• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface

    2022-06-29 09:20:52NoorWaliKhanArshadKhanMuhammadUsmanTazaGulAbirMouldiandAmeniBrahmia
    Chinese Physics B 2022年6期

    Noor Wali Khan Arshad Khan Muhammad Usman Taza Gul Abir Mouldi and Ameni Brahmia

    1Department of Mathematics,City University of Science and IT,Peshawar 25000,Pakistan

    2College of Aeronautical Engineering,National University of Sciences and Technology(NUST),Sector H-12,Islamabad 44000,Pakistan

    3Higher Education Archives and Libraries Department KP,Govt. Superior Science College,Peshawar,Pakistan

    4Department of Industrial Engineering,College of Engineering,King Khalid University,Abha 61421,KSA

    5Chemistry Department,College of Science,King Khalid University,Abha 61413,Saudi Arabia

    Keywords: thin-film flow,hybrid nanofluid,viscous dissipation,stretching surface,homotopy analysis method

    1. Introductio n

    Recently thin-film flow has obtained considerable significance due to its important applications at the industrial level such as coating of fibers and cables,cooling of metallic plates,processing of foodstuffs,extrusion of plastic surface thinning and annealing of copper wires.[1]Researchers have been inspired by the pioneering work of Wang,[2]who investigated the time-dependent flow of a thin film over a stretchable surface. Wang’s[2]ideas were further extended by Anderssonet al.[3]to improve heat transmission characteristics.Afterwards,Liu and Andersson[4]presented the idea of thin-film flow in a more generalized form.Wang[5]performed an analytical solution using the homotopy analysis method(HAM)for thin-film flow upon a time-dependent stretched sheet. Wang compared the results of HAM with the numerical solution and found a good agreement between the results. Iqbalet al.[6]analyzed thin-film flow upon an unsteady surface using thermophoresis effects and Brownian motion. They observed that the thermal profiles were augmented by a corresponding increase in Brownian and thermophoresis parameters. Sadiq[7]analyzed the thermal characteristics for thin-film nanoparticles upon a stretched surface by using the temperature of the surface and an internal heat generation source. Sadiq used water as the base fluid with copper, titanium and alumina nanoparticles,and proved that augmentation of the volumetric fraction of solid nanoparticles reduced the flow and enhanced the thermal characteristics.

    The suspension of small-sized particles (of a size<100 nm, i.e., nanoparticles) in a base fluid results in a nanofluid.[8,9]It has been proved experimentally[8]that nanofluids has higher thermal flow characteristics than traditional fluids.Additionally,hybrid nanofluids have attracted the attention of researchers due to their wide range of applications in the fields of medicine,nanotechnology and the phenomenon of thermal transmission. Khanet al.[10–12]published an excellent analysis of heat transmission by hybrid nanofluids using various flow conditions and different graphical views. They proved that the rate of thermal flow is much better for hybrid nanofluids compared with traditional fluids. Due to the use of hybrid nanofluids, as investigated by Hayatet al.,[13]applications in many fields such as biomedicines, conservation of energy,ceramics,optics and nanotechnology have been updated. Khanet al.[14]researched the thermal flow of a carbon nanotube nanofluid between two rotating plates. The authors of this investigation used various flow conditions and highlighted that thermal diffusivity of the fluid was augmented with enhancement in thermal radiation and Brownian motion.Pal and Mandal[15]discussed the flow of a hybrid nanofluid past a stretched surface with impact of a magnetic field. Xuet al.[16–19]carried out some impressive work to improve the flow and heat transfer of a nanofluid by using various flow conditions with different geometrical views. In these investigations the authors made an attempt to fill the gaps in the existing literature.

    Viscous dissipation is caused by devastation of a fluctuating velocity gradient due to viscous stresses. This irreparable procedure normally leads to the conversion of kinetic energy to internal energy of the fluid and causes heating of the flow system. Pop[20]analyzed the idea of energy dissipation and transportation at the nanoscale and also highlighted that this concept is of great importance in designing energy conservation systems and energy-efficient circuits. Aliet al.[21]examined the impact of viscous dissipation upon thermal flow for hybrid nanoparticles in a porous channel. It was noticed in that study that the thermal profiles were augmented with the enhancement of energy dissipation. Sharmaet al.[22]inspected the effects of forced convection heat transmission on time-dependent fluid flow between rotary discs. In that work the authors used the basic concept of the Neuringer–Rosensweig model for flow equations. They noted that the dissipation parameter caused an augmentation in thermal flow.Augustoet al.[23]employed the concept of thermal flow and viscous dissipation for the reduction of friction inside a greasefilled labyrinth seal. They used an Arrhenius-type equation in their mathematical modeling. Khanet al.[24–26]analyzed the augmentation of heat transfer and thermal flow by a thin moving needle surrounded by a moving fluid. In these investigations, the authors used the impact of viscous dissipation along with other flow conditions and established that thermal flow and heat transmission were augmented by enhancing the values of the viscous parameter.

    The inspection of viscous fluid flow upon a stretching surface is of significant importance due to practical applications in numerous manufacturing procedures such as copper wire drawing,fabrication of glass,stretching of artificial fibers and plastic films,and polymer extrusions,etc. The performance of the final product depends upon the rate of mass and thermal flow over the stretching surface, as examined by Karwe and Jaluria.[27]Lundet al.[28]analyzed the Tiwari and Das model using the thermophoresis characteristics of nanoparticle fluid flow upon a porous stretching surface. In that study, the authors used copper and alumina nanoparticles in water as the base fluid. Abbaset al.[29]investigated the inclined stretching surface of the flow of a hybrid nanofluid using the Xue and Yamada–Ota models. Zainalet al.[30]highlighted the stability concept of a magnetohydrodynamic nanoparticle flow upon a stretching sheet with the squared velocity term. Anuaret al.[31]explored the effects of buoyancy on hybrid nanofluid flow over a stretching plate using silver and magnesium oxide nanoparticles. They noted that velocity declined while thermal flow was enhanced with increased volumetric fraction of nanoparticles. Readers can find more information about the related work in Refs.[32–41].

    Several investigations have been conducted into thin-film flow over a stretching sheet by employing different flow conditions,but no work has yet been carried out on thin-film flow of a hybrid nanofluid with variable viscosity influenced by Marangoni convection, which is the main motivation for this work. In the current work,a stretchable surface is considered upon which flow of a hybrid nanofluid thin film is taken into account. The current work focuses on the idea of augmenting heat transmission by making use of a hybrid nanofluid. The equations that govern the flow problem will be converted to dimensionless form by employing a set of similar variables. The resultant set of equations will then be solved by using HAM.

    2. Mathematical formulation

    Consider an unsteady two-dimensional thin-film flow of a hybrid nanofluid upon a stretching surface affected by a magnetic field applied in the direction normal to the flow of fluid.The stretched velocity of the surface isUw=bx/1-at,wherebandγare fixed values. To augment the heat transfer characteristics of the fluid flow,titanium oxide and silver nanoparticles were incorporated into the base fluid. The flow is also influenced by variable viscosity and Marangoni convection. The fixed concentration and temperature of the hybrid nanofluid areC0andT0, respectively, whereas these respective quantities at the surface of the sheet areCw(x,t)=Cr(bx2/2ν)(1-at)-3/2andTw(x,t) =T0-Tr(bx2/2ν)(1-at)-3/2withCrandTrbeing the reference values of the nanofluid, such that 0<Cr<C0and 0<Tr<T0.

    Fig.1. Graphical view of the flow problem.

    2.1. The Reynolds model

    In this model,

    Some physical parameters are encountered while changing the governing system of equations to dimensionless form, which are defined mathematically as

    The thermophoresis characteristics of traditional and hybrid nanofluids are shown in Table 1 while their numerical values are given in Table 2.

    Table 1. Thermophysical characteristics of TiO2 and(TiO2+Ag/blood)nanofluid.[42]

    Table 2. Numerical values of TiO2 and TiO2+Ag/blood nanofluid for thermophysical properties.

    3. Solution method

    It is a common observation that most physical phenomena when modeled mathematically give rise to a nonlinear equation. Sometimes,the resultant set of equations is highly nonlinear. To solve such models,researchers and mathematicians have designed certain tools and techniques. HAM[12,43,44]is one technique that is used to determine the semi-numerical solution to such problems. This method requires some starting values,which are defined below.

    The operatorsπf,πΘ,andπΦin linear form are expressed as

    4. Discussion of results

    In the current work, a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account. In this work we consider the idea of augmentation of heat transmission by making use of a hybrid nanofluid. The flow is affected by variations in the viscous forces along with viscous dissipation effects and Marangoni convection.A timeconstrained magnetic field is applied in the direction normal to the flow system. During the conversion of the equations that govern the flow system into dimensionless form, some physical parameters have been encountered. The effects of these parameters upon flow profiles are now discussed in detail with the help of a graphical view,as given below.

    4.1. Flow characteristics

    The impact of variations in different emerging parameters upon flow profiles is depicted in Figs.2–5.

    Figure 2 shows that change in the magnetic parameterMreduces the flow profiles. Physically this can be interpreted as follows: with increasing value ofMa Lorentz force is produced that acts in the opposite direction to the flow of fluid and causes resistance to the fluid’s motion. Due to these resistive effects the fluid flow declines.

    Figure 3 shows that an increase in the value of the viscosity parameterΛresults in a reduction of the velocity profiles.Actually,with an increase in the value ofΛthe viscous forces increase,and as a result more resistance is experienced by the nanoparticles during motion.In this physical phenomenon,the thickness of the momentum boundary layer is reduced, causing the velocity profiles to decline.

    Fig.3. Flow profiles versus viscosity parameter.

    From Fig. 4 we can see that velocity is reduced in response to an increase in the unsteadiness parameterS. Physically this can be interpreted as follows: an increase in the value ofScauses more resistive force to the fluid motion and increases the skin friction. In this whole process,the strength of the momentum layer is reduced, ultimately decreasing the velocity of the nanoparticles.

    Fig.4. Flow profiles versus unsteadiness parameter.

    Figure 5 shows the impact of the thin-film parameterβupon the flow of fluid. An increase in the value ofβleads to strengthening of the thickness of the momentum boundary layer,as a result of which the flow characteristics of the fluid increase.

    Fig.5. Flow profiles versus thin film parameter.

    4.2. Thermal characteristics

    The impact upon flow profiles in response to variations in different emerging parameters has depicted in Figs.6–9.

    A change in thermal profiles in response to variations in the Eckert numberEcis presented in Fig.6.It can be observed that with a growth in the value ofEcthe transmission of energy increases from higher to lower regions. In this process kinetic energy changes to heat energy,leading to growth in the thermal profiles.

    Fig.6. Thermal profiles versus Eckert number.

    Figure 7 depicts that the thermal characteristics decline with augmentation in Prandtl numberPr. Actually, at lower values ofPrmore heat diffuses while at higher values ofPrless heat diffuses. Hence an increase in the value ofPrcauses a reduction in thermal diffusion,leading to a decline in thermal characteristics.

    Fig.7. Thermal profiles versus Prandtl number.

    Figure 8 depicts that for increasing values of the unsteadiness parameterSmore heat transfer occurs from regions of higher concentration to lower ones.This phenomenon strengthens the thickness of the thermal layer and causes an enhancement in the heat transfer.

    Fig.8. Thermal profiles versus unsteadiness parameter.

    Figure 9 portrays the influence of variations in the viscosity parameterΛupon heat transmission.It can be noticed from this figure that for increasing values ofΛthe thickness of the thermal layer decreases,as a result of which there is less heat diffusion. In this physical process,heat transmission declines as depicted in Fig.9.

    Fig.9. Thermal profiles versus viscosity parameter.

    4.3. Discussion of the tables

    The thermophysical properties of nanoparticles are presented in Table 1 while their numerical values are depicted in Table 2. The impact of various parameters on the thermal transfer rates for hybrid and traditional nanofluids is described numerically in Table 3. It can be seen that the Nusselt number increases with higher values ofEc, volumetric fraction of solid nanoparticles and the thin-film parameter while it declines with growth in the value of the viscosity parameter.The rate of heat transmission for hybrid nanoparticles has been noted to be much better than of a traditional nanofluid.A comparative analysis of current results and those published in the literature by Qasimet al.[45]was also carried out in the current investigation with regard to variations in common parameters.This comparison is presented in Table 4, where good agreement is noticed. In Fig.10 the percentage augmentation in the rate of thermal flow is presented with a comparison between TiO2nanoparticles and(TiO2+Ag)nanoparticles. From this chart, it is quite obvious that the rate of thermal flow varies from 3.77% to 9.02% when the values for TiO2nanoparticles range from 0.01 to 0.03 whereas for the same range for(TiO2+Ag) nanoparticles the thermal flow rate varies from 4.05% to 9.58%. This justifies that hybrid nanoparticles ensure a greater heat flow rate than traditional nanofluids.

    Table 3. Comparison of the heat transfer rate of nanofluids and hybrid nanofluids.

    Table 4. Comparison of the values of the common parameters in the current work and the work of Qasim et al.[45]

    Chart. Percentage increase in heat transfer rate and comparison between nanofluids and hybrid nanofluids.

    5. Conclusion

    In this investigation, a stretchable surface is considered upon which a hybrid nanofluid thin-film flow is taken into account. In this work we focus on the idea of augmenting heat transmission by making use of a hybrid nanofluid. The flow is affected by variations in the viscous forces along with viscous dissipation effects and Marangoni convection. A timeconstrained magnetic field is applied in the direction normal to the flow system. During the conversion of the equations that govern the flow system into dimensionless form, some physical parameters are encountered. The effects of these parameters on the flow profiles have been discussed in detail with the help of graphs. After a detailed discussion of the work the following points can be noted:

    · When increasing the values of the magnetic parameter a Lorentz force is produced that acts in the opposite direction to the fluid flow and causes resistance to fluid motion. Due to these resistive effects the fluid flow declines.

    · As the values of the viscosity parameter increase the viscous forces increases, due to which more resistance is experienced by the nanoparticles during the motion that in turn weakens the velocity profile. The same effects were noticed for increase in the unsteadiness parameter with fluid motion.

    · Increase in the thin film parameter leads to strengthening of the thickness of the momentum boundary layer,as a result of which the flow characteristics of the fluid improve.

    · The transfer of energy increases with increase in the value of the Eckert number, which leads to growth of the thermal profile.

    · Increase in the Prandtl number results in a reduction in thermal diffusion that causes a decline in thermal characteristics.

    · With increase in the value of the unsteadiness parameter more heat transfer takes place from regions of higher concentration to regions of lower concentration, due to which an enhancement in heat transfer occurs.

    · With increasing value of the viscosity parameter, the thickness of the thermal layer is reduced;as a result less heat diffuses and ultimately heat transmission declines.

    · It is also established that the rate of thermal flow varies from 3.77%to 9.02%when the values of TiO2nanoparticles range from 0.01 to 0.03 whereas for the same range of values of (TiO2+Ag) nanoparticles the thermal flow rate varies from 4.05% to 9.58% demonstrating that hybrid nanoparticles ensure a greater heat flow rate than a traditional nanofluid.

    Acknowledgment

    We thank the Deanship of Scientific Research at King Khalid University for funding this work through research groups(Grant No.RGP.1/260/42).

    Appendix A

    Table A1. Nomenclature.

    av又黄又爽大尺度在线免费看| 国产爽快片一区二区三区| 午夜两性在线视频| 少妇 在线观看| 男人爽女人下面视频在线观看| 不卡av一区二区三区| 久久精品国产综合久久久| 99久久99久久久精品蜜桃| 国产免费一区二区三区四区乱码| 精品国产国语对白av| 精品少妇内射三级| 国产日韩一区二区三区精品不卡| 丰满迷人的少妇在线观看| 成年av动漫网址| 自线自在国产av| 久久国产精品男人的天堂亚洲| 国产精品国产av在线观看| 看免费成人av毛片| 久久中文字幕一级| 人人妻人人澡人人爽人人夜夜| 亚洲中文av在线| 性色av乱码一区二区三区2| 麻豆av在线久日| 亚洲色图 男人天堂 中文字幕| 中文字幕人妻丝袜制服| 国产男女超爽视频在线观看| 亚洲av日韩在线播放| 免费人妻精品一区二区三区视频| 最近最新中文字幕大全免费视频 | 日韩制服骚丝袜av| 成人国语在线视频| 成人国语在线视频| 国产精品 欧美亚洲| 99久久精品国产亚洲精品| 在线观看免费午夜福利视频| 国产国语露脸激情在线看| 少妇的丰满在线观看| svipshipincom国产片| 国产成人免费观看mmmm| 亚洲国产av影院在线观看| 成年人黄色毛片网站| 91国产中文字幕| 久久久精品国产亚洲av高清涩受| 精品一区二区三区四区五区乱码 | 欧美 亚洲 国产 日韩一| 一级黄色大片毛片| 悠悠久久av| 女人高潮潮喷娇喘18禁视频| 久久亚洲精品不卡| 黄色视频不卡| 人体艺术视频欧美日本| 亚洲黑人精品在线| 这个男人来自地球电影免费观看| 男人操女人黄网站| 国产成人欧美在线观看 | 精品国产国语对白av| 男人爽女人下面视频在线观看| 国产无遮挡羞羞视频在线观看| av线在线观看网站| 80岁老熟妇乱子伦牲交| 大香蕉久久网| 交换朋友夫妻互换小说| 波多野结衣一区麻豆| 久久久久视频综合| 欧美久久黑人一区二区| 精品卡一卡二卡四卡免费| 水蜜桃什么品种好| 狠狠精品人妻久久久久久综合| 精品国产一区二区三区四区第35| 亚洲国产精品999| 99精国产麻豆久久婷婷| 国产成人影院久久av| 亚洲伊人久久精品综合| 国产精品 欧美亚洲| 中文字幕高清在线视频| 狂野欧美激情性bbbbbb| 999久久久国产精品视频| 新久久久久国产一级毛片| 另类亚洲欧美激情| 90打野战视频偷拍视频| 欧美精品人与动牲交sv欧美| 69精品国产乱码久久久| 大片电影免费在线观看免费| 我的亚洲天堂| 欧美精品啪啪一区二区三区 | 五月天丁香电影| 日韩中文字幕欧美一区二区 | 少妇人妻 视频| 国产精品免费大片| 精品卡一卡二卡四卡免费| 日韩一区二区三区影片| av在线app专区| 亚洲男人天堂网一区| 国产成人精品在线电影| 婷婷色麻豆天堂久久| 亚洲免费av在线视频| 丰满迷人的少妇在线观看| 夜夜骑夜夜射夜夜干| 亚洲三区欧美一区| 波多野结衣av一区二区av| 午夜福利,免费看| 51午夜福利影视在线观看| 免费观看a级毛片全部| 亚洲精品国产一区二区精华液| 黄片播放在线免费| 国产精品熟女久久久久浪| 亚洲精品第二区| av在线app专区| 亚洲av美国av| 51午夜福利影视在线观看| 日韩伦理黄色片| www.精华液| 国产免费一区二区三区四区乱码| 亚洲精品在线美女| 久久精品aⅴ一区二区三区四区| 丁香六月天网| 亚洲国产精品999| 美女高潮到喷水免费观看| 亚洲成人免费av在线播放| 精品人妻一区二区三区麻豆| 青春草视频在线免费观看| av有码第一页| 久久精品成人免费网站| 精品一区二区三区四区五区乱码 | 老司机在亚洲福利影院| 国产爽快片一区二区三区| av视频免费观看在线观看| 精品国产一区二区三区久久久樱花| 制服诱惑二区| 多毛熟女@视频| 2021少妇久久久久久久久久久| 老汉色∧v一级毛片| 80岁老熟妇乱子伦牲交| 国产伦人伦偷精品视频| 欧美日韩一级在线毛片| 国产精品三级大全| 人妻人人澡人人爽人人| 亚洲精品在线美女| 欧美黑人精品巨大| 久久中文字幕一级| 久久精品久久久久久噜噜老黄| 久久午夜综合久久蜜桃| 91九色精品人成在线观看| 免费看av在线观看网站| 国产主播在线观看一区二区 | 一级毛片我不卡| 国产高清videossex| 国产成人精品久久二区二区免费| 久久人人爽人人片av| 亚洲国产看品久久| 天天添夜夜摸| 日本av免费视频播放| 亚洲欧洲精品一区二区精品久久久| 丰满少妇做爰视频| 国产成人欧美| 宅男免费午夜| 亚洲国产欧美一区二区综合| xxx大片免费视频| 欧美日韩国产mv在线观看视频| 女人被躁到高潮嗷嗷叫费观| 午夜免费男女啪啪视频观看| 狠狠婷婷综合久久久久久88av| 69精品国产乱码久久久| 在线观看国产h片| 国产老妇伦熟女老妇高清| av天堂在线播放| 在线天堂中文资源库| 汤姆久久久久久久影院中文字幕| 高清av免费在线| 欧美 亚洲 国产 日韩一| 日本五十路高清| 国产欧美亚洲国产| 日韩av在线免费看完整版不卡| 国产一区亚洲一区在线观看| 亚洲欧美一区二区三区久久| 久久久久久久国产电影| 人妻一区二区av| 1024视频免费在线观看| 欧美日韩亚洲国产一区二区在线观看 | 老汉色av国产亚洲站长工具| 日韩一本色道免费dvd| 久久久久国产一级毛片高清牌| 国产免费一区二区三区四区乱码| 少妇粗大呻吟视频| 黄片小视频在线播放| 久久久亚洲精品成人影院| 精品欧美一区二区三区在线| 日韩免费高清中文字幕av| 黑人巨大精品欧美一区二区蜜桃| 日本黄色日本黄色录像| 只有这里有精品99| 久久久久精品国产欧美久久久 | 久久青草综合色| 热re99久久精品国产66热6| 久久久欧美国产精品| 色精品久久人妻99蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩国产mv在线观看视频| 嫩草影视91久久| 美女高潮到喷水免费观看| 婷婷色综合大香蕉| 国产精品一区二区免费欧美 | 美女视频免费永久观看网站| 1024香蕉在线观看| 18在线观看网站| 欧美精品av麻豆av| 亚洲欧美精品综合一区二区三区| 精品一品国产午夜福利视频| 久久99一区二区三区| 可以免费在线观看a视频的电影网站| 91九色精品人成在线观看| 亚洲av在线观看美女高潮| 日韩熟女老妇一区二区性免费视频| 99香蕉大伊视频| 脱女人内裤的视频| 丝袜在线中文字幕| 亚洲成av片中文字幕在线观看| 亚洲五月婷婷丁香| 精品少妇久久久久久888优播| 精品少妇一区二区三区视频日本电影| 一区福利在线观看| 人成视频在线观看免费观看| 777米奇影视久久| 一边摸一边抽搐一进一出视频| 日本欧美视频一区| 日本a在线网址| 亚洲国产欧美在线一区| 2021少妇久久久久久久久久久| av在线老鸭窝| 你懂的网址亚洲精品在线观看| 久久久久视频综合| 丝袜脚勾引网站| 超碰97精品在线观看| 91麻豆精品激情在线观看国产 | 中文字幕人妻熟女乱码| 各种免费的搞黄视频| 免费在线观看日本一区| 久久久久网色| 欧美日韩亚洲高清精品| 欧美在线黄色| a级片在线免费高清观看视频| 母亲3免费完整高清在线观看| 亚洲成国产人片在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美精品啪啪一区二区三区 | 亚洲成人手机| 久久久久久久国产电影| 国产一区二区三区综合在线观看| 人成视频在线观看免费观看| 免费久久久久久久精品成人欧美视频| 久久久久久久精品精品| 日韩中文字幕欧美一区二区 | 女人精品久久久久毛片| 91精品国产国语对白视频| 狂野欧美激情性bbbbbb| 免费少妇av软件| 亚洲中文av在线| 午夜av观看不卡| 国产亚洲欧美精品永久| 中文字幕高清在线视频| 一二三四在线观看免费中文在| 精品亚洲成a人片在线观看| 一二三四社区在线视频社区8| 嫩草影视91久久| 男女床上黄色一级片免费看| 国产黄频视频在线观看| av国产精品久久久久影院| 男人舔女人的私密视频| 啦啦啦 在线观看视频| 精品国产一区二区久久| 欧美日韩国产mv在线观看视频| 亚洲少妇的诱惑av| 欧美在线一区亚洲| 2018国产大陆天天弄谢| 国产亚洲av高清不卡| 亚洲av美国av| 制服诱惑二区| 色播在线永久视频| 丝袜喷水一区| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 在线观看www视频免费| 国产欧美日韩精品亚洲av| 精品国产乱码久久久久久小说| 亚洲国产欧美网| 国产日韩欧美在线精品| 久久免费观看电影| 精品第一国产精品| 晚上一个人看的免费电影| 久久国产精品大桥未久av| 中文精品一卡2卡3卡4更新| 欧美精品亚洲一区二区| 国产91精品成人一区二区三区 | 国产xxxxx性猛交| 免费看十八禁软件| av在线播放精品| 少妇精品久久久久久久| 亚洲精品自拍成人| av在线播放精品| 午夜福利视频在线观看免费| 美女大奶头黄色视频| 青春草亚洲视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产男女超爽视频在线观看| 亚洲综合色网址| 午夜两性在线视频| 国产精品.久久久| 日韩中文字幕视频在线看片| 亚洲精品第二区| 99国产精品免费福利视频| 国产精品秋霞免费鲁丝片| 亚洲自偷自拍图片 自拍| 久久久精品免费免费高清| 午夜av观看不卡| 丰满少妇做爰视频| 80岁老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 9191精品国产免费久久| avwww免费| 成人手机av| 丝袜美足系列| 精品视频人人做人人爽| 久久性视频一级片| 99久久99久久久精品蜜桃| 日韩电影二区| 亚洲色图 男人天堂 中文字幕| 好男人视频免费观看在线| 久久精品熟女亚洲av麻豆精品| 在线观看免费日韩欧美大片| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 国产成人影院久久av| 男男h啪啪无遮挡| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区| 亚洲成人手机| 亚洲精品久久成人aⅴ小说| 国产一区二区三区av在线| av电影中文网址| 18禁国产床啪视频网站| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| 看十八女毛片水多多多| 国产男人的电影天堂91| 欧美日韩黄片免| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级| 好男人电影高清在线观看| 精品福利永久在线观看| 啦啦啦视频在线资源免费观看| 十八禁高潮呻吟视频| 黑丝袜美女国产一区| www.熟女人妻精品国产| 国产高清视频在线播放一区 | 色婷婷av一区二区三区视频| 午夜免费成人在线视频| 日本vs欧美在线观看视频| 韩国精品一区二区三区| av片东京热男人的天堂| 欧美精品高潮呻吟av久久| 两人在一起打扑克的视频| 老熟女久久久| 99久久精品国产亚洲精品| 中文字幕制服av| 啦啦啦 在线观看视频| 婷婷色麻豆天堂久久| 丰满少妇做爰视频| 中文字幕人妻丝袜制服| 久久久久网色| 麻豆av在线久日| 一级黄色大片毛片| 成人手机av| 啦啦啦啦在线视频资源| 美女主播在线视频| 日韩制服丝袜自拍偷拍| 操美女的视频在线观看| 丝袜喷水一区| 一级毛片 在线播放| 久久精品国产a三级三级三级| 在线观看免费午夜福利视频| 国产精品99久久99久久久不卡| 国产在线视频一区二区| 十分钟在线观看高清视频www| 亚洲av综合色区一区| 香蕉丝袜av| 日本av手机在线免费观看| 日韩 欧美 亚洲 中文字幕| 99精品久久久久人妻精品| 国产精品免费视频内射| 亚洲成色77777| 丰满迷人的少妇在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 大香蕉久久成人网| 在现免费观看毛片| 亚洲av日韩精品久久久久久密 | 热99国产精品久久久久久7| 黄色视频不卡| 国产片内射在线| 在线观看人妻少妇| 久9热在线精品视频| 手机成人av网站| 亚洲av电影在线进入| 人人澡人人妻人| 亚洲国产精品国产精品| 国产色视频综合| 国产精品久久久久久精品电影小说| 国产高清不卡午夜福利| 国产高清国产精品国产三级| 国产成人系列免费观看| 99热国产这里只有精品6| 丝袜脚勾引网站| 最近中文字幕2019免费版| 亚洲精品国产色婷婷电影| 午夜免费成人在线视频| 只有这里有精品99| 亚洲一区中文字幕在线| 国产免费现黄频在线看| 久久热在线av| 久久精品熟女亚洲av麻豆精品| 老司机午夜十八禁免费视频| 麻豆乱淫一区二区| 最近最新中文字幕大全免费视频 | 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 日本欧美视频一区| 日本wwww免费看| 国产亚洲一区二区精品| 最近最新中文字幕大全免费视频 | 老司机影院毛片| 人人妻人人添人人爽欧美一区卜| 男女无遮挡免费网站观看| 一级毛片 在线播放| 午夜视频精品福利| 超色免费av| a级毛片黄视频| 香蕉丝袜av| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| 777米奇影视久久| 精品人妻1区二区| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看 | 国产精品一区二区精品视频观看| 久久人妻福利社区极品人妻图片 | 国产三级黄色录像| 黑人欧美特级aaaaaa片| 日韩电影二区| 一本色道久久久久久精品综合| 伊人久久大香线蕉亚洲五| 青草久久国产| 精品福利观看| 51午夜福利影视在线观看| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 日韩 亚洲 欧美在线| 女性生殖器流出的白浆| 人人澡人人妻人| 国产一卡二卡三卡精品| 一级片'在线观看视频| 精品亚洲乱码少妇综合久久| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 天天躁夜夜躁狠狠久久av| 又黄又粗又硬又大视频| 老司机影院毛片| 久久人人爽av亚洲精品天堂| 欧美av亚洲av综合av国产av| 亚洲美女黄色视频免费看| 五月天丁香电影| 中文字幕另类日韩欧美亚洲嫩草| 久久国产精品人妻蜜桃| 在线观看一区二区三区激情| 婷婷色综合大香蕉| 亚洲精品成人av观看孕妇| 日本a在线网址| 国产成人a∨麻豆精品| 久久av网站| 亚洲精品国产一区二区精华液| av在线app专区| 最黄视频免费看| 亚洲欧美一区二区三区国产| 欧美激情高清一区二区三区| 一区二区三区四区激情视频| 人妻 亚洲 视频| 亚洲成国产人片在线观看| 999久久久国产精品视频| 老鸭窝网址在线观看| 午夜日韩欧美国产| 午夜免费男女啪啪视频观看| av又黄又爽大尺度在线免费看| 欧美成人精品欧美一级黄| 视频在线观看一区二区三区| 又黄又粗又硬又大视频| 日本黄色日本黄色录像| 欧美另类一区| 免费少妇av软件| 人人妻人人澡人人看| 国产精品久久久久久精品古装| 永久免费av网站大全| 一区二区三区乱码不卡18| 国产一区二区激情短视频 | 一区二区三区精品91| 下体分泌物呈黄色| 久9热在线精品视频| 一二三四在线观看免费中文在| 久久中文字幕一级| 免费一级毛片在线播放高清视频 | 97精品久久久久久久久久精品| 国产av精品麻豆| 精品高清国产在线一区| 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 久热这里只有精品99| 可以免费在线观看a视频的电影网站| 乱人伦中国视频| 亚洲人成电影免费在线| 欧美日韩黄片免| 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 母亲3免费完整高清在线观看| 欧美 亚洲 国产 日韩一| 成人亚洲欧美一区二区av| 91老司机精品| 国产不卡av网站在线观看| 日本vs欧美在线观看视频| 女人被躁到高潮嗷嗷叫费观| 青草久久国产| 国产亚洲av高清不卡| 久久久久久久久久久久大奶| 免费日韩欧美在线观看| 亚洲av日韩精品久久久久久密 | 又黄又粗又硬又大视频| 99国产综合亚洲精品| 亚洲中文日韩欧美视频| 岛国毛片在线播放| 久久99热这里只频精品6学生| 亚洲,欧美,日韩| 久久ye,这里只有精品| 丁香六月天网| 亚洲欧洲国产日韩| 久久久久久免费高清国产稀缺| 嫁个100分男人电影在线观看 | 色网站视频免费| 一区二区三区乱码不卡18| 国产三级黄色录像| 国精品久久久久久国模美| 亚洲国产精品999| 亚洲国产精品一区三区| 国产又色又爽无遮挡免| 精品一区在线观看国产| 午夜福利乱码中文字幕| 久久久国产一区二区| 久久久国产欧美日韩av| 亚洲国产av影院在线观看| 亚洲图色成人| 国产精品秋霞免费鲁丝片| 久久久久久人人人人人| 久9热在线精品视频| 丝袜在线中文字幕| 亚洲天堂av无毛| 国产视频一区二区在线看| 天天躁夜夜躁狠狠久久av| 亚洲精品成人av观看孕妇| 欧美成狂野欧美在线观看| 午夜精品国产一区二区电影| 日本wwww免费看| tube8黄色片| 亚洲国产中文字幕在线视频| 欧美变态另类bdsm刘玥| 久久热在线av| 亚洲中文av在线| 一本综合久久免费| 亚洲av欧美aⅴ国产| 亚洲熟女毛片儿| 69精品国产乱码久久久| 乱人伦中国视频| 亚洲国产欧美在线一区| 国产午夜精品一二区理论片| 黄色a级毛片大全视频| 国产免费现黄频在线看| 无限看片的www在线观看| 大型av网站在线播放| 麻豆乱淫一区二区| bbb黄色大片| 欧美精品高潮呻吟av久久| 久久久精品94久久精品| 人人妻人人爽人人添夜夜欢视频| 黄色毛片三级朝国网站| 你懂的网址亚洲精品在线观看| 欧美日韩精品网址| 在线观看免费日韩欧美大片| 在线亚洲精品国产二区图片欧美| av片东京热男人的天堂| avwww免费| 我的亚洲天堂| 老司机影院毛片| 男人爽女人下面视频在线观看| 免费高清在线观看视频在线观看| 超碰97精品在线观看| 久久久精品国产亚洲av高清涩受| 搡老岳熟女国产| 制服人妻中文乱码| 一二三四社区在线视频社区8| 丝袜美足系列| 男女下面插进去视频免费观看| 在线 av 中文字幕| 天堂中文最新版在线下载| 免费日韩欧美在线观看| 十八禁人妻一区二区| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品| 亚洲欧美一区二区三区国产| 成人黄色视频免费在线看| 国产野战对白在线观看| 日本猛色少妇xxxxx猛交久久|