• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collision enhanced hyper-damping in nonlinear elastic metamaterial

    2022-06-29 08:55:12MiaoYu于淼XinFang方鑫DianlongYu郁殿龍JihongWen溫激鴻andLiCheng成利
    Chinese Physics B 2022年6期

    Miao Yu(于淼) Xin Fang(方鑫) Dianlong Yu(郁殿龍) Jihong Wen(溫激鴻) and Li Cheng(成利)

    1Laboratory of Science and Technology on Integrated Logistics Support,National University of Defense Technology,Changsha 410073,China

    2Department of Mechanical Engineering,Hong Kong Polytechnic University,Hong Kong,China

    Keywords: nonlinear elastic metamaterial,hyper-damping,vibration suppression

    1. Introduction

    In the last decade,elastic metamaterials have shown great promise for elastic wave manipulation,[1–4]which are mainly limited to linear elastic metamaterials. In linear metamaterials, bandgaps arising from local resonances and Bragg scattering are of great significance for vibration reduction.[5,6]Limited by the mass and the size in practice, commonly achieved low-frequency bandgaps usually exhibit narrowband feature. Attaching different resonators[7–10]or amplifying the inertia[11–14]can broaden the bandgaps to a certain extent. Another important effect for vibration reduction and wave energy absorption in linear metamaterials is the hyper damping induced by local resonances.[15–17]This means that a material processes superior dissipation ability as compared with other materials with the same damping composition and equivalent static properties.[18]This is generally achieved by composite/architected materials or metamaterials. The hyperdamping effect in linear elastic metamaterials has been studied in a series of works by using different metamaterial configurations. Damping leads to broader vibration suppression,at the expenses of compromising the bandgaps. At present,realizing low-frequency and broadband bandgaps and simultaneous hyper damping remains a challenge in linear elastic metamaterials.[19,20]

    Elastic metamaterials with strong nonlinearity, i.e., nonlinear elastic metamaterials, can give rise to extraordinary physical phenomena,which can be exploited for elastic wave manipulation and vibration suppression.[21–24]Therefore,nonlinear elastic metamaterial becomes a hot topic in recent years.Due to the high-order harmonics, wave energy in nonlinear elastic metamaterials can be transferred from low to higher frequencies.[21,22]Except for the conventional band gaps similar to linear metamaterials, a region near 1/2-subharmonic in nonlinear elastic metamaterials can widen the frequency range of vibration attenuation.[23,24]Nonlinear effects can produce tunable and adaptive band gaps.[25–30]The amplitudes of nonlinear resonances in chaotic bands of nonlinear elastic metamaterials can be significantly suppressed, which greatly expands the bandwidth of suppressed waves.[31–37]However,the desired nonlinear effect requires relatively large incident amplitude,whilst achievable nonlinear coefficient in practical structures is usually limited. Moreover,vibration transmission in nonlinear metamaterials remains high when the incident amplitude becomes very large.[37]Damping and even hyperdamping effect may alleviate these challenges to improve the performance of nonlinear metamaterials. However, ways to achieve hyper damping in nonlinear elastic metamaterials are lacking and,even if achievable,the mechanisms underpinning the physical process remains unclear.

    As well known, a viscous damper connecting two elements produces a damping forceFd, which is proportional to the relative velocityvbetween the two objects, namelyFd=cv,wherevis the gradient of relative displacement. For a given damping coefficientc, introducing an abrupt change of displacement can increasevandFdto produce large energy dissipation because the“abrupt change”leads to the infinite gradient in mathematics. A dedicated way for producing such an abrupt change is through the collision between the objects,which subsequently generates strong nonlinear damping forces. Capitalizing on this concept, we design a nonlinear elastic metamaterial by combining the damping and collision in a meta-cell,which can induce robust hyper damping as required. This paper aims at investigating the feasibility of such design, tackling a few important aspects relating to its materialization and shedding lights on the underlying mechanisms. More specifically, we numerically study the damping efficiency and vibration transmission of different metamaterial models. The influences of amplitude and damping coefficient are analyzed to find a robust design scheme. This paper offers a novel way for conceiving nonlinear elastic metamaterials which entail effective vibration suppression.

    2. Model and methods

    2.1. Metamaterial models

    We consider a finite one-dimensional metamaterial model shown in Fig.1.Each meta-cell consists of a primary massm0,which is coupled to a resonator. Three kinds of coupling arrangement inside the meta-cell are considered, as shown in Figs. 1(b)–1(d). The damping in the primary chain is neglected. As a result, damping only comes from the motion inside meta-cells.

    Fig.1. Model of elastic metamaterial and its constituent meta-cell. (a)Elastic metamaterial model;(b)linear meta-cell;(c)meta-cell with bilateral collision;(d)sandwich-collision meta-cell.

    The first coupling scenario depicted in Fig.1(b)leads to a linear metamaterial. The equation of motion in thenthcell writes

    whereunandynare the displacement of the primary massm0and the local resonatorm1in thenthcell, respectively,k0is the stiffness of the spring between neighborm0,andk1is the linear stiffness betweenm0andm1. Here,a bilateral damping is introduced betweenm0andm1,andc0denotes the damping coefficient.

    In the second model shown in Fig.1(c),in addition to the linear stiffnessk1, the bilateral collision ofm1is introduced.According to the Hertz contact theory,the collision force takes the form ofkNδ3/2,wherekNis the collision stiffness. Therefore,expressions of forcesF1andF2labeled in Fig.1(c)write

    The third model shown in Fig.1(d)also considers the collision nonlinearity, but the massm1is split into two identical resonators,m2=m1/2. Besides the nonlinear coupling betweenm2andm0,the damping and linear coupling between the two massesm2are also considered. We will show later that this tiny change leads to a significant improvement of the performance. The resulting metamaterial is referred to as sandwichcollision metamaterial because the damping between the twom2behaves like a sandwich cake.Similar to the second model,the equations of motion in thenthcell of the third metamaterial write

    wherey2n-1andy2nare the displacements of the two resonatorsm2in thenthcell,k2is the linear stiffness of the spring connecting the two resonators, andc1is the damping coefficient of the damper between them.

    We note that the above three models have the same length of 12 cells. As shown in Fig. 1, in every model, the first meta-cell is subject to an incident wave sourceu0,and the last meta-cell is free. The incident displacement is expressed asu0=A0sin(ωt) in whichA0denotes the incident amplitude andω=2π fis the angle frequency. The frequency response of the elastic metamaterials can be obtained by solving the transmission of elastic metamaterial under different excitation frequenciesf.

    The parameters of elastic metamaterials with three different structures are set as follows:m0=0.1 kg,m1=0.05 kg,k0= (2π·100)2·m0N/m, andk1= (2π·20)2·0.25 N/m.The parameters for collision oscillator arekN=1×1010andd=0.0003 m. In the third model,m2=0.025 kg andk2=(2π·20)2·0.25 N/m. Other parameters are the same as collision elastic metamaterials. Unless otherwise specified asc0=1 kg/s.

    2.2. Numerical methods

    We adopt the numerical integration approach to solve the time-domain response of these models. For mono-frequency input,the simulation time is 50 s,and the signal segment during 40 s–50 s is taken to calculate the transmission and damping properties. The simulation time is long enough for the system to reach a steady state. The transmission is quantified byT=Aend/A0, whereAendis the average amplitude of the lastm0in the chain

    wherePiandVjare the peak and valley (negative) values of the signal in 40 s–50 s, respectively. We note that collision may lead to chaotic response and this method gives an average amplitude.

    2.3. Damping evaluation

    Fig. 2. Schematic diagram of simple harmonic motion of single degree of freedom system.

    The metamaterials under investigation form a multipledegrees-of-freedom system. The index for damping ratio should also reflect the wave transmission.Therefore,we adopt a similar expression like Eq.(10)to define the corresponding damping ratio as

    2.4. Vibration and damping of a meta-cell model

    Before systematically studying the properties of the metamaterials,we first investigate the general dynamics of a single meta-cell in this section.

    The meta-cell is driven by a displacementu0=A0sin(ωt). The frequency responses of the meta-cell,in terms ofT=A/A0under variable excitation amplitudesA0, are shown in Fig.3,whereAis the average amplitude of the resonatorm0. The frequency response of the first linear meta-cell is of course independent ofA0. Its resonant frequencies are 20 Hz and 100 Hz. The first resonant peak is not obvious in this figure because of damping(see Fig.A1(a)in Appendix A).

    For the second meta-cell(see Fig.3(b)),no collision occurs when the vibration amplitude is smaller than the clearanced, on which occasion, its response is identical with the

    Furthermore, we use the damping ratio?to evaluate the energy dissipation ability in the meta-cell model,as shown in Fig. 4. For the first linear meta-cell, the ratio?depends on frequency and is independent ofA0. The peak value is always located at the resonant frequency at 20 Hz.

    For the collision meta-cell,?depends on both frequency andA0. WhenA0is very small,the ratio?of the cell becomes large at the two resonance frequencies,and?at the resonance 20 Hz is much higher than at the other frequency 100 Hz. ForA0<1×10-4m,?near 100 Hz increases lightly while increasingA0. ForA0>1×10-4m, asm0andm1move synchronously (see Fig. B1(b)),?at both resonances gradually decreases.

    For case 1 in the sandwich-collision meta-cell,?at the resonance frequency 100 Hz is large for smallA0. While increasingA0,?at both 20 Hz and 100 Hz increases gradually,and a very broad band covering 20 Hz–250 Hz for the large damping ratio is generated, which indicates that the damping effect induced by sandwich-collision is very broadband. The variation trends in case 2 are similar with that in case 1, except that the damping ratio is much larger even for small input amplitude.

    Fig. 3. Frequency response of meta-cells under different excitation amplitudes. (a) Linear meta-cell; (b) meta-cell with bilateral collision; (c) case 1 in sandwich collision meta-cell;(d)case 2 in sandwich collision meta-cell.

    Moreover, we calculate the average damping ratio?mand the average transmissionTmfrom 1 Hz–200 Hz to evaluate low-frequency properties. Interestingly,?mandTmare highly correlated and vary oppositely. For the specific parameters,?m=0.1 andTm=2.72 are used for the linear metacell model. As shown in Fig.4(f),whenA0<10-4m,Tmof all nonlinear models are smaller than that of the linear model.However, further increasingA0whenA0>6×10-5m (the red circle in Fig.4(f)),?mof the second model with collision reduces to a tiny value,andTmrapidly increases and becomes larger than that of the linear model.This suggests that a proper strength of nonlinearity can reduce the vibration of the system but an excessively strong nonlinearity will jeopardize the vibration reduction in the system.

    As shown in Figs.4(e)and 4(f),Tmof the third sandwichcollision model remains at the valley for both cases 1 and 2 and?mincreases to 0.36 and 0.7 in cases 1 and 2 respectively,much higher than the linear model.This means that the desired hyper damping appears owing to the damping between the two resonatorsm2in the sandwich-collision nonlinear model.Moreover, asc0=0 kg/s in case 1 andc0=1 kg/s in case 2, the damping betweenm0andm2doubles the whole hyper damping ratio?mfrom 0.36 to 0.7,alongside a simultaneous reduction in the average transmissionTmfrom 2.0 to 1.55.This also signifies that the location of the damping layer would greatly influence the system property and the hyper damping is achieved.

    The aforementioned analyses based on a meta-cell model show that tactic designing the strongly nonlinear model with sandwich-collision can produce hyper damping for efficient vibration reduction even under very large amplitude.

    Fig.4. Damping ratio ? (a)–(d),average ratio ?m(e)and average transmission Tm(f)of meta-cells under different excitation amplitudes. (a)Linear meta-cell;(b)collision meta-cell;(c)sandwich-collision meta-cell 1;(d)sandwich-collision meta-cell 2;(e)average ratio ?m in four meta-cells;(f)average transmission Tm in four meta-cells.

    3. Vibration and damping of metamaterials

    In this section, we analyze the vibration and damping in the three types of elastic metamaterials with weak damping,c0=0 or 1 kg/s andc1=1 kg/s. Cases involving stronger damping are studied in the next section. The elastic metamaterials have very different properties from the meta-cell model.They have bandgaps and dense resonances in the passbands.

    3.1. Bandgaps

    Firstly, the dispersion curves in linearized metamaterials are calculated by using the periodic boundary conditions determined by Bloch theorem. Here only linear case is considered. For the diatomic model shown in Figs.1(b)and 1(c),the dispersion equation writes

    whereκ ∈[π/a] is the wave vector, andais the lattice constant.

    The dispersion relationship of the model in Fig.1(d)is

    Fig. 5. Dispersion curves in linearized metamaterials. (a) Dispersion curves corresponding to Figs. 1(a) and 1(b) without collision. (b) Dispersion curves corresponding to Fig.1(c)without collision.

    3.2. Vibration transmission and damping

    For the linear metamaterial, as shown in Fig. 6(a), the transmission within the band gap is of course much lower than that in the pass band, and its frequency response is independent ofA0. As shown in Fig. 6(b), the peak value of?is always located at the band gaps, because the bandgaps prohibit wave propagation,which can be regarded as the equivalent large damping effect.

    For the second collision metamaterial, as shown in Fig. 7(a), its transmission in the whole passbands becomes minimal nearA0=1×10-4m,like the property observed for the meta-cell. Moreover,the damping ratio of the whole band also become larger nearA0=1×10-4m. However,the wave transmission(the damping ratio)is large(small)for both small and large amplitude, i.e., nonideal performance for vibration suppression.

    Fig.6. Frequency response and ratio ? of linear metamaterials. (a)Frequency response,(b)ratio ?.

    Fig.7. Frequency response and ratio ? of collision metamaterials. (a)Frequency response,(b)ratio ?.

    Fig.8. Frequency response and ratio ? of sandwich-collision metamaterials under different excitation amplitudes. (a)Frequency response of case 1,(b)ratio ? of case 1,(c)frequency response of case 2,(d)ratio ? of case 2.

    Fig.9. Average ratio ?m (a)and average transmission Tm (b)of meta-cells in metamaterials under different excitation amplitudes.

    Properties for the sandwich-collision metamaterial are shown in Fig.8. Asc=0 in case 1,energy dissipation is only due to the relative motion between the twom2. However, as the two resonators are identical,their motions are synchronous in the ideal linear case,which means the defined damping ratio is zero. Therefore,the damping ratio in Fig.8(b)is tiny under small amplitude, on which occasion, collision does not happen. Fortunately, when increasing the incident amplitude forA0>3×10-5m,collision betweenm0andm2takes place,the synchronous motion is then broken and the damping is active.The damping ratio increases withA0in this case within a very broadband. This evidences the collision-enhanced damping,directly responsible for the reduction in the vibration transmission in 20 Hz–200 Hz for case 2, and Figs. 8(c) and 8(d)shows similar properties with the linear metamaterial whenA0is very small.WhenA0>1×10-4m,?significantly increases withA0due to the collision enhanced damping alongside a simultaneous reduction in the vibration.

    Furthermore, we evaluate the average damping ratio?mand the average transmissionTmin 1 Hz–200 Hz of these metamaterial models, as shown in Fig. 9. Their trends about the average damping ratio?mand average transmissionTmchanging withA0are similar to their meta-cell’s. And we can see that in nonlinear metamaterials the damping ratio for relatively high amplitude (with collision nonlinearity) is much higher than that for small amplitude,which exhibits the broadband hyper damping property responsible for vibration reduction. It is obvious that such hyper damping is enhanced by the collision.

    4. Influences of damping on the nonlinear sandwich-collision elastic metamaterial

    In this section,we clarify the effects of dampingc0andc1on the vibration transmission of nonlinear metamaterials. We numerically calculate the average transmissionTmin 20 Hz–200 Hz by changing bothA0and the damping coefficients.As there are multiple variables, the simulation with monofrequency input,u0=A0sin(ωt), is quite time-consuming to obtain the overall trends. Instead,we input the sweep-sine signal from 20 Hz–200 Hz within 200 s.The low sweeping speed used is to ensure that the responses obtained is very close to steady. The transmission spectrumT(f)is obtained with fast Fourier transform.

    For the second nonlinear metamaterial model with bilateral collision (see Fig. 10(a)), the average transmissionTmis always large forc0<4 kg/s and increasingc0can open a parameter space(c0,A0)forTm<1(i.e.,0 dB).There is an optimal range forc0to generate a minimalTm. However,Tmalways becomes large under larger incident amplitudeA0.

    For the third sandwich-collision model,we first study the influences ofA0andc0under weak damping between the two local resonatorsc1=1 kg/s (see Fig. 10(b)), and then study the influencesA0andc1for weak damping betweenm0andm2,c0=1 kg/s(see Fig.10(c)). It is interesting that this metamaterial model has much larger parameter space (c0,c1, andA0) forTm<1 than the first model, which greatly improves the robustness in practice. Moreover,there is an optimal value ofc0(=11 kg/s here)for the minimalTmin the first case withc1=1 kg/s. Unusually,Tmbecomes large again for strong dampingc0in the first case.This trend also happens in the former nonlinear model shown in Fig.10(a). This means that one still has to optimize the damping layer betweenm0and the inner resonators in practice. Fortunately,the trends in Fig.10(c)show that the metamaterial with sandwich-collision is insensitive toc1,highlighting a robust feature.

    It is well known,the phase diagram of the steady-state response of a linear damping system under single frequency excitation is a standard ring,as shown in Fig.10(i). Figure 10(h)stands for a quasi-periodic state which consists of several superimposed rings. While the phase diagrams of Figs. 10(d)–10(g)can not form one or several rings as Figs.10(h)and 10(i),which show the chaotic property.

    Fig.10. Average transmission Tm of collision metamaterials and sandwich collision metamaterials with different c0 and c1. Also with the phase diagram of the 12th meta-cell marked in(a)and(b). (a)Average transmission Tm of collision metamaterials with different c0. (b)Average transmission Tm of sandwichcollision metamaterials with different c0,in which c1=1.(c)Average transmission Tm of sandwich-collision metamaterials with different c1,in which c0=1.(d)–(i)Phase diagram obtained by single frequency excitation corresponding to the points marked in(a)and(b),the frequency of excitation is 100 Hz.

    In short, the nonlinear metamaterial with sandwich collision can efficiently suppress low-frequency and broadband vibration,and meanwhile features strong robustness for varying or uncertain amplitude and damping.

    5. Conclusion

    This paper proposes the design of a hyper-damping nonlinear elastic metamaterial for efficient,robust,low-frequency and broadband vibration reduction, along with a systematic analysis of underlying mechanism and the effects of major system parameters. To this end,we study the properties of the nonlinear elastic metamaterial consisting of sandwich damping layers and collision resonators. The vibration transmission and damping ratio of three kinds of metamaterials, and the dynamics of a unit cell are numerically studied. We find that the hyper damping can be induced and enhanced by the collision in meta-cells, consisting of resonators coupled as a sandwich structure. The sandwich collision elastic metamaterial possesses a large parameter space(amplitude,damping,frequency), whose effective tuning can warrant efficient lowfrequency and broadband vibration reduction through wave manipulation.

    In conclusion,this paper,through tactic structural design,reveals new properties and possibilities that can be offered by nonlinear elastic metamaterials. Hopefully, it can offer new impetus to the grooming area of nonlinear metamaterial design and offers a novel and robust method for achieving efficient low-frequency and broadband vibration suppression.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11872371, 11991032, and 12002371) and the Science and Technology Innovation Program of Hunan Province,China(Grant No.2020RC4022).

    Appendix A:Frequency responses of meta-cells

    As shown in Fig. A1(a), by comparing frequency responses of linear meta-cell with damping(c0=1)and without damping (c0=0), we can see that the low-frequency peak is not obvious when there is relatively large damping. As shown in Figs. A1(b)–A1(d), for nonlinear meta-cell, frequency responses change with excitation amplitudes,and there is an optimal excitation amplitude range for vibration suppression.

    Fig. A1. Frequency response of linear meta-cell with and without damping, and nonlinear meta-cells under different excitation amplitudes. (a)Linear meta-cell;(b)collision meta-cell;(c)sandwich collision meta-cell 1;(d)sandwich collision meta-cell 2.

    Appendix B: Time-domain di

    agrams of the meta-cells

    As shown in Figs. B1(a) and B1(c), when the amplitude of excitation is small,m0andm1orm2move in opposite phase for collision and sandwich collision meta-cell.With amplitude of excitation increasing,m0andm1move synchronously for collision meta-cell, as shown in Fig. B1(b). While for sandwich collision meta-cell 1,m0andm2move in the same phase but not synchronized,the displacement of the twom2in their non-collision direction is greater than that of them0.

    Fig. B1. Time domain responses of meta-cells, the frequency of excitation is 100 Hz. (a) Collision meta-cell when A0 =10-5 m. (b) Collision meta-cell when A0=10-3 m. (c)Sandwich collision matecell 1 when A0=10-5 m. (d)Sandwich collision matecell 1 when A0=10-3 m.

    Appendix C:Frequency responses of metamaterial models

    As shown in Fig.C1,we can conclude that the frequency response of linear metamaterial model is independent of excitation amplitude and there is also an optimal excitation amplitude range for vibration suppression.

    Fig.C1.Frequency response of metamaterial under different excitation amplitudes.(a)Linea metamaterial.(b)Collision metamaterial.(c)Sandwich collision metamaterial 1. (d)Sandwich collision metamaterial 2.

    免费观看的影片在线观看| 国产91精品成人一区二区三区| 久久中文看片网| 亚洲无线在线观看| 午夜爱爱视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲,欧美,日韩| 成人特级黄色片久久久久久久| 国产午夜精品久久久久久一区二区三区 | 日韩高清综合在线| 校园春色视频在线观看| 老司机深夜福利视频在线观看| 在线观看av片永久免费下载| 久久精品综合一区二区三区| 1024手机看黄色片| 亚洲av成人精品一区久久| 亚洲av二区三区四区| 成人国产一区最新在线观看| 欧美性猛交黑人性爽| 国产欧美日韩一区二区精品| 99热精品在线国产| ponron亚洲| 国产蜜桃级精品一区二区三区| 嫩草影视91久久| 久久99热这里只有精品18| 日本a在线网址| 日本撒尿小便嘘嘘汇集6| 美女被艹到高潮喷水动态| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 天天躁日日操中文字幕| 久久久久精品国产欧美久久久| 欧美日韩瑟瑟在线播放| 无遮挡黄片免费观看| 露出奶头的视频| 欧美色视频一区免费| 中文字幕人妻熟人妻熟丝袜美| 一个人看的www免费观看视频| 深夜a级毛片| 欧美性猛交黑人性爽| 日韩 亚洲 欧美在线| 国产色婷婷99| ponron亚洲| 床上黄色一级片| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一卡2卡三卡4卡5卡| eeuss影院久久| 午夜亚洲福利在线播放| 亚洲av不卡在线观看| 国产精品99久久久久久久久| 五月伊人婷婷丁香| 亚洲精华国产精华精| 亚洲av电影不卡..在线观看| 久久精品国产亚洲av涩爱 | 男插女下体视频免费在线播放| 狂野欧美激情性xxxx在线观看| 日日撸夜夜添| 91在线精品国自产拍蜜月| 午夜精品久久久久久毛片777| 韩国av在线不卡| 夜夜夜夜夜久久久久| 国产久久久一区二区三区| 亚洲精华国产精华液的使用体验 | 男人的好看免费观看在线视频| 国产成人av教育| 级片在线观看| 在线观看舔阴道视频| 老熟妇乱子伦视频在线观看| 精品人妻偷拍中文字幕| 久久精品国产亚洲av香蕉五月| 日韩强制内射视频| 99久久精品国产国产毛片| 乱系列少妇在线播放| 中亚洲国语对白在线视频| 69av精品久久久久久| 男女之事视频高清在线观看| 午夜a级毛片| 国产午夜精品久久久久久一区二区三区 | 国产亚洲欧美98| 毛片女人毛片| 偷拍熟女少妇极品色| 国产精品人妻久久久影院| 日本 av在线| 一区福利在线观看| 他把我摸到了高潮在线观看| 91久久精品国产一区二区三区| 午夜免费激情av| 亚洲国产精品久久男人天堂| 欧美区成人在线视频| 91麻豆精品激情在线观看国产| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 久久热精品热| 亚洲最大成人av| 一级黄片播放器| 日韩在线高清观看一区二区三区 | 亚洲四区av| 免费观看精品视频网站| 又粗又爽又猛毛片免费看| 亚洲精品国产成人久久av| 午夜激情福利司机影院| 两性午夜刺激爽爽歪歪视频在线观看| 日日撸夜夜添| 一级黄片播放器| 久久久久久久久久成人| 日韩欧美精品v在线| 男女边吃奶边做爰视频| 亚洲无线在线观看| 伦精品一区二区三区| 看黄色毛片网站| 在线天堂最新版资源| 男女啪啪激烈高潮av片| 精华霜和精华液先用哪个| 有码 亚洲区| 亚洲va在线va天堂va国产| 国产一区二区亚洲精品在线观看| 国产精品一区二区性色av| 欧美日韩综合久久久久久 | 九九在线视频观看精品| 99热这里只有是精品50| 日日摸夜夜添夜夜添av毛片 | 日韩精品有码人妻一区| 在线观看一区二区三区| 成年女人永久免费观看视频| 国产伦人伦偷精品视频| 嫩草影院精品99| 99久久无色码亚洲精品果冻| 岛国在线免费视频观看| 精品人妻一区二区三区麻豆 | 日本与韩国留学比较| 一a级毛片在线观看| 久久婷婷人人爽人人干人人爱| 69av精品久久久久久| 久久天躁狠狠躁夜夜2o2o| 国产91精品成人一区二区三区| 亚洲真实伦在线观看| 色噜噜av男人的天堂激情| 久久人人爽人人爽人人片va| 亚洲熟妇熟女久久| 成人午夜高清在线视频| 国产黄a三级三级三级人| 我要看日韩黄色一级片| 久久天躁狠狠躁夜夜2o2o| 在线免费观看不下载黄p国产 | 国产精品一及| 亚洲aⅴ乱码一区二区在线播放| 男插女下体视频免费在线播放| 国模一区二区三区四区视频| 特大巨黑吊av在线直播| 真人做人爱边吃奶动态| 午夜久久久久精精品| 午夜视频国产福利| 国产精品1区2区在线观看.| 精品久久久久久,| 3wmmmm亚洲av在线观看| 精品午夜福利在线看| 亚洲狠狠婷婷综合久久图片| 国产成年人精品一区二区| 亚洲黑人精品在线| 18禁裸乳无遮挡免费网站照片| 国内精品久久久久久久电影| 日本一二三区视频观看| 热99re8久久精品国产| 午夜福利成人在线免费观看| 最新在线观看一区二区三区| 欧美潮喷喷水| 久久精品国产亚洲av涩爱 | 国产在视频线在精品| 国产成人一区二区在线| 精品一区二区三区人妻视频| 国产精品一区二区性色av| 亚州av有码| 亚洲欧美日韩卡通动漫| 99在线视频只有这里精品首页| 老师上课跳d突然被开到最大视频| 一个人看的www免费观看视频| 亚洲专区中文字幕在线| 热99在线观看视频| 亚洲av成人av| 少妇猛男粗大的猛烈进出视频 | 在线观看av片永久免费下载| 国产私拍福利视频在线观看| 超碰av人人做人人爽久久| 久久久久久大精品| 中亚洲国语对白在线视频| 亚洲欧美清纯卡通| 蜜桃久久精品国产亚洲av| 亚洲午夜理论影院| 真实男女啪啪啪动态图| 成人永久免费在线观看视频| 人人妻,人人澡人人爽秒播| 婷婷精品国产亚洲av| 人人妻人人看人人澡| 婷婷精品国产亚洲av| 99久久久亚洲精品蜜臀av| 一进一出抽搐gif免费好疼| 男女下面进入的视频免费午夜| 精品久久国产蜜桃| 欧美黑人欧美精品刺激| av在线天堂中文字幕| 成人午夜高清在线视频| 国产真实乱freesex| 亚洲精品456在线播放app | 他把我摸到了高潮在线观看| 九色成人免费人妻av| 免费看美女性在线毛片视频| 欧美黑人巨大hd| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 看黄色毛片网站| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品sss在线观看| 91久久精品国产一区二区三区| 九九爱精品视频在线观看| 亚洲成人久久性| 91在线精品国自产拍蜜月| 啦啦啦观看免费观看视频高清| 午夜福利18| 日韩高清综合在线| 亚洲国产精品合色在线| 久久久久久大精品| 国产av一区在线观看免费| 精品人妻偷拍中文字幕| 99久久精品国产国产毛片| 欧美人与善性xxx| 我的女老师完整版在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日本黄大片高清| 日韩欧美免费精品| 99热精品在线国产| 丰满人妻一区二区三区视频av| 午夜激情欧美在线| 国产免费一级a男人的天堂| 久久久久久久精品吃奶| 成人永久免费在线观看视频| 欧美一区二区国产精品久久精品| 一本精品99久久精品77| 搡老岳熟女国产| 亚洲四区av| 看免费成人av毛片| 欧美一区二区亚洲| 亚洲成av人片在线播放无| 草草在线视频免费看| 麻豆国产av国片精品| 亚洲,欧美,日韩| 免费高清视频大片| 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| aaaaa片日本免费| 亚洲精品一卡2卡三卡4卡5卡| 舔av片在线| 亚洲在线观看片| 亚洲精品日韩av片在线观看| 在线看三级毛片| 日本成人三级电影网站| 日本免费a在线| 亚洲人成网站高清观看| 一进一出好大好爽视频| 亚洲精品456在线播放app | 老司机午夜福利在线观看视频| 国产一区二区三区视频了| 亚洲七黄色美女视频| 赤兔流量卡办理| 99热网站在线观看| 极品教师在线视频| 国产精品无大码| 精品人妻熟女av久视频| 我的老师免费观看完整版| 国产黄色小视频在线观看| 天堂网av新在线| 搡女人真爽免费视频火全软件 | 直男gayav资源| 亚洲成人精品中文字幕电影| bbb黄色大片| 日本黄色视频三级网站网址| 天天躁日日操中文字幕| 日韩精品中文字幕看吧| 日本a在线网址| 色综合婷婷激情| 在线免费观看的www视频| 美女高潮的动态| 欧美日韩黄片免| 欧美zozozo另类| 成人一区二区视频在线观看| 日本精品一区二区三区蜜桃| 又爽又黄a免费视频| 美女免费视频网站| 久久99热6这里只有精品| 日本黄大片高清| 最近最新免费中文字幕在线| 亚洲欧美日韩东京热| 久久精品综合一区二区三区| av专区在线播放| 九九久久精品国产亚洲av麻豆| 两人在一起打扑克的视频| 亚洲成人久久性| 亚洲va在线va天堂va国产| 黄色一级大片看看| 天美传媒精品一区二区| 亚洲中文日韩欧美视频| 国产一区二区激情短视频| 高清在线国产一区| 一区福利在线观看| 99热这里只有精品一区| 男女下面进入的视频免费午夜| 成年免费大片在线观看| 亚洲真实伦在线观看| 久99久视频精品免费| 国产视频一区二区在线看| 日本爱情动作片www.在线观看 | 人妻制服诱惑在线中文字幕| av在线天堂中文字幕| 天堂av国产一区二区熟女人妻| 国产精品一及| 国产又黄又爽又无遮挡在线| 精品国产三级普通话版| 极品教师在线视频| 欧美日本亚洲视频在线播放| 桃色一区二区三区在线观看| 久久精品人妻少妇| 美女 人体艺术 gogo| 夜夜看夜夜爽夜夜摸| 女生性感内裤真人,穿戴方法视频| 亚洲av不卡在线观看| 久久久久久久久久久丰满 | 国内精品宾馆在线| 联通29元200g的流量卡| 亚洲精品在线观看二区| 欧美日韩中文字幕国产精品一区二区三区| 美女高潮的动态| 亚洲成人久久性| 一边摸一边抽搐一进一小说| 日韩欧美在线乱码| 草草在线视频免费看| 真人一进一出gif抽搐免费| 99精品在免费线老司机午夜| 搡老岳熟女国产| 97热精品久久久久久| 中文字幕人妻熟人妻熟丝袜美| 成人毛片a级毛片在线播放| 乱人视频在线观看| 成年女人毛片免费观看观看9| av在线蜜桃| 亚洲国产日韩欧美精品在线观看| 中国美白少妇内射xxxbb| 日韩欧美一区二区三区在线观看| 高清毛片免费观看视频网站| 色综合婷婷激情| 男女下面进入的视频免费午夜| 精品一区二区三区视频在线| 欧美不卡视频在线免费观看| 国产高清视频在线观看网站| 亚洲精品乱码久久久v下载方式| 老熟妇仑乱视频hdxx| 国产真实伦视频高清在线观看 | 欧美日韩乱码在线| 中文字幕人妻熟人妻熟丝袜美| av在线蜜桃| 亚洲黑人精品在线| 精品国内亚洲2022精品成人| 免费看a级黄色片| 久久久久九九精品影院| 午夜免费男女啪啪视频观看 | 丰满人妻一区二区三区视频av| 91麻豆av在线| 91午夜精品亚洲一区二区三区 | 中文亚洲av片在线观看爽| 精品免费久久久久久久清纯| 大又大粗又爽又黄少妇毛片口| 国产真实伦视频高清在线观看 | 色哟哟哟哟哟哟| а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 我的老师免费观看完整版| 国国产精品蜜臀av免费| 人妻久久中文字幕网| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品亚洲一区二区| 色播亚洲综合网| 搡老熟女国产l中国老女人| 国产国拍精品亚洲av在线观看| 夜夜夜夜夜久久久久| 女同久久另类99精品国产91| 亚洲av美国av| 老司机午夜福利在线观看视频| 免费在线观看影片大全网站| 色精品久久人妻99蜜桃| 成熟少妇高潮喷水视频| 亚洲成人久久性| 丝袜美腿在线中文| av在线亚洲专区| 日韩欧美一区二区三区在线观看| 男女那种视频在线观看| 久久热精品热| 亚洲精华国产精华精| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产| 非洲黑人性xxxx精品又粗又长| 三级国产精品欧美在线观看| 嫩草影院新地址| 欧美潮喷喷水| 亚洲av美国av| 久久精品国产鲁丝片午夜精品 | 最近在线观看免费完整版| 精品福利观看| 国内毛片毛片毛片毛片毛片| 天堂av国产一区二区熟女人妻| 国产成年人精品一区二区| 男人狂女人下面高潮的视频| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 又黄又爽又免费观看的视频| 国产私拍福利视频在线观看| 国产精品一区www在线观看 | 狂野欧美激情性xxxx在线观看| 高清在线国产一区| www日本黄色视频网| 国产亚洲av嫩草精品影院| 国产精品国产高清国产av| 国产黄色小视频在线观看| 中文资源天堂在线| 深夜精品福利| 国产69精品久久久久777片| 国产精品一区二区性色av| 久久九九热精品免费| 在线观看66精品国产| 国产伦人伦偷精品视频| 亚洲成av人片在线播放无| 女生性感内裤真人,穿戴方法视频| 欧美色视频一区免费| 亚洲av成人av| 天堂影院成人在线观看| 最好的美女福利视频网| 三级毛片av免费| 日韩一本色道免费dvd| 国产欧美日韩精品亚洲av| 成人美女网站在线观看视频| 亚洲av免费在线观看| 亚洲第一电影网av| 最新中文字幕久久久久| 精品99又大又爽又粗少妇毛片 | a在线观看视频网站| 久久久久国产精品人妻aⅴ院| 99九九线精品视频在线观看视频| 国产精品野战在线观看| 亚州av有码| 一本精品99久久精品77| 国产伦精品一区二区三区视频9| 九九爱精品视频在线观看| 97人妻精品一区二区三区麻豆| 国产亚洲欧美98| 男人舔奶头视频| 熟女人妻精品中文字幕| 成人特级黄色片久久久久久久| av视频在线观看入口| 欧美日本视频| 99在线人妻在线中文字幕| 日本三级黄在线观看| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲成人久久性| 国产精华一区二区三区| 婷婷精品国产亚洲av| а√天堂www在线а√下载| 亚洲无线观看免费| 淫秽高清视频在线观看| 可以在线观看毛片的网站| 国产91精品成人一区二区三区| 亚洲国产精品久久男人天堂| 亚洲国产精品sss在线观看| 两人在一起打扑克的视频| 两个人的视频大全免费| 俺也久久电影网| 国语自产精品视频在线第100页| 午夜亚洲福利在线播放| 伦精品一区二区三区| 听说在线观看完整版免费高清| 国产欧美日韩精品一区二区| 91久久精品国产一区二区三区| 少妇熟女aⅴ在线视频| 久久天躁狠狠躁夜夜2o2o| 亚洲成人久久性| 国产视频内射| 免费av毛片视频| 国产av麻豆久久久久久久| 国产伦人伦偷精品视频| 亚洲中文字幕日韩| 在线看三级毛片| 草草在线视频免费看| 精品国内亚洲2022精品成人| 校园人妻丝袜中文字幕| 欧美日韩综合久久久久久 | 变态另类成人亚洲欧美熟女| 熟女人妻精品中文字幕| 22中文网久久字幕| 久久草成人影院| 亚洲一级一片aⅴ在线观看| 在线国产一区二区在线| 久久亚洲真实| 精品人妻偷拍中文字幕| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久久黄片| 国产伦一二天堂av在线观看| 俺也久久电影网| 久久欧美精品欧美久久欧美| 成熟少妇高潮喷水视频| 亚洲自偷自拍三级| 国产成人一区二区在线| 亚洲欧美清纯卡通| 日本与韩国留学比较| 久久精品综合一区二区三区| 少妇熟女aⅴ在线视频| 毛片女人毛片| 2021天堂中文幕一二区在线观| 在线播放国产精品三级| 国国产精品蜜臀av免费| 国产白丝娇喘喷水9色精品| 在线免费十八禁| 无遮挡黄片免费观看| 久久久久精品国产欧美久久久| 男女边吃奶边做爰视频| 看免费成人av毛片| 在线免费十八禁| 国产一区二区在线观看日韩| 精品一区二区三区av网在线观看| 18禁在线播放成人免费| 欧美日韩综合久久久久久 | 国产一级毛片七仙女欲春2| 国内精品久久久久久久电影| 国产免费av片在线观看野外av| 国产伦精品一区二区三区四那| 观看美女的网站| 日韩中文字幕欧美一区二区| 国产视频内射| 欧美日韩精品成人综合77777| 一本精品99久久精品77| 欧美性感艳星| 国产亚洲精品久久久久久毛片| 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区视频9| 亚洲av中文字字幕乱码综合| 精品久久久久久久末码| 精品人妻偷拍中文字幕| 色尼玛亚洲综合影院| 女生性感内裤真人,穿戴方法视频| 99久久九九国产精品国产免费| 午夜爱爱视频在线播放| 久久精品国产自在天天线| 日日夜夜操网爽| 一个人观看的视频www高清免费观看| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片 | 国内精品一区二区在线观看| 精品欧美国产一区二区三| 国产真实伦视频高清在线观看 | 日韩欧美免费精品| 国产一级毛片七仙女欲春2| 老司机午夜福利在线观看视频| 免费高清视频大片| 成年版毛片免费区| 一级黄片播放器| 国产精品,欧美在线| 国产免费男女视频| 男人和女人高潮做爰伦理| 亚洲成人精品中文字幕电影| 成人综合一区亚洲| 精品免费久久久久久久清纯| 一区二区三区高清视频在线| 日本黄色片子视频| 男女下面进入的视频免费午夜| 尤物成人国产欧美一区二区三区| 国语自产精品视频在线第100页| 欧美精品国产亚洲| 天堂网av新在线| 亚洲精品粉嫩美女一区| 小蜜桃在线观看免费完整版高清| 国国产精品蜜臀av免费| 国产亚洲精品综合一区在线观看| 亚洲性夜色夜夜综合| 欧美精品啪啪一区二区三区| 国产精品久久视频播放| 不卡一级毛片| 很黄的视频免费| eeuss影院久久| 国产 一区 欧美 日韩| 哪里可以看免费的av片| netflix在线观看网站| 嫩草影院新地址| 在线观看66精品国产| 99在线视频只有这里精品首页| 成人国产一区最新在线观看| 干丝袜人妻中文字幕| 日韩欧美一区二区三区在线观看| 中文字幕久久专区| 极品教师在线免费播放| 欧美不卡视频在线免费观看| 毛片女人毛片| av在线观看视频网站免费| 亚洲欧美激情综合另类| 久久精品国产自在天天线| 老女人水多毛片| 欧美性猛交黑人性爽| 欧美精品啪啪一区二区三区| 日本免费a在线| 小说图片视频综合网站| 俺也久久电影网| 亚洲欧美日韩无卡精品| 联通29元200g的流量卡| 中国美女看黄片| 午夜影院日韩av| 日韩一区二区视频免费看| 欧美成人一区二区免费高清观看| 日本与韩国留学比较| 国产欧美日韩精品一区二区|