe2is opposite. These can be further demonstrated through the corresponding PDOS of BeB/MoS2,BeB/MoSe2,and VN/MoSe2,respectively. On the one hand,the appropriate band gap is 1.61 eV for BeB/MoS2,1.35 eV for BeB/MoSe2, and 1.33 eV for VN/MoSe2. On the other hand, the separation between the reduction process and oxidation process can effectively separate and transport photogenerated electron–hole pairs. Therefore,we can confirm that the BeB/MoS2, BeB/MoSe2, and VN/MoSe2heterostructure form a Z-type photocatalytic reaction system.

    Figure 9(d) shows two Z-type photocatalytic reactions processes with opposite photo-generated carriers transferring directions. In BeB/MoS2or BeB/MoSe2,the photo-generated electrons of CB in MoX2(X= S or Se) with reduction reaction are prone to combining the photo-excited holes of VB in hBN(VN) with oxidation reaction. However, the direction of carriers transferring in VN/MoSe2is opposite to that in BeB/MoSe2. Compared with the traditional type-II heterostructure, the Z-type photocatalyst only needs to meet the requirement for its respective photoexcitation process and corresponding semi reactions, providing a tremendous space for the selection and design of photocatalytic materials. Generally, the optical absorption properties of photocatalytic semiconductor material are the macroscopic representation of its energy band structure. The calculated optical absorption coefficient of isolated monolayer, intrinsic and defect-engineered hBN/MX2bilayers are shown in Fig. 9(e). We can see that the defect-engineered hBN/MX2bilayers will effectively improve the absorption coefficient of visible light and make the red shift obviously appear at the absorption boundary.In short,our results indicate that the defect-engineered interfacial heterostructures can remarkly improve the photocatalytic properties of hBN/MX2(M=Mo,W,andX=S,Se)by tuning band arrangement,enhancing the interface charge transfer and light response, specifically the creation of Z-type heterostructures with high redox capability.

    4. Conclusions

    In this paper,the effects of interfacial defects on the electronic structure, charge transfer across the interface and photocatalytic properties of hBN/MX2(M=Mo, W, andX=S,Se) have been systematically investigated by the first principles calculation. After introducing vacancy and element doping, the n-type doped hBN/MX2(M= Mo, W, andX= S,Se) heterostructures maintain the I-type band arrangement,while the p-type doping changes the band arrangement from I-type to II-type. Comparing with the ideal hBN/MX2(M=Mo, W, andX= S, Se), the transferred charge quantity of n-type dopedD-hBN/MX2(D=CB, ON, SiB, and SN) are significantly increased by 4 to 12 times, in which the interface interaction of ON-hBN/MoSe2is the strongest. Two Ztype photocatalytic reaction processes with opposite photogenerated carriers transferring directions are achieved by defect engineering. With the help of two-photon excitation process, the reduction process and oxidation process are separated from each other. It includes efficiently separating and transmitting photo-generated electron–hole pairs, enhancing interfacial charge transfer and light response, and improving the stability of photocatalytic system. These theoretical results are expected to provide useful guidance for designing the novel high-efficiency photocatalyst based on hBN/TMDCs heterostructure.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3802400),the National Natural Science Foundation of China (Grant Nos. 52161037, U20A20237, 51871065, and 51971068),the Scientific Research and Technology Development Program of Guangxi Zhuang Autonmous Region Province,China(Grant Nos. AD19110037, AA19182014, AD17195073, and AA17202030-1), the Guangxi Natural Science Foundation, China (Grant Nos. 2017JJB150085 and 2019GXNSFGA245005), the Innovation Project of GUET Graduate Education, China (Grant No. 2022YCXS197), the Guangxi Bagui Scholar Foundation, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands, Chinesisch-Deutsche Kooperationsgruppe, China (Grant No. GZ1528),and the Guangxi Key Laboratory of Information Material,China(Grant No.201025-Z).

    猜你喜歡
    志海張穎李子
    Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
    張穎
    大江南北(2023年2期)2023-02-11 05:45:56
    張穎
    大江南北(2022年11期)2022-11-08 12:04:18
    “特戰(zhàn)隊”工作法:當(dāng)好疫情救治急先鋒
    張穎
    大江南北(2022年3期)2022-03-12 01:19:16
    一次難忘的生日
    秋天
    李子有多少
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    分手了,我們還能做朋友嗎
    幸福家庭(2017年1期)2017-04-11 17:31:01
    国产熟女欧美一区二区| 国产一区有黄有色的免费视频 | 一边亲一边摸免费视频| 3wmmmm亚洲av在线观看| 欧美日韩精品成人综合77777| 中文欧美无线码| 午夜日本视频在线| 精品久久久久久电影网| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区高清视频在线| 天堂av国产一区二区熟女人妻| 天堂影院成人在线观看| 亚洲欧美成人综合另类久久久| 在线观看免费高清a一片| 久久久精品欧美日韩精品| 成人特级av手机在线观看| eeuss影院久久| 亚洲av.av天堂| 久久精品人妻少妇| 成年女人看的毛片在线观看| 午夜福利在线观看免费完整高清在| 国产在视频线在精品| 精品一区二区三区视频在线| 少妇的逼好多水| 精品99又大又爽又粗少妇毛片| 欧美精品国产亚洲| 国产精品三级大全| 日日干狠狠操夜夜爽| 国产亚洲av嫩草精品影院| 国产单亲对白刺激| 免费观看精品视频网站| 欧美变态另类bdsm刘玥| 久久久a久久爽久久v久久| 秋霞伦理黄片| 亚洲精品一二三| 少妇熟女欧美另类| 午夜福利视频1000在线观看| 国产高清有码在线观看视频| 国产成年人精品一区二区| 热99在线观看视频| 少妇裸体淫交视频免费看高清| 美女xxoo啪啪120秒动态图| freevideosex欧美| 久久人人爽人人爽人人片va| 大香蕉97超碰在线| 老女人水多毛片| 欧美区成人在线视频| 久久国产乱子免费精品| 日韩av不卡免费在线播放| 亚洲精华国产精华液的使用体验| 午夜福利视频1000在线观看| 日日摸夜夜添夜夜添av毛片| 麻豆成人av视频| .国产精品久久| .国产精品久久| 男人狂女人下面高潮的视频| 亚洲精品成人av观看孕妇| 亚洲不卡免费看| 成人美女网站在线观看视频| 日日啪夜夜爽| 麻豆成人午夜福利视频| 亚洲欧美清纯卡通| 一区二区三区四区激情视频| 最近最新中文字幕免费大全7| 少妇人妻精品综合一区二区| 国产不卡一卡二| 最近中文字幕2019免费版| 免费大片黄手机在线观看| 精品久久久久久久久久久久久| 九九在线视频观看精品| 欧美最新免费一区二区三区| 免费无遮挡裸体视频| 日本免费在线观看一区| 亚洲精品亚洲一区二区| 日韩欧美精品v在线| av国产免费在线观看| 久久久久久伊人网av| 亚洲av成人av| 亚洲av成人av| 日韩中字成人| 久久热精品热| 精品国产三级普通话版| 国产成人福利小说| 国产精品久久久久久av不卡| 久久人人爽人人片av| 亚洲一区高清亚洲精品| 别揉我奶头 嗯啊视频| 午夜福利成人在线免费观看| 国产综合懂色| 丝瓜视频免费看黄片| 我的女老师完整版在线观看| 久久鲁丝午夜福利片| 欧美区成人在线视频| 天堂中文最新版在线下载 | 天堂俺去俺来也www色官网 | 午夜福利网站1000一区二区三区| 日韩中字成人| 视频中文字幕在线观看| 国产精品久久久久久精品电影小说 | 国产精品久久久久久精品电影小说 | 麻豆av噜噜一区二区三区| 亚洲欧美日韩卡通动漫| 一个人看的www免费观看视频| 色综合色国产| 人妻制服诱惑在线中文字幕| 内射极品少妇av片p| 久久久久免费精品人妻一区二区| 人人妻人人看人人澡| 蜜桃久久精品国产亚洲av| 精品午夜福利在线看| 一级毛片 在线播放| 国产成年人精品一区二区| av在线天堂中文字幕| 欧美成人一区二区免费高清观看| 久久久久网色| 亚洲av电影不卡..在线观看| 全区人妻精品视频| 激情 狠狠 欧美| a级毛色黄片| 国产成人freesex在线| 日韩欧美 国产精品| 国产精品国产三级专区第一集| 精品国产露脸久久av麻豆 | 国产黄色免费在线视频| 男人舔奶头视频| 少妇丰满av| 国产精品一区二区三区四区久久| 91久久精品国产一区二区成人| 久久精品国产自在天天线| 免费高清在线观看视频在线观看| www.色视频.com| 女人十人毛片免费观看3o分钟| 亚洲精品第二区| 精品久久久久久久久久久久久| 又爽又黄a免费视频| 欧美一级a爱片免费观看看| 中文资源天堂在线| 国内精品美女久久久久久| 国内揄拍国产精品人妻在线| 国产亚洲午夜精品一区二区久久 | xxx大片免费视频| 欧美精品国产亚洲| 久久99热这里只频精品6学生| 久久久国产一区二区| 在线播放无遮挡| 性插视频无遮挡在线免费观看| 爱豆传媒免费全集在线观看| 有码 亚洲区| 丰满乱子伦码专区| 美女xxoo啪啪120秒动态图| 亚洲av免费高清在线观看| 亚洲精品成人av观看孕妇| 亚洲精品成人av观看孕妇| 国产精品久久久久久久电影| 免费观看在线日韩| 午夜日本视频在线| 99久久九九国产精品国产免费| 国产精品1区2区在线观看.| 亚洲欧美精品自产自拍| 自拍偷自拍亚洲精品老妇| 又大又黄又爽视频免费| 国产中年淑女户外野战色| 国产综合精华液| 能在线免费看毛片的网站| 18禁在线无遮挡免费观看视频| 老司机影院成人| 久久久久网色| 干丝袜人妻中文字幕| 国产精品一区www在线观看| 99热这里只有是精品在线观看| 国产日韩欧美在线精品| 内射极品少妇av片p| 婷婷六月久久综合丁香| 久久精品国产亚洲网站| 肉色欧美久久久久久久蜜桃 | 激情五月婷婷亚洲| 丝瓜视频免费看黄片| 国产免费福利视频在线观看| 国产成人精品婷婷| 亚洲精品乱久久久久久| 精品一区在线观看国产| 激情五月婷婷亚洲| 午夜福利在线观看免费完整高清在| 国产久久久一区二区三区| 国产成人精品一,二区| 国产色爽女视频免费观看| 精品少妇黑人巨大在线播放| 日韩av不卡免费在线播放| av免费观看日本| 有码 亚洲区| 久久久国产一区二区| 中文精品一卡2卡3卡4更新| 免费观看无遮挡的男女| 欧美成人精品欧美一级黄| 免费av不卡在线播放| 色哟哟·www| 免费看av在线观看网站| 一区二区三区高清视频在线| 亚洲高清免费不卡视频| 80岁老熟妇乱子伦牲交| 免费电影在线观看免费观看| 97精品久久久久久久久久精品| 国产探花极品一区二区| 国产国拍精品亚洲av在线观看| 99热这里只有是精品在线观看| 一个人看的www免费观看视频| 亚洲内射少妇av| 成人鲁丝片一二三区免费| 人体艺术视频欧美日本| av在线天堂中文字幕| 日韩欧美国产在线观看| 国产精品无大码| 能在线免费看毛片的网站| 赤兔流量卡办理| 久久精品国产自在天天线| 亚洲国产精品成人综合色| 简卡轻食公司| 久久精品国产亚洲av天美| 又爽又黄a免费视频| or卡值多少钱| 日日撸夜夜添| 18禁在线播放成人免费| 在线免费十八禁| 国产91av在线免费观看| 肉色欧美久久久久久久蜜桃 | 久久久久久久久大av| 国语对白做爰xxxⅹ性视频网站| 韩国av在线不卡| 亚洲人成网站高清观看| 人妻制服诱惑在线中文字幕| 两个人的视频大全免费| 欧美不卡视频在线免费观看| 久久精品国产亚洲av涩爱| 看非洲黑人一级黄片| 欧美成人一区二区免费高清观看| 国产亚洲av片在线观看秒播厂 | 国产精品国产三级专区第一集| 深爱激情五月婷婷| 最近2019中文字幕mv第一页| 啦啦啦韩国在线观看视频| 亚洲欧美一区二区三区黑人 | 日本wwww免费看| av在线播放精品| 欧美成人一区二区免费高清观看| 久久人人爽人人片av| 99久国产av精品| 国产色婷婷99| av网站免费在线观看视频 | 一本一本综合久久| 老师上课跳d突然被开到最大视频| 夫妻性生交免费视频一级片| 欧美日韩在线观看h| 国产黄片视频在线免费观看| 亚洲人成网站在线播| 久久久久久久久久成人| 人人妻人人澡欧美一区二区| 欧美一区二区亚洲| 国产精品美女特级片免费视频播放器| 亚洲欧美成人精品一区二区| 国产av在哪里看| 丰满人妻一区二区三区视频av| 一个人免费在线观看电影| 国产成人aa在线观看| 看黄色毛片网站| 免费大片黄手机在线观看| 人体艺术视频欧美日本| 边亲边吃奶的免费视频| 亚洲怡红院男人天堂| 欧美成人一区二区免费高清观看| 免费黄网站久久成人精品| 伦理电影大哥的女人| 婷婷色麻豆天堂久久| 少妇裸体淫交视频免费看高清| 特大巨黑吊av在线直播| 欧美日本视频| 日本与韩国留学比较| 夫妻午夜视频| 免费看日本二区| 久久亚洲国产成人精品v| 永久网站在线| 床上黄色一级片| 亚洲精品第二区| 国产精品人妻久久久久久| av网站免费在线观看视频 | 午夜激情欧美在线| 一级毛片aaaaaa免费看小| 自拍偷自拍亚洲精品老妇| 在线观看美女被高潮喷水网站| 中文字幕制服av| 国产高清不卡午夜福利| 国产男人的电影天堂91| 成年免费大片在线观看| 国内精品一区二区在线观看| 亚洲av.av天堂| 成人av在线播放网站| 亚洲在线自拍视频| 久久热精品热| 超碰av人人做人人爽久久| 一级av片app| 久久精品国产亚洲av涩爱| 亚洲av成人精品一二三区| av国产久精品久网站免费入址| 十八禁国产超污无遮挡网站| 亚洲精品aⅴ在线观看| 国产视频首页在线观看| 亚洲av电影不卡..在线观看| 欧美日韩一区二区视频在线观看视频在线 | 午夜免费观看性视频| 国产精品国产三级专区第一集| 国精品久久久久久国模美| 又黄又爽又刺激的免费视频.| 成人毛片60女人毛片免费| or卡值多少钱| 亚洲美女搞黄在线观看| 一级毛片黄色毛片免费观看视频| 日本猛色少妇xxxxx猛交久久| 韩国高清视频一区二区三区| 成人亚洲精品一区在线观看 | 又爽又黄a免费视频| 国产永久视频网站| 国产精品三级大全| 欧美 日韩 精品 国产| 三级男女做爰猛烈吃奶摸视频| 精品午夜福利在线看| 久99久视频精品免费| 亚洲丝袜综合中文字幕| 精品人妻视频免费看| 久久午夜福利片| 美女被艹到高潮喷水动态| 欧美xxⅹ黑人| 日本免费a在线| 老女人水多毛片| 国产精品一区二区性色av| 欧美性感艳星| 高清毛片免费看| 婷婷色麻豆天堂久久| 欧美成人a在线观看| 大又大粗又爽又黄少妇毛片口| 久久久亚洲精品成人影院| 欧美一区二区亚洲| 久久久a久久爽久久v久久| 蜜臀久久99精品久久宅男| 国产黄片视频在线免费观看| 99热这里只有是精品50| 国产一区二区三区av在线| 免费大片18禁| 直男gayav资源| 寂寞人妻少妇视频99o| av又黄又爽大尺度在线免费看| 国产69精品久久久久777片| 三级男女做爰猛烈吃奶摸视频| 成人特级av手机在线观看| 欧美3d第一页| 一区二区三区高清视频在线| 男女视频在线观看网站免费| 啦啦啦韩国在线观看视频| 精品久久久久久久久亚洲| 精品欧美国产一区二区三| 久久久精品免费免费高清| 男女啪啪激烈高潮av片| 欧美激情在线99| 久久这里有精品视频免费| 少妇丰满av| 国产麻豆成人av免费视频| 三级经典国产精品| 久久久久久国产a免费观看| 一级毛片我不卡| 99久久精品一区二区三区| 免费看a级黄色片| 女人十人毛片免费观看3o分钟| 亚洲在线观看片| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 国产成人午夜福利电影在线观看| 婷婷六月久久综合丁香| 三级国产精品片| 国产有黄有色有爽视频| 日本av手机在线免费观看| 国产亚洲av片在线观看秒播厂 | 国产高清国产精品国产三级 | 国产精品一区二区三区四区免费观看| 国产精品福利在线免费观看| 麻豆国产97在线/欧美| 精品人妻熟女av久视频| 国产综合懂色| 成人亚洲精品一区在线观看 | 久久久久久久久久黄片| 欧美激情在线99| 18禁动态无遮挡网站| 国产精品不卡视频一区二区| freevideosex欧美| 舔av片在线| a级毛色黄片| 80岁老熟妇乱子伦牲交| 国内精品美女久久久久久| 黑人高潮一二区| 丰满少妇做爰视频| 极品教师在线视频| 免费观看av网站的网址| 国产黄片视频在线免费观看| 成年女人在线观看亚洲视频 | 黄片wwwwww| 国产人妻一区二区三区在| 亚洲经典国产精华液单| 国产精品久久久久久精品电影| 久久精品国产亚洲网站| 1000部很黄的大片| 能在线免费看毛片的网站| 免费看光身美女| 色哟哟·www| 日韩欧美国产在线观看| av免费观看日本| 少妇人妻精品综合一区二区| 精品酒店卫生间| 色综合站精品国产| 别揉我奶头 嗯啊视频| 黄片无遮挡物在线观看| 日本欧美国产在线视频| 免费看光身美女| 搡老乐熟女国产| 亚洲久久久久久中文字幕| 免费看a级黄色片| 成年人午夜在线观看视频 | 欧美精品一区二区大全| 久久精品久久精品一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲国产精品专区欧美| 一级av片app| 22中文网久久字幕| 91精品伊人久久大香线蕉| 国产伦在线观看视频一区| 国产亚洲午夜精品一区二区久久 | 亚洲人成网站在线观看播放| 美女国产视频在线观看| a级毛色黄片| 成人毛片60女人毛片免费| 2021少妇久久久久久久久久久| 岛国毛片在线播放| 搡老乐熟女国产| 成年女人在线观看亚洲视频 | 国国产精品蜜臀av免费| 欧美97在线视频| 婷婷六月久久综合丁香| 久久人人爽人人片av| 免费观看在线日韩| 亚洲精品影视一区二区三区av| 少妇熟女aⅴ在线视频| 综合色av麻豆| 男女那种视频在线观看| 亚洲欧洲国产日韩| 蜜桃亚洲精品一区二区三区| 舔av片在线| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美在线精品| 高清日韩中文字幕在线| 简卡轻食公司| 网址你懂的国产日韩在线| 国产精品爽爽va在线观看网站| 免费人成在线观看视频色| 亚洲av免费在线观看| 亚洲精品乱码久久久v下载方式| 街头女战士在线观看网站| 韩国av在线不卡| 成人毛片60女人毛片免费| 国产亚洲av嫩草精品影院| 老司机影院毛片| 亚洲婷婷狠狠爱综合网| 国产毛片a区久久久久| 日韩成人av中文字幕在线观看| 亚洲无线观看免费| 久久精品综合一区二区三区| 午夜精品一区二区三区免费看| 亚洲美女视频黄频| 亚洲精品国产av蜜桃| 免费看a级黄色片| 一级黄片播放器| 日本免费在线观看一区| 最后的刺客免费高清国语| 在线a可以看的网站| 成人漫画全彩无遮挡| 国产又色又爽无遮挡免| 一级片'在线观看视频| 十八禁国产超污无遮挡网站| 五月玫瑰六月丁香| 亚洲在线观看片| 国产亚洲91精品色在线| 国产色婷婷99| 久久久国产一区二区| 午夜精品一区二区三区免费看| 爱豆传媒免费全集在线观看| 老女人水多毛片| 丰满人妻一区二区三区视频av| 老女人水多毛片| 美女国产视频在线观看| 免费在线观看成人毛片| 国产成人freesex在线| 午夜福利网站1000一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 如何舔出高潮| 亚洲欧美精品自产自拍| 最近手机中文字幕大全| 欧美日韩综合久久久久久| 欧美日韩国产mv在线观看视频 | 激情五月婷婷亚洲| 日韩 亚洲 欧美在线| 亚洲第一区二区三区不卡| 午夜福利视频1000在线观看| kizo精华| 久久精品综合一区二区三区| 日韩视频在线欧美| 国产成年人精品一区二区| 国产 一区 欧美 日韩| av免费在线看不卡| 亚洲av在线观看美女高潮| 国产午夜精品久久久久久一区二区三区| 三级毛片av免费| 只有这里有精品99| 女的被弄到高潮叫床怎么办| 精品国产三级普通话版| av黄色大香蕉| 日韩三级伦理在线观看| 国产精品麻豆人妻色哟哟久久 | 国产成人a区在线观看| xxx大片免费视频| 日韩一区二区视频免费看| 国产亚洲午夜精品一区二区久久 | 亚洲欧美日韩东京热| 亚洲aⅴ乱码一区二区在线播放| 国产毛片a区久久久久| 少妇猛男粗大的猛烈进出视频 | 人妻夜夜爽99麻豆av| 啦啦啦中文免费视频观看日本| 久久久久久久久久久丰满| 国产精品人妻久久久影院| 中文在线观看免费www的网站| 亚洲精品乱久久久久久| 国产色婷婷99| 激情五月婷婷亚洲| a级一级毛片免费在线观看| 深爱激情五月婷婷| 天天一区二区日本电影三级| 一区二区三区四区激情视频| 久久这里有精品视频免费| 亚洲精品国产成人久久av| 亚洲精品一二三| 一级二级三级毛片免费看| 日韩成人伦理影院| 青春草亚洲视频在线观看| 国产亚洲精品av在线| 中国国产av一级| 亚洲精品乱码久久久v下载方式| 尤物成人国产欧美一区二区三区| 亚洲国产精品sss在线观看| 亚洲精品中文字幕在线视频 | 成人综合一区亚洲| 天堂中文最新版在线下载 | 亚洲综合色惰| 国产一区有黄有色的免费视频 | 干丝袜人妻中文字幕| eeuss影院久久| 又爽又黄a免费视频| 又粗又硬又长又爽又黄的视频| 欧美97在线视频| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 最近中文字幕高清免费大全6| .国产精品久久| 99久久精品国产国产毛片| 麻豆久久精品国产亚洲av| 在线 av 中文字幕| 午夜日本视频在线| 午夜福利成人在线免费观看| 色吧在线观看| 日韩一区二区视频免费看| 深爱激情五月婷婷| 亚洲av二区三区四区| 一区二区三区乱码不卡18| 大话2 男鬼变身卡| 麻豆精品久久久久久蜜桃| 亚洲精品成人久久久久久| 99热这里只有精品一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品日本国产第一区| 精品人妻偷拍中文字幕| 麻豆av噜噜一区二区三区| 亚洲欧洲国产日韩| 丝袜喷水一区| 国产视频首页在线观看| kizo精华| 久久韩国三级中文字幕| 欧美三级亚洲精品| 欧美zozozo另类| 岛国毛片在线播放| 乱人视频在线观看| 黄色日韩在线| 最近手机中文字幕大全| 亚洲欧美精品自产自拍| 午夜激情福利司机影院| 自拍偷自拍亚洲精品老妇| 建设人人有责人人尽责人人享有的 | 国产综合懂色| 亚洲自偷自拍三级| 夜夜爽夜夜爽视频| 国产高清国产精品国产三级 | 91在线精品国自产拍蜜月| 黄色配什么色好看| 丰满少妇做爰视频| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 深夜a级毛片| 直男gayav资源| 亚洲国产欧美在线一区| 免费观看精品视频网站| 青春草亚洲视频在线观看| 岛国毛片在线播放|