• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak

    2022-06-29 08:55:40DaweiYe葉大為FangDing丁芳KedongLi李克棟ZhenhuaHu胡振華LingZhang張凌XiahuaChen陳夏華QingZhang張青PinganZhao趙平安TaoHe賀濤LingyiMeng孟令義KaixuanYe葉凱萱FubinZhong鐘富彬YanminDuan段艷敏RuiDing丁銳LiangWang王亮GuoshengXu徐國盛GuangnanLuo羅廣南andEAST
    Chinese Physics B 2022年6期

    Dawei Ye(葉大為) Fang Ding(丁芳) Kedong Li(李克棟) Zhenhua Hu(胡振華) Ling Zhang(張凌)Xiahua Chen(陳夏華) Qing Zhang(張青) Pingan Zhao(趙平安) Tao He(賀濤) Lingyi Meng(孟令義)Kaixuan Ye(葉凱萱) Fubin Zhong(鐘富彬) Yanmin Duan(段艷敏) Rui Ding(丁銳)Liang Wang(王亮) Guosheng Xu(徐國盛) Guangnan Luo(羅廣南) and EAST team

    1Institute of Plasma Physics,HFIPS,Chinese Academy of Sciences(CAS),Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    Keywords: neon seeding,tungsten sputtering,ELM suppression,EAST tokamak

    1. Introduction

    Tungsten(W)is foreseen as the most promising plasmafacing material (PFM) for the divertor in the ITER in terms of its high melting temperature,low sputtering yields and low deuterium retention rate.[1]With the increase of heating power in future fusion devices, extremely high power fluxes onto the divertor can cause significant erosion of the divertor material. Due to the absence of the intrinsic impurity radiation in full metal wall devices, extrinsic impurity seeding is considered as an indispensable way to reduce the energy deposited on the target. Simulations have shown that both neon (Ne)and nitrogen(N2)seeding can be used to dissipate significant amounts of power and to reduce the heat load on the divertor to an acceptable level(5 MW/m2–10 MW/m2)in ITER.[2]Although N2shows beneficial results in confinement enhancement and radiation increase in the edge plasma,the formation of partially tritiated ammonia affects the machine duty cycle in ITER deuterium–tritium plasma.[3]Therefore,Ne seems to be a better radiator in future fusion devices. However, as the W sputtering yield depends strongly on the incident particle species and their energies,Ne has a higher W sputtering yield than that of deuterium(D)or tritium(T)at the same incidence energy.[1]The existing simulation results reveal that the insufficient seeded Ne impurity could reduce the heat flux to the target, but the erosion of the W target can be obviously enhanced.[4]When the detached condition is achieved with sufficient Ne seeding, the W target erosion is obviously suppressed. In this work, the behaviors of W sputtering with Ne seeding in the divertor are experimentally observed and analyzed on EAST. The experiments reveal that the evolution of both the W sputtering rate and yield at the divertor target can be the competing results between two seeding effects,increasing divertor Ne impurity content and decreasing electron temperature,which is consistent with the simulation results.[4]In addition, ELM suppression has been observed in this Ne seeding experiment. Due to the W sputtering by seeded Ne impurities, both the W and Ne impurities in the core plasma significantly increase after Ne seeding in the upper divertor.The influence of Ne and W impurities on ELM behavior is discussed.

    The rest of this paper is organized as follows: The experimental setup and method are introduced in Section 2. The effects of Ne seeding on divertor W sputtering are given in Section 3. The influence of impurity on the ELM is discussed in Section 4. Summary is presented in Section 5.

    2. Experimental setup and method

    EAST is an experimental superconducting tokamak device with a D-shaped poloidal cross-section and flexible divertor configurations, aiming at long-pulse high-performance H-mode operations.[5]The top W divertor with actively cooled ITER-like monoblock structure was installed in 2014[6]while the bottom W divertor was installed in 2021.[7]This work was carried out with the upper W divertor and lower previous graphite divertor as shown in Fig. 1(a). Meanwhile, the first wall in the main chamber is covered by molybdenum and graphite tiles.[7]EAST is equipped with a set of gas puff inlets distributed at the outer target, inner target, and dome of both top and bottom divertors. Only the inlet at the upper inner (UI) target was used for impurity seeding in this work as shown in Fig.1(b). The impurity seeding rate can be adjusted by changing the pulse voltage,duty,and frequency applied on the piezoelectric valve.

    Fig. 1. (a) View into the EAST vacuum chamber and (b) geometry of viewing chords for the diagnostics used in this paper. Div-W (magenta):multichannel visible spectroscopy viewing the upper outer (UO) tungsten divertor; EUV (orange): extreme ultraviolet spectrometer; AXUV arrays(black): absolute extreme ultraviolet photodiode arrays with two bold lines indicating the 33th and 59th channels passing through the core and upper divertor region,respectively;UO-LP(blue): divertor Langmuir probes at the UO target,UO-LP01 to UO-LP13 at port D and UO-LP14 to UO-LP26 at port O;UI-GP(green): gas puff inlet at the upper inner(UI)target. A typical separatrix of main plasma is also shown with the blue line.

    The multichannel visible spectroscopy system (Div-W)located in the equatorial port H[8]is used to monitor impurity line emissions especially the W I line at 400.88 nm in the upper divertor region. A schematic diagram of the lines of sight of the Div-W system is shown in Fig.1(b). The spatial resolution along the divertor targets is 13 mm and the temporal resolution is 5 ms in this work. Figure 2 shows a typical spectrum in the wavelength range of 396.2 nm to 427.nm with Ne seeding in the UI divertor. The line intensity of W I at 400.88 nm is used to quantify the W atom influxΓWby applying the inverse photon efficiency.[9]The W atom influx can be written as a function of the line intensity:[10]

    Fig. 2. A typical spectrum in wavelength ranges of 396.2 nm–427.6 nm obtained by the Div-W system in the USN H-mode plasma with Ne seeding.

    In addition to the W I line at 400.88 nm,some lowZimpurity lines as well as neutral deuterium atom lines are also observed by the Div-W system as shown in Fig. 2, including O II (398.27 nm, 406.92 nm, 407.53 nm, 418.54 nm), N II (399.5 nm), N III (409.733 nm), Ne II (421.97 nm), Li I(413.21 nm),C II(426.7 nm),Dδ(410.06 nm),Dε(396.9 nm)etc.These emission lines are in good agreement with the NIST atomic spectra database. The high strength of the C II line in this spectral range can be attributed to the erosion of graphite plasma-facing components (PFCs) in the lower divertor and the guard limiter of antennae. Due to the lithium coating,the Li I line can be detected and used to evaluate wall coating conditions.[12]Line emissions from low-ionized oxygen and nitrogen ions may be due to the residual air absorbed in the PFCs and structural materials. The characteristic spectral line Ne II can be used as an indicator of Ne ion flux to the divertor target.[11]

    Figure 1(b)illustrates the relevant diagnostics used in this work. In addition to the Div-W system, the absolute extreme ultraviolet(AXUV)photodiode arrays provide measurements of the radiated power in EAST plasma with fast temporal response (4 μs) and flat spectral sensitivity in the range from ultraviolet to x-ray.[13]Among 64 channels of the AXUV system,the 33th channel passes through the plasma core and the 59th channel views the upper divertor through the X-point region. The electron temperature(Tet)and ion saturation current(jsat) at the divertor target are measured by Langmuir probes embedded in the divertor target plate with a poloidal resolution of 12 mm–18 mm.[14]The line emissions of highly ionized impurities in the plasma core including W and Ne can be detected by the fast-time-response extreme ultraviolet (EUV)spectrometer in the wavelength range of 1 nm–50 nm.[15]An unresolved transition array (W-UTA) of tungsten ions in the core plasma,consisting of ionization stages in W27+–W45+,is clearly observed with strong intensity in the wavelength range of 4.5 nm–7.0 nm.[16]Thus the W-UTA signal provides an approximate estimation of the content of tungsten in the core plasma. The Ne X line intensity at 1.213 nm measured by the EUV system is used to monitor the Ne impurity content in the core plasma.

    3. Effect of Ne seeding on divertor W sputtering

    Ne impurity is normally seeded into the EAST W divertor to enhance the plasma radiation in order to achieve plasma detachment.[17]Figure 3 shows the time evolutions of the major plasma parameters in the USN H-mode discharge#90777 with Ne mixed gas seeding(volume ratio,Ne:D2=1:1).This discharge was operated in the favorable toroidal magnetic field direction withBt=2.5 T,plasma currentIp=400 kA,power injection of lower hybrid wavePLHW=2.5 MW (Fig. 3(a)),power injection of neutral beam injectionPNBI= 3.0 MW(Fig. 3(a)) and plasma stored energyWMHD= 150 kJ. Figure 3(a)shows that the voltage pulse of Ne seeding in the upper divertor starts at 4 s and lasts for about 500 ms. Most of the plasma parameters start to respond after a delay of about 400 ms. The time delay should be due to gas flowing in the pipe between the gas valve outside the machine and the gas inlet in the divertor. Afterwards the central lineaveraged electron densitynelincreases from 3.0×1019m-3to 3.5×1019m-3(Fig.3(b))and the peak ion saturation current density (jsat) at the upper outer divertor target increases slightly from 1.5 A/cm2to 2 A/cm2(Fig. 3(e)). The Ne II line emission in the divertor gradually increases until twice the value before seeding(Fig.3(c)).

    Fig.3. Time evolutions of the experimental parameters in discharge#90777 with Ne seeding. (a)Power source of NBI(black)and LHW(red)heating,and the voltage signal of the piezo valve for Ne seeding (blue); (b) the line-averaged electron density at the mid-plane nel (black) and plasma stored energy WMHD (blue); (c) Ne II line (black) emission measured by Div-W and Ne X line (blue) emission measured by EUV; (d) W I line emission measured by Div-W (black) and W-UTA measured by EUV (blue); (e) ion saturation current jsat (black) and peak electron temperature Tet (blue) at the UO target measured by divertor Langmuir probes; (f)AXUV 59th channel(black)measuring radiation across the upper divertor and AXUV 33th channel(blue)measuring radiation across the plasma core. The unit a.u. is short for arb. units.

    Figure 3(f) shows the upper divertor radiation measured by the 59th channel of AXUV across the upper divertor has a similar trend as the Ne II line emission, indicating that Ne seeding could enhance the plasma radiation in the divertor.This could explain the decrease ofTetat the UO target from~50 eV to 20 eV due to the radiation cooling effect as shown in Fig.3(e). Despite the reduction of incident ion energy(proportional toTet),the W I line emission presents a rising trend until 5.3 s and then starts to drop(Fig.3(d)).

    Figure 4 shows the distributions of W I line emission andTetalong the upper outer(UO)target.Thexaxis represents the distance along the UO target to the corner between the outer target and the dome as indicated in Fig. 1(b). The profile of W I line emission along the target is similar to that ofTet,indicating the strong dependence of the W sputtering rate on the incident ion energy in the spatial distribution. However, it is also seen that the W I line emissions around the peak keep increasing with time before reaching a maximum around 5.3 s,which is opposite to the temporal evolution of the correspondingTet.

    Fig. 4. Profiles at 4 different times of (a) W I line emission at 400.9 nm and (b) electron temperature Tet along the UO divertor target in discharge#90777 with Ne seeding.

    To further understand the W sputtering behavior with Ne seeding,both the W atom flux(ΓW)and effective W sputtering yield (YW,phy=ΓW/jsat) are quantified based on the method as described in Section 2. Figures 5(b)and 5(c)plot the peakΓWandYW,phyagainst the peakTetand the Ne II line emission,respectively. Moreover,the dependences ofTetandjsaton the Ne II line emission are also illustrated in Fig. 5(a). It can be seen in Fig.5(a)that theTetdrops from 50 eV to 18 eV and thejsatrises slightly from 1.5 A/cm2to 2 A/cm2with the increase of the Ne II line emission. Especially when the relative Ne II line intensity exceeds 45,a rapid rise appears forjsatand thenTetdecreases to below 20 eV,which may indicate that the divertor plasma goes into a high recycling regime. These reveal that Ne seeding could change divertor plasma status and effectively reduceTetat the divertor target,thus causing a decrease of ion impact energy on W surface. However, the sputtered W atom flux does not present an immediate drop with the decrease ofTetas shown in Fig.5(b).

    Fig.5. Effects of Ne seeding on the W sputtering at the UO divertor target.(a) Peak Tet and jsat at the UO target as a function of Ne II line emission intensity; (b) peak W atom flux ΓW and effective tungsten sputtering yield YW,phys(=ΓW/jsat)as a function of Tet;(c)peak ΓW and YW,phys as a function of Ne II line emission intensity.

    On the contrary, the W atom fluxΓWinitially increases with the decrease ofTetuntil 25 eV. Then after a rollover,ΓWstarts to decrease withTet. The same trend is also observed for effective W sputtering yieldYW,phy, implying the dominant role ofYW,phyin the evolution ofΓW. Calculations by TRIM[18]in the binary-collision approximation predict that both the impact energy and the mass of incident particle have strong influences on the sputtering yield. The Monte Carlo simulation by Ouet al.also shows similar dependence of the W physical sputtering yield on the bombardment energy and different impurity ions.[19]Thus, it is considered that the Ne seeding decreases the divertor plasma temperature to reduce the impact energy of the incident particles on the one hand,but increases the Ne impurity concentration in the divertor plasma on the other hand. The dependence of W sputtering onTet,as shown in Fig.5(b), should result from the competition between the above two effects. The W sputtering increases gradually upon Ne seeding and theTetdecreases from 50 eV to 25 eV,where the Ne induced sputtering effect dominates. The W sputtering flux is observed to reach a maximum at 25 eV,nearly 50%increase relative to that before Ne seeding.The Ne seeding starts to have a net beneficial effect on the suppression of W sputtering whenTetdrops below 25 eV,where the cooling effect of Ne seeding dominates. A rollover for both sputtering atom flux(ΓW)and yield(YW,phy)similar to that in Fig.5(b)is also observed in Fig.5(c)when the relative Ne II line intensity exceeds 45 and the divertor plasma goes into a high recycling regime. These imply that the lower W sputtering rate due to the lowerTetin the high recycling regime could make compensation for the enhanced W sputtering by Ne impurity and the decreasing W redeposition rate,thus benefiting the control of core tungsten concentration as shown in Fig.3(d)that is to be discussed in the next section. This experimental observation is consistent with the simulation results in Refs.[20,21]. Due to the increase of particle flux onto the target with Ne seeding as shown in Fig. 5(a), the W sputtering rateΓWhas a faster rise before the rollover, but a slower drop after the rollover than the W sputtering yieldYW,phy. Therefore, small amount of Ne seeding enhances the W sputtering. Only when enough Ne particles are injected into the divertor plasma to reduce the plasma temperature sufficiently,can the W sputtering be effectively suppressed.

    4. Influence of impurity on the ELM

    Divertor impurities can partly transport into the core plasma due to the ion temperature gradient force,i.e.divertor impurity leakage.[22]It can be seen in Fig.3 that both the seeded Ne impurity and the sputtered W impurity in the UO divertor have strong influences on the main plasma. Figure 3(c)shows that the Ne X line emission at 1.213 nm starts to rise at 4.5 s after an~100 ms delay relative to the Ne II line emission in the divertor,indicating the penetration of Ne impurities seeded from the divertor into the core plasma.However,no obvious rise appears in the core XUV radiation signal(AXUV33 in Fig.3(f))at this time,although the divertor radiation channel AXUV59 presents a corresponding rise with the Ne II line emission. This indicates that the radiation contribution from Ne impurities in the core is moderate. Comparing the W-UTA spectral signal from the core W impurities and the AXUV33 signal as demonstrated in Figs.3(d)and 3(f),a good synchronization can be observed,indicating that the core plasma radiation is dominated by the W impurity. The rise of the W-UTA signal starting at 4.8 s should be related to inward transport of the W atoms sputtered in the divertor as discussed in Section 3. The W-UTA signal presents a good correlation with the W I signal in Fig. 3(d) since 4.8 s. The slow decrease of W-UTA intensity before 4.8 s is a recovery process after another W impurity event. In general,the plasma stored energy(WMHD)presents an opposite evolution with core tungsten radiation loss as shown in Fig.3. Moreover,the increasing density in the core should result from the injection of Ne mixture and partly contribute to the rise of plasma stored energy before 5 s,as shown in Fig.3(b). The subsequent decrease in plasma stored energy should be related to the increasing core W impurity radiation loss.It is also noticed that ELMs are evidently suppressed since 4.8 s,coincident with the rise of the W-UTA signal.

    Fig. 6. Experimental results of ELM suppression during Ne seeding in#90777. (a) Dα signal in the upper divertor region; (b) ELM frequency;(c) and (d) the density fluctuation power spectra in the pedestal foot and pedestal top,respectively.

    Fig. 7. (a) Density profiles reconstructed by the microwave reflectometry system at different times in the discharge #90777; (b) density gradient dne/dr corresponding to the curves in panel(a).

    Figure 6 illustrates the temporal evolutions of the ELM frequency and the density fluctuation power spectra in the pedestal top and pedestal foot obtained by the microwave reflectometry.[23]The ELM frequency in Fig. 6(b) is calculated based on the divertorDαsignal in Fig. 6(a). The averaged ELM frequency (fELM) maintains at~100 Hz before 4.8 s. Most ELMs are suppressed since 4.8 s when the core W-UTA signal starts to rise.Simultaneously,figure 6(c)shows that the density fluctuation at the pedestal foot increases significantly with the rise of core plasma radiation,in which the fluctuations with higher frequency up to 400 kHz are excited after 4.8 s. This shows that the ELM suppression could be correlated to the enhanced transport induced by turbulence in the pedestal. The impurity transport across the pedestal may play an important role,which is similar to the observations in the HL-2A tokamak.[24]Figure 7 displays two density profiles measured by the microwave reflectometry before and during the ELM supersession.[25]The density gradient in the pedestal is softened during ELM suppression compared with that before,which could be attributed to the enhanced pedestal transport. These results indicate that ELMs can be suppressed due to the changed pedestal transport by impurities.

    5. Summary

    The influence of Ne seeding on the tungsten sputtering from the divertor target is investigated in the EAST experiment. The sputtered W atom influx at the divertor target has been quantified by using the spectroscopic observation on W I line emission at 400.88 nm. It is found that the W sputtering rate keeps an increasing trend with Ne seeding until the electron temperature at the target drops to below 25 eV where the W sputtering reaches the maximum.The competition between the drop of plasma temperature due to the radiation cooling effect of Ne impurities and the enhancement of W sputtering yield induced by the increased Ne impurity concentration in the divertor is the main reason. Enough plasma cooling is needed to obtain a beneficial W sputtering suppression for Ne impurity seeding.Moreover,the core plasma radiation is dominated by the W impurity content in the core and strongly correlated to the W source. The ELM suppression and enhanced turbulence transport in the pedestal are observed when the impurity radiation in main plasma exceeds a threshold, demonstrating the strong influences of divertor impurities on pedestal plasma behavior.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFE0301300,2017YFA0402500,and 2018YFE0303103),the National Natural Science Foundation of China (Grant Nos. 12192283 and 12022511), the Users with Excellence Project of Hefei Science Center, CAS (Grant No. 2018HSC-UE008),the CASHIPS Director’s Fund (Grant No. BJPY2019B01),the JSPS-CAS Bilateral Joint Research Project (Grant No. GJHZ201984), and the Key Research Program of Frontier Sciences of CAS(Grant No.ZDBS-LY-SLH010).

    亚洲欧美色中文字幕在线| 国精品久久久久久国模美| 免费久久久久久久精品成人欧美视频 | 久久女婷五月综合色啪小说| 精品国产露脸久久av麻豆| 99视频精品全部免费 在线| videosex国产| 国产白丝娇喘喷水9色精品| 精品国产一区二区三区久久久樱花| 精品国产一区二区三区久久久樱花| 大话2 男鬼变身卡| 最近最新中文字幕大全免费视频 | 成人毛片a级毛片在线播放| 肉色欧美久久久久久久蜜桃| 亚洲一码二码三码区别大吗| 视频在线观看一区二区三区| 国产黄频视频在线观看| 如日韩欧美国产精品一区二区三区| 国产极品粉嫩免费观看在线| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美在线一区| 成人国产av品久久久| 一级毛片我不卡| 久久精品夜色国产| 婷婷色av中文字幕| 日日啪夜夜爽| 精品人妻在线不人妻| 免费看光身美女| 免费av不卡在线播放| 亚洲av电影在线进入| 国产成人精品久久久久久| 边亲边吃奶的免费视频| 欧美精品一区二区免费开放| 波多野结衣一区麻豆| 大香蕉久久成人网| 国产一区二区在线观看日韩| 日本wwww免费看| av免费在线看不卡| 又粗又硬又长又爽又黄的视频| 爱豆传媒免费全集在线观看| 国产亚洲午夜精品一区二区久久| 欧美日韩视频高清一区二区三区二| 大片免费播放器 马上看| 亚洲精品日本国产第一区| 黄色视频在线播放观看不卡| 婷婷色av中文字幕| 欧美成人午夜免费资源| 丝袜喷水一区| 国产精品不卡视频一区二区| 国产探花极品一区二区| 成人亚洲欧美一区二区av| 中文字幕人妻丝袜制服| 这个男人来自地球电影免费观看 | 99久国产av精品国产电影| 欧美xxxx性猛交bbbb| 黄色 视频免费看| 午夜影院在线不卡| a级毛片在线看网站| 一边亲一边摸免费视频| 欧美 亚洲 国产 日韩一| 丝瓜视频免费看黄片| videosex国产| 自拍欧美九色日韩亚洲蝌蚪91| 女性被躁到高潮视频| 欧美97在线视频| 日本黄大片高清| 欧美精品国产亚洲| 丝袜脚勾引网站| 久久久精品免费免费高清| 男的添女的下面高潮视频| 高清av免费在线| 精品一区二区三区视频在线| 宅男免费午夜| 视频区图区小说| 好男人视频免费观看在线| 亚洲精品一区蜜桃| 欧美日韩一区二区视频在线观看视频在线| 国产一区二区三区av在线| 亚洲国产av新网站| 亚洲一级一片aⅴ在线观看| 亚洲国产精品一区三区| 欧美日韩国产mv在线观看视频| 亚洲精品成人av观看孕妇| 亚洲伊人色综图| 国产成人午夜福利电影在线观看| 90打野战视频偷拍视频| 亚洲精品视频女| 日韩制服骚丝袜av| 成人影院久久| 美国免费a级毛片| 性色av一级| 在线观看一区二区三区激情| 熟女av电影| 午夜福利在线观看免费完整高清在| 成人手机av| 大码成人一级视频| 欧美性感艳星| 大香蕉97超碰在线| 在线亚洲精品国产二区图片欧美| 精品一区二区三卡| 黄色一级大片看看| 男女免费视频国产| 两性夫妻黄色片 | 免费日韩欧美在线观看| 欧美亚洲日本最大视频资源| 精品视频人人做人人爽| 国产一区二区激情短视频 | 日韩在线高清观看一区二区三区| 久久久久久久久久久免费av| 亚洲一区二区三区欧美精品| 桃花免费在线播放| 观看美女的网站| 女性被躁到高潮视频| 高清毛片免费看| 熟女av电影| 在线看a的网站| 免费播放大片免费观看视频在线观看| 国产精品免费大片| 精品卡一卡二卡四卡免费| a级毛色黄片| 欧美精品高潮呻吟av久久| 在线精品无人区一区二区三| 制服丝袜香蕉在线| 看非洲黑人一级黄片| www.熟女人妻精品国产 | 你懂的网址亚洲精品在线观看| av免费观看日本| 亚洲综合色惰| 丰满迷人的少妇在线观看| 女性被躁到高潮视频| 男人舔女人的私密视频| 99re6热这里在线精品视频| 人成视频在线观看免费观看| 精品久久久久久电影网| 欧美性感艳星| 最近的中文字幕免费完整| 亚洲国产毛片av蜜桃av| 五月开心婷婷网| 亚洲精品,欧美精品| 久久久国产一区二区| 丝袜美足系列| 亚洲av综合色区一区| 国产成人精品一,二区| 久久亚洲国产成人精品v| 亚洲欧美精品自产自拍| 国产极品粉嫩免费观看在线| 国产精品女同一区二区软件| 一区二区三区乱码不卡18| 丰满饥渴人妻一区二区三| 国产色婷婷99| 国产精品一区二区在线观看99| 中文欧美无线码| av一本久久久久| 国产亚洲精品久久久com| 亚洲精品国产av蜜桃| 欧美老熟妇乱子伦牲交| 亚洲av日韩在线播放| 99热国产这里只有精品6| 亚洲av电影在线观看一区二区三区| 国内精品宾馆在线| 亚洲av在线观看美女高潮| 国产成人一区二区在线| 亚洲精品视频女| 国产激情久久老熟女| 高清欧美精品videossex| 婷婷成人精品国产| 一区二区日韩欧美中文字幕 | 丰满少妇做爰视频| 亚洲国产精品999| 日韩制服骚丝袜av| 建设人人有责人人尽责人人享有的| 九草在线视频观看| 精品久久国产蜜桃| 丝瓜视频免费看黄片| 男女下面插进去视频免费观看 | 精品国产一区二区三区久久久樱花| 日本猛色少妇xxxxx猛交久久| 亚洲精品456在线播放app| 人体艺术视频欧美日本| 人人澡人人妻人| 涩涩av久久男人的天堂| 国产黄频视频在线观看| 中文乱码字字幕精品一区二区三区| 中国美白少妇内射xxxbb| 国产精品秋霞免费鲁丝片| 国产老妇伦熟女老妇高清| 国产成人一区二区在线| 国产精品免费大片| 中文字幕免费在线视频6| 亚洲欧美精品自产自拍| xxxhd国产人妻xxx| 少妇被粗大的猛进出69影院 | 三级国产精品片| 久久久久久久久久久免费av| 国产日韩一区二区三区精品不卡| 夜夜爽夜夜爽视频| 精品一区二区三区四区五区乱码 | 美女中出高潮动态图| 99精国产麻豆久久婷婷| 中文字幕人妻熟女乱码| 中国国产av一级| 亚洲精品成人av观看孕妇| 少妇被粗大的猛进出69影院 | 久久午夜综合久久蜜桃| 狂野欧美激情性bbbbbb| 亚洲丝袜综合中文字幕| 人成视频在线观看免费观看| xxx大片免费视频| 高清欧美精品videossex| 午夜福利视频在线观看免费| 九九在线视频观看精品| 成人国产av品久久久| 久久久a久久爽久久v久久| 欧美日韩一区二区视频在线观看视频在线| av片东京热男人的天堂| 国语对白做爰xxxⅹ性视频网站| 三上悠亚av全集在线观看| 亚洲av国产av综合av卡| 国产国拍精品亚洲av在线观看| 高清欧美精品videossex| 日本欧美视频一区| 午夜福利在线观看免费完整高清在| 中国三级夫妇交换| 中文字幕精品免费在线观看视频 | 爱豆传媒免费全集在线观看| 午夜91福利影院| 伊人久久国产一区二区| 99视频精品全部免费 在线| 女人精品久久久久毛片| 最近手机中文字幕大全| 日韩视频在线欧美| 国产福利在线免费观看视频| 一边亲一边摸免费视频| 水蜜桃什么品种好| 国产成人午夜福利电影在线观看| 婷婷色麻豆天堂久久| 亚洲av电影在线观看一区二区三区| 青春草国产在线视频| 日韩成人伦理影院| 中文字幕人妻熟女乱码| 一二三四中文在线观看免费高清| 中文字幕亚洲精品专区| 久久精品人人爽人人爽视色| 极品人妻少妇av视频| 日韩免费高清中文字幕av| 国产高清三级在线| 亚洲欧美精品自产自拍| 高清av免费在线| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 中文欧美无线码| 中文字幕av电影在线播放| 亚洲精品国产av成人精品| 亚洲国产毛片av蜜桃av| 亚洲精品aⅴ在线观看| 97在线视频观看| 丰满饥渴人妻一区二区三| 国产一区二区三区综合在线观看 | 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 久久久久久伊人网av| 亚洲av免费高清在线观看| 日韩一区二区视频免费看| 婷婷色麻豆天堂久久| 免费大片18禁| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 日韩中文字幕视频在线看片| 在线 av 中文字幕| 午夜福利乱码中文字幕| 18在线观看网站| 日本av手机在线免费观看| 久久人人97超碰香蕉20202| 熟女电影av网| 一级a做视频免费观看| 免费黄色在线免费观看| 亚洲国产精品999| 99热国产这里只有精品6| 性色avwww在线观看| 青春草视频在线免费观看| 午夜日本视频在线| 观看美女的网站| 99久久人妻综合| 男女免费视频国产| 欧美精品av麻豆av| 成人二区视频| 久久久久久久久久人人人人人人| 亚洲成国产人片在线观看| 亚洲人与动物交配视频| 人人妻人人爽人人添夜夜欢视频| 两性夫妻黄色片 | 亚洲国产精品国产精品| 天堂中文最新版在线下载| 国产亚洲午夜精品一区二区久久| 性色av一级| 亚洲经典国产精华液单| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美中文字幕日韩二区| 日韩成人伦理影院| 最新中文字幕久久久久| 99久久精品国产国产毛片| 久久毛片免费看一区二区三区| 亚洲激情五月婷婷啪啪| 制服人妻中文乱码| 晚上一个人看的免费电影| 九九在线视频观看精品| 精品久久国产蜜桃| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| 午夜久久久在线观看| 超碰97精品在线观看| 国产高清不卡午夜福利| 日本猛色少妇xxxxx猛交久久| 天堂俺去俺来也www色官网| av有码第一页| 国产精品人妻久久久影院| 一边摸一边做爽爽视频免费| 女人久久www免费人成看片| 免费不卡的大黄色大毛片视频在线观看| 韩国av在线不卡| 黄色一级大片看看| 少妇的丰满在线观看| 久久久久精品性色| 国产毛片在线视频| 精品国产一区二区久久| 日韩欧美精品免费久久| 亚洲国产看品久久| 一区二区三区精品91| 久久 成人 亚洲| 99国产精品免费福利视频| 国产精品三级大全| 考比视频在线观看| 午夜久久久在线观看| 欧美97在线视频| 亚洲成国产人片在线观看| 伊人久久国产一区二区| 女人精品久久久久毛片| 少妇精品久久久久久久| 各种免费的搞黄视频| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| 97在线人人人人妻| 女人精品久久久久毛片| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看av| 国产欧美日韩一区二区三区在线| 最新中文字幕久久久久| 久久精品国产a三级三级三级| 视频区图区小说| 狠狠精品人妻久久久久久综合| 两性夫妻黄色片 | 在线看a的网站| 欧美人与性动交α欧美软件 | 在线免费观看不下载黄p国产| 精品国产一区二区三区久久久樱花| 亚洲av电影在线观看一区二区三区| 三上悠亚av全集在线观看| 男女下面插进去视频免费观看 | 免费人妻精品一区二区三区视频| 性色av一级| 91国产中文字幕| 丰满饥渴人妻一区二区三| 超色免费av| 99热这里只有是精品在线观看| av在线观看视频网站免费| 一本—道久久a久久精品蜜桃钙片| 日日啪夜夜爽| 日韩三级伦理在线观看| 免费人成在线观看视频色| 黑人高潮一二区| 国产日韩欧美在线精品| 久久久国产一区二区| 国产淫语在线视频| 国产视频首页在线观看| 少妇被粗大的猛进出69影院 | 一级爰片在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 天天影视国产精品| 精品久久国产蜜桃| 亚洲精品一二三| 久久影院123| 日韩在线高清观看一区二区三区| 午夜免费鲁丝| 久久精品人人爽人人爽视色| 一本久久精品| 天天操日日干夜夜撸| 精品一区二区三区视频在线| 视频在线观看一区二区三区| 午夜激情av网站| 亚洲成人av在线免费| 国产亚洲最大av| av在线app专区| 欧美精品一区二区免费开放| 女性被躁到高潮视频| av有码第一页| 伦理电影免费视频| 亚洲少妇的诱惑av| 欧美日韩成人在线一区二区| 国产精品久久久久成人av| 久久久久久久久久成人| 亚洲av福利一区| 韩国精品一区二区三区 | 欧美精品亚洲一区二区| 欧美最新免费一区二区三区| 激情五月婷婷亚洲| 一个人免费看片子| 波多野结衣一区麻豆| 国产精品一区www在线观看| 免费av不卡在线播放| 黄片播放在线免费| 日本欧美视频一区| 国产麻豆69| 韩国高清视频一区二区三区| 精品熟女少妇av免费看| 色视频在线一区二区三区| 国产xxxxx性猛交| 26uuu在线亚洲综合色| 少妇人妻精品综合一区二区| 你懂的网址亚洲精品在线观看| videossex国产| 精品国产一区二区三区久久久樱花| 中文字幕精品免费在线观看视频 | 久久久精品区二区三区| 精品国产乱码久久久久久小说| 韩国精品一区二区三区 | 18禁国产床啪视频网站| 亚洲,一卡二卡三卡| 色94色欧美一区二区| 午夜福利影视在线免费观看| 久久久久久久久久久久大奶| 啦啦啦啦在线视频资源| 日本wwww免费看| 国产色爽女视频免费观看| 2018国产大陆天天弄谢| 赤兔流量卡办理| 欧美日韩视频高清一区二区三区二| 精品酒店卫生间| 91在线精品国自产拍蜜月| 久久av网站| av一本久久久久| 精品国产一区二区三区四区第35| 亚洲综合色惰| 国产欧美日韩一区二区三区在线| 这个男人来自地球电影免费观看 | 99香蕉大伊视频| 热re99久久精品国产66热6| 最黄视频免费看| 精品亚洲成a人片在线观看| 亚洲综合色网址| 蜜桃在线观看..| 91在线精品国自产拍蜜月| 老司机影院毛片| 日本欧美国产在线视频| 亚洲av国产av综合av卡| 国产欧美日韩一区二区三区在线| 亚洲成国产人片在线观看| 久久精品aⅴ一区二区三区四区 | av电影中文网址| 国产免费福利视频在线观看| 亚洲精华国产精华液的使用体验| 国产精品秋霞免费鲁丝片| 国产成人欧美| 国产精品一国产av| a级毛色黄片| 天天躁夜夜躁狠狠久久av| 高清欧美精品videossex| 欧美最新免费一区二区三区| 黄色毛片三级朝国网站| 亚洲欧美成人精品一区二区| 一边亲一边摸免费视频| 一级爰片在线观看| www.色视频.com| 中文字幕亚洲精品专区| 黄片无遮挡物在线观看| 最近2019中文字幕mv第一页| 亚洲欧美一区二区三区黑人 | 欧美日韩国产mv在线观看视频| 黄色一级大片看看| 一级毛片电影观看| 亚洲国产看品久久| 在线观看三级黄色| 午夜福利视频在线观看免费| 一级毛片 在线播放| 新久久久久国产一级毛片| 最新中文字幕久久久久| 成人二区视频| 一级片免费观看大全| 国产精品嫩草影院av在线观看| 香蕉丝袜av| 午夜福利影视在线免费观看| 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| 久久久久国产网址| 日韩成人av中文字幕在线观看| 免费在线观看完整版高清| 久久午夜综合久久蜜桃| a级片在线免费高清观看视频| 男女国产视频网站| 国产av一区二区精品久久| 亚洲内射少妇av| 美女中出高潮动态图| 国产国拍精品亚洲av在线观看| 亚洲国产毛片av蜜桃av| 黑人高潮一二区| 亚洲第一av免费看| 午夜激情久久久久久久| 精品一品国产午夜福利视频| 久久人人爽人人爽人人片va| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 久久久精品免费免费高清| 国精品久久久久久国模美| 男女免费视频国产| 丝袜在线中文字幕| av又黄又爽大尺度在线免费看| 宅男免费午夜| 午夜老司机福利剧场| 1024视频免费在线观看| 乱人伦中国视频| 欧美国产精品一级二级三级| 国产一区二区激情短视频 | 国产色婷婷99| 久久99热这里只频精品6学生| 肉色欧美久久久久久久蜜桃| 热re99久久精品国产66热6| 成人国产av品久久久| 久热久热在线精品观看| 日韩大片免费观看网站| 深夜精品福利| 美国免费a级毛片| 你懂的网址亚洲精品在线观看| 高清欧美精品videossex| 国产成人精品久久久久久| 精品一区二区三区视频在线| 亚洲av欧美aⅴ国产| 欧美精品亚洲一区二区| 一级片免费观看大全| 秋霞在线观看毛片| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 在线观看免费日韩欧美大片| 成人二区视频| 久久精品久久久久久噜噜老黄| 久久精品国产a三级三级三级| 亚洲综合色惰| 久久久久久久亚洲中文字幕| 午夜激情久久久久久久| 人妻 亚洲 视频| 精品第一国产精品| 国产探花极品一区二区| 少妇猛男粗大的猛烈进出视频| 亚洲成色77777| 国产免费视频播放在线视频| 国产成人精品福利久久| av国产久精品久网站免费入址| 一级毛片黄色毛片免费观看视频| 日本欧美国产在线视频| 中文天堂在线官网| 久久人人爽人人片av| 亚洲美女黄色视频免费看| 中文字幕亚洲精品专区| 精品一区二区三区四区五区乱码 | 亚洲欧美色中文字幕在线| 亚洲综合色网址| 少妇被粗大的猛进出69影院 | 狠狠精品人妻久久久久久综合| 免费播放大片免费观看视频在线观看| 亚洲国产精品国产精品| 精品久久蜜臀av无| 两个人免费观看高清视频| 中文字幕最新亚洲高清| 亚洲精品美女久久久久99蜜臀 | 九九爱精品视频在线观看| 日日撸夜夜添| 亚洲三级黄色毛片| 久久久国产一区二区| 另类亚洲欧美激情| 中国国产av一级| 久久久久久久久久成人| 在线观看免费高清a一片| 在线天堂最新版资源| 亚洲国产色片| 2022亚洲国产成人精品| 欧美 日韩 精品 国产| 亚洲综合色惰| 午夜影院在线不卡| 国产亚洲午夜精品一区二区久久| 国产精品人妻久久久久久| 亚洲 欧美一区二区三区| 国产av精品麻豆| 曰老女人黄片| 久久99精品国语久久久| 亚洲精品国产av蜜桃| 亚洲一级一片aⅴ在线观看| 秋霞伦理黄片| 日本爱情动作片www.在线观看| 少妇高潮的动态图| 人妻人人澡人人爽人人| 美女大奶头黄色视频| 国产无遮挡羞羞视频在线观看| 日韩不卡一区二区三区视频在线| tube8黄色片| 欧美精品av麻豆av| av有码第一页| 老司机亚洲免费影院| 在线观看免费日韩欧美大片| 999精品在线视频| av片东京热男人的天堂| 午夜免费观看性视频| 观看美女的网站| 成人亚洲欧美一区二区av| 曰老女人黄片| 国产 一区精品| 伊人久久国产一区二区| 日本猛色少妇xxxxx猛交久久|